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A Study in Zucker: Insights on Interactions Between
Humans and Small Service Robots

Alex Day

Abstract—Despite recent advancements in human-robot inter-
action (HRI), there is still limited knowledge about how humans
interact and behave in the presence of small service indoor robots
and, subsequently, about the human-centered behavior of such
robots. This also raises concerns about the applicability of current
trajectory prediction methods to indoor HRI settings as well as the
accuracy of existing crowd simulation models in shared environ-
ments. To address these issues, we introduce a new HRI dataset fo-
cusing on interactions between humans and small differential drive
robots running different types of controllers. Our analysis shows
that anticipatory and non-anticipatory robot controllers impose
similar constraints to humans’ safety and efficiency. Additionally,
we found that current state-of-the-art models for human trajectory
prediction can adequately extend to indoor HRI settings. Finally,
we show that humans respond differently to small differential
drives than to other humans when collisions are imminent, since
interacting with small robots can only cause a finite level of social
discomfort as compared to human-human interactions.

Index Terms—Human-aware motion planning, human-robot
interaction (HRI), social robot navigation.

I. INTRODUCTION

IVEN the advancements in robotics and Al in recent
Gyears along with the significant decrease in hardware
cost, robots are increasingly becoming a part of our lives,
from vacuuming our floors and delivering items in automated
warehouses to transporting passengers autonomously in urban
areas [1]. From robot vacuums to robo-taxis, studying how
humans react to such robots and interact in a shared environment
plays a crucial role in the further development of autonomous
systems. In this letter, we focus on small service robots like
Roombas that operate in indoor spaces and have to interact
intelligently with humans to avoid collisions while completing
their tasks. In this field, there has been a lot of recent work
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on social robot navigation aiming to steer robots in human-
populated spaces [2]. Despite such efforts, existing approaches
are typically evaluated from a robot-centric perspective. While
the robot’s performance is important to assess the quality of
employed navigation algorithms, the efficiency and safety of
the humans are equally important in shared interaction settings.
Unfortunately, in such settings, there is still limited knowledge
about how humans interact and behave in the presence of robots
and, subsequently, about the human-centered behavior of robots.
This also raises concerns about the applicability of current
trajectory prediction methods to indoor HRI settings as well
as the accuracy of existing human simulation models.To address
this gap in the literature we conducted a user study in the Zucker
Family Graduate Education Center in Charleston, SC, USA.
Following a brief overview of highly relevant work, we focus
on the related results from our analysis. Our findings and the
collected HRI trajectories, which we share with the community,
can enable more socially-aware robot control through providing
a better understanding of the human-centered performance of
different classes of robot controllers, facilitating more accu-
rate human trajectory prediction in shared interaction settings,
and informing the development of new pedestrian simulation
methods.

II. RELATED WORK

A. HRI Datasets and Studies

A lot of recent work has been focusing on capturing and
analyzing HRI data to better understand how humans interact
with robots. The related datasets can be classified based on
if the interactions they contain are unstructured or structured.
Unstructured interactions can closely approximate true-to-life
behavior, but require laborious manual labeling due to the lack
of control in the experimental conditions [3], [4], [5]. In con-
trast, structured interactions occur in a controlled environment,
typically equipped with sophisticated motion capture solutions
that facilitate high-fidelity data collection and analysis. The
THOR dataset [6] is one such example capturing diverse indoor
interactions between humans and between humans and a socially
unaware small industrial robot following a predetermined path.
In recent years, a number of HRI studies were conducted in
structured settings to validate new methods for social naviga-
tion [7], [8], [9]. More recently, Lo et al. [10] evaluate the effect
that different navigation strategies of a self-balancing robot have
on humans in a perpendicular crossing scenario. Similarly, the
HRIdatasetsin [11] and [12] study the impact that a robot has on
humans during a crossing-gate and a corridor-exit experiment,
respectively, with [11] showing that participants behave more
conservatively in the presence of a robotic wheelchair than a
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humanoid robot. More closely related to our work, the large-
scale study of Mavrogiannis et al. [13], [14] evaluates different
navigation algorithms through human-centered metrics includ-
ing the energy expended by the humans and the smoothness of
their paths. Our work is complimentary to such aforementioned
studies as we release a new structured HRI dataset containing
a range of scenarios and differential drive controllers. Similar
to [10], [14] we seek to evaluate the behavior of different robot
navigation methods through human-centered metrics. However,
we propose an intuitive way to do so without explicitly com-
paring the methods but by assessing the performance of the
humans with and without the robot. Unique to prior work, we
provide novel results about the performance of human trajectory
prediction methods in indoor HRI settings and quantify how
humans resolve collisions with small service robots.

