Optimal Batched Linear Bandits

Xuanfei Ren!

Abstract

We introduce the E* algorithm for the batched
linear bandit problem, incorporating an Explore-
Estimate-Eliminate-Exploit framework. With a
proper choice of exploration rate, we prove E*
achieves the finite-time minimax optimal regret
with only O(loglogT) batches, and the asymp-
totically optimal regret with only 3 batches as
T — oo, where T is the time horizon. We further
prove a lower bound on the batch complexity of
linear contextual bandits showing that any asymp-
totically optimal algorithm must require at least
3 batches in expectation as 7' — oo, which in-
dicates E* achieves the asymptotic optimality in
regret and batch complexity simultaneously. To
the best of our knowledge, E* is the first algorithm
for linear bandits that simultaneously achieves the
minimax and asymptotic optimality in regret with
the corresponding optimal batch complexities. In
addition, we show that with another choice of ex-
ploration rate E* achieves an instance-dependent
regret bound requiring at most O(log T') batches,
and maintains the minimax optimality and asymp-
totic optimality. We conduct thorough experi-
ments to evaluate our algorithm on randomly gen-
erated instances and the challenging End of Op-
timism instances (Lattimore & Szepesvari, 2017)
which were shown to be hard to learn for opti-
mism based algorithms. Empirical results show
that E* consistently outperforms baseline algo-
rithms with respect to regret minimization, batch
complexity, and computational efficiency.

1. Introduction

Sequential decision-making problems including bandits and
reinforcement learning (Bubeck et al., 2012; Slivkins et al.,
2019; Lattimore & Szepesvari, 2020) have become pivotal

"University of Science and Technology of China *National
University of Singapore *Duke University. Correspondence to:
Pan Xu <pan.xu@duke.edu>.

Proceedings of the 41°% International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Tianyuan Jin?2 Pan Xu?

in modeling decision processes where an agent actively
interacts with an uncertain environment to achieve a long-
term goal. In particular, we study the linear contextual
bandit problems (Langford & Zhang, 2007; Li et al., 2010;
Abbasi-Yadkori et al., 2011; Chu et al., 2011; Agrawal &
Goyal, 2013; Kirschner et al., 2021; Xu et al., 2022), where
the agent can choose from K arms to play at each step, and
each arm is associated with a feature vector in the R? space.
Each arm when played emits a noisy reward with its mean
assumed to be a linear function of the feature vector with
the unknown weight parameter shared across different arms.
These bandit problems are prevalent in numerous real-world
applications, from online advertising (Abe et al., 2003) to
recommendation systems (Agarwal et al., 2008; Li et al.,
2010), where abundant side information is available and thus
provides powerful feature representation of each arm. The
most critical dilemma in designing algorithms for learning
bandit problems is the trade-off between exploitation and
exploration, where the agent must decide whether to exploit
the currently known best option or to explore unknown
possibly suboptimal options for maximizing the long-run
gains.

In conventional bandit setting, the agent adjusts its strat-
egy or policy step-by-step, by first choosing an arm to play,
observing a reward for this arm, and adjusting its strategy
accordingly in the immediate next step. This ideal setting
is also referred to as the fully-sequential setting, where
immediate outcome can be obtained and switch polices is
cost-efficient. In real-world problems, fully sequential learn-
ing strategies are usually expensive or infeasible in critical
applications where the interaction with the environment
takes months to observe the rewards like in clinical trials or
medical treatment (Robbins, 1952), or switching between
different policies is expensive in e-commerce (Bertsimas &
Mersereau, 2007). Therefore, the batched bandit setting is
more realistic and feasible, where an agent selects a batch
of actions rather than a single action at one decision point
to play, which significantly minimizes the number of policy
switching and expedites the learning process by enabling
parallel experiments (Perchet et al., 2015; Gao et al., 2019;
Esfandiari et al., 2021; Han et al., 2020; Jin et al., 2021b;a;
Ruan et al., 2021; Jin et al., 2023).

To evaluate the effectiveness of bandit algorithms, a cru-
cial metric is the regret, which represents the gap between

Optimal Batched Linear Bandits

the expected cumulative rewards of the learning agent and
those of an oracle who knows the optimal action at each
step in hindsight. We denote the regret as Rr, where 7' is
the learning time horizon. The goal of a bandit algorithm
is to find a tight bound for the regret to guarantee good per-
formance theoretically. Generally speaking, there are three
types of bounds of regret that are considered in the bandit
literature. The first type of regret bound is called the worst-
case regret bound where we measure the performance of a
bandit algorithm with respect to the worst possible bandit in-
stance. For linear bandits with K arms, it is well-established
(Lattimore & Szepesvari, 2020) that there exists a bandit
instance such that, for all bandit strategies denoted by ,
the regret satisfies R > Q(v/dT). The second type of
regret is called the instance-dependent regret bound, where
the regret R is bounded by problem dependent parameters
including the time horizon, the mean rewards of different
arms, the number of arms, etc. Instance-dependent regret
bounds provide performance evaluation of a bandit algo-
rithm specific to certain bandit instances, offering more
delicate insights into an algorithm’s behavior in practice.
The above regret bounds are both in the finite-time regime,
where we fixed the time horizon T'. The third type of re-
gret bound, the asymptotic regret bound, characterizes the
performance of an algorithm when 7" goes infinite. It has
been proved that the regret of any consistent algorithm satis-
fies liminfy_, o, Ry /logT > ¢*, where ¢* := ¢*(6*) is a
statistical complexity measure of the problem under the ban-
dit instance 08* (Graves & Lai, 1997; Combes et al., 2017,
Lattimore & Szepesvari, 2017), which we provide a formal
definition in Section 3.

Achieving the optimal regret across various regret types
poses a significant challenge. Notably, instance-dependent
analysis proves to be more intricate than worst-case analy-
sis. Many algorithms, while considered minimax optimal,
may encounter difficulties in specific instances (Lattimore
& Szepesvari, 2017). Conversely, certain existing instance-
optimal algorithms lack a guarantee for worst-case regret
(Wagenmaker & Foster, 2023). It is even more challeng-
ing to achieve optimal regret for batched bandit algorithms.
Due to their batch design, learning agents cannot update the
exploration policy after each data point, resulting in a rarely-
switching nature. In this paper, we show that we can achieve
the same order of all three types of regret as full-sequential
algorithm but with much fewer batches. In particular, we
first provide a lower bound on the batch complexity for
asymptotic algorithms, and then propose an algorithm that
attains both non-asymptotic and asymptotic optimal regret
simultaneously and attains the corresponding optimal batch
complexities. At the key of our algorithm is a careful de-
sign of the Explore-Estimate-Eliminate-Exploit framework
leveraging D-optimal design exploration, optimal allocation
learning, and arm elimination.

Our contributions are summarized as follows.

* We propose the algorithm, Explore-Estimate-Eliminate-
Exploit (E*), for solving batched linear contextual bandits.
With a proper choice of exploration rate, we prove that E*
attains O(v/dT') worst-case regret after only O (log log T')
batches, which matches the existing lower bounds on the
regret and batch complexity for linear contextual bandits
with finite arms (Gao et al., 2019). Under the same con-
figuration, when T' — oo, E* achieves the asymptotically
optimal regret with only 3 batches. We also prove that
any asymptotically optimal algorithm must have at least
3 batches in expectation as T — oo. Therefore, E4 is
the first algorithm in linear bandits that achieves simul-
taneously optimal in terms of regret bound and batch
complexity in both the finite-time worst-case setting and
the asymptotic setting. We present the comparison of re-
gret and batch complexities with existing work in Table 1
for the readers’ reference.

