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Context-Aware Timewise VAEs for Real-Time
Vehicle Trajectory Prediction

Pei Xu"”, Jean-Bernard Hayet

Abstract—Real-time, accurate prediction of human steering be-
haviors has wide applications, from developing intelligent traffic
systems to deploying autonomous driving systems in both real
and simulated worlds. In this letter, we present ContextVAE, a
context-aware approach for multi-modal vehicle trajectory predic-
tion. Built upon the backbone architecture of a timewise variational
autoencoder, ContextVAE observation encoding employs a dual
attention mechanism that accounts for the environmental context
and the dynamic agents’ states, in a unified way. By utilizing
features extracted from semantic maps during agent state encoding,
our approach takes into account both the social features exhibited
by agents on the scene and the physical environment constraints to
generate map-compliant and socially-aware trajectories. We per-
form extensive testing on the nuScenes prediction challenge (Caesar
et al., 2023), Lyft Level 5 dataset (Houston et al., 2023) and Waymo
Open Motion Dataset (Ettinger et al., 2023) to show the effective-
ness of our approach and its state-of-the-art performance. In all
tested datasets, ContextVAE models are fast to train and provide
high-quality multi-modal predictions in real-time.

Index Terms—Vehicle trajectory prediction, multimodal

prediction, timewise variational autoencoder.

I. INTRODUCTION

EAL-TIME trajectory prediction for traffic agents is fun-

damental for the development of self-driving systems and
intelligent traffic control solutions [4]. In this letter, we par-
ticularly focus on the problem of predicting the multi-modal
behavior of vehicles in challenging scenes populated with het-
erogeneous neighbors, including pedestrians, cyclists and other
vehicles. Accurate prediction for traffic agents requires the
predictive model to fully take into account the external (observ-
able) and internal (intentions) characteristics of the agents, in
addition to the contextual influence from the agent’s neighbors
and the scene environment [5]. While numerous approaches
have been proposed over the past few years for context-aware
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vehicle trajectory prediction [6], most existing solutions focus
on the model’s prediction accuracy ignoring the requirements for
real-time inference performance [7]. To address this issue, we
introduce ContextVAE as a real-time approach for high-fidelity
vehicle trajectory prediction.

Our work follows the line of recent variational autoencoder
(VAE) methods that have been shown to achieve state-of-the-
art performance in agent trajectory prediction tasks involving
homogeneous, human-human interaction settings [8], [9], [10].
Despite their success, VAE-based methods tend to underperform
when tasked to predict vehicle trajectories in complex, heteroge-
neous traffic scenes [1]. To that end, we explore recent trends in
timewise VAE architectures [11] to better capture the highly dy-
namic and multi-modal nature of agent interactions. In addition,
we propose a novel, dual-attention mechanism for observation
encoding that simultaneously accounts for the environmental
context (roads, lanes, etc.) extracted from the local map features
and the social context extracted from the perceived neighbors’
states. To enable real-time inference, our approach uses an
RNN-based encoding of the perceived neighbors [9] instead of
plotting their trajectories on rasterized maps [7]. Meanwhile,
the extracted environmental features directly participate in the
agent’s state encoding process, leading to a fully, context-aware
scheme for observation encoding and fast and accurate inference
of the agent’s navigation strategy.

This letter proposes ContextVAE, a real-time approach for
vehicle trajectory prediction conditioned on short-term obser-
vations. Overall, we make the following contributions:

e We introduce a novel, dual-attention architecture for RNN-
based observation encoding that accounts for environmen-
tal (map) and social (neighbors) features in a unified man-
ner. We show that such a unified scheme is paramount to
achieve high-quality predictions compared to the decou-
pled schemes that current VAE-based solutions employ,
where environmental and social features are encoded sep-
arately [9], [10], [12], [13].

® We combine our observation encoding scheme with a VAE
architecture where latent variables are sampled timewisely
to better model the uncertainty in agent decision mak-
ing [11]. The resulting ContextVAE approach is generic as
it does use any post-processing techniques or prior assump-
tions about the agents’ motion, leading to state-of-the-art
performance compared to existing solutions with similar
attributes. In addition, ContextVAE models are orders of
magnitude faster to train due to their low complexity and
small memory footprint, and exhibit real-time prediction
performance (< 30 ms).

