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Abstract— UAVs and other fast moving robots often need
to keep track of distant objects. Conventional zoom cameras
commit to a particular viewpoint, and carrying multiple zoom
cameras for multi-object tracking is not feasible for power
limited robotic systems. We present a dual camera setup that
allows tracking of multiple targets at nearly 1km distance
with high-resolution. Our setup includes a wide angle camera
providing a conventional resolution view and a MEMS driven
zoom camera that can query a specific region within the wide
angle camera (WAC). We built and calibrated the two-camera
system and implemented a real-time image fusion pipeline.
We show multi-object tracking and stabilization in real world
scenarios.

I. INTRODUCTION

Many autonomous robots operate in environments where

objects of interest are few and far between. For example,

conventional cameras taken from fast moving aerial robot

or water-surface vehicles produce images where most of the

pixels are either sky or sea. The objects of interest are usually

at the viewing limit, subtending to just a few pixels within

the massive camera sensor’s megapixel resolution.

The idea of actively zooming into multiple targets has

been studied in robotics and active vision [1], [2], but these

have been constrained by mechanical pan-tilt-zoom (PTZ)

cameras. In contrast, recent work has taken inspiration from

foveation in biology [3], [4], and created microelectrome-

chanical (MEMS) based cameras that distribute resolution on

areas of interest with a tiny scanning mirror. These devices

can provide faster imaging than PTZ and can image multiple

targets nearly simultaneously.

In this paper, we present system-level advances that

enable the next generation of foveated camera which we

term as FoveaCam++. Our system consists of a zoom lens,

MEMS mirror, wide angle camera along with an embedded

computer system for real-time performance. This system can

be mounted onto a medium or heavy lift drone or similar

robotics platform. Our system has approximately 1kg net

weight and occupies a 20cm cubic volume. Compared to the

previously available foveated cameras [5], [6], our system

has the following advantages:

1) Longer range compact zoom lens: We have integrated a

compact variable zoom lens with a MEMS mirror that
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Fig. 1: Demonstrative diagram of the dual camera layout.

allows programmable zoom for multiple ROIs and can

image multiple objects from up to 1km distance*.

2) Adaptive depth-invariant calibration: We show a cali-

bration of the zoom lens and the wide angle camera

that enables in-situ adjustment during capture to re-

move parallax.

3) Multi-threaded software architecture: Our custom de-

veloped software stack optimizes frame rate, data

throughput, robustness and latency.

4) Applications such as tracking and stabilization: We

demonstrate applications for robotic platforms, such as

a stabilization and tracking, in real-time for multiple

objects, demonstrating increased resolution compared

to conventional imaging.

A. Previous Work

MEMS-based adaptive optics: Foveated camera designs

(cameras capable to move their FOVs programmatically)

have been used to mimic biological vision, with a low-

res wide angle camera and a high-res zoom camera, have

*Estimated based on real world experiments, varies on size of target
and desired definition.



Fig. 2: FoveaCam++ Prototype

been proposed for static scenes, such as [7], [8], [9]. Tilmon

et al. extended a MEMS mirror based system to moving

scenes with up to two targets at 5m distance [6]. Compared

to previous efforts, ours is the first that can track multi-

targets at up to 1km distances. All these MEMS-modulated

imaging techniques are tangentially related to the adaptive

removal of atmospheric turbulence effects [10]. Our use

of MEMS mirror enables advantages in compactness, high-

speed and low wear-and-tear compared to mechanical PTZ

methods [11].

Active vision and adaptive sampling: This paper is about

system-level advances for a new type of long range foveated

camera. The idea of paying attention to ROIs has been

long studied in attention, active vision and robotics [12],

[13], [14], [15], [16], [17], [18], [19], [20]. Robotic and

active vision-based algorithms could be implemented on this

platform, and our work complements these methods.