B. Social Robot Navigation Methods

There has been a lot of highly relevant work for autonomous
and collision-free navigation of a robot amidst a crowd of hu-
mans [2]. Existing techniques for human-aware robot navigation
can be broadly classified into geometric planning approaches
and learning-based methods. State-of-the-art geometric planners
rely on the concepts of velocity obstacles (VO) and time to
collision [15], [16], and can provide formal guarantees of the
collision-free behavior of robots while supporting a wide range
of robot models and behaviors [17], [18]. However, they often
require careful parameter tuning to achieve desired naviga-
tion results, with VO-based controllers also exhibiting overly
conservative behavior in an attempt to guarantee safe naviga-
tion [2]. Learning-based methods can provide more flexibility,
with recent contributions taking advantage of deep reinforce-
ment learning to enable end-to-end steering and train crowd-
aware navigation policies [19], [20], [21]. Despite the success
stories of geometric and learning-based approaches the robots
do not always exhibit the level of sophistication that humans
do in similar interaction scenarios. As such, researchers have
been focusing on improving the control policy of a robot by
accounting for interactions between all agents in the scene,
expert demonstrations, social norms, human collaboration, and
group-aware planning among others [7], [9], [22], [23], [24],
[25], [26], [27], [28]. In synergy with local navigation, research
on HRI has also been focused on global planners to drive a
mobile robot in a socially acceptable manner and facilitate
human-like movements [8], [29], [30]. In this letter, we are inter-
ested in assessing the performance of three representative robot
navigation algorithms in indoor physical settings. While a lot of
existing works in benchmarking social robot navigation meth-
ods typically employ a robot-centric evaluation paradigm [31],
[32], [33], here we follow recent work in HRI [10], [14] and
focus on the human-centered performance of the interactions
by evaluating the impact that the controlled robots have on the
efficiency and safety of the humans.

C. Human Trajectory Prediction

The need for accurate methods to predict the future move-
ments of humans is crucial to developing better robot simulation
and navigation algorithms. To perform pedestrian trajectory
prediction, early work has adopted model-based solutions that
leverage hand-tuned mathematical models of humans’ behavior.
These include models based on social forces, velocity-obstacles,
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Fig. 1. (left) Our tracking solution includes Vive Trackers 2018 attached to
hats, a Vive Controller mounted on a Turtlebot, and Vive Base Stations 2.0.
(right) A still from the overhead webcam during an experimental trial.

and data-driven formulations [15], [16], [34], [35]. In recent
years, model-based methods have been replaced by model-free
approaches that rely on deep learning architectures to achieve
state-of-the-art (SOTA) prediction performance. Such architec-
tures include RNN structures for generating sequential predic-
tions, social attention and pooling mechanisms for capturing the
neighbors’ influence, and GAN architectures and conditional
VAE (CVAE) models for accounting for the uncertainty and
multimodality of human decision making [36], [37], [38], [39],
[40]. We refer to the excellent survey of Rudenko et al. [41] for
more details. Our paper considers two CVAE approaches that
have shown to achieve SOTA performance in human-human
interaction settings and evaluates their applicability to indoor
HRI settings as compared to a model-based baseline.

III. EXPERIMENTAL SETUP

We conducted our experiments in lobby space near our lab
measuring approximately 6 m x 6 m. This space represents a
typical environment for the application of indoor service robots.
Obstacles visible in Fig. 1 were outside the boundaries of
the experimental volume. Cones marked the pedestrian start
and goal positions. The participants and robot were given a
simultaneous trigger to begin moving, with the participants
getting an audible countdown. The Institutional Review Board
of Clemson University approved the study on May 4th, 2022
under application number IRB2022-0251.