® We demonstrate the effectiveness and computational ef-
ficiency of ContextVAE on three heterogeneous vehicle
datasets: the nuScenes prediction challenge [1], Lyft Level
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Fig. 1. Trajectory predictions on the Lyft dataset using our proposed approach.
ContextVAE employs a timewise VAE architecture and a context-aware ob-
servation encoding scheme that accounts for environmental (map) and social
(neighbor) features in a unified manner. Top: Corresponding attention that the
target vehicle is paying to its neighbors within a radius of 30 m. Bottom:
Predicted trajectories and map regions with high activation in the attention
model. Red regions are considered more visually salient than blue regions.

5 dataset [2] and Waymo Open Motion Dataset [3]. Con-
textVAE provides high-fidelity predictions while allowing
for real-time inference and can serve as a strong baseline
for future work of vehicle trajectory prediction.

II. RELATED WORK

There has been a lot of prior work on agent trajectory
prediction focusing on human-human interactions [8], [14], [15],
[16], [17] and autonomous driving applications [18], [19]. We
refer to recent excellent surveys for an overview [6], [20]. Below,
we briefly focus on methods exploiting both environmental and
social contexts for vehicle trajectory prediction.

Leveraging Environmental Context: To produce map-
compliant predictions, early works directly plot the observed tra-
jectories (agent of interest and neighbors) on the rasterized scene
maps, performing prediction mainly by using convolutional
neural networks (CNNs) to extract map features without fully
exploiting the agents’ states [2], [5], [7], [21], [22], [23]. More
recent works exploit both the environmental context and vector-
ized neighbors’ states as inputs to the prediction model to better
synthesize the agent’s motion states and context [9], [10], [24],
[25], [26], [27], [28]. Beyond rasterized maps, some approaches
leverage the graph representation of high-definition maps to
avoid information loss during rasterization [29], [30], [31],
[32]. Systems such as VectorNet [29] and AutoBots [25] have
shown that CNNs applied on rasterized maps can be replaced
by graph neural networks (GNNs) using graph-represented
maps. Instead of modeling the overall environment, QCNet [33]
employs a polygon-based representation ofthe environment
and denotes the scene via embedding each agent-polygon
pair.

Generating Sequential Predictions: CoverNet [21] and Multi-
Path [22] generate trajectories by picking them from a predefined
set and cast the generative task as a classification problem.
WIMP [34], Trajectron++[9] and DiversityGAN [27] use recur-
rent neural networks (RNNs) to perform prediction sequentially.
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MTP [23], AutoBots [25] and LaPred [35] output fixed-length
predicted trajectories at once. WIMP [34], CXX [36], TNT [37],
GoalNet [26] first predict goal positions and then generate
trajectories between the last observed position and the predicted
goals. IMAP [12] and M2I [38] do not predict trajectories only
for target agents but perform prediction sequentially for all the
agents. P2T [24] and PGP [39] use reinforcement learning, with
areward-based model upon which a policy is trained to perform
prediction.

Handling Multi-Modality: To model the uncertainty during
human driving and account for multi-modal decision making,
Trajectron++[9] and BiTrap [10] follow DESIRE [8] and ex-
ploit a conditional variational autoencoder (CVAE) architecture
where the prior on the latent variable is modeled as a mixture of
Gaussians. MTP [23], AutoBots [25], and MultiPath++ [40] use
Gaussian mixtures as well but with an encoder-decoder architec-
ture.DiversityGAN [27] takes the architecture of generative ad-
versarial networks to produce stochastic results. LaPred [35] and
LanceGCN [30], employs K predictor networks with random
initialization to produce K predictions parallelly. Our approach
uses a CVAE [11] as its backbone architecture but the latent
variables are introduced timewisely [11] to better capture the
uncertainty in agent decision making. The final distribution is
modeled as a sequentially conditioned Gaussian distribution
instead of a mixture model.

Introducing Prior Knowledge: Recent works introduce prior
knowledge [41] into the process of vehicle trajectory predic-
tion by assuming that vehicles’ possible movement patterns.
For example, CXX [36], WIMP [34], PGP [39], LaPred [35],
LaneRCNN [42], HOME [43] and GOHOME [32] select in-
teresting paths traversing the road graph or specific lanes
in the graph as the basis to generate numeric coordinates.
TNT [37] and GoalNet [26] select goal positions based on
the road graph and then perform goal-directed prediction.
Though achieving impressive results, such approaches heavily
rely on the assumption that vehicles will move along the road
graph, which is not always true in real-life scenarios. Thus,
we focus on comparisons with works that do not rely on this
assumption.

