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Abstract—Accurate detection of the Physical Cell Identity (PCI)
is critical for rapid synchronization and connection establishment
in 5G New Radio (5G-NR) systems. This paper introduces a deep
learning-based approach for PCI classification, aiming to mitigate
the computational complexity associated with traditional methods
that rely on decoding the Synchronization Signal Block (SSB).
Our approach processes only time-domain baseband samples of
the downlink signal, arranged in fixed-length windows. These
windows are inputted into a pre-trained Convolutional Neural
Network (CNN), which classifies the samples into one of several
known PCI values (representing nearby cells) or into an ‘other’
category (representing all non-nearby cells, as well as windows that
do not contain SSB samples). Because PCI-related information
is contained only in the SSB symbols of a frame, it is possible
for an input window to include no or a few SSB samples.
Accordingly, in labeling the training set, we use a threshold
Ttrain on the fraction of the samples within a window: if Ttrain

or more of the samples belong to an SSB of cell with a target
PCI value, the true label for that window is set to that PCI
value; otherwise, it is set to ‘other.’ A separate threshold Ttest

is used for labeling the test windows. We also study another
labeling mechanism whereby only samples of the third OFDM
symbol in an SSB (which contains the Secondary Synchronization
Signal) is used to determine the label. Our analysis considers
two commonly used SSB formats that correspond to 15 and 30

kHz subcarrier spacings, respectively. Extensive simulations are
conducted which reveal that the proposed classifier can reliably
(above 98%) identify the PCI value of a captured signal even
under Signal-to-Noise Ratio (SNR) values as low as −10 dB. This
performance comes with a significant reduction in computational
complexity as it bypasses the need for traditional SSB decoding
procedures used for PCI estimation in 5G networks.

Index Terms—Physical cell identity, 5G-NR, deep learning,
synchronization signal block, PSS, SSS.

I. INTRODUCTION

THE advent of 5G New Radio (5G-NR) heralds a new

era in wireless communication, offering unparalleled data

speeds, minimal latency, and extensive machine-type communi-

cations [1], [2]. The synchronization process is an integral com-

ponent of 5G systems, as it ensures seamless initial discovery

and reliable communication between User Equipment (UE) and

Base Stations (BS) [3]–[6]. It is used by the UE to acquire the

Timing Offset (TO) and the Carrier Frequency Offset (CFO),

as well as retrieving the Physical Cell Identifier (PCI) [4], [7].

The PCI uniquely identifies a cell within the network, enabling

the UE to connect to the appropriate cell. Precise identification

of PCI is crucial for the synchronization mechanism, signif-

icantly influencing network performance, e.g., reducing error

probabilities during initial access, minimizing interference, and

facilitating handovers, thereby enhancing the overall user ex-

perience [8].

Machine Learning (ML) plays an important role in 5G-

NR, enabling dynamic spectrum sharing, performance enhance-

ment in coexistence scenarios, and fostering advancements

in areas like adaptive beamforming [9], resource allocation,

interference management, predictive analytics, and network

optimization [10], [11]. This paper exploits ML for estimating

the PCI, bypassing the conventional approaches for synchro-

nization which rely on signal decoding. This strategy leads to

a significant reduction in complexity and opens the door for

integrating ML-based PCI detection in various use cases such as

smart repeaters, SSB-based passive coherent location RADAR

systems, UAV detection, and others.

Cell search in the 5G system requires decoding the Syn-

chronization Signal Blocks (SSBs) [12], [13]. Using the Global

Synchronization Channel Number (GSCN) within a specified

frequency band, a UE executes a cell search by detecting both

the Primary Synchronization Signal (PSS) and the Secondary

Synchronization Signal (SSS) [14]. SSB consists of the PSS

and SSS along with the Physical Broadcast Channel (PBCH)

[6], [15], [16]. PSS in 5G-NR utilizes one of three pre-defined

m-sequences, each with a length of 127, transmitted on the first

OFDM symbol of the SSB. It assists in determining the physical

layer identity groups and facilitates initial synchronization and

symbol-level time alignment [6]. The SSS is used to identify

the specific cell within the identified PSS group. There are

336 possible sequences. Combination of these two signals

(PSS identifying the broader group and SSS pinpointing the

exact cell within that group) enables precise calculation of

the PCI [17]. This calculation, integral to the UE’s ability

to differentiate between various network cells, is essential to

maintain effective communication and network coherence in a

dynamic environment of 5G connectivity.