A. Participants

Two female and four male participants (age between 23 and
30 years old, M = 26.6, SD = 1.6) gave informed consent to
participate in this user study. All were free of any known imped-
iments to their walking and had normal or corrected vision, as
verified by self-report. The participants were drawn from a pool
of graduate students enrolled in the College of Engineering and
Applied Sciences at Clemson University. The average height of
the participants was 1.75 += 0.12 m, and the shoulder-to-shoulder
distance was 0.44 + 0.04 m. None of the students had interacted
with robots in their research, but most had been exposed to
robotics somehow. To avoid any potential biases, the participants
were not informed about the overall goal of the experiments
until after the recordings had concluded. During the trials, the
participants were instructed to act as they normally do when
walking in our lobby space. The experiments were conducted
over two consecutive days, with three participants in the first
day and three in the second.
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Fig. 2.

Graphical representation of the interaction scenarios used in our study. The scenarios cover the entire experimental area of 6 m x 6 m. From top to bottom

and left to right, they are Perpendicular, Adjacent, Opposite, Intersection, 2v1, Overtake, and Head-to-Head. The top four scenarios were used in the analysis for
H1 and all seven for H2 and H3. Colored squares denote the goal locations of the corresponding agents (humans or robot).

B. Robot

The wheeled robot the participants interacted with was a
TurtleBot 2 from ClearPath Robotics, shown in Fig. 1. This robot
is approximately 42 cm tall which may limit the applicability of
our study to similarly sized robots [42]. To provide a varied
dataset, we consider three local planning algorithms to steer
the robot to its destination: a Linear controller that maintains a
constant speed with no deviation from the straight line path to the
robot’s goal, NH-TTC [18] which formulates local navigation
as an optimization problem employing a time-to-collision based
cost function [16], and CADRL-GAC3 [21] which learns a
steering policy using reinforcement learning. We chose NH-TTC
and CADRL as representative geometric and machine-learning
approaches for collision-free local steering, respectively. Both
approaches are anticipatory in nature, accounting for potential
collisions with nearby neighbors and reacting to them, as op-
posed to Linear, which is a non-anticipatory approach. During
our experiments, all planning nodes were run on a central server
and a velocity command was relayed to the robot, ensuring no
delayed robot responses. The robots had a singular goal with
no global plan ensuring only the local controller’s behavior was
analyzed. We used the official Robot Operating System (ROS)
implementation of CADRL and a custom ROS wrapper over the
official NH-TTC code. In all trials, we set the maximum robot
speed at 0.5 m/s. The participants were not informed about the
possibility of different robot controllers.

C. Interaction Scenes

We define an interaction scene as a combination of start and
goal positions for participants and the robot. Fig. 2 shows the
seven different scenes considered in our experiments. We refer
to the our project website for example videos of the scenes. For
each scene, we consider a No Robot baseline and three robot
controller cases (Linear, NH-TTC, and CADRL), resulting in
four different robot configurations. We define a scenario as a
combination of a scene, a choice in robot configuration, and
the specific order of the participants. To collect a wide array of
interactions, we systematically permuted the order of the partic-
ipants and the type of the robot controller to ensure that we had

a No Robot control scenario for each considered participants’
order. Each participant engaged in all seven scenes traversing on
average 8.8+0.2min 11.1£0.8s. In total, we recorded 97 robot
trajectories and 309 human trajectories capturing 135 different
scenarios with a total duration of 25 minutes.

D. Motion Tracking System

All trials were recorded using a tracking system based on the
HTC Vive Virtual Reality system (see Fig. 1). Each participant
was given a baseball cap to wear that was modified to mount
an HTC Vive Tracker, allowing data collection without the use
of Vive’s head-mounted display. The robot was tracked with an
HTC Vive Controller attached to the top shelf of the Turtlebot.
The Vive System interfaced directly with a ROS node, which
queried the Vive API at 60 Hz to collect the current pose of all
devices. The robot’s and humans’ data were obtained via the
use of two HTC Lighthouses positioned on either side of the
recording area. The accuracy of this system was measured at the
sub-centimeter level over a distance of several meters. To reduce
oscillations, the recorded robot’s and humans’ trajectories were
resampled at 60 Hz, and a Butterworth lowpass filter (2nd order,
0.5 Hz cutoff frequency) was applied to the positions. The
velocity was estimated from the displacement in the smoothed
positions.