MEMS/Galvo mirrors for vision and graphics: MEMS

and Galvo mirrors are mostly used for modulating light in

projectors and lasers for applications in vision and graph-

ics [21], [22], [23], [24], [25], [26]. In our work, we used

a reflective mechanism (beam splitter) to avoid restriction

of bandwidths for the passive sensor. This setup makes it

possible to incorporate different types of wide angle sensors,

such as IR or event camera, for different use cases. In

addition, tracking with large galvo mirrors has been shown

in [27], [28]. These devices usually require two mirrors for

modulating both azimuth and elevation while a single MEMS

can rotate in two dimensions, contributing to improved

compactness and robustness of our proposed system.

II. DESIGN

Conventional zoom entails a trade-off between angular

resolution and field-of-view (FOV). For a system with focal

length f , sensor resolution N , pixel pitch dpx and FOV ωfov,

the angular resolution can be given by
f ·tan(ωfov)
ωfov·dpx

, and as the

FOV approaches zero (i.e. near the center of the sensor),

we can simplify this as f
dpx

†. On the other hand, the FOV

itself reduces by the ratio arctan
(

f
N ·dpx

)

, i.e. the system

loses details as its FOV enlarges, or get a narrower FOV as

it zooms into a smaller feature.

†This equation gives px/rad. Multiply by π

180
to convert to px/deg.

Our idea is to break these limits by reflecting the zoom

camera off a microelectromechanical (MEMS) mirror, whose

scanning pattern is controlled. In this sense, the zoom camera

is not committed to one region and can be quickly swiveled

to different regions. This foveated camera design [6] works

because the azimuth and elevation are controlled by voltages

over time, (θ(V (t)), φ(V (t)), over the mirror FOV ωmirror.

A. Hardware Design for Robotic Applications

Although [6] was able to show feasibility over short

distances for two targets, our approach solves multiple novel

system level problems to make FoveaCam++, which is better

suited to robotic applications such as imaging from drones.

Hardware Prototype Summary: The complete assembly

of the camera system implementing Fig.1 is shown in Fig.2.

As is shown in the figure, a wide angle camera is mounted

on the front side of the assembly. It is directly pointed to a

beam-splitter mounted on the black 3D printed cover. The

lens installed on this wide angle camera was configured to

cover the full foveated field of view of the telephoto camera.

Behind the wide camera is a Kurokesu motorized zoom lens

with a FLIR board level sensor attached to it. The sensor

can run at up to 226fps given enough light. Both cameras

are connected to a single board computer sitting on the

top of the assembly via USB3, as is represented by dashed

lines of the block diagram shown in Fig.3. The single board

computer is in charge of coordinating all components in the

system. A micro-controller and a MEMS voltage regulator

are mounted to the back side of the camera (behind the

display mount). The 3D printed structure holding the MEMS

mirror is designed to be modular so it can be swappable

without disassembling the entire device.

Summary of Improvements: Previous efforts in foveated

cameras had avoided color imagery, since inter-reflections in

the MEMS packaging and cover glass would cause ghosting

[6]. We obtained an updated MEMS package design from

the supplier and developed custom 3D printed structures

to deal with this ghosting issue. We also have included a

secondary wide angle camera coupled with a beam-splitter

to the MEMS-modulated zoom camera. The wide angle

camera will provide awareness to broader scene which can

be used to help the foveated camera to determine an ROI

with interested targets. We have implemented a closed loop

calibration between these two cameras, which can overcome

sources of noise such as thermal expansion/contraction or

mechanical displacement. Finally, the latency of data pro-

cessing determines how fast FoveaCam++ can respond to

moving targets. To enable real-time speed, we use multi-

threaded software to process high volume of data in parallel.

B. Mirror Control and Synchronization

Key to the high quality results in this paper are synchro-

nization advances as shown in Fig.3. In previous work[6],

the voltage regulator V that controls the MEMS mirror

was directly connected to a single board computer’s GPIO

pins. It lacks a way to synchronize the mirror with the

foveated sensor. Consequently, the system relies on USB data



Fig. 3: Upper: block diagram of camera-mirror synchroniza-

tion; Lower: signal waveform v.s. sync timing chart.

transmission to determine when to move the mirror to next

position. This method lacks consistency of frame-position

correlation and causes image quality issues such as double

exposure (ghosting).