Typically, PCI detection occurs in tandem with the syn-

chronization process. The algorithm devised for PCI detection,

detailed in [18], relies on estimating the CFO and SSS se-

quence. This estimation is achieved by finding the maximum

correlation between the received signal (after frequency offset

compensation) and all possible SSS sequences. In [6], a timing

synchronization algorithm based on PSS was proposed which

incorporates an enhanced coarse synchronization method using

Fourier transform with a fine synchronization approach based



on the triple auto-correlation algorithm. However, this comes at

the cost of higher computational complexity, twice as much as

the conventional approach. Improved PCI detection probability

through precoding vector switching transmit diversity and re-

ceive diversity was proposed in [19]. It was shown that receive

diversity with up to four antennas significantly improves PSS

and SSS sequence detection, and boosts the PCI detection prob-

ability in high Signal-to-Noise Ratio (SNR) regions. Another

approach [5] utilized quasi-omni pseudo-random sounding

beams and a novel signal processing algorithm for initial cell

discovery, synchronization, and fine-resolution beam training.

This approach relied on energy detection for initial access,

outperforming directional initial access in the cell discovery

rate. In [20], a deep-learning-based initial access method was

introduced for millimeter-wave MIMO systems. It employed

a Convolutional Neural Network (CNN) for enhanced PSS

detection. However, the approach requires preprocessing the

received signal using Fast Fourier Transform, followed by

network training, resulting in higher computational complexity

than conventional approaches.

Traditional PCI estimation processes rely predominantly on

SSB decoding, which involves high computational complexity

due to intensive correlation operations on the receiving end. In

this paper, we introduce a CNN and Convolutional Long-Short-

Term Memory (ConvLSTM) architecture for PCI detection in a

5G-NR network using only time-domain samples, i.e., prior to

FFT, bypassing the SSB decoding stage. It substantially reduces

computational complexity compared to traditional methods and

effectively retrieves the PCI value from the received signal,

even in the presence of a larger frequency offset. Given

LTE’s simpler synchronization architecture, our PCI estima-

tion approach is also well-suited for LTE systems. The main

contributions of the paper are as follows:

• We create a comprehensive dataset of 5G-NR signal

waveforms using MATLAB’s ‘Communication Toolbox’

and ‘5G Toolbox’. The dataset features 12 distinct PCIs

(99 to 110) with varying sector and group IDs and two

SSB formats (Case-A and Case-B).

• Two deep learning classifiers (CNN and ConvLSTM) are

developed for PCI classification. Focusing on the less

complex yet efficient CNN architecture, we achieve strong

PCI classification performance across SNR values ranging

from -10 to 0 dB.

• We continue to evaluate the trained model’s performance

with the received signal incorporating CFO, showcasing

its capability to handle real-world signal imperfections.

• Finally, our deep learning-based approach is compared

with the traditional methods that decode the SSB from

the baseband signals, revealing a significant advantage

in terms of computational complexity with the CNN

approach.

The rest of the paper is organized as follows. In Section II,

we start with the background of the synchronization process in

5G systems. We also explain the conventional approach of PCI

detection. Section III introduces the CNN model, dataset gen-

eration, and proposed PCI estimation procedure. Simulation-

Fig. 1. Structure of an SSB in 5G-NR.

Fig. 2. Classical procedure for PCI estimation.

based performance evaluation of the proposed approach is

provided in Section IV. Finally, Section V concludes this paper.

II. PRELIMINARIES: SYNCHRONIZATION PROCESS IN

5G-NR

A. Synchronization Signal Block (SSB)

The synchronization procedure relies on periodic transmis-

sion of SSBs by a gNB (gNodeB). In contrast to LTE, the

gNB transmits SSB in intermittent bursts with periodicities

of 5, 10, 20, 40, 80, and 160 ms, depending on the specific

configuration of the network (20ms is the default period). In

5G-NR, a synchronization signal burst (SS burst) is a set of

SSBs within a beam-sweep. Each SSB within an SS burst is

assigned a distinctive identifier known as the SSB index, which

is transmitted through a dedicated beam in a specific direction

in the time domain. A UE may only detect and read a single

SSB from a particular beam direction without considering other

SSBs transmitted from the same cell. Fig. 1 illustrates the

structure of an SSB burst transmission pattern. In the time

domain, an SSB consists of four OFDM symbols that are each

mapped to 240 contiguous subcarriers in the frequency domain.