III. APPROACH

A. Problem Formulation

Given a local, T'-frame observation O}:T gathered from a tar-
get agent ¢, we seek to estimate the agent’s trajectory predictive
distribution over the future H frames, i.e. p(x; "7 TH|OFT),
where xiT“‘TJrH are the agent’s future coordinates. To perform
context-aware prediction, we use observations that include both
the N; observed neighboring agent positions and the local en-
vironmental context information MY, i.e. Of := {M}, {x}};},
where j = 1,..., N; and |[x} — x}|| < r; given r; as the obser-
vation radius of agent i. We model M! as a vector of features
extracted from rasterized semantic maps via a CNN module, as
shown in Fig. 2. To train our models in a scene-invariant way,
we do not predict directly the global coordinates xiTH:T‘LH
but rather the displacement distribution p(d} ™+ TH|OFT),
where d! :=x!—x!"' is the displacement between two
frames. Future trajectories are reconstructed as x. 1"
x] + Z?:E@l d7

by sampling d] from the predicted
distributions.
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Fig. 2.

4

ContextVAE backbone architecture is a timewise VAE shown in the gray block at the upper right. The proposed map encoding module is linked to the

backbone timewise VAE architecture through the context-aware observation encoder (dashed box), which processes the vectorized agent states in a unified way
with the map features. M-ATTN and S-ATTN represent the map and social attention respectively, where © is the dot product operator, ® is the element-wise
multiplication operator, and () is the concatenation operator. Red parts for posterior estimation are used only during training.

B. Model Architecture and Training Objective

The backbone architecture of ContextVAE is a timewise VAE
with a conditional prior py and a posterior g, estimated bidi-
rectionally (see Fig. 2). The training objective is to maximize a
timewise evidence lower bound:

1 T+H
E; T Z Eytrg,(btni- [l0g pe(di2i, hi")
t=T+1

= Dicr, [g0(zi[ b}, by H)|Ipa (2 H)]] |, (1

where z! is the latent variable sampled timewisely, and b} and
hf’l are the RNN hidden states, which are updated backward
in the encoder and forward in the decoder, respectively. We
parameterize the output distribution pe, the posterior ¢4 and the
prior py as Gaussians, using neural networks.

The timewise VAE decoder hidden state h! for ¢ > T is up-
dated recurrently based on the sampled z! and the displacement
d’,ie. h! = ¢ (Yua(z!,d!), hi~!). While feeding z allows to
produce the necessary variations to match the predictive distri-
bution, the displacement d! allows to enforce some continuity
in the produced displacements across time. The initial state
h? = ¢, (O}T) encodes the observation, where 1,q and ¥y
are embedding networks. This leads to a prior conditioned by
the context observation Oil:T (see Section III-C). The time-
wise VAE encoder hidden state bf is updated backwards, i.e.
bt = ‘G (O}, bi*1), given the ground-truth observation O at
the future frame ¢ > 7" and a zero initial state b} ~7 1,

At training, the posterior g, over the latent variable z! at
timestep ¢ uses the information collected from the future part
of the ground-truth trajectory from 7'+ H down to ¢, through
the backward encoding b!. This leverages the whole trajectory
availability at training time for better extracting the agent’s
strategy. It also uses the forward encoding hﬁ’l evaluated from

1 to ¢ — 1, thus considering the whole trajectory O%:Tﬂq . The

displacement distribution p¢ (d) relies on this latent variable z,,
drawn from g (-|bt, h! ') at training, and on h} *.

Atinference, predictions are generated through latents drawn
from the prior: di ~ pe(-|zt, hi ™) where zt ~ pg(:|hi ™), re-
lying on the historical observation O} only.

C. Context-Aware Observation Encoding

We introduce a unified scheme for observation encoding,
where the environmental context extracted from the semantic
map and the social context extracted from the observed agent
states are exploited simultaneously. Our scheme leverages a dual
attention mechanism that combines map attention with social
attention as shown at the bottom of Fig. 2, and is based on
the intuition that humans account for environmental features
dynamically and instantaneously during driving, rather than
encoding these features one after the other.

Following prior literature [9], [10], [11], [17], our encoder
employs an RNN structure g (blue box in Fig. 2) that en-
codes the agent state sequentially. The RNN is updated as
q?l = g(O%,q!), where, from the local observation Of, we
use the agent’s states s!, including its velocity and accel-
eration, and the observed neighbors’ state {nj.‘i}, including
the relative position and velocity of each neighbor j to the
agent 4. The final g} is used to initialize the decoder’s hidden
states in the timewise VAE backbone, i.e., ¥n(OFT) = ql
(Section I1I-B).