IV. Hji: ANALYSIS OF ROBOTIC CONTROLLERS

Asnew local planning approaches for mobile robot navigation
are being introduced, it is paramount to be able to assess the
performance of such approaches. While robot-centric metrics
are appropriate in homogeneous environments, in shared en-
vironments, the robots should aim to maximize human safety
and efficiency even at the cost of their own efficiency. As such,
we consider below several human-centric metrics and propose
to evaluate the robot controllers by comparing them to the No
Robot case. We limit our analysis to the four scenes shown in the
top row of Fig. 2. These scenes have sufficient samples to run
statistical analysis and involve complex interactions containing
all three participants in the environment and/or human-robot
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interactions at different angles. Given their anticipatory nature,
we expect that CADRL and NH-TTC robots will facilitate
more optimal behaviors for all humans in the scene. Thus, we
hypothesize that:
H1: CADRL and NH-TTC outperform the Linear controller
in metrics related to human safety and efficiency when
compared against the No Robot case.

A. Metrics

Motivated by prior work [6], [11], [13], [31], we consider three
efficiency metrics and a safety metric to determine the impact
each robot controller has on the participants. These metrics are
calculated from the participant’s perspective, rewarding human-
centered behavior. Formally, given a scenario, let A denote
its set of agents that include the set of human participants H
and possibly a robot R. Each human participant [, has a start
position S;, a goal position G;, and aradius r; determined by the
shoulder-shoulder distance. Each participant also has an array of
valid time steps 7" and, for each ¢ € T', the position, and velocity
of the participant are denoted by p! and v}, respectively. The
robot parameters are defined similarly. We define the following
metrics on the human agents:

1) Speed: The speed of each human agent is calculated as
the median of the L2 norm for each recorded velocity along the
agent’s trajectory. This metric was used to judge how unimpeded
the participants movement was. The difference from their free
walking speed measured at 1.3£0.1 m/s before our experiments
took place should also be taken into account.

2) Travel Time: The total time a human agent spent traveling
between the start and goal positions. This metric was used to
judge the overall efficiency of the human paths.

3) Path Linearity: The path linearity of each human agent is
the sum of the absolute deviations from the straight line path
[(Gi—Si)x(Si—p))||

Gi—5Si )
The intention of this metric is not to promote straight paths but
rather to ensure that the robot doesn’t impact the shape of the
participant’s path too drastically.

4) Safety: Let T denote the time that it takes for the disks of
two agents to collide assuming they both maintain their current
velocities. Given that humans have a finite reaction time of
200400 ms and an interaction time horizon of 2-4 s [16],
[43], we consider any interaction with a 7-value below 1.5 s as
potentially dangerous. The safety of each human agent is then
defined as the ratio of the safe frames to all recorded trajectory
[{r(H},AL)>1.5, VIET, Vj#ic A}

I
another human participant or the robot, and 7(H;, A4;) is a
function of the relative velocity, relative displacement, and radii
of the two interacting agents. The intention of this metric is
to highlight potentially uncomfortable interaction frames that
lead to imminent collisions. We assume that controllers which
minimize this metric will impede the movements of the humans.

from the agent’s start to the goal: >,

frames: , where A; denotes either

B. Statistics

To evaluate the effect that the robot has on the participants
in each of the four scenes, one-way analysis of variance was
performed on each of the proposed measures using the robot type
(No Robot, Linear, NH-TTC, CADRL) as independent variable.
To guarantee valid comparisons, we performed a Welch ANOVA
whenever the assumption of equal variance was violated and
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the Kruskall-Wallis nonparametric alternative to the classic
ANOVA when the normality assumption did not hold [44].
Posthoc analysis revealed no significant differences between the
robot controllers in any of the studied metrics and scenes. To
further investigate the human-centered behavior of the robots
and determine whether introducing a robot with a specific type
of controller (Linear, NH-TTC, CADRL) had a significant im-
pact on the participants, pairwise post-hoc comparisons were
performed for each scene-metric combination between each
controller and the No Robot case using the latter as the control
group. These were done using Dunn’s test after nonparametric
ANOVAs, and Dunnet’s and Dunnett’s T3 tests after classic and
Welch ANOVAs, respectively [44].