* With a different exploration rate, we prove that our E*
algorithm attains an instance-dependent regret bound
O(dlog(KT)/Amin) with at most O(logT') batches,
where Ay, is the minimum gap between the mean re-
wards of the best arm and the suboptimal arms. Under
the same configuration, E* also maintains the minimax
optimality and asymptotic optimality. Our result nearly
matches the batch complexity lower bound (Gao et al.,
2019) that states any algorithm with O(dlogT/Amin)
regret must have at least Q(log T") batches.

* We conduct experiments on challenging linear bandit prob-
lems, including the End of Optimism instances (Lattimore
& Szepesvari, 2017), where it has been demonstrated that
algorithms based on optimism are suboptimal, as well as
on a suite of randomly generated instances. Our empirical
evaluation verifies that E* not only outperforms the exist-
ing baselines in terms of regret and batch complexity but
attains superior computational efficiency by exhibiting a
significant speedup over baseline algorithms.

Notation We denote a set {1,...,K} as [K], K € N*.
We use bold letter x € RY to denote a vector. [|x||s =
VxTx is its Euclidean norm. For a semipositive definite
matrix V € R4, ||x|ly = vx Vx is the Mahalanobis
norm. For an event F/ within a probability space, we denote
its complement as E°. For f(T') and g(T") as functions
of T, we write g(T) = O(f(T)) to imply that there is a
constant C' independent of T such that g(T') < C' f(T), and
use O(f(T)) to omit logarithmic dependencies. We also
define f(T) = Q(g(T)) if g(T') = O(f(T)). When both
f(T) = O(g(T)) and g(T) = O(f(T)) hold, we write
f(T) =06(g(T)). We assume 0 x oo = 0.

Optimal Batched Linear Bandits

Table 1: Regret and batch complexity comparison in the finite-time and asymptotic settings for linear bandits.

NON-ASYMPTOTIC SETTING

ASYMPTOTIC SETTING

ALGORITHM

WORST-CASE REGRET BATCH COMPLEXITY ASYMPTOTIC REGRET BATCH COMPLEXITY
ABBASI-YADKORI ET AL. (2011) O(d\/T) O(logT)
ESFANDIARI ET AL. (2021) O(VdT) O(logT)
RUAN ET AL. (2021) O(VdT) O(loglog T)
HANNA ET AL. (2023) O(WdT) O(loglogT)
LOWER BOUND (GAO ET AL., 2019) Q(V/dT) Q(loglogT)
LATTIMORE & SZEPESVARI (2017) OPTIMAL SEQUENTIAL
OSSB (COMBES ET AL., 2017) OPTIMAL SEQUENTIAL
OAM (HAO ET AL., 2020) - - OPTIMAL SEQUENTIAL
SOLID (TIRINZONI ET AL., 2020) O((d + log K)\/T) SEQUENTIAL OPTIMAL SEQUENTIAL
IDS (KIRSCHNER ET AL., 2021) O(dVT) > O(d*log* T/AZi) OPTIMAL > O(log"T)
LOWER BOUND (THEOREM 5.2) - - OPTIMAL >3
E* (ALGORITHM 1) O(VdT) O(loglog T) OPTIMAL 3

2. Related Work

Existing works on batched linear bandits predominantly con-
centrated on achieving non-asymptotic optimal regret with
minimal batch complexity. Gao et al. (2019) argued that, for
an algorithm to achieve minimax optimality, it should incor-
porate at least O (log log T') batches. Additionally, to attain
an instance-dependent regret of order O(dlogT'/Apin), an
algorithm should include at least ©(log T') batches. In the
contextual linear bandits setting, Han et al. (2020); Ruan
et al. (2021); Zhang et al. (2021); Hanna et al. (2023) delved
into linear bandits with both stochastic and adversarial con-
texts. However, the techniques proposed by Han et al. (2020)
cannot be directly applied to our fixed K arms setting, as
it assumes that each arm is i.i.d. sampled from some dis-
tribution. Ruan et al. (2021); Zhang et al. (2021); Hanna
et al. (2023) researched on stochastic contextual linear ban-
dit problems, and our setting can be seen as a special case
of theirs when the number of contexts is one, meaning the
arm set is fixed. They both achieved O(d+/T) regret bound
with O(loglog T') batches. In the context of linear bandits
with fixed K arms, a simple algorithm with O(log T') batch
complexity achieves an optimal regret bound of O(v/dT')
(Esfandiari et al., 2021; Lattimore & Szepesvari, 2020).
However, this falls short of the optimality compared to the
lower bound in Gao et al. (2019).

Another related line of research is the algorithms that
achieve asymptotically optimal regret for linear bandits (Lat-
timore & Szepesvari, 2017; Combes et al., 2017; Hao et al.,
2020; Tirinzoni et al., 2020; Kirschner et al., 2021; Wagen-
maker & Foster, 2023), which strive for the best possible
performance in a sufficiently large horizon. Nevertheless,
traditional well-performing optimistic algorithms like Up-
per Confidence Bound (UCB) and Thompson Sampling
(TS) have been proven to fall short of achieving asymptotic
optimality (Lattimore & Szepesvari, 2017). Lattimore &
Szepesvari (2017) demonstrated an asymptotic lower bound

for the regret of any consistent algorithm and proposed a
simple algorithm with a matching upper bound, but no finite-
time performance was guaranteed. Similarly, Combes et al.
(2017) achieved asymptotic optimality for a large class of
bandit problems, but no finite-time regret guarantees were
provided either. Hao et al. (2020) achieved asymptotic
optimality with good empirical performance within finite
horizon, considering a contextual bandit setting with a finite
number of contexts, sharing similarities with our setting.
They also proved that an optimistic algorithm could have
bounded regret when the set of optimal arms spans the arm
space, aligning with the concept of the End of Optimism
phenomenon (Lattimore & Szepesvari, 2017).

Further, Tirinzoni et al. (2020) provided the first asymptot-
ically optimal regret bound with non-asymptotic instance-
dependent and worst-case regret bounds, achieving the min-
imax optimality. Kirschner et al. (2021) proposed the fre-
quentist IDS algorithm that leverages an information theo-
retic method, achieving minimax and asymptotic optimality
simultaneously with a non-asymptotic instance-dependent
regret bound. Wagenmaker & Foster (2023) proposed a
method for achieving instance optimality in both asymptotic
and non-asymptotic settings, along with a unifying frame-
work for non-asymptotic instance optimality. Even so, they
fell short of achieving minimax optimality. More impor-
tantly, all of the mentioned works that focus on asymptotic
regret analysis are designed in a fully sequential way and
cannot be applied to the batched linear bandit setting.

3. Preliminary

In this paper, we study the linear contextual bandit problem,
where the reward of an arm x € X C R? is given by
r(x) = (x,0*) + ¢. Here x is the arm feature, X’ is the arm
set with |X'| = K arms in total, * € R? is an unknown
weight parameter, and ¢ is a zero-mean 1-subgaussian noise.
For simplicity, we assume X’ spans R?. Otherwise, we can

Optimal Batched Linear Bandits

always find a corresponding arm set with a lower dimension
that does by applying an orthogonal transformation to both
0* and actions. For normalization purposes, we assume
bounded expected rewards: |(x,0*)| < L, Vx € X, where
L > 0 is some constant.