To account for how the environmental context influences the
agent’s steering actions, we initialize the hidden state g} using
features extracted from the local semantic map, rather than
encoding the map and the agent’s state independently. However,
instead of directly plugging the map features into the observation
encoder, we introduce a map attention (M-ATTN) mechanism
and initialize the encoder via

q! = CONCAT (M1 M-ATTN({njlli})) , 2)
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where

M-ATTN({n}}) £ ATTN(M!, {n}}, {n}})

jli
= " wjjifur (0]). 3)
J

Here, M} denotes vectorized features extracted from agent
7’s local map at the first observation frame, and f are em-
bedding networks. M, {nj} and {nj,} are the query, key,
and value vectors, respectively, of the attention mechanism.
The attention weights w;; are obtained through dot-product

operations between M} and n}‘i followed by a softmax oper-
ation, i.e. w;; = SOFTMAX( fy (M) © fnl}ey(n;‘i)). This M-
ATTN mechanism can help identify neighbors close to the
target agent but with less influence in the given context,
e.g., vehicles spatially close to the agent but on a lane that
is inaccessible to it. We refer to Section IV-F and Fig. 1
for qualitative results and to Section IV-D for quantitative
analysis.

During agent state encoding, we synthesize the social context
represented by the neighbors’ states {nz‘ ,} viaa social attention

(S-ATTN) mechanism as:

S-ATTN({nj;}) £ ATTN(q;, {Kj;;}, {nj;})

= wjjifau(0h), )
J

where, qi, {kj,}, and {nf;} correspond to the query, key

and value vectors of the attention, and each weight Wjli of the
attention graph is computed as the dot product between g} and
ké‘i after obtaining their fixed-length embeddings. Here, k‘;‘i
denotes the social features exhibited by the neighbor j and
observed by the agent i. As introduced in [11], we include the
distance, bearing angle and minimal predicted distance from
agent ¢ to j as the social features k;:‘i.

By choosing a proper size of the local map, we can have
M covering the whole trajectory of the agent during the ob-
servation and prediction horizon from t =1 to t =T + H.
This allows us to sidestep introducing M! timewisely, and
update the hidden state in the RNN g by representing O! as
O; = CoNcAaT(s, S-ATTN({nj;})). This way, we perform fast
observation encoding directly on the environmental and social
contexts after one pass of the map encoding module, and avoid
the computationally expensive processing a sequence of raster-
ized maps. We refer to Section IV-D for our model’s real-time
prediction performance.

As shown in Fig. 2, we exploit rasterized semantic maps to
capture contextual information and extract the related features
M using a CNN module. Note that there is no constraint
about the form of M It can also be represented using graphs
processed by a GNN [29], [30], [32], [37], [39], or using a lane
attention block [35], [36]. Since rasterization is the common
way to generate semantic maps for contextual information and
since most open-source vehicle datasets do not provide an API
to directly generate road graphs, in our experiments we rely on
CNN s to extract contextual features from rasterized maps.
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Fig.3. Examples of rasterized semantic maps for (from left to right): nuScenes,
Lyft, and Waymo. Blue identifies drivable areas and crosswalks; green identifies
road edges; red identifies lane dividers. The drawn cars identify the first observed
position of the agent under prediction and give the map local origin and x-axis.
The cars are not part of the rasterized maps.

IV. EXPERIMENTS

We evaluate our approach on vehicle trajectory prediction
tasks using the nuScenes prediction challenge (nuScenes) [1],
Lyft Level 5 Prediction Dataset (Lyff) [2] and Waymo Open
Dataset (Waymo) [3]. These datasets handle heterogeneous types
of agents, including various vehicles, cyclists, and pedestrians.
We focus our prediction on vehicles’ trajectories and all other
types of agents are considered as neighbors.

A. Setup

1) Implementation Details: We use a rasterized,
224 x 224 local semantic map to represent the environmental
context. The map is translated and rotated such that the vehicle
under prediction heads towards the positive z-axis and stands at
the 122nd row and 51st column of the map in the Ist frame of
observation. To be consistent, the coordinates of all agents are
expressed using the same local system. Fig. 3 shows examples
of the extracted maps for the three datasets. Since each dataset
has its own semantic map definition, the generated rasterized
maps are slightly different. We refer to the supplementary
material for details on semantic map rasterization.