In our work, we addressed this challenge by introducing a

strobe synchronization mechanism. A micro-controller unit

(MCU) was used to handle the strobe synchronization sig-

nal from the foveated sensor. Instead of directly send the

MEMS mirror position to the mirror, the MCU will hold

the next position sent from host computer until next falling

edge of the sensor strobe signal. Our custom developed

embedded firmware for the MCU provides near real-time

response to the strobe synchronization signal. Such solution

enables very tight synchronization and therefore allows much

higher frame rate without risking to break the mirror-sensor

synchronization. A waveform of camera strobe sync signal

v.s. MEMS trigger signal is plotted in Fig.3, showing an

observed delay of less than 200ns.

C. Software Architecture

A multi-threaded software architecture was designed to

handle large amount of data throughput generated by the

dual-camera setup while minimizing the delay of data pro-

cessing. As is shown in Fig.4, the system was divided into

modules which runs in separate threads. Common compo-

nents such as camera capturing thread and MEMS mirror

control/synchronization threads are implemented as separate

threads. In addition to these common threads, a set of data

pipes are exposed to each task. These data pipelines are

designed to minimize inter-thread communication latency

and maximize data throughput. These pipelines define a

standard way to communicate with the underlying hard-

ware, abstracting away most of the complexity (such as

communication protocols, recovery from erroneous states,

Fig. 4: Diagram of the multi threaded software architecture.

Using task “track” as an example.
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TABLE I: Key parameters of cameras in the system

congestion resolution, etc.) when implementing a specific

workflow (“task”).

“Tasks” are defined as a set of UI layouts and underlying

logic and algorithm modules that, when working together,

can serve a specific purpose. For example, the “track” task

demonstrated in Fig.4 contains 3 tracker threads and 6

render threads. The main loop processes user input and

translates them into ROIs for tracker threads to start with.

The tracker threads wait for initial ROIs from the main

loop and continuously update their ROIs using frames from

“CapWide” and “CapFovea” data pipes. The trackers will

post their latest tracking ROIs to another data pipe “ROI

Updates”, which is monitored by the dispatcher thread. The

dispatcher thread will dispatch the MEMS mirror to each

ROI in an interleaving pattern. The resulting frames will then

be rendered into their corresponding tiles on display.

D. Obtained FOV and Angular Resolution

In our setup, the telephoto view is capable of foveating

within a rectangular area constrained by the MEMS mirror. A

small number of margin pixels are reserved on the wide angle

view to account for possible calibration drifts as discussed

in Sec.III-B. Parameters of both of the cameras have been

measured during the first calibration step and are listed

in Table.I. It outlines the superiority of angular resolution

achieved by our setup. The foveated camera has an angular

resolution 13.6 times higher than its wide angle counterpart

(they have identical CMOS sensor), or 8.9 times higher than

iPhone 13 Pro’s telephoto camera. In addition, the foveated

camera has extra degrees of freedom, giving it an extended

field of view. The MEMS mirror has an tilting range of

10.63◦ horizontally and 7.92◦ vertically. Using the numbers



(a) (b) (c)

Fig. 5: (a) Setup of dual camera alignment, camera was

pointed to a large LED panel showing crosshair; (b) WAC

being adjusted to align with the telephoto camera; (c) Wide

angle view (top) and telephoto view (bottom) after alignment.

(a) (b)

(c) (d)

Fig. 6: (a) Setup of mirror calibration, camera was pointed

to the same LED panel as the alignment process but moved

further away; (b) The calibration utility automatically gener-

ates calibration points; (c) WAC view, sample points already

captured are shown with blue markers; (d) Telephoto view

showing the detection of the last sample point (ID 81).

extracted from the calibration step, we can find the extended

field of view to be 11.69◦ by 8.71◦.