Synchronization signals (PSS and SSS) are in the first and



TABLE I
SSB TIME-DOMAIN RESOURCE ALLOCATION

Indices of OFDM starting symbols of the candidate SSBs

Frequency Range - 1 Frequency Range - 2

SCS

of SSB

OFDM Symbols

Position
(fc ≤ 3 GHz) (3 ≤ fc ≤ 6) GHz

SCS

of SSB

OFDM Symbols

Position
(fc ≥ 6 GHz)

Case-A

15 kHz
{2, 8}+14n

n = 0, 1
{2, 8, 16, 22}

n = 0, 1, 2, 3

{2, 8, 16, 22, 30, 36, 44, 50}
Case-D

120 kHz
{4, 8, 16, 20}+28n

n = 0, 1, 2, 3, 5, 6, 7, 8, 10,

11, 12, 13, 15, 16, 17, 18

{4, 8, 16, ...512, 520, 524}
Case-B

30 kHz
{4, 8, 16, 20}+ 28n

n = 0

{4, 8, 16, 20}
n = 0, 1

{4, 8, 16, 20, 32, 36, 44, 48}
Case-E

240 kHz

{8, 12, 16, 20,
32, 36, 40, 44}+56n

n = 0, 1, 2, 3, 5, 6, 7, 8

{8, 12, 16, ...484, 488, 492}
Case-C

30 kHz
{2, 8}+14n

n = 0, 1

{2, 8, 16, 22}
n = 0, 1, 2, 3

{2, 8, 16, 22, 30, 36, 44, 50}

third OFDM symbols. The Sub-Carrier Spacing (SCS) can be

different than the SCS of a carrier for faster synchronization

[16]. Different SSB transmission patterns, based on the SCS

of SSB, are observed in time-domain, with flexibility in their

frequency domain placement. Table I illustrates all possible

SSB burst patterns, specifying the number of SSBs within a

burst and the starting OFDM symbol position of these SSBs

for FR1 and FR2 of 5G-NR.

B. Primary and Secondary Synchronization Signals

PSS and SSS play crucial roles in synchronizing a UE to

a base station. The PSS is used to identify frame boundary

and detect the cell ID sector, N (2)

ID
. It is composed of one

of three possible 127-symbol m-sequences [17]. One of these

sequences is strategically positioned on the first symbol of each

SSB, spanning 127 subcarriers. The SSS is selected from 336
distinct 127-symbol gold sequences, and is positioned on the

third symbol of each SSB. The structure of these 336 gold

sequences is provided in [17].

5G-NR supports 1008 unique Cell IDs, systematically orga-

nized into 336 groups. Each group is defined by a ‘Cell ID

Group’ (N (1)

ID
, ranging from 0 to 335) and further divided into

three sectors, identified by the ‘Cell ID Sector’ (N (2)

ID
, taking

values 0, 1, or 2). UEs discern N (2)

ID
from the PSS and N (1)

ID

from the SSS, leading to the calculation of the primary cell

(PCI) as: N cell

ID
= 3N (1)

ID
+ N (2)

ID
. This identification approach

bears similarity to that of 4G networks. However, it differs from

4G in the specific attributes and the generation patterns of the

synchronization signal sequences. These differences are pivotal

in enhancing the effectiveness of the 5G network, particularly

in terms of the speed and accuracy of cell detection.

C. Classical Synchronization Procedure and PCI Estimation

In 5G-NR, the PCI detection process involves several key

steps, as shown in Fig. 2. Initially, the receiver identifies the

OFDM symbol timing and extracts the PSS sequence through

cross-correlation of the received signal and each of the three

reference PSS sequences. Following frequency offset estimation

and correction, the receiver performs OFDM demodulation and

extracts the resource elements corresponding to the SSS from

the received grid. It then correlates these elements with each

possible locally generated SSS sequence to determine N (1)

ID
. The

indices of the strongest PSS and SSS sequences are combined

TABLE II
PARAMETERS USED TO GENERATE 5G TRACES

Parameters Value

Channel Bandwidth 20 MHz

Frequency Range FR1

Numerology 0, 1

# of Subframes 10

# of Resource Block 106

SCS of SSB Case-A & Case-B

PCI ID 99, 100, ..., 110

SSB Burst Periodicity (Training) 5 msec

SSB Burst Periodicity (Testing) 20 msec

SNR (dB) 0,−2,−4,−6,−8,−10

to determine the PCI, which is essential for the demodulation

reference signal (DM-RS) and PBCH processing.