2) Evaluation Metrics and Baselines: We use the mini-
mum average displacement error over k predictions (minADEy,)
and the minimum final displacement error over k predictions
(minFDE},) to assess a model’s performance. We consider both
the most likely prediction (k = 1) and the top-5 predictions
(k = 5) as key metrics (in meters). We provide comparisons to
three deterministic baselines: Constant Velocity assumes target
vehicles always move at the velocity defined between the last
two observed frames; Constant Lane assumes target vehicles
keep their last observed speed but always along the lane where
they were at the last observed frame; Kalman Filter applies an
extended Kalman filter while assuming constant longitudinal
speed and heading direction. We also consider state-of-the-art,
data-driven baselines for each dataset. As ContextVAE does not
use prior knowledge to constrain the movement of vehicles,
we limit our comparisons to approaches that do not restrict
the accessibility of vehicles via maps or refine the predicted
trajectories by post-processing.

B. Quantitative Results

1) nuScenes: We use the official training and validation
sets of nuScenes prediction challenge to perform model training
and performance evaluation. An observation window of upto 2's
is used and the prediction horizon s 6 s. As the data was recorded
at 2FPS, this leads to a 12-frame prediction and a varying
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TABLE I
PERFORMANCE ON NUSCENES PREDICTION CHALLENGE

minADE; (m) minFDEj (m)

nuScenes (Validation Set)

k=1 k=5 k=1 k=5
Constant Velocity 4.61 - 11.21 -
Constant Lane 5.45 - 12.73 -
Kalman Filter 4.17 - 10.99 -
Trajectron++ 4.08 2.41 9.67 5.63
P2T 3.82 1.86 8.95 4.08
AutoBots-Ego 3.86 1.70 8.89 3.40
ContextVAE 3.54 1.59 8.24 3.28

The best performance is highlighted in bold.

TABLE II
PERFORMANCE ON LYFT LEVEL 5 PREDICTION DATASET

minADEy (m) minFDEg (m)

Lft k=1 k=5 k=1 k=5
Constant Velocity 0.70 - 1.64 -
Constant Lane 0.78 - 2.04 -
Kalman Filter 0.60 - 1.30 -
SAMPP [12] 0.39 - 0.83 -
IMAP [12] 0.28 - 0.65 -
Trajectron++ 0.38 0.26 0.89 0.57
ContextVAE 0.24 0.16 0.54 0.32

The best performance is highlighted in bold.

observation window between 2 and 5 frames. Additionally to the
heuristic baseline models, we introduce three other baselines for
comparison. The Trajectron++ [9] model is trained from scratch
with two known bugs fixed as indicated in the official repository.
P2T [24] is tested using their provided pre-trained model. Since
no pre-trained models are provided, we train the AutoBots-Ego
model using the official implementation. These three baselines
exploit CNN modules for map encoding. We report the results
in Table I. Among the considered baselines, Constant Velocity,
Constant Lane and Kalman Filter perform the worst. While
Constant Lane ensures that the predicted position is always along
a lane, it exhibits worse performance than Constant Velocity as
it ignores the possibility that the target vehicle would change
lanes. As recently published works, P2T and AutoBots-Ego
work significantly better than Trajectron++, with AutoBots-Ego
outperforming P2T. Our approach not only achieves the best
performance on all four metrics, but is also very fast to train
(see Section IV-C).

2) Lyft: This dataset is much larger than nuScenes and has
more than 1,000 hours of data with 170,000 scenes. We use
only the first 16,265 training scenes, each scene being about
24 s long. For evaluation, we use the full validation dataset
(16,220 scenes). We downsample the data from 10 FPS to 5 FPS
and train models with an observation window of 1s and pre-
diction horizon of 3s. In Table II, we report the performance
obtained by our approach and two new baselines: SAMPP and
IMAP [12]. These are deterministic models that rely on lane
graphs rather than rasterized semantic maps. Trajectron++ is
introduced as a multimodal baseline, trained using the same data
as ours. As can be seen, IMAP achieves better deterministic re-
sults (minADE;/minFDE;) compared to Trajectron++, though
these results are slightly worse compared to Trajectron++’s
multimodal performance. Our approach outperforms IMAP and
Trajectron++ on both the deterministic and multimodal results,

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 9, SEPTEMBER 2023

TABLE III
PERFORMANCE ON WAYMO OPEN DATASET

minADEy (m) minFDEj, (m)