III. ALIGNMENT AND CALIBRATION

We have two cameras, a high-resolution foveated sensor

that images reflections off the MEMS mirror, and a low-

resolution wide angle camera. Using the center axis of the

WAC as the origin, its projection matrix can be defined as

K1

[

I | 0
]

, where K1 is the intrinsic matrix. We calibrate

this camera by recording a sequence of checkerboard patterns

and performing camera intrinsic extraction.

Let the second camera’s projection matrix be K2

[

R | t
]

,

where K2 is the intrinsic matrix and R and t are the rotation

and translations between the center of projections of the two

cameras. Our design strategy is (1) align the internal camera

parameters to maximize similarity between their intrinsic

matrices, i.e. K1 ≈ K2 and (2) use a beamsplitter such

that, for scenes at a large distance Z, the translation can be

ignored, i.e. |t| << Z. With such design, calibration reduces

to just estimating a rotation R. For mechanical setups with

Fig. 7: Calibration points captured at different distances.

aligned roll angles, the rotation becomes two angles of

a distant appearance field defined on the hemisphere of

directions.

A. Dual Camera Alignment and Coverage Adjustment

We first match the coverage of view from the wide angle

camera to the telephoto camera. This is achieved by centering

a cross-hair marker on both views, as shown in Fig.5.

Adjustments are done through a specially designed, fine-

tunable spring loaded base shown in Fig.5b. Another tool was

developed and used to perform a straightforward ”coverage”

check to make sure that the FOV of the foveated camera

is fully contained in the wide angle view. ”Full coverage”

means for any possible mirror location, the content seen in

the foveated view will also be fully covered in the wide angle

view. The wide angel lens will be adjusted if the coverage

is either too wide or too narrow.

B. Mirror Calibration and the Regression Model

With the two camera aligned and coverage adjusted, we

can calibrate the rotation between the two cameras. The

objective of this process is to obtain a mapping from an

ROI of the wide angle camera to the MEMS mirror’s input

voltages and vice versa. To obtain this mapping, we image

a moving ArUco marker on a large screen. We track the

movement of the marker using a PID controller so the marker

stays at the center of the foveated view. The MEMS mirror

voltage of each sample point is recorded against the pixel

coordinate of the center of marker in wide angle view.

The test points captured in Sec.III-B were plotted in Fig.7.

Mapping between MEMS mirror voltages and wide angle

camera’s pixel offset can be derived from these points using

linear regression. In order to closely match the test points, we

introduced a cross correlation term in the regression matrix.

As is described in Eq.1, the linear regression model is able



Fig. 8: Wide angle and telephoto views before and after

incremental drift compensation.

to correlate from a given set of voltage values to a pixel

location on the wide angle view and vice versa.

ki =
[

ai bi ci di
]

Vx = k1 ·
[

Px Py (Px · Py) 1
]T

Vy = k2 ·
[

Px Py (Px · Py) 1
]T

Px = k3 ·
[

Vx Vy (Vx · Vy) 1
]T

Py = k4 ·
[

Vx Vy (Vx · Vy) 1
]T

(1)

As a final step, we incorporated automatic incremental

adjustment to account for calibration drift during field ap-

plication. Such drift could be caused by multiple factors

such as thermal inflation/contraction of 3D printed parts. In

the “match” task of the user interface, one can manually

point the foveated camera to a feature-rich region of the

scene. Then, the user can click “calibrate” button to start

this process. Cross-correlation is used to obtain relative drift

of the original calibration. The drift vector will then be fed

back to the regression model. As is shown in Fig.8, this

approach was able to cancel out most of the drift.