Conventional bandit algorithms operate in a fully sequential
way. In each round ¢t = 1,...,T, the learner chooses an
action x; € X and then observes a reward r; = r(x;).
The objective is to minimize the accumulated regret of the
algorithm defined as Ry = E[maxyxcx ZtT:1 (x — x¢,0%)].
In the batched setting, the algorithm pulls a batch of b, arms
at round ¢. For T total arms played, we can equivalently
rewrite the regret as Ry = E[maxxcx Zle Z?’; 1(x -
Xy,j,0%)]. where by is the batch size of batch ¢, B is the
total number of batches, and Zle b, = T. Note that the
two definitions are exactly the same by re-indexing the arms
pulled in each batch.

We assume the best arm x* = argmax, c y (x, 6*) is unique.
We define Ax = (x* — x,0%) to be the suboptimality gap
for an arm x # x*, and A iy = ming.x- Ayx. We also
define px = (x,0*) to be the mean reward for pulling arm
x. For a K-dimensional non-negative vector o € RE, we
use & = {ax }xex to denote an allocation of arm pulTs over
arm set .

Asymptotic lower bound Asymptotic lower bounds
are usually defined for consistent policies (Lattimore &
Szepesvari, 2020). A policy 7 is called consistent (Latti-
more & Szepesvari, 2017) if its regret is sub-polynomial for
any bandit instance, i.e., Ry = o(T?) for all 8* and p > 0.

For a linear bandit instance with arm set X and weight
0*, define H, = erx XX, where a € Rgo is an
allocation for the number of pulls of each arm.! ¢*(6*) is
the solution to the following convex program,

c* 2 inf Z ax A
a€eRE, X

3.1

* (12 < A)2(X—

st flx = x|l < 7,Vx ceXx,

where X~ = X — {x*}. We write ¢* :=

ambiguity arises.

¢*(6*) when no

Lemma 3.1 (Lattimore & Szepesvari (2017)). Any consis-
tent algorithm w for the linear bandits setting with Gaussian
noise has regret Ry satisfying liminfr_, o Ry /logT >
c*, where c* is given by (3.1).

We call an algorithm asymptotically optimal if it achieves
1imT_)oo RT/ log T =c"

'For the ease of presentation, we may overload the notation
of covariance matrix H a little bit in this paper. Srpemﬁcally, for
an integer t € N, we define H; = ZS 1 XsX, . For a vector
w = {wx}xex € RE, we define Hy = 3

<
xex Wx * XX .

Least square estimators For a dataset {(xs,75)}._;, we
define the following least squares estimators which will be

used in our algorithm design. Let H = Z _, XsX/ , and
6=H"'Y"!_ %7, (3.2a)
fx(t) = (6,x), (3.2b)
X" = argmaxxexﬂé, X), (3.2¢)
Ay = (0,%" —x) (3.2d)

4. Optimal Batched Linear Bandits Algorithm

Algorithm 1 Explore, Estimate, Eliminate, and Exploit (EYH
Input: arm set &X', horizon T, « > 0, v > 0, D-
optimal design allocation function f(-, -, -) defined in Defi-
nition 4.1, exploration rate {77, T, ...}, elimination param-
eters {£1,€2,...}.
Initialization: set A « X and ¢ <+ 0.
Batch/ =1
1: Exploration: Pull arm x € A for f(x,.A,T}) times.
2t =t ea f(x,AT).
3: Estimation: Update least squares estimators 0,%*, A
based on the current batch of data by (3.2).
4: Calculate w(A) = {wy }xe.4 by Definition 4.3.
Batch ¢ = 2
5: Exploration: Pull arm x € A for f(x, A,Ta) + nx
times, where ny = min {wy - alog T, (log T')'*7 }.
6: by < erAf(X,.A, TQ) + Ny, t <t + by

7. Estimation: Update least squares estimators 6, x*, A
based on the current batch of data by (3.2).
8: Elimination:
if stopping rule (4.2) holds
A+ {x*}.
end if
Batch ¢ > 3
9: £+ 3.
10: while ¢ < T and |A| > 1 do
11: Exploration: Pull arm x € A for f(x,.A, T;) times.
12: Estimation: Update least squares estimator 6 based
on the current batch of data by (3.2).
13: Elimination: A + {X eA: maxyeA<é, y—x) <
26@}.
14 L0+ 1t t+ 3 4 f(xATY).
15: end while
16: Exploitation: Pull arm x € A for T' — ¢ times .

In this paper, we design a general algorithm framework,
called Explore-Estimate-Eliminate-Exploit (E*), which
is presented in Algorithm 1. The algorithm proceeds in a
batched fashion.

In each batch we use an Exploration stage that explores the
arm space in some way we would specify below, an Estima-

Optimal Batched Linear Bandits

tion stage that calculate some statistics with least squares
estimators, and an Elimination stage that eliminates low-
rewarding arms. Note that in a specific Estimation stage,
we exclusively use data from that particular batch for the
computation of estimators and statistics. This ensures the
independence, aligning with our theoretical objectives. In
Algorithm 1, we maintain an active set, denoted by A C X,
which only consists of arms that we are unsure about its sub-
optimality and need to further explore. If after some batch,
there is only one arm in the active arm set .4, the algorithm
enters the Exploitation stage. This means it identifies the
best arm and would pull it until the total pulls reach 7.

Let ¢ be the index of batches. We denote b, as the total
number of arms pulled in the ¢/-th batch, which is also called
as the batch size. And we denote T} as the D-optimal design
exploration rate in the ¢-th batch. In what follows, we
elaborate the details in Algorithm 1 for different batches.

Batch ¢ = 1: Explore with D-optimal design and estimate
the exploration allocation w for the next batch.

Exploration: In the first batch, the agent has no prior in-
formation on arms and thus explores all arms through the
classical D-optimal design (Lattimore & Szepesvari, 2020).
Specifically, given an arm set .4 and and a user defined ex-
ploration rate M, we use D-optimal design rule to decide
the number of pulls of each arm x, denoted by f(x,.4, M),
which is defined as follows.

Definition 4.1. For an arm set .4 and an exploration rate
M, the D-optimal design allocation of arm x € A is given
by f(x, A, M) = [2nig(7*)M/d], where 7 := 7*(A)
is a probability measure over the action set defined by

7 (A) = argmin, maxxe 4 ||x]| 4.1

2
H717
T

and g(m) = masxe.s 7

Throughout our algorithm, we employ this D-optimal design
exploration rule. Specifically, we set the exploration rate
M = T, for the ¢-th batch.

Remark 4.2. We present Definition 4.1 here just for simplic-
ity. In both our theoretical analysis and experiments, we use
the Frank—Wolfe algorithm (see Chapter 21.2 in Lattimore
& Szepesvari (2020)) to approximately solve the optimiza-
tion problem in (4.1) and get a near-optimal solution 7. See
Appendix C for more details.

Estimation: Then Algorithm 1 calculates least squares es-
timators by (3.2). Based on these estimators, we solve an
allocation w = {wx }xecx using the following definition,
which will be used in the Exploration stage of batch 2.
Definition 4.3. Lete = 1/loglogT, and w = {wx }xex €
[0, 00)% be the solution to the problem

Miny, ¢ [0,00)K Zx;ﬁc* wx(Ax — 4e)

st [x =X < (Ax —46)7/2, Vx # X7,

and wg« < (logT)7"/a,

where A and x* are defined in (3.2), Hy, is defined in
Section 3, v € (0,1) and = (1 + 1/loglogT)(1 +
dloglogT/logT).