Waymo (Validation Set)

k=1 k=5 k=1 k=5
Constant Velocity 2.04 - 5.25 -
Constant Lane 2.54 - 5.85 -
Kalman Filter 1.99 - 4.07 -
SAMPP [12] 1.26 - 2.80 -
IMAP [12] 0.97 - 2.03 -
Trajectron++ 0.88 0.56 2.37 1.41
MotionCNN 0.83 0.40 1.99 0.81
M2I 0.67 0.42 1.60 0.85
ContextVAE 0.59 0.30 1.49 0.68
The best performance is highlighted in bold.
nuScenes Lyft Waymo
Prediction 2 6
@ 1s
— @3s 4
— @ 6s 1 5
0 -- 0 ..
1 10 20 1 10 20
k k

Fig.4. Minimal final displacement error (in meters) as a function of the number
k of predicted trajectories for different prediction horizons.

with an improvement around 15% on minADE;/minFDE; and
around 40% on minADE5/minFDEs5.

3) Waymo: This dataset has two types of training data
formats, consisting of 20 s and 9 s sequential data, respectively.
We use the 9 s data for training, which contains 487,002 scenes,
while the validation set has 44,097 scenes. In addition to per-
forming downsampling from 10 FPS to 5 FPS, we apply the data
filter from the Lyft dataset to filter out invalid data. Similar to our
Lyft implementation we use a 1 s window for observation and a
3s horizon for prediction. Table III shows the performance of
our approach along with two new baselines: MotionCNN [5]
and M2I [38]. We run the pre-trained models from the two
baselines and keep the first 3 s prediction for evaluation. As
shown in Table III, MotionCNN and M2I outperform Trajec-
tron++ significantly on minADE5;/minFDE5. M2I also brings
a large improvement on the most likely prediction. Compared
with these strong baselines, ContextVAE achieves more than
15% improvement overall, and a 29% and 20% improvement on
minADE; and minFDEj5, respectively.

The default Waymo motion prediction challenge setup uses
an 8 s prediction horizon with k = 6. The performance of
our model trained for 8 s on the interactive validation set for
vehicle-only target agents is: minADEg = 1.59 and minFDEg =
3.67. As a comparison, the Waymo LSTM baseline achieves
minFDEg = 6.07 for 8 s prediction [44], and M2I [38] reports
minFDEg = 5.49.

C. Computational Performance

We evaluated the prediction performance of ContextVAE with
several popular CNN modules for map encoding. In Table IV,
we report the corresponding results along with the number of
parameters and inference time taken by each CNN module.
The inference time refers to the time needed to perform k = 5
predictions for one batch of 32 input samples. We pick a batch
size of 32 based on the observed statistics in the three tested
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TABLE IV
PREDICTION ERRORS WITH DIFFERENT CNN MODULES FOR MAP FEATURE EXTRACTION

nuScenes Lyft Waymo
Infer. # of minADEj (m) minFDE;, (m) minADEj (m) minFDE;, (m) minADEj (m) minFDE;, (m)
CNN Module Time Params. k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5 k=1 k=5
ResNet18 0.029s 11.7M 3.543 1.586 8.244 3.277 0.247  0.165 0.548 0.324 0.600 0306 1.532  0.709
ResNet152 0.102s  60.2M 3.728 1.728 8.773  3.657 0.244 0.164 0.544 0.321 0.598 0306 1.530 0.708
EfficientNet-BO  0.029s 53M 3715 1.740 8733 3.676 0.246  0.165 0.548 0.325 0.585 0299 1491 0.686
MobileNet-V2  0.025s 35M 3780 1.738  8.888  3.671 0.251  0.165 0.560  0.321 0.585 0.298 1492 0.684

The best performance is highlighted in bold.