C. Results

Regarding the safety on the Intersection scene, no statistical
comparisons were performed given the lack of variance and
large mean indicating minimal unsafe frames. For the rest of the
scenes, a significant interaction effect was observed for all met-
rics, besides the speed on the Adjacent and path linearity on both
Adjacent and Opposite. The mean and standard deviation for
the metrics as well as the pairwise significance for the post-hoc
tests are shown in Table I. Overall, when focusing on the human
navigation efficiency, none of the controllers is comparable to the
No Robot case for the Opposite scene, only the Linear controller
for Intersection, Linear and CADRL for Adjacent, and the two
anticipatory controllers for Perpendicular. Similarly, in terms of
the participants’ safety, no controller is universally similar to the
No Robot case across all scenes. Therefore, H is not supported.

D. Discussion

Our analysis focuses on the impact that a robot controller has
on the navigation efficiency and safety of humans. While metrics
related to speed and collisions have been used in related work,
we use them in a novel way by comparing the performance of the
humans with and without the robot in the scene. This provides
a more intuitive way to assess the human-centered behavior of
different controllers and offers an implicit comparison between
them. We also explicitly compared the controllers but observed
no significant pairwise differences. However, we argue that even
if two controllers are statistically different from each other, if
there is no statistical difference from the No Robot case, both
controllers should be treated as equally unacceptable regarding
human-centeredness.

In that vein, itis clear from Table I that anticipatory controllers
can impede the safety and navigation efficiency of humans
and do not necessarily outperform the non-anticipatory Linear
controller. In retrospect, these results can be explained by the
duality of the HRI problem. In HRI settings, the actions of a
robot affect the behavior of the humans as much as the actions of
the humans affect the behavior of the robot [45], [46]. So, when
an NH-TTC or a CADRL Turtlebot interacts with humans, it
tries to predict what the humans will do and react accordingly,
sharing the collision avoidance effort. However, such intelli-
gent, anticipatory behavior can sometimes confuse humans and
negatively influence their efficiency and safety as they try to
guess the robot’s behavior. In contrast, when interacting with
a Turtlebot that follows a straight path, the humans realize
that the robot does not react to them and can quickly make
minor adjustments to their trajectories way in advance to resolve
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Scene Robot Case Speed (m/s) Travel Time (s) Path Linearity (m) Safety (%)
Linear 0.872 + 0.384 12.121 £ 2.213 37.737 + 14.259 0.901 + 0.1
Perpendicular CADRL 1.114 + 0.094 10.868 + 1.207 31.219 £ 16.689 0.901 £ 0.11
NHTTC 1.085 + 0.178 10.974 + 1.69 32.579 + 16.264 0.866 + 0.141
Linear 1.082 £ 0.156 11.417 + 1.529 38.358 + 29.524 0.886 = 0.117
Adjacent CADRL 1.064 + 0.169 11.229 + 1.697 33.946 + 22.505 0.878 + 0.139
NHTTC 0.942 + 0.312 11.786 + 1.307 35.605 + 26.534 0914 +0.112
Linear 1.053 £ 0.073 11.383 £ 0.875 38.885 £+ 29.95 0.925 + 0.087
Opposite CADRL 0.993 + 0.171 12.252 + 1.252 38.108 + 27.28 0.877 + 0.105
NHTTC 1.012 £ 0.117 11.884 £ 1.2 34.319 + 28.685 0.908 + 0.094
No Robot 1.134 + 0.081 10.531 + 0.509 21.431 + 8.813 0.992 + 0.024
Linear 1.079 £ 0.148 10.808 + 1.756 45.927 + 32.669 0.997 + 0.011
Intersection CADRL 1.038 + 0.094 11.1 £0.922 39.958 + 22.766 1.0 £ 0.0
NHTTC 0.999 + 0.159 11.648 + 1.621 47.102 + 29.406 1.0 £ 0.0
No Robot 1.164 + 0.054 9.535 + 0.646 20.29 + 9.381 1.0 = 0.0

Significant differences with respect to the no robot case are highlighted in red (p < 0:05). The no robot case is included in bold. As its statistics are identical for the 3-agent scenes

in the top three rows, we only report them for the opposite.

collisions efficiently. We note that this may not be true when
humans interact in more complex settings where their goals
are not in direct sight. However, in our indoor settings, our
analysis highlights the need for robot navigation methods that
put human safety and efficiency at the forefront along with the
importance of evaluating such methods from a human-centric
perspective.