Remark 4.4. Our Definition 4.3 is novel and different from
literature. Compared with the naive allocation solved from
an optimization problem like (3.1), we use Ay — 4e in-
stead of A, and add a constraint wg. < (logT)"/a in the
program. From Lemma C.6 we can see the solution from
Definition 4.3 convergences to the solution of naive method
as T — oo, so our modification tricks in Definition 4.3
doesn’t influence the asymptotic regret analysis. In fact,
with high probability, estimated gaps based on data in the
second batch of our algorithm are larger than those underes-
timated gaps Ay — 4e. We elaborate this trick in our proof
of Lemma C.7, which shows that with high probability, the
stopping rule (4.2) holds after the second batch.

Batch ¢ = 2: Explore with D-optimal design and the allo-
cation w from Definition 4.3, and eliminate all suboptimal
arms based on Chernoff’s stopping rule.

Exploration: The exploration stage of batch 2 requires play-
ing arms according to two allocations: (1) D-optimal de-
sign exploration specified by Definition 4.1, and (2) opti-
mal allocation specified by Definition 4.3. More specifi-
cally, for the second part, we pull x € A for min{wy -
alogT, (logT)' ™7} times, where v € (0,1) is an arbi-
trarily small constant and w = {wy }xex is solved from
Definition 4.3 based on the estimators from batch 1.

Estimation: We calculate the least squares estimators ac-
cording to (3.2) based on the current batch of data.

Elimination: We then test the Chernoff’s stopping rule and
only keeps the current best arm based on our Estimation
stage if it holds. This means we will eliminate all suboptimal
arms and directly go to the Line 1, Exploitation stage of
Algorithm 1. In particular, the stopping rule is defined as

{Z(bs) > B(bg,1/T) and 172, x,x] > eIy},

where by is the batch size of the second batch defined in
Line 1 of Algorithm 1, ¢ = maxyex ||x||3 and

4.2)

— 3 A2 ox 12
2(02) = min AZ/(2x — 5[y, “3)

B(t,6) = (14 1/loglogT)log ((tlog logT)%/(S).
(4.4)

If the stop rule (4.2) does not hold, Algorithm 1 will enter
the while loop and conduct more batches of exploration.

The use of Chernoff’s stopping rule is inspired from best
arm identification problems (Garivier & Kaufmann, 2016;

Optimal Batched Linear Bandits

Jedra & Proutiere, 2020; Jin et al., 2023). Specifically, if
(4.2) holds, we can prove that X* is the true best arm with
probability at least 1 — 1/7". This further ensures that no
more exploration is needed and the regret is small.

Batch ¢ > 3: Perform phased elimination with D-optimal
design exploration. When Algorithm 1 does enter these
batches, it means the previous two batches are not sufficient
to identify the best arm and thus more exploration is needed.
To this end, we adopt the phased elimination with the D-
optimal design exploration (Lattimore & Szepesvari, 2020).

Exploration: We use D-optimal design exploration defined
in Definition 4.1 with rate T} for the ¢-th batch.

Estimation: We calculate the least squares estimators ac-
cording to (3.2) based on the current batch of data.

Elimination: We eliminate arms whose estimated mean re-
ward on the estimated parameters are smaller than that of the
empirically best arm by a margin of 2¢,. The active arm set
is updated as A + {x € A: maxyc4(6,y —x) < 2¢,}.

Final batch: Pull the estimated best arm X* until the
end. If the Chernoff’s stopping rule (4.2) holds at the end
of the second batch, or | A| = 1 after some batch £ > 3,
Algorithm 1 will enter Line 1, the Exploitation stage. In
this stage, the agent just commits to the estimated best arm
x* € A until total pulls reach ¢t = T..

5. Theoretical Analysis

In this section, we provide theoretical analysis results on the
regret optimality and batch complexity of Algorithm 1.

First we give a formal definition of batch.

Definition 5.1. For a linear bandit problem with time hori-
zon T, we say that the batch complexity of a learning algo-
rithm is (at most) M, if the learner decides T3 and 7 before
the learning process starts, and executes 7 in the first 71
time steps (which corresponds the first batch). Based on the
data (context sets, played actions and the rewards) obtained
from the first 7} steps, the learner then decides 75 and o,
and executes 5 for 75 time steps (the second batch). The
learner repeats the process for M times/batches. In general,
at the beginning of the k-th batch, the learner decides 7},
(the size of the batch) and 7, based on the data collected
from the first (k — 1) batches. The batch sizes should satisfy
that M T}, =T.

We present the following result on the batch complexity
lower bound of asymptotically optimal algorithms.

Theorem 5.2. If an algorithm achieves asymptotic optimal-
ity defined in Lemma 3.1, then on some bandit instances it
must have at least 3 batches in expectation as T — oo.

Remark 5.3. In our proof detailed in Appendix B, we first
show that any algorithm that performs at most 2 batches is
not asymptotically optimal. Then we further show that even
with randomly chosen batch sizes, the expected number of
batches of an asymptotically optimal algorithm is at least
3. This is the first batch complexity lower bound in the
literature for asymptotically optimal algorithms. Though the
lower bound in Theorem 5.2 seems to be conservative, we
will show in the next theorem that our proposed algorithm
E* achieves asymptotic optimality in regret and its this batch
matches the lower bound in Theorem 5.2.

Next we present the upper bounds on the regret and the
batch complexity of Algorithm 1.

Theorem 5.4. In Algorithm 1, let the parameters be set
to o = (14 1/loglogT)(1 + dloglogT/logT), § =
1/(KT?), v € (0,1), and g = +/dlog(1/8)/Tys, V¢ > 1.

Let the exploration rate be defined as
Ti ={T1 = (log T)"/?, Ty = (log T)"/*, T = (log T)"*7,
T, =T 575 for 0 > 4}.
Then the regret of Algorithm 1 satisfies
R = O(loglogT - \/(W(KT)) = (N)(\/ﬁ),
and only needs at most O(loglog T') batches. As T — oo,

<c",

lim sup
T—oo 108

only runs with 3 batches in expectation. Furthermore, Al-
gorithm 1 runs with 3 batches with probability at least
1—-2/(logT)?as T — oc.

Remark 5.5. Our O(v/dT) regret bound nearly matches the
lower bound in Lattimore & Szepesvari (2020), and the
O(log log T') batch complexity matches the lower bound of
Q(loglogT) in (Gao et al., 2019). Furthermore, according
to Theorem 5.2, our algorithm also achieves the asymptoti-
cally optimal regret bound with the optimal batch complex-
ity, i.e., E* only need 3 batches to achieve the asymptotic
optimality. To the best of our knowledge, E* is the only
algorithm in the literature that is simultaneously optimal
in terms of regret bound and batch complexity in both the
finite-time worst-case setting and the asymptotic setting.

In contrast, existing linear bandit algorithms can be catego-
rized as follows: (1) achieving the minimax optimal regret
bound but with O(log T') batch complexity (Esfandiari et al.,
2021); (2) achieving the minimax optimal regret bound
with optimal batch complexity but no asymptotic guarantees
(Ruan et al., 2021; Hanna et al., 2023); (3) achieving the
asymptotically optimal regret but no finite time minimax
optimality (Lattimore & Szepesvari, 2017; Combes et al.,
2017; Hao et al., 2020; Wagenmaker & Foster, 2023); or (4)

Optimal Batched Linear Bandits

achieving the asymptotically optimal regret and the mini-
max optimality but in a fully sequential way (Tirinzoni et al.,
2020). Compared to these works, Frequentist Information-
Directed Sampling (IDS) (Kirschner et al., 2021) achieves
both minimax and asymptotic optimality. Furthermore, it
can be proved to have a batch complexity slightly larger
than O(log" T)?, which is still much higher than the batch
complexity of our algorithm E*. Moreover, the IDS algo-
rithm can only achieve a worst case regret bound O(dv/T),
which is suboptimal for K -armed linear bandits when K is
fixed.