TABLE V
MODEL ABLATION ON WAYMO

minADE (m) minFDEg (m)

S-ATTN MAP M-ATIN k=1 k=5 k=1 k=5
- - - 0.68 0.45 1.78 1.11
v - - 0.65 0.43 1.71 1.06
v Indie - 0.63 0.37 1.68 0.85
v Integrated - 0.62 0.33 1.65 0.70
v Integrated v 0.59 0.30 1.49 0.68
The best performance is highlighted in bold.
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Fig.5. Performance improvement when using map context on Waymo dataset.

datasets, where an ego-vehicle has on average 10 + 7 agents
within an observation radius of 30 m. The reported time is
measured on amachine equipped witha V100 GPU and averaged
over 10,000 test trials. As can be seen in the table, there are
no large differences regarding minADE ;/minFDE;, among the
tested CNN modules on Lyft and Waymo. We can therefore safely
choose a small module, like EfficientNet-BO or MobileNet-V2,
for the sake of faster inference. In nuScenes, the best perfor-
mance is obtained with ResNetl8, but the differences among
the CNN modules are larger. A possible reason is the small size
of the nuScenes dataset, which makes the model more sensitive
to the choice of CNN modules. For a complete list of all the tested
CNN modules, we refer to the supplementary material. Overall,
using ResNetl8 on nuScenes and Lyft and MobileNet-V2 on
Waymo can meet the real-time inference requirements, while
guaranteeing high prediction accuracy. While ContextVAE only
provides marginalized predictions for each agent, the overall
time that it needs to predict the trajectories for all agents on
a scene is less than 30 ms. This is orders of magnitude faster
than existing state-of-the-art approaches on the leaderboards of
motion prediction challenges (e.g., PGP [39] needs 407 ms on
nuScenes) and of the same order with approaches that focus on
computational efficiency such as PredictionNet [7] at the cost
though of prediction quality.

Besides its real-time inference performance, ContextVAE is
also very fast to train due to its lightweight architecture that
relies on RNNs to perform encoding/decoding sequentially. It
takes only about 2 hours to train our nuScenes model on a
single V100 GPU for 80 epochs. In contrast, Trajectron++ needs

around nine and a half hours for the same number of epochs.
The more complex P2T and Autobots-Ego models require more
than 2 and 3 days respectively to finish training. We note that
other state-of-the-art solutions are equally slow to train due to the
large number of parameters and high complexity of their models,
involving transformer-based architectures [31], [33], multi-stage
training phases [39], [45], ensemble training [32], [40], etc.
While such solutions may slightly outperform ContextVAE, they
are typically finetuned to a specific dataset by leveraging a num-
ber of post-processing techniques and hard-coded assumptions
In contrast, our approach can achieve high-fidelity predictions
in real-time for a range of datasets.

D. Sensitivity Analysis

1) Prediction Horizon and Choice of k: Intuitively, in-
creasing the prediction horizon leads to more uncertainty, mak-
ing prediction harder. This is consistent with the results shown in
Fig. 4, where larger horizons lead to higher minFDE values. For
a given horizon, an important question is how many prediction
samples k are enough to lead to a sufficiently low error? For a
1 s prediction horizon (blue line), the error converges around
k = 10. For a 3 s horizon (red line), £k = 20 roughly leads to
convergence. However, for a 6 s horizon (green line), there is
still a decreasing trend at k£ = 20. We refer to the supplementary
material for more numeric results of model performance with
different prediction horizons.

2) Model Ablation: In Table V, we perform ablation stud-
ies on Waymo, related to our proposed unified observation
encoding scheme and its underlying dual attention mechanism
(M-ATTN in (3) and S-ATTN in (4)). When neither map nor
social context is exploited, the neighbors’ states are simply added
together for observation encoding. When only S-ATTN is used,
the observation encoder q! is initialized without map features
M but social attention is introduced (4). When the map is
introduced independently (“Indie”’), M} is concatenated with
the output g7 of the encoder instead of being used to initialize
q}. In our proposed observation encoding scheme, the map
features are integrated into the encoder (“Integrated”’) where q}
is initialized with le by concatenation (without M-ATTN) or
by the attention mechanism in (2) (with M-ATTN). As can be
seen from Table V, S-ATTN brings about a 4% improvement
over the basic timewise VAE backbone. Handling the semantic
map independently from the social context brings an extra 3%
improvement on the deterministic predictions and around 15%
on the multimodal predictions. Integrating the map into the
encoder without M-ATTN results in even better performance,
highlighting its potential over Indie maps. M-ATTN further
boosts the performance with an improvement around 35% on
minADEs/minFDEs;, and around 15% on minADE;/minFDE;
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Fig. 6.

Qualitative examples from Lyft. Observed trajectories are shown in blue. The ground-truth future trajectories are shown in red. Five predictions are shown

in orange. Other colored dots and lines denote stationary and moving neighbors respectively.

compared to the basic backbone architecture. Similar conclu-
sions can be drawn from nuScenes and Lyft, as described in the
supplementary material.