V. Hs: HUMAN TRAJECTORY PREDICTION

In recent years, with the rise of deep learning techniques,
many trajectory prediction approaches have shown impressive
results on crowd and vehicle datasets, attributed in part to suc-
cessfully reasoning about agent-agent and agent-environment
interactions [41]. While such approaches can find applications
to social robot navigation and facilitate more accurate human
trajectory prediction, many have not been tested against human-
robot-interaction scenarios [2]. To address this issue, we analyze
the performance of representative model-free and model-based
approaches for human trajectory prediction. Given short-term
historical observations, our goal is to predict the future (ground
truth) positions of the participants in our recorded interaction
scenarios. A straightforward prediction approach is a constant
velocity model (CVM), where the future positions of an agent
are inferred from its last position and velocity, assuming a linear
extrapolation. In benchmarks commonly used for human trajec-
tory prediction, such as ETH [35], UCY [47], and SDD [48],
it has been shown that CVM-based approaches can rival even
state-of-the-art neural network approaches [49]. As such, we
use CVM as a baseline and compare its performance to two
SOTA approaches for model-free trajectory prediction, Trajec-
tron++ [40] and Social VAE [39]. In contrast to the deterministic
nature of CVM, both Trajectron++ and Social VAE are stochastic
models outputting a future trajectory distribution by exploiting
a conditional variational autoencoder architecture. Given the
limited amount of complex interactions that humans undergo
in our indoor interaction settings, we hypothesize that:

H2: The Constant Velocity Model outperforms Social VAE

and Trajectron++ in terms of prediction error on the
Zucker dataset.

A. Evaluation Dataset and Metrics

To test H,, we consider all seven scenes of our Zucker
dataset. Following the literature [36], [39], [40], we resample
the recorded robot and human trajectories at 2.5 FPS. We further
split the trajectories into segments of H + 7' frames assuming
we have access to 1" consecutive frames of prior observation.
The problem then is to predict the future positions of each
human for the next H-frames given the corresponding T-frame
observation of the human’s trajectory, where each observation
sample includes both the position of the human and the positions
of its neighbors. Given the length of the recorded participants’
trajectories, we use 7' = 5 frames (2 s) as the observation win-
dow and H = 8 frames (3.2 s) as the prediction horizon. In total,
we generated three sets of human trajectory prediction data based
on the type of the robot controller that the humans interacted
with. The combined dataset consists of 42,159 local trajectories
that capture a variety of interactions. While the publicly avail-
able Trajectron++ and Social VAE code offers many pre-trained
models, we retrain both models to fit our observation horizons.
Since the Zucker dataset does not have enough trajectories to
facilitate a training-testing split, we retrained the models using
the Univ dataset from the UCY benchmark [47]. This dataset
contains a rich set of agents interacting at varied speeds and
angles, including non-reactive and reactive agents, groups, and
individuals, sufficiently covering the types of interaction sce-
narios that humans encountered in our experiments. As in prior
work [38], [39], we use the minimum Average Displacement
Error (ADE) and the minimum Final Displacement Error (FDE)
over k predictions to assess a model’s performance, where
k=1 for the deterministic CVM and k =5 for the multimodal
Trajecton++ and Social VAE models. ADE measures the average
L2 distance in meters between the predicted positions and the
ground truth ones over the whole predicted trajectory while FDE
only focuses on the distance at the end of the predicted trajectory.

B. Results

In Table II, we report the performance of CVM, Trajectron++,
and Social VAE on the three robot scenes of our Zucker evalua-
tion dataset. Overall, the performance of the CVM baseline can
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TABLE II
ADE/FDE IN METERS OF CVM, TRAJECTRON++, AND SOCIALVAE IN ZUCKER
SCENES GROUPED BY ROBOT CONTROLLERS

Method CADRL NH-TTC Linear Average
CVM 0.21/042 | 0.19/038 | 0.20/0.41 | 0.20/0.40
Trajectron++ | 0.17 /0.33 | 0.16 /032 | 0.14/0.28 | 0.16/0.31
Social VAE 0.16 /032 | 0.15/0.29 | 0.15/0.30 | 0.15/0.30
We report the best of 5 predictions for Trajectront+ and Social VAE.
Trajectron++ SocialVAE
c B ADE
g E 0.2 I FDE
S
2201
aZ
£
0.0
ucy Zucker ucy Zucker
Fig.3. ADE/FDE from Trajectron++ and Social VAE on the UCY and Zucker

datasets in terms of improvement over the CVM. The Zucker results are obtained
using all three robot steering controllers.

provide a quick way to assess the interaction complexity in the
scene [49]. Small ADE/FDE values typically denote that humans
exhibit mostly linear interactions, with the past trajectory of a
tracked human being the main feature for predicting its future.
Given the CVM performance, one could argue that humans do
not undergo too complex social interactions in Zucker. There-
fore, employing a linear model to track the trajectories of humans
is a strong baseline. However, as seen in Table II, the model-
free approaches attain lower prediction errors, outperforming
the CVM baseline across the different scenes. As such, we
reject H.