Remark 5.6. Lastly, we would like to highlight that when
T is large enough, the stopping rule (4.2) used in Line 1 of
Algorithm 1 holds with probability at least 1 — 2/(log T)2.
When this happens, our algorithm would skip the while
loop and directly goes to the final exploitation batch. There-
fore, the algorithm will only need 3 batches to achieve the
asymptotic optimality. Notably, since the stopping rule in
Line 1 only depends on the first two batches of Algorithm 1,
different choices of exploration rates in later do not change
the asymptotic behavior of Algorithm 1 when T' — oo, as
we will see in the next theorem.

In the following theorem, we show that with a slightly dif-
ferent choice of exploration rates, Algorithm 1 can achieve
an instance-dependent regret bound with the optimal batch
complexity as well.

Theorem 5.7. Let the exploration rate in Algorithm I be
chosen as

To ={T1 = (log T)"/?, Ty = (log T)"/?, T = (log T)"*7,
T, = dlog(KT?) - 273 for ¢ > 4},

and all other parameters remain the same as in Theorem 5.4.
Then Algorithm 1 satisfies Ry = O(VdT - log(KT)) =
O(VdT), and

Rr = O((log T)"*" + d1og(KT)/ D)

with at most O(logT) batches and in expectation
O(log(1/Amin)) batches. Furthermore, the regret of Al-
gorithm 1 satisfies limsupp_, . Rr/logT < c¢* with 3
batches in expectation.

Remark 5.8. Theorem 5.7 shows that E* can achieve
the minimax optimal regret and the instance-dependent
regret bound O(dlogT/Amin) with at most O(logT)
batches. Gao et al. (2019) proved that any algorithm with
O(dlogT/Amin) regret have at least Q(log T/ loglogT)
batches. Hence, in this context, E* attains optimal batch
complexity while achieving this instance-dependent regret

2IDS is not a batched algorithm, but it has a rarely-switching
structure and thus can be easily adapted into an batched algo-
rithm. By some calculations, their batch complexity is larger than
O(d*log* T/AZ;,), which we also include in Table 1.

bound. Notably, the instance-dependent bound gives a
tighter regret bound within the class of bandit instances
where A, > +/d/T than the worst-case regret bound.

Remark 5.9. Notably, our instance-dependent batch com-
plexity O(log(1/Amin)) is novel and doesn’t depend on
time horizon 7', which shows that for instances with large
reward gaps the batch complexity of our Algorithm 1 is
a small constant and does not increase as the horizon T’
increases.

6. Experiments

In this section, we conduct experiments on challenging lin-
ear bandit instances, assessing the performance of our E*
algorithm in comparison to several baseline algorithms. In
particular, we first do simulations on hard linear bandit in-
stances we constructed inspired from the End of Optimism
instance (Lattimore & Szepesvari, 2017) on which opti-
mistic algorithms such as UCB and TS are proved to be
suboptimal as 7' — oco. We then conduct experiments on
more general random instances. The implementation could
be found at https://github.com/panxulab/optimal-batched-
linear-bandits.

Baselines: We compare E*(Algorithm 1) with Rarely
Switching OFUL (denoted by rs-OFUL) (Abbasi-Yadkori
etal., 2011), the Optimal Algorithm (denoted by EndOA) in
Lattimore & Szepesvari (2017), IDS (Kirschner et al., 2021),
and Phased Elimination Algorithm with D-optimal design
(denoted by PhaFlimD) (Esfandiari et al., 2021; Lattimore
& Szepesvari, 2020). Note that IDS was shown to outper-
form other asymptotically optimal algorithms (Lattimore
& Szepesvari, 2017; Combes et al., 2017; Hao et al., 2020;
Tirinzoni et al., 2020), and thus we do not include the rest
of them in our experiments.

(0,1) -
’ //
4
4
7’
7’
Cs ,/
7/
e
7
/ 2 -
/ Pid
7 -
Yy’ PraoN
4 i 6
4 -
/7 Pt
4 g
" - []
/’ Pad
/ g
’ e
e 1-¢,2¢)
,I
S C (1,0)

Figure 1: The End of Optimism instance in R?. The true
parameter 6 is (1,0). The arms are x; = (1,0),x2 =
(0,1),x3 = (1 — &,2¢). Note that x; is the best arm if 6*
lies in the colored region C;, ¢ = 1,2, 3.

End of Optimism Instances: Lattimore & Szepesvari

https://github.com/panxulab/optimal-batched-linear-bandits
https://github.com/panxulab/optimal-batched-linear-bandits

Optimal Batched Linear Bandits

20000

—- PhaElimD — PhakElimD
-+ rs-OFUL y -+ rs-OFUL
EndOA EndOA

IDS

15000| —— EndOA sewsssst

DS
—24 —_
10000 = i

Regret

soo0| 1f |
|

[e e . 10°
0 20000_40000 60000 80000 100000 0
Time step

20000 40000 60000 80000 100000
Time step

(@d=5K=9¢=001 (b d=5K=09,¢=0.01

20000

— PhaElimD — PhaElimD ==~

«+ rs-OFUL . ++ rs-OFUL

EndOA ¢
DS 7

15000

- <

— E*]

10000 e 5 i
l; m

so0| K

ol #~ 10°

0 20000_40000 60000 80000 100000 0

Time step

Regret

20000 40000 60000 80000 100000
Time step

(©d=5K=9,¢e=02 dd=5K=9e=0.2

Figure 2: Regret and Batch Analysis: End of Optimism instances (d = 5, K = 9).

(2017) designed a hard instance in R? such that optimism
based algorithms cannot achieve the asymptotic optimality.
For completeness, we present the original End of Optimism
instance in R2 in Figure 1. Following a similar idea, we
design several hard instances in more complicated settings
to evaluate our proposed algorithm. Let ej-l denote the nat-

ural basis vector in R? where the j-th variable is 1 and all
others are 0. Then we construct the following hard instances
inspired by the End of Optimism (Lattimore & Szepesvari,
2017). Let * = e‘li, the arm set X defined as follows

X ={el}, U{(1—e)e] +2eet}l_,, 6.1)

where € = (.01, 0.2 and the dimension d = 2, 3, 5. Hence
there are 6 different hard instances in total. For each in-
stance, the number of arms is K = 2d — 1. We conduct
experiments on these instances and present the result for
d = 5 in Figure 3. Due to space limit, we defer the results
for d = 2 and d = 3 to Appendix A.1.

Implementation: Based on the weight parameter 8* and
arm set X’ defined in (6.1), we generate the noise reward for
arm x € X as r(x) = (x,0%) + ¢, where € ~ N(0, 1). For
the parameters in E* (Algorithm 1), we fix the exploration
rate to be 7;. We set the other parameters as described
in Theorem 5.4. For rs-OFUL, we implement the rarely
switching OFUL algorithm in Abbasi-Yadkori et al. (2011)
with switching parameter C' = 0.5. For EndOA, we follow
the Warmup phase and Success phase exactly the same way
as Lattimore & Szepesvari (2017) describes, and use OFUL
in its Recovery phase. For IDS, we follow their computa-
tionally efficient variant (Kirschner et al., 2021, Section 2)
step by step. For PhaElimD, we follow the framework in
Esfandiari et al. (2021), and improve the batch sizes design
by using exploration rate 7; = 7' ~1/2" instead of ¢ in their
paper for better performance. For each instance, we repeat
the experiment for each method for 10 simulations and cal-
culate the mean value and standard error of the cumulative
regret and the batch complexity.

Notably, we proposed two options for the exploration rates
in Theorems 5.4 and 5.7. However, as we discussed in
Remark 5.6, our algorithm skips the while loop with ex-

tremely high probability. Consequently, different choices of
exploration rates would not affect the performance of the
algorithm in practice. Therefore, we fix the exploration rate
to be 77 defined in Section 5 for the sake of convenience.

Results: We observe that E* (Algorithm 1) achieves a
similar regret as IDS and outperforms all other baseline
algorithms, which demonstrates the effectiveness of our
proposed algorithm. Moreover, E* only needs 3 batches
to achieve this optimal regret, which is in sharp contrast
with IDS which needs more than 10° batches to achieve
the same regret. The only algorithm that enjoys a similar
batch complexity as E* is PhaElimD, which only runs in
around 4 batches. Nevertheless, the regret of PhaElimD is
significantly higher than our E* algorithm. As ¢ goes from
0.01 to 0.2, the regret of our algorithm and IDS remains
optimal and very small in magnitude, while the performance
of other algorithms becomes worse.

Table 2: Runtime (seconds) comparison.

€ ALGORITHM d=2 d=3 d=5
PHAELIMD 0.18 0.71 1.46
Rs-OFUL 0.45 1.47 3.72
0.01 ENDOA 3.15 3.17 8.94
IDS 9.48 30.22 178.31
E* 0.04 0.12 0.25
PHAELIMD 0.15 0.76 1.40
RS-OFUL 0.28 1.60 2.90
0.2 ENDOA 223 3.87 10.19
IDS 6.42 3124 246.53
E* 0.06 0.15 0.33

Runtime comparison: We also present the averaged run-
time for all the competing algorithms across 10 independent
trials, as displayed in Table 2. In all instances regardless of
the dimension or ¢, our algorithm E* is consistently the most
computationally efficient one, offering a speedup ranging
from 5-fold to 1000-fold when compared to other baselines.

Due to the space limit, we defer more experimental results
to Appendix A. In particular, we conducted an ablation
study on the sensitivity of different algorithms’ performance

Optimal Batched Linear Bandits

on the instance parameter ¢ in Appendix A.2. We also
conducted extra experiments on some randomly generated
instances and present the results in Appendix A.3.

7. Conclusion and Future Work

In this paper, we proposed the Explore, Estimate, Eliminate
and Exploit (E*) algorithm, which only needs 3 batches
to achieve the asymptotically optimal regret in linear ban-
dits. To the best of our knowledge, E* is the first batched
linear bandit algorithm that is simultaneously optimal in
terms of regret bound and batch complexity in both the
finite-time worst-case setting and the asymptotic setting.
We conducted numerical experiments on challenging linear
bandit instances, which unequivocally show that our method
outperforms the current baseline methods in multiple critical
aspects: it achieves the lowest level of regret, it requires the
minimal batch complexity, and it enjoys superior running
time efficiency.

For future research, an intriguing objective is to investigate
whether we can attain the optimal instance-dependent re-
gret while maintaining the optimal batch complexity. While
recent work by Wagenmaker & Foster (2023) achieves a
specially defined instance-dependent optimality, their algo-
rithms fail to achieve the minimax optimality, and more
importantly, are fully sequential and thus cannot be applied
to the batch setting. We hope our strategy proposed in this
paper will provide a viable solution towards building an
optimal instance-dependent algorithm with optimal batch
complexity, which we leave for future work.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgements

We would like to thank the anonymous reviewers for their
helpful comments. This research is supported by the White-
head Scholars Program, by the US National Science Founda-
tion Award 2323112, by the National Research Foundation,
Singapore under its Al Singapore Program (AISG Award
No: AISG-PhD/2021-01004[T]), and by the Singapore Min-
istry of Education Academic Research Fund (AcRF) Tier 2
under grant number A-8000423-00-00. In particular, P. Xu
was supported in part by the National Science Foundation
(DMS-2323112) and the Whitehead Scholars Program at the
Duke University School of Medicine. T. Jin was supported
by the National Research Foundation, Singapore under its
Al Singapore Program (AISG Award No: AISG-PhD/2021-

01004[T]), and by the Singapore Ministry of Education
Academic Research Fund (AcRF) Tier 2 under grant num-
ber A-8000423-00-00. The views and conclusions in this
paper are those of the authors and should not be interpreted
as representing any funding agencies.

References

Abbasi-Yadkori, Y., Pal, D., and Szepesvari, C. Improved
algorithms for linear stochastic bandits. Advances in
neural information processing systems, 24, 2011.

Abe, N., Biermann, A. W., and Long, P. M. Reinforcement
learning with immediate rewards and linear hypotheses.
Algorithmica, 37:263-293, 2003.

Agarwal, D., Chen, B.-C., Elango, P., Motgi, N., Park, S.-T.,
Ramakrishnan, R., Roy, S., and Zachariah, J. Online
models for content optimization. In Proceedings of the
21st International Conference on Neural Information Pro-
cessing Systems, pp. 17-24, 2008.

Agrawal, S. and Goyal, N. Thompson sampling for contex-
tual bandits with linear payoffs. In International confer-
ence on machine learning, pp. 127-135. PMLR, 2013.

Bertsimas, D. and Mersereau, A. J. A learning approach for
interactive marketing to a customer segment. Operations
Research, 55(6):1120-1135, 2007.

Bubeck, S., Cesa-Bianchi, N., et al. Regret analysis of
stochastic and nonstochastic multi-armed bandit prob-
lems. Foundations and Trends® in Machine Learning, 5
(1):1-122, 2012.

Chu, W, Li, L., Reyzin, L., and Schapire, R. Contextual
bandits with linear payoff functions. In Proceedings
of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pp. 208-214. IMLR Workshop
and Conference Proceedings, 2011.

Combes, R., Magureanu, S., and Proutiere, A. Minimal
exploration in structured stochastic bandits. Advances in
Neural Information Processing Systems, 30, 2017.

Esfandiari, H., Karbasi, A., Mehrabian, A., and Mirrokni, V.
Regret bounds for batched bandits. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35,
pp- 7340-7348, 2021.

Gao, Z., Han, Y., Ren, Z., and Zhou, Z. Batched multi-
armed bandits problem. Advances in Neural Information
Processing Systems, 32, 2019.

Garivier, A. and Kaufmann, E. Optimal best arm identifi-
cation with fixed confidence. In Conference on Learning
Theory, pp. 998-1027. PMLR, 2016.

Optimal Batched Linear Bandits

Graves, T. L. and Lai, T. L. Asymptotically efficient adaptive
choice of control laws incontrolled markov chains. SIAM
Journal on Control and Optimization, 35(3):715-743,
1997.

Han, Y., Zhou, Z., Zhou, Z., Blanchet, J., Glynn, P. W., and
Ye, Y. Sequential batch learning in finite-action linear
contextual bandits. arXiv preprint arXiv:2004.06321,
2020.

Hanna, O. A., Yang, L., and Fragouli, C. Contexts can be
cheap: Solving stochastic contextual bandits with linear
bandit algorithms. In Neu, G. and Rosasco, L. (eds.),
Proceedings of Thirty Sixth Conference on Learning The-
ory, volume 195 of Proceedings of Machine Learning
Research, pp. 1791-1821. PMLR, 12-15 Jul 2023.

Hao, B., Lattimore, T., and Szepesvari, C. Adaptive ex-
ploration in linear contextual bandit. In International
Conference on Artificial Intelligence and Statistics, pp.
3536-3545. PMLR, 2020.

Jedra, Y. and Proutiere, A. Optimal best-arm identifica-
tion in linear bandits. Advances in Neural Information
Processing Systems, 33:10007-10017, 2020.