III. PROPOSED PCI DETECTION APPROACH

A. Dataset Description

The 5G-NR signal waveforms are generated using MAT-

LAB’s ‘Communication Toolbox’ and ‘5G Toolbox’. These

toolboxes enable the specification of key signal attributes such

as baseband I and Q values, channel bandwidth, modulation,

SCS, and allocated resource blocks. Leveraging these defined

features, we simulate diverse waveforms for 5G-NR systems

across various parameter configurations outlined in Table II

in accordance with standard specifications. Amid the array of

potential features, particular emphasis is placed on the baseband

I/Q samples at the receiver, augmented with noise, serving as

the input for the classifier. These I/Q samples, accessible prior

to signal decoding, offer a good representation of the actual

waveform.

In this study, we explore the impact of two distinct SCS

formats, ‘Case-A’ and ‘Case-B,’ within the context of SSB.

Within each case, we investigate two variants of SSB burst pe-

riodicities, specifically 5ms and 20ms (default periodicity). By

leveraging these parameters, we generate traces for 12 distinct

PCIs ranging from 99 to 110, incorporating different sector

and group IDs. Given the pool of 1008 possible PCIs resulting

from PSS and SSS combinations, we strategically aim to curate

this subset, which encapsulates the full spectrum of possible

combinations, thus enabling a comprehensive assessment of the

resilience of our PCI detection methodology.



Fig. 3. Architecture of the proposed CNN model for PCI classification.

Fig. 4. F1-score comparison between CNN and ConvLSTM at different SNR
values considering ‘Case-A’ SSB format.

Each PCI was meticulously analyzed with respect to a

specific SSB Burst periodicity and one of the SCS formats,

resulting in the generation of 300 individual traces per com-

bination. Consequently, our research endeavors yield a com-

prehensive dataset comprising 14, 400 traces with 10 frames

in each, capturing the intricacies and variations across the

investigated parameters. The dataset exhibits diversity through

the incorporation of varying payloads across the traces. Channel

randomization, utilizing the AWGN channel, is applied to each

of these traces. The traces for each PCI are further catego-

rized into 6-SNR values after performing channel realizations.

Each trace realization comprises 3, 072, 000 I/Q pairs, with

each OFDM symbol corresponding to 2, 192 I/Q pairs for the

Case-A format of SSB and 1, 097 I/Q pairs for the Case-B

configuration.

B. Classifier Design

Recent advances in deep learning demonstrated the efficacy

of CNNs and ConvLSTM networks in capturing complex data

patterns in wireless systems [20]–[23]. This section provides

a comparative analysis of these two architectures, focusing on

their application in PCI classification. CNNs are known for

their effectiveness in processing spatial data through hierar-

chical feature extraction. Their architecture, characterized by

convolutional layers, activation functions, pooling layers, and

fully connected layers, is well-suited for tasks that involve

TABLE III
HYPER-PARAMETERS FOR PROPOSED PCI CLASSIFIER

Parameters Value

Max Training Epochs 10

Initial Learning Rate 0.2

Learn Rate Schedule Piecewise

Learn Rate Drop-Factor 0.8

Learn Rate Drop Period 7

Batch Size 128

Filter Size [1, 16]

Optimizer Stochastic gradient descent with momentum

Activation Function ReLU

Loss Categorical Cross-entropy

identifying patterns and features in images or other grid-

like structures. Our proposed CNN model, shown in Fig. 3,

consists of six convolutional layers, each coupled with batch

normalization, ReLU activation, and max pooling. Noteworthy

is the replacement of the traditional max pooling layer with

an average pooling layer in the final convolutional layer,

thereby introducing a nuanced method for feature aggregation.

SoftMax activation function is used in the output layer of the

model, thereby giving probabilistic class prediction. The hyper-

parameters of this CNN classifier are summarized in Table III.

On the other hand, ConvLSTM networks extend CNNs’

capabilities by incorporating LSTM units to address both spatial

and temporal dependencies, making them particularly powerful

for sequential data where temporal dynamics are important to

capture. The proposed architecture of ConvLSTM used in our

work integrates the same CNN structure previously discussed

but adds an LSTM layer to enhance the model’s ability to

handle classification tasks. Following the convolutional block,

the ConvLSTM model employs average pooling to aggregate

global features, which are then flattened. An LSTM layer with

256 hidden units is subsequently used to capture temporal

dependencies within these features. Combining the strengths

of convolutional and sequential processing, the architecture

achieves robust PCI classification performance.