E. Integrated Versus Independent Maps for Observation
Encoding

To further highlight the effectiveness of using Integrated over
Indie maps for RNN-based observation encoding, we consider
experiments with additional VAE-based approaches that by de-
fault decouple environmental from social context. Fig. 5 shows
the corresponding results for Trajectron++ and BiTraP [10]. As
can be seen, models with Integrated maps significantly improve
the performance of Trajectron++ and Bitrap on both determin-
istic and multimodal predictions. In contrast, Indie maps do
not provide any noticeable performance gain on deterministic
predictions and only bring a small improvement on multimodal
ones. We refer to the supplementary material for complete results
on all the tested datasets.

F. Case Studies

Fig. 6 shows predictions obtained with ContextVAE on the
Lyft dataset. As can be seen, using maps makes the model aware
of the lanes and results in covering the ground-truth trajectories
closely, while also accounting for other possible driving maneu-
vers. In the first three scenes, ContextVAE accurately assigns
samples to different lanes at the multi-lane intersections. In the
fourth, it predicts the target vehicle’s turning-left behavior along
with a potential U-turn behavior. The last two cases exemplify
non map-compliant behaviors, as the vehicle drives from and
to the off-map region, respectively. While graph-based methods
typically struggle with off-road cases, ContextVAE accurately
predicts the vehicles” motion.

In Fig. 7, we highlight additional examples comparing the
prediction results of ContextVAE when the map and its re-
lated attention mechanism are disabled from the observation
encoder. Ignoring maps can lead to myopic as well as wrong
predictions. In the first two cases, the model predicts that the
target vehicle will keep driving straight and does not account
for the multi-modal decisions at intersections. In the third scene,
the model predicts multi-modal trajectories but are invalid as the
vehicle can only take a right turn. In contrast, accounting for
map attention leads to map-compliant paths and helps to predict
potential turning behaviors at intersections.

To highlight how our unified observation encoding scheme
(Section III-C) helps the model make accurate predictions, we
consider three urban traffic examples. In Fig. 1, we visualize
the corresponding activation maps of the map encoder obtained
using the GradCAM technique [46] along with the social atten-
tion weights of the perceived neighbors. In the first example, the
model focuses on the challenging intersection area around the

Prediction with S-ATTN + M-ATTN

Prediction w/o Map (S-ATTN only)

Fig. 7. Case studies with (top) and without (bottom) considering rasterized
maps in the observation encoder. The trajectory distributions heatmaps are
generated using 2,000 predictions with a Gaussian KDE method.

target vehicle and pays high attention to the leading car along
its lane. In the second example, the most salient map area is
the crosswalk (light red polygons) in front of the target vehicle,
where a number of agents are waiting for the traffic lights to turn
green. Hence, the vehicle’s attention focuses on these neighbors
while ignoring irrelevant agents such as the three stopped cars
on the outer right lane. In the third example, the target vehicle is
static and the model relies only on the observed neighbors’ states
to make predictions with little attention paid to the map. These
examples demonstrate that our approach can flexibly utilize the
environmental map information and the agents’ social states to
make predictions.

V. CONCLUSION

We introduce ContextVAE, a real-time for context-aware
vehicle trajectory prediction. ContextVAE relies on a timewise
VAE architecture and employs a map encoding module that
performs observation encoding in a unified and socially-aware
way. We show that our approach provides high-fidelity, map-
compliant predictions on a variety of heterogeneous datasets,
capturing the multi-modal nature of vehicle motions and their
interactions with neighbor agents. We note that the model per-
formance can be further improved by leveraging post-processing
techniques like clustering approaches [11], [24], ensemble mod-
els [32], [40], and other recently proposed schemes [7], [43], at
the cost of higher running times. Interesting avenues for future
work are to account for dynamic environmental information like
traffic lights in the observation encoding scheme by introducing
local maps timewisely, and sampling trajectories from the joint
distribution over a full set of agents through interactive trajectory
prediction [12], [38]. It is also worth exploring how map repre-
sentation influences context encoding and model performance,
including trying alternative ways of map rasterization and using
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vectorized road graphs. As it stands, our proposed dual-attention
mechanism for RNN-based observation encoding enables high-
fidelity predictions with low latency, adding value to existing
approaches for map and agent state fusion. Combined with a
timewise VAE architecture, the resulting ContextVAE approach
can serve as a strong baseline for real-time vehicle trajectory
prediction and inspire future work on VAE-based models.
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