Jin, T., Tang, J., Xu, P, Huang, K., Xiao, X., and Gu, Q. Al-
most optimal anytime algorithm for batched multi-armed
bandits. In International Conference on Machine Learn-
ing, pp. 5065-5073. PMLR, 2021a.

Jin, T., Xu, P, Xiao, X., and Gu, Q. Double explore-then-
commit: Asymptotic optimality and beyond. In Confer-
ence on Learning Theory, pp. 2584-2633. PMLR, 2021b.

Jin, T., Yang, Y., Tang, J., Xiao, X., and Xu, P. Op-
timal batched best arm identification. arXiv preprint
arXiv:2310.14129, 2023.

Kirschner, J., Lattimore, T., Vernade, C., and Szepesviri,
C. Asymptotically optimal information-directed sam-
pling. In Conference on Learning Theory, pp. 2777-2821.
PMLR, 2021.

Langford, J. and Zhang, T. The epoch-greedy algorithm
for contextual multi-armed bandits. Advances in neural
information processing systems, 20(1):96—-1, 2007.

Lattimore, T. and Szepesvari, C. The end of optimism?
an asymptotic analysis of finite-armed linear bandits. In
Artificial Intelligence and Statistics, pp. 728-737. PMLR,
2017.

Lattimore, T. and Szepesvari, C. Bandit algorithms. Cam-
bridge University Press, 2020.

Li, L., Chu, W., Langford, J., and Schapire, R. E. A
contextual-bandit approach to personalized news article

10

recommendation. In Proceedings of the 19th interna-
tional conference on World wide web, pp. 661-670, 2010.

Perchet, V., Rigollet, P., Chassang, S., and Snowberg, E.
Batched bandit problems. In Griinwald, P., Hazan, E., and
Kale, S. (eds.), Proceedings of The 28th Conference on
Learning Theory, volume 40 of Proceedings of Machine
Learning Research, pp. 1456—1456, Paris, France, 03—-06
Jul 2015. PMLR.

Robbins, H. Some aspects of the sequential design of exper-
iments. Bulletin of the American Mathematical Society,
58(5):527 — 535, 1952.

Ruan, Y., Yang, J., and Zhou, Y. Linear bandits with limited
adaptivity and learning distributional optimal design. In
Proceedings of the 53rd Annual ACM SIGACT Sympo-
sium on Theory of Computing, pp. 74-87, 2021.

Slivkins, A. et al. Introduction to multi-armed bandits.
Foundations and Trends® in Machine Learning, 12(1-
2):1-286, 2019.

Tirinzoni, A., Pirotta, M., Restelli, M., and Lazaric, A.
An asymptotically optimal primal-dual incremental algo-
rithm for contextual linear bandits. Advances in Neural
Information Processing Systems, 33:1417-1427, 2020.

Wagenmaker, A. J. and Foster, D. J. Instance-optimality in
interactive decision making: Toward a non-asymptotic
theory. In The Thirty Sixth Annual Conference on Learn-
ing Theory, pp. 1322-1472. PMLR, 2023.

Xu, P, Zheng, H., Mazumdar, E. V., Azizzadenesheli, K.,
and Anandkumar, A. Langevin monte carlo for contex-
tual bandits. In International Conference on Machine
Learning, pp. 24830-24850. PMLR, 2022.

Zhang, Z., Ji, X., and Zhou, Y. Almost optimal batch-regret
tradeoff for batch linear contextual bandits. arXiv preprint
arXiv:2110.08057, 2021.

Optimal Batched Linear Bandits

A. Additional Experiments

In this section, we provide more experimental results.

A.1. More Results on End of Optimism Instances

We provide more experimental results on instances defined in (6.1) for d = 2 and 3 in Figure 3 and Figure 4 respectively.
We also present the detailed batch complexities of algorithms in Table 3. These experiments demonstrate that the proposed
algorithm E* consistently outperforms baseline algorithms in terms of regret bound and batch complexity across different
bandit instances.

1200 B U —— 120 10* — __——==
== PhaElimD sl — - PhaElimD _——= — phagimp . — - PhaElimD _———
10001 ---. rs-OFUL T " .."" <ees rs-OFUL 10001 ...+ rsOFUL = <-es rs-OFUL
EndOA g 10° EndOA EndOA H 103 EndOA
4 8001 __ ps o - == IDsS o 8007 __ ips Y 000 : - == IDs
v —) o] +— e Qv — I] —
600 = 102 600 5102
8 [} © | 3 I © |
----- | |
X 400 i o0 | orermmeee o 400] [aa] | owmeeees
7 i f NN
200 7| 10ty 0 |
f'?-_m———— 1 — | —
ol &=
100 2000 4000 6000 8000 10600 0% 3000 4000 6000 8000 10600
0 2000 _4000 6000 8000 10000 4 0 2000 _4000 6000 8000 10000 :
Time step Time step Time step Time step

@d=2K=3e=001 (b0d=2K=3e=001 (©©d=2K=3e=02 (d=2K=3¢e=0.2

Figure 3: Regret and Batch Analysis: End of Optimism instances (d = 2, K = 3).

L T B —— 800 S———
—- PhaElimD | —+ Pnatlimp ——= — . PhaElimD Jp— _ .| — Phaiimp ——=
-+ rs-OFUL 10%4 ... rs-OFUL ceer rS-OFUL 4 10 -+ rs-OFUL
6000 EndOA e EndOA 6000 EndOA 7 e EndOA
o -— Ips 103 == IDS . — - 103 == DS
o — E* —— R 'S — o £ / & 6 £
©1000 - = i 000 -] ;
o} i g 1024] —F © 102] |
o | e e o | 5 b
f | ! |
2000 I 10t | 2000 } 10 |
F l o e = A | e
N e i 100 il oL 100
0 10000_20000 30000 40000 50000 0 10600_20000 30600 40600 50000 6 10000_20000 30600 40000 50000 0 10600_20600 30600 40600 50000
Time step Time step Time step Time step

(@d=3K=5¢=001 (b d=3K=5¢=001 ©d=3K=5e=02 (dd=3K=5,¢6=0.2

Figure 4: Regret and Batch Analysis: End of Optimism instances (d = 3, K = 5).

Table 3: Batch Complexity Analysis: End of Optimism instances. Note that batch complexity of sequential algorithms like
EndOA and IDS equals time horizon 7.

INSTANCE E4 PHAELIMD RS-OFUL ENDOA IDS

e=0.01 3.0+£00 4.0+0.0 36.1+0.3 - -
e=02 3.0+£00 4.0x+0.0 37.0+£0.0 - -
e=0.01 3.0£00 4.0x+0.0 61.0£0.5 - -
e=02 30£00 4.0%£0.0 60.5 £ 0.8 - -
e=001 3.0£00 4.0=£0.0 102.3£0.9 - -
e=02 3.0+£00 4.0+0.0 101.8 £ 0.6 - -

d=2K=3,T = 10000
d=3,K =5,T = 50000

d=5 K =9,T = 100000

A.2. Ablation Study of E* on the End of Optimism Instances

In this section, our focus is solely on batched algorithms, as our primary concern lies in evaluating the performance of
batched linear bandits algorithms. According to Lattimore & Szepesvari (2017), optimism based algorithms would fail
to achieve asymptotic optimality on these hard End of Optimism instances. And the construction of such instances need
sufficiently small e. So it is meaningful to verify this statement by changing the value of e. Note that rs-OFUL and
PhaElimD are both algorithms based on optimism, with the latter one discards low-rewarding arms without considering their

11

Optimal Batched Linear Bandits

information gain. We use the simplest End of Optimism instances (see Figure 1) given by (6.1) where we choose d = 2,
e = 0.005,0.01,0.05,0.1,0.15,0.2.