IV. FIELD EXPERIMENTATION RESULTS

A. Multi-Target Tracking

The previous section demonstrated the calibration process

to create a mapping between pixel location and MEMS

position. Given this mapping, wide angle camera can be used

to provide tracking information for the foveated camera. The

foveated telephoto camera will be used to capture smooth

high-res video of multiple tracked objects. The objects to

track can be initialized either by an automatic detection (e.g.

face detection) or manually through a touch UI (as shown

in Fig.9). For each target, a kernalized correlation filter

(KCF) object tracker [29] will be dispatched as an individual

thread to consciously update tracking ROI. And the MEMS

controller will interleave across each target according to their

latest ROIs. Frames for each target are then multiplexed into

their corresponding tiles and rendered to the screen.

As is presented in Fig.10, samples are taken from mul-

tiplexed video streams, each multiplexed view receives a

live stream. Wide angle view is shown on the 1st column,

(a) (b)

Fig. 9: (a) Interactive tracking GUI; (b) Screenshot;

with each ROI annotated and labeled with numbers. The

corresponding foveated view are shown in the 2nd column

and an ROI matched counterpart cropped from wide angle

view is supplied on the 3rd column.

The foveated view T2 of Fig.10 (c) clearly reveals the

superiority of angular resolution of the foveated camera

(covered in Sec.II-D). For example, the text displayed on

the bus front signage was clear to read from the foveated

telephoto view, but is not directly readable from the cropped

wide angle view.

B. Stabilization

Our system is also capable of simulating a stabilized

gimbal with extended range of motion. In this scenario, we

disengage the synchronization between MEMS mirror and

camera strobe in order to continuously update the position

of MEMS mirror even when an image is being exposed

on the foveated camera sensor. In other words, we expect

to reduce motion blur relative to the target.

We implemented a linear predictive motion model to

compensate for data transmission delay, and smooth the

MEMS mirror motion independent of the sample rate of the

wide angle camera. The algorithm computes the transient

velocity v(tN ) by dividing the transient spacial offset ∆x

with time increment ∆t. Additionally, a temporal convolu-

tion described by Eq.2 was incorporated to mitigate noises

introduced by the tracking kernel. The “decay” parameter

k balances the trade off between motion smoothness verses

temporal responsiveness. As in Eq.3, this model performs an

iterative weighted-add optimization without storing an array

of data points.

vest(tN ) = (1− k) ·

N
∑

n=0

k
(N−n) · vobs(tn) (2)

with 0 < k < 1 and N =
tN − t0

∆t

= (1− k) · vobs(tN ) + k · vest(tN−1) (3)

A configurable parameter tdelay is introduced in order

to compensate for delays introduced in multiple processes,



Fig. 10: Results of multi-object foveated tracking experiment.



Fig. 11: Results and transient data of foveated stabilization experiment.



including receiving frame buffers from camera sensors, and

applying MEMS mirror’s voltages. With that in considera-

tion, we are able to derive the desired MEMS mirror position

for any given time xN (∆t) as shown in Eq.4.

xN (∆t) = x0
N + vest(tN )

(

∆t+ tdelay

)

(4)

After establishing a motion prediction model, the algo-

rithm continuously updates mirror position based on its own

prediction. The update rate is substantially higher than the

actual frame rate of both camera sensors, this helps to cancel

the motion blur during each exposure. As shown in Fig.11d,

transient tracking trajectories were recorded in a laboratory

environment. The predicted position (red) stably maintains

an offset of tdelay ahead of observed position (blue). In real

world experiments shown in Fig.11, this algorithm kept the

subject stably in its field of view while the system was moved

either by hand or with a vehicle.

V. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

In this work, we presented the design and implementation

of a high-performance foveated camera system. We devel-

oped a robust calibration process and proposed a feasible

solution for calibration drift in the field, allowing the system

to be effectively utilized outside of a laboratory environment.

Building on this foundation, we demonstrated tracking and

stabilization applications with performance that, to the best

of our knowledge, surpasses any alternative systems of

similar size and cost. Looking forward, we aim to continue

refining the system and integrating it with robotic platforms

to address real-world challenges that could benefit from the

unique capabilities of FoveaCam++.
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