Fig. 4 presents an F1-score comparison between CNN and

ConvLSTM models for PCI classification across different SNR

(−10 to 0 dB) levels. Surprisingly, the two models exhibit

comparable performance except at SNR = −10 dB, where

ConvLSTM shows a marginally superior performance. The

CNN model offers a clear advantage in computational efficiency



over the ConvLSTM due to its simpler architecture. Given

our emphasis on minimizing the computational complexity

of traditional PCI detection methods, CNN’s efficiency and

straightforward design make it the preferred choice for further

analysis.

C. Window Labeling Strategy

To perform PCI classification, we arrange the time-domain

baseband I/Q samples of the downlink signal in fixed-length

windows. During the training process, we allow the windows

to overlap by adjusting the stride of the sliding window. In the

window labeling process, we explore two approaches. The first

approach labels a window based on the percentages of samples

that fully or partially belong to SSB, spanning four OFDM

symbols. The second approach focuses on a specific segment

of the SSB, considering solely the OFDM symbol that contains

the SSS. Window labeling depends on a threshold value: Ttrain

and Ttest for the training and testing phase, respectively. This

threshold indicates the percentage of I/Q pairs associated with

the SSB or SSS for the two approaches, respectively. If an

I/Q sample within a window corresponds to the SSB/SSS of

a particular PCI and the percentage of such samples is greater

than or equal to Ttrain, the window is labeled with that PCI

value. Otherwise, it is labeled as ‘Other’. During the training

phase, we set Ttrain = 100%, and our observations indicate that

the model exhibits accurate window classification performance

during testing for Ttest = 50% and 100%. As mentioned above,

two types of SSB burst periodicity, 5 ms and 20 ms (default

periodicity), are considered. During the training phase, we focus

solely on the 5 ms periodicity due to the higher concentration

of SS blocks in each trace. However, we maintain the default

20 ms SSB burst periodicity during testing.

IV. RESULTS AND DISCUSSION

A. Impact of Model Depth

This segment presents the rationale behind our selection of a

six-layer CNN architecture. Our analysis assesses the model’s

efficacy by selectively focusing on a subset of training and

test windows, where all samples are uniquely associated with

the third OFDM symbol of an SSB (‘Case-A’). The outcomes

are succinctly illustrated in Fig. 5, wherein we deploy CNN

configurations of varying depths. Our analysis reveals that

CNN architecture comprising six layers significantly outper-

forms alternative configurations and strikes a balance between

model complexity and computational efficiency. We optimize

the hyper-parameters specifically for the 6-layered CNN model,

which could be a plausible explanation for the observed supe-

rior performance. The consistent outperformance of precision,

recall, and F1 scores, particularly for lower SNR, reinforces

our selection of the 6-layered CNN model.

B. SNR Impact on Proposed Model’s Performance

We explore two distinct strategies for training the model

in the context of SNR selection using the ‘Case-A’ SSB

format. Firstly, our training dataset encompasses a range of

(a)

(b)

(c)

Fig. 5. Impact of convolutional layers on precision, recall, and F1-score for
PCI classification considering different SNRs.

SNR values, where the SNR values (in dB) are in the set,

S = {−10, −8, −6, −4, −2, 0}, providing a comprehensive

representation of noise levels. Subsequently, our second ap-

proach solely incorporates traces corresponding to the lowest

SNR, −10 dB. Both the training and testing datasets include

windows containing SSB samples, as well as those without

SSB samples, labeled as ‘Other.’ During model evaluation for

both cases, testing traces contain the entire range of SNR

values within our predefined set, S. As shown in Table IV,

training with a dataset covering an SNR range from −10



TABLE IV
PCI DETECTION ACCURACY AT DIFFERENT SNRS

Inference
SNR
(dB)

Without
Decision Threshold

With
Decision Threshold

(α = 95%)

All SNRs
(dB)

Lowest SNR
(dB)

All SNRs
(dB)

Lowest SNR
(dB)

Precision
(%)

Recall
(%)

F1-Score
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Window
Removal

(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Window
Removal

(%)

0 100.00 100.00 100.00 74.44 99.90 84.89 100.00 100.00 100.00 0.21 95.92 99.99 97.87 1.45

−2 99.86 100.00 99.93 79.07 99.92 87.90 100.00 100.00 100.00 0.45 98.61 100.00 99.29 1.62