C. Discussion

Our analysis shows that model-free approaches such as Tra-
jectron++ and Social VAE can provide reliable human trajectory
predictions in small indoor settings that can potentially inform
more human-aware robot control. On the other hand, a linear
model can serve as a strong baseline in similar HRI indoor
settings, especially as more complex methods might introduce
unnecessary computational overhead in an already strained
real-time setting. To put the above results into perspective, we
also compute the performance of the three studied trajectory
prediction approaches on the pedestrian datasets from the UCY
benchmark. In Fig. 3, we report the performance improvement of
Trajectron++ and Social VAE over CVM for both the UCY and
Zucker datasets. Similar to Zucker, the model-free approaches
outperform CVM. However, the performance improvement is
much lower in our Zucker dataset than in the human-only UCY
datasets commonly used in trajectory prediction benchmarks.
This indicates that there is potential room to improve the per-
formance of human trajectory prediction methods in indoor
HRI settings by, e.g., training models with more representative
datasets, devising new models, and/or refining trained models
both in online and lifelong manners [50].

VI. Hj3: HUMAN-ROBOT INTERACTIONS

In [16] it was shown that the “interaction energy” between
pairs of humans in a crowd can be modeled through an inverse
power-law relationship with their projected time to collision, 7.
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Fig. 4. (left) The pair distribution function g as a function of the projected

time-to-collision value 7 between human-robot pairs. The curves are grouped
based on the type of controller that the robot employs and exhibit similar
behavior, allowing us to combine them. (right) The corresponding interaction
energy E remains finite even for small 7-values, as opposed to the human-human
interaction energy inferred from the UCY crowd dataset (obtained from [16]).
The energy curves are normalized so that E(1) = 1.

The intuition is that the sooner two pedestrians are going to col-
lide, the more uncomfortable they feel leading to a high energy
to avert the collision. This mathematical model of human-human
interactions is therefore anticipatory, depending not just on the
current state of the environment but also on expected future
states. While its applicability has been validated in many dif-
ferent conditions and settings, it was derived from human-only
datasets. Here we are interested in gaining a better understanding
of heterogeneous interactions between humans and small service
robots in indoor spaces like the ones considered in our user study.
We believe that, in such settings, humans will be more cautious
and try to avoid collisions with the robot as early as possible. As
such, we hypothesize that:
H3: The interaction energy between human-robot pairs in the
Zucker dataset is different than that observed between
human-human pairs in crowd-only datasets.

A. Methodology

Following [16], we focus on the time to collision metric, 7,
and employ a probabilistic analysis approach to study pairwise
interactions in isolation from all other factors that can influence
the behavior of agents. To do so, we compare the frequency of
T-values between human-robot pairs that appear in a recorded
scene at the same time to the frequency of 7-values for random,
non-interacting pairs. The resulting normalized frequency esti-
mates the pair distribution function, g(7), that highlights statis-
tically suppressed interactions. Such a function can be converted
to a “social interaction energy”, F/, assuming a Boltzmann-like
relation between g and E: E(7)  log(1/g(7)). Thus, the en-
ergy vanishes when ¢g(7) = 1 and drastically increases for small
g(7) values.

B. Results

Fig. 4 left shows the pair distribution function ¢(7) from the
Zucker dataset. The reported plots were obtained by considering
T-values for human-robot-only pairs. Overall, the NH-TTC,
CADRL, and Linear curves show very similar behavior, allowing
us to combine them and estimate the normalized distribution
of the 7-values between the human participants and robot con-
trollers. We note that during our HRI experiments, no actual
collisions took place, though several near collisions were ob-
served (the positive g(7) value for 7 = 0 is due to the binning
of 7). In Fig. 4 right, we show the interaction energy FE(T)
derived from ¢ (7). We also depict the interaction energy graph
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from [16] obtained by analyzing pedestrian interactions in the
UCY crowd scenes. As can be seen, the Zucker and UCY energy
plots are visibly different. A two-sample Kolmogorov-Smirnov
test statistically confirmed that the respective E(7) values are
coming from different distributions. Thus, we accept Hs.