1200 1200 1200
=+ PhaElimD . " = PhaElimD it —+ PhaElimD
1000y ++e+ rs-OFUL 70 e 1000{ «+e+ rs-OFUL " ’
— J — E :
800 b R 800 [N
T | : + | enees
2 600 ; 2 600 [
o | o |
o} o Q
£ 400] & 400 F]
2000 »| _— 2000 1 ’
0 g 0
0 2000 4000 6000 8000 10000 0 2000 _4000 6000 8000 10000 0 2000 _4000 6000 8000 10000
Time step Time step Time step
(a) e =0.005 (b) e =10.01 () e=0.05
1200 — 1200 =
—- PhaElimD ~ —- PhaElimD R4
10007 «+.- rs-OFUL _ ‘/," 10007 =+
800
+— -
L 2 600
o o
Q 9]
o4 o 400
200
0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Time step Time step Time step
(d)e=0.1 (e) e =0.15) e=0.2

Figure 5: Ablation study on the parameter e.

As the results in Figure 5 show, when e gets larger, the regret of algorithms gets larger. This is because agents can quickly
discard the worst arm x3 and suffer the regret from x5 in the following rounds. A larger € leads to a larger regret (worse
case).

However, we can also see that as e increases, the performance difference between E* and other optimistic algorithms
decreases. This is because optimism based algorithms can achieve worst-case (instances with large ¢) optimal regret, but
fail to achieve asymptotically optimality under instances with small enough e. In fact, we can see the regret of optimism
based algorithms as the minimax optimal regret, and see the regret of E* as the asymptotically optimal regret. Hence these
experimental results help to understand the difference between these two types of optimality.

A.3. Evaluations of E* on Randomly Generated Instances

In this section, we empirically evaluate algorithms on randomly generated instances. Notably, we have excluded IDS from
consideration here due to its consistently poor performance in batch complexity and runtime efficiency as is shown in
Figure 2 and Table 2. For each chosen dimension of features and number of arms, we generate an instance with ||0*||2 = 1,
where arm features are sampled from U ([0, 1]%). We set the time horizon to 7" = 50000 and conduct 10 independent
experiments for each instance. The regret and batch complexity results are illustrated in Figure 6. The outcomes indicate
that our algorithm E* exhibits commendable performance even in randomly generated instances, which further demonstrates
its advantages.

B. Lower Bounds on the Batch Complexity

The following lemma implies that any algorithm cannot find the best arm correctly with a high enough probability using
only one exploration stage of o(log T') steps.

Lemma B.1. Consider any linear bandit instances with two arms. Suppose a best-arm-identification algorithm has only
o(log T) steps of exploration, let X be its output, then there are infinite many T such that P(X # x*) > 1/V/T.

12

Optimal Batched Linear Bandits

—. PhaElimD —. PhaElimD — . PhaElimD —. PhaElimD
2500{ -+ rs-OFUL 10%) ... rs-OFUL v rs-OFUL 4 104 ... rs-OFUL
EndOA EndOA 6000 EndOA EndOA
462000 —_F P o o103 — E* _.6 — F4 e o108 — E4
4 3] 4 g 3]
1500 = 000 s 4 b~
O _——— —_ g 102 D g 3 102
o 1000 e R OO SOSOo x [e
500 i w0 | 2000 I ol |
q 4| —— e -
Vo — ’ —
oL= 10° ol & 10°
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Time step Time step Time step Time step
(@d=2K=3 b d=2K=3 ©)d=3,K=5 dd=3K=5
175001 _ . onaEimD .| — PhaklimD 175001 . ppagimo o ,| — PhaklimD
150001 ===+ rs-OFUL 10% +--v rs-OFUL 15000] ---- rs-OFUL /‘/ 10%] rs.OFUL
EndOA EndOA EndOA = EndOA
= 12500 R cw 4 = 12500 s // 10 4
S 100007 s o %} < 10000 > (S N SO Uopree .
Y, J{BJ [e)) /‘ % 'A.--'
& 7500 o 102 e e g 7500 /'- 5 102] ¢
5000 L L T { 5000 yd
e 10! K 10!
25001/ —— 200 £ — o e
oL 100 L oL 100
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Time step Time step Time step Time step
e)d=5K=9 ®d=5K=9 (g) d =20,K =50 (h) d =20,K =50

Figure 6: Regret and Batch Analysis: Random generated instances (d = 2, 3, 5, 20).

Table 4: Batch Complexity Analysis: Random generated instances. Note that again the batch complexity of the sequential
algorithm EndOA equals the time horizon 50000.

INSTANCE (T = 50000) E* PHAELIMD RS-OFUL ENDOA

d=2,K=3 3.0£0.0 3.0£0.0 38.0+0.0 -
d=3,K=5 3.0£00 3.7£0.5 60.7+£0.5 -
d=5K=9 3.0£00 4.0=£0.0 98.8 £ 0.7 -
d=20,K =50 3000 40=£0.0 355.5%0.7 -

B.1. Algorithms with Deterministic Number of Batches

We first present the following theorem that states algorithms performing at most 2 batches are not asymptotically optimal.

Theorem B.2. Algorithms that only perform 1 or 2 batches are not asymptotically optimal.

Proof. An algorithm is called asymptotically optimal if its regret satisfies lim supy_, . R/ logT < ¢*(6*) for all bandit
instances. To prove the desired result, we just need to consider instances given by given by arm set X = {(1,0), (0,1)},
parameter 8* = («,0) or (0, «), where « € (0, 1). Here the gap A = . We aim to prove algorithms that only perform 1 or
2 batches fail to achieve asymptotic optimality on these instances.

First, no consistent algorithm can achieve sub-linear regret with only 1 batch. Algorithms with 1 batch must decide how
many times to pull each arm at the beginning, then pull arms for 7" times in total according to the decision. With no
information of unknown instance, it must suffer O(7') regret on some instance.

Then we prove that no algorithm can achieve asymptotic optimality with 2 batches. Assume certain algorithm with policy 7
can achieve this, meaning its regret satisfies

R 2 2
TECO) =) = (B.1)

1m =
T—oo logT o
xeX—

where the second equality is the explicit form of the ¢* on multi-armed bandits setting. The detail can be seen from the
Example 3 in Lattimore & Szepesvari (2017). (B.1) implies the asymptotically optimal algorithm pulls the optimal arm for
©O(T) times in expectation, and pulls the suboptimal arm for % log T + o(log T') times in expectation. Since the algorithm
has only 2 batches, let ¢; and o be the expected batch sizes for the first and second batch, where t; + to = T'. Without loss
of generality, we can assume the agent use a uniform exploration (pull all arms equal times) in the first batch.

13

Optimal Batched Linear Bandits

Note that we consider the problem in an asymptotic setting, where 7' — oo. The statements above show that an optimal
algorithm has 2 log T' + o(log T') regret. Then we claim ¢; = O(log T'). Here we can see that if ¢, has an order higher
than O(logT'), the agent must pull one arm for some times with the order larger than O(log 7). On some instances,
this leads regret with the order larger than O(logT'), which is an contradiction with asymptotic optimality. We see
to =T —t1 =T — o(T). This means in the second batch, the algorithm must pull one arm for at least 7'/2 — o(T') times.

Then we prove that ¢; cannot be o(log T") by contradiction. Suppose an algorithm (denoted as Algorithm A) is a 2-batch
asymptotically optimal algorithm with the initial batch size being o(log T'). Another algorithm for best-