−4 97.74 99.56 98.63 81.62 99.86 89.60 99.85 100.00 99.93 3.91 99.43 100.00 99.71 2.24

−6 93.75 95.27 94.44 81.66 99.29 89.32 99.91 99.43 99.67 19.51 99.62 100.00 99.81 8.24

−8 81.47 75.24 77.87 79.21 87.57 82.97 98.64 89.46 93.72 43.86 99.44 96.71 98.05 32.31

−10 66.10 47.86 53.97 71.25 61.00 65.16 96.15 51.01 64.28 58.05 97.04 70.52 80.92 56.58

to 0 dB generally yields improved performance compared to

training solely with the dataset of SNR = −10 dB, regard-

less of the decision threshold α. This is because the wider

SNR range provides a more nuanced representation of varying

noise conditions, enhancing the model’s ability to generalize

across diverse scenarios. However, this expanded range also

increases training time and computational demands due to the

larger dataset. Our findings indicate that, without the decision

threshold, the first approach in which training traces cover the

SNR range from 0 to −10 dB performs better. Considering

the decision threshold, α = 95%, the CNN model trained

exclusively on traces of SNR=−10 dB delivers performance

on par with models trained across all SNRs. The recall value

indicates that all the labeled windows are correctly identified in

both cases except at SNR=−10 dB. When we train our model

solely with the lowest SNR, it tends to misclassify windows

labeled as ‘Other,’ especially windows from the traces with

high SNR. However, when we set the α as 95%, the proposed

approach performs efficiently across a range of SNRs, including

extremely low SNR levels. When the decision threshold is

applied, a significant proportion of windows labeled with their

respective PCIs are excluded: 32.31% and 56.58% for SNRs of

−8 dB and −10 dB, respectively which is less than the alternate

approach. Our trained model achieves perfect classification

accuracy for SNR values above 0 dB. Therefore, we focus

our analysis on the more challenging SNR range from −10
to 0 dB. Consequently, we advocate focusing on training data

comprising solely the lowest SNR, as it yields comparable per-

formance over large datasets, effectively balancing performance

with limited resources.

C. Comparison of Complete SSB vs. Partial SSB

In this section, we evaluate the CNN model under two

different procedures for labeling the input windows: The first

method relies on the samples of the entire synchronization

signal block (‘Case-A’) for labeling the window, whereas the

second method uses only the samples of the third OFDM

symbol in an SSB (which contains the SSS). In this analysis,

we consider a subset of the training and test windows by

considering only those windows whose 100% of their samples

belong to an SSB for the first approach or to the third OFDM

symbol of an SSB for the second one i.e., Ttrain = Ttest = 100%.

TABLE V
PCI DETECTION ACCURACY FOR

TWO LABELING APPROACHES

Inference

SNR
(dB)

Complete
SSB

3rd OFDM symbol
of SSB

Precision

(%)

Recall

(%)

F1-Score

(%)

Precision

(%)

Recall

(%)

F1-Score

(%)

0 99.65 99.65 99.65 100.00 100.00 100.00

−2 96.82 96.82 96.82 100.00 100.00 100.00

−4 88.19 88.20 88.17 100.00 100.00 100.00

−6 76.45 76.08 76.19 100.00 100.00 100.00

−8 63.47 62.61 62.81 99.56 99.56 99.56

−10 49.20 48.05 48.17 96.19 96.17 96.17

TABLE VI
PCI DETECTION CONSIDERING

CASE-B SSB FORMAT

Inference

SNR
(dB)

without
Decision Threshold

with
Decision Threshold (α = 95%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

0 84.75 99.95 91.44 93.17 99.98 96.37

−2 87.25 99.96 93.02 94.76 99.98 97.26

−4 89.10 99.73 93.97 97.59 99.99 98.76

−6 90.11 97.67 93.63 98.78 99.29 99.03

−8 92.16 86.81 89.27 99.53 94.18 96.75

−10 85.40 59.34 68.89 98.71 63.22 75.31

We aim to determine which component - SSB or SSS - offers

superior performance in PCI detection, excluding the windows

labeled as ‘Others,’ and a comparative analysis of performance

between the two methodologies is delineated in Table V. It

is discernible from the results that incorporating the third

OFDM symbol while training the model, the PCI detection

approach demonstrates greater resilience. In extremely low

SNR scenarios, the effectiveness of PCI detection deteriorates

significantly when utilizing the entire SSB for training. One

contributing factor could be the first OFDM symbol of SSB

where PSS is mapped, as it remains unchanged for one-third

of all possible PCI values (0 to 1007). Conversely, the third

OFDM symbol, where the SSS is, exhibits uniqueness for each

PCI. This distinctiveness underpins the superior performance

of the model, even under challenging low SNR conditions.

Impressively, it maintains a precision of 96% even at an

SNR=−10dB.



(a)

(b)

(c)

Fig. 6. PCI classification performance vs. number of PCIs in the training
datasets at different SNR values considering ‘Case-A’- SSB format and decision
threshold, α = 95%.

D. Performance Evaluation for Different PCI Sets

In order to find the robustness of our PCI detection approach,

we investigate the model’s performance by varying the number

of PCIs in the training dataset. The number varies in the set is

{1, 3, 6, 9, 12}. The model’s performance is tested using all

12 PCIs. We consider the full set of training and test windows

(windows belonging to the third OFDM symbol of an SSB and

windows that do not). We set Ttrain = 100% and Ttest = 50%.

Fig. 6 demonstrates a high precision score for all sets. When we

TABLE VII
PCI DETECTION ACCURACY FOR

JOINT TRAINING OF TWO SSB FORMATS

Inference SNR

(dB)

Training Traces Considering

Different SSB Formats Jointly

Precision

(%)

Recall

(%)

F1-Score

(%)

0 88.70 88.21 85.65

−2 90.10 81.91 81.17

−4 91.42 74.06 74.30

−6 91.08 68.15 69.71

−8 87.78 56.05 62.99

−10 73.27 31.28 39.20

train the model with just one PCI, its detection ability is lower

than when we train it with 12 PCIs. However, as the number of

PCIs increases, the recall performance decreases significantly

at SNR = −10 dB. Apart from this, the model works effectively

for all other SNR conditions. The main takeaway is that if a

model is designed to spot a specific number of PCIs, it can do

so accurately without knowing about any other PCIs nearby in

a network.

E. Analysis of Different SSB Formats

All the earlier analyses are for only one type of SSB format

(Case-A). We explore the capability of our model by training

it with another SSB format, ‘Case-B,’ and six different PCIs.

The PCI detection ability is tabularized in Table VI in terms

of precision, recall, and F1 score. The results clearly show that

the model trained on traces having ‘Case-B’ format excels at

detecting PCI. Expanding on our progress, we have taken a

further step by training the model with traces from two distinct

SSB formats to see how it performs collectively. It prepares

the classifier for scenarios where it needs to handle PCIs with

varying SSB formats. This investigation considers Ttrain = 100%
for training and Ttest = 50% for testing. Analysis from Table VII

reveals that the model yields commendable performance but not

as the scenarios exclusively addressing a single SSB format.

We consider six PCI values (99 to 104) for two distinct SSB

formats (total of 12 classes). Similar to the scenario depicted in

Fig. 6, we noticed a notable drop in recall performance at SNR

of −10 dB when dealing with a larger class (12 PCIs). The

reason for a marginal reduction in precision is that the model

occasionally misclassifies cases where the PCI is same, but the

SCS of SSB differs.

F. Frequency Offset Analysis

A critical challenge in 5G NR networks is the impact of

CFO on received signals. Frequency offset often originates

from oscillator inaccuracies and environmental factors, such as

temperature, which can shift the transmission carrier frequency.

To support high data rates in 5G systems for vehicular speeds

up to 500 km/h, Doppler shifts can induce CFOs up to 2 kHz

at the 4.2 GHz band−corresponds to 13% of the subcarrier

spacing [24]. We consider a testing dataset with four CFO

values: 0, 15, 30, and 45 kHz to evaluate the effect of CFO

on our proposed model. We utilize a pre-trained model, which



(a) (b) (c) (d)

Fig. 7. Confusion matrices for PCI classifier considering different frequency offset at SNR = 0 dB (a) 0 KHz, (b) 15 KHz, (c) 30 KHz, and (d) 45 KHz.

TABLE VIII
PCI DETECTION ACCURACY FOR DIFFERENT CARRIER FREQUENCY OFFSET AT DIFFERENT SNRS

Inference
SNR

(dB)

Carrier Frequency Offset

CFO = 0
(kHz)

CFO = 15
(kHz)

CFO = 30
(kHz)

CFO = 45
(kHz)

Precision
(%)

Recall
(%)

F1-Score
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

Precision
(%)

Recall
(%)

F1-Score
(%)

0 100.00 100.00 100.00 98.36 98.33 98.34 83.71 83.54 83.54 41.39 41.04 40.43

−2 100.00 100.00 100.00 92.13 92.08 92.09 68.00 67.50 67.26 29.72 30.83 30.00

−4 100.00 100.00 100.00 82.19 81.87 81.85 56.72 56.04 55.99 34.47 35.21 34.57

−6 100.00 100.00 100.00 67.96 67.92 67.84 43.70 43.54 43.43 33.52 33.75 33.58

−8 98.34 98.33 98.33 51.43 51.25 51.31 39.56 39.58 39.47 32.77 32.29 32.46

−10 91.31 91.25 91.26 42.68 42.29 42.35 37.72 37.71 37.45 32.59 32.29 32.31

was developed using a training dataset based on the ‘Case-A’

SSB format and three PCI values (99, 100, 101). Importantly,

the CFO is not included in the training data but introduced

exclusively during inference. We take Ttest = 50% for this anal-

ysis. Fig. 7 illustrates that our proposed model achieves perfect

PCI classification accuracy at SNR = 0 dB in the absence of

CFO. Even with a CFO of 15 kHz, the classifier maintains an

accuracy of about 99%. The classification accuracy drops to

85% at a CFO of 30 kHz. However, the model’s performance

deteriorates significantly when the CFO reaches 45 kHz. The

overall performance of our proposed approach across various

SNRs is summarized in Table. VIII. The model’s ability to

classify PCI decreases when we lower the SNR value if CFO

exists in the received signal.

G. Complexity Analysis

In our proposed method, the computational complexity

mainly comes from the 2D convolutional layer in the CNN

block. The input feature map has dimensions of 1× 1024× 2,

with input channels Cin = 2. The convolution is performed

using a kernel of size 1×16 (kernel height, KH = 1 and width,

KW = 16). The method produces output feature maps with

dimensions of Hout ×Wout × Cout, where height Hout = 1, width

Wout = 1024 and the number of output channels Cout varies

across six layers with values of 16, 24, 32, 48, 64, and 96,

respectively. The overall computational complexity of the 2D

convolutional layer is determined by the number of operations

required, which is given by the expression-

O(Cout ×Hout ×Wout ×KH ×KW × Cin)

For the given parameters, this complexity is approximately

O(9.17× 106).
Detecting the PCI in 5G-NR signals involves several steps,

each contributing to the overall computational complexity. The

process begins with detecting the PSS, which helps determine

the cell’s identity within a group. There are three possible PSS

sequences, and a receiver correlates the received signal with

each of these sequences to identify the cell ID sector, N (2)

ID
.

In calculating the complexity for each correlation, there are

two FFT and one IFFT operations of length N, each requiring

N log
2
N operations. Thus, the complexity of the traditional

PSS detection per frame is about O(3×16.79×106). Only the

computational complexity of PSS detection is 5.5 times higher

than our proposed method. Additionally, detecting PSS and

SSS requires estimating and correcting frequency and timing

offsets and performing OFDM modulation to generate reference

signals for correlation, further adding to the computational com-

plexity of the process. Traditional methods are computationally

intensive, whereas our proposed approach significantly reduces

the computational burden, making it far more efficient for PCI

detection.

V. CONCLUSIONS

This paper introduced a CNN-based approach for extracting

the PCI value directly from the time-domain 5G-NR signal,



bypassing conventional decoding. Rigorous performance eval-

uation, considering different SCS of SSBs, multiple PCIs,

frequency offsets, and SNR values, demonstrated the robustness

of the proposed approach in accurately predicting the PCI

value. The proposed method involved processing time-domain

baseband signals using windows of fixed sizes and leveraging

a pre-trained CNN classifier to retrieve the PCI. Based on the

simulation results, we noted that considering the 3rd OFDM

symbol of the SSB consistently delivers better performance.

This was true even under the most challenging SNR conditions

and situations where the received signal’s SSB can be of

any subcarrier spacing format. Additionally, the number of

nearby cells constrained the model’s performance, particularly

at SNR = −10 dB. The proposed machine learning-driven PCI

approach can be integrated into 5G-NR devices that require

low computational overhead, such as smart repeater systems. It

can also facilitate seamless handover procedures and effective

synchronization at the UE.
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