C. Discussion

Our results show that in both our HRI scenes and the crowd
interaction scenes, humans don’t care about collisions that will
take place in the far future (E(7) ~ 0 for 7 > 1.5s in both
UCY and Zucker). Furthermore, humans anticipate collisions
when interacting with other agents (humans or Turtlebots),
with the energy increasing with decreasing time-to-collision
values. However, when faced with an imminent collision, and
in contrast to what we expected before the experiments, the
interaction energy between a human and a Turtlebot is finite
as opposed to human-human interactions that exhibit infinite
energy. Specifically, F(7) rises to infinity when 7 < 0.3 for the
UCY pairs, while it saturates around a constant value for such
7’s in Zucker. In hindsight, such a finding is not that surprising.
Turtlebots can only cause a finite amount of social discomfort,
as they move slowly and are not intimidating. For example,
we typically step over Roombas, highlighting our lack of any
fear of colliding with them. Hence, humans are more willing
to head toward a collision since they can resolve it quickly. We
expect the observed interactions to extend to other small indoor
robots leading to the development of more accurate models
of human behavior compared to the ones currently employed
in robot simulators [15], [16], [33], [34]. We acknowledge,
though, that such finite interaction forces may not apply to larger
indoor robots such as humanoids or fast-moving transport robots
deployed in fulfillment centers.

VII. CONCLUSION

In this letter, we study how human behavior is affected by dif-
ferent types of robot controllers in indoor navigation settings. We
conclude by highlighting some of the limitations and potential
applications of our user study.

Limitations: Our work focuses on sparse interactions between
humans and small differential drive robots, and thus the con-
clusions drawn from our study do not necessarily translate to
other settings or types of robots. Although, we believe that
the interactions are representative of ones that humans could
experience in their households and workspaces. Our experiments
took place in the lobby area of a building providing a more
real-world setting than a traditional laboratory space. However,
the participants were aware that they were involved in a user
study, which could influence their behavior. Finally, we note that
our user study includes a small number of participants which can
limit the generalization of our results. Still, our analysis can be
broadened with further data collection, an avenue we aim to
explore in subsequent studies.

Applications and Future Work: Despite the aforementioned
limitations, we believe that our work can facilitate future re-
search in social robot navigation, human trajectory prediction,
and crowd simulation. In particular, regarding social robot nav-
igation, we propose an intuitive way to measure the human-
centered behavior of a robot by comparing the performance
of humans with and without the robot. The related analysis
shows the need to invest in more human-centered methods for
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mobile indoor navigation [51], seeking to prioritize human over
robot performance (e.g., for tasks like vacuuming that aren’t
constrained by time). Our evaluation approach could also be
applied to recent work that has explored group-aware robot plan-
ning techniques and collaborative strategies for robot collision
avoidance, among others [24], [25], [26], [52].

Regarding human trajectory prediction, the performance re-
sults reported in Table II can serve as a strong baseline for
testing other prediction methods. We further release our evalu-
ation HRI dataset along with our pretrained models to facilitate
the refinement of existing trajectory prediction methods and
the development of new ones [41]. Similarly, our dataset can
find applications to continual learning methods that can help
improve existing trajectory prediction models in settings with
continuously adapting human behavior [50]. Finally, our dataset
can inform the development of more accurate crowd simulation
models that can facilitate the training and evaluation of robot
navigation methods. In existing robot simulators and bench-
marking tools [21], [23], [32], [33], human behavior is typically
modelled with distance-based potentials [34] or anticipatory
ones based on the notion of time to collision, 7 [15], [16].
However, our analysis suggests a combination of the two may
be a more accurate model for human-robot interaction. As such,
the corresponding E(7) plot in Fig. 4 can be used to derive
a geometric model for human-robot interactions. Alternatively,
our collected human trajectories can serve as expert demonstra-
tions to train data-driven crowd models through reinforcement
learning [7], [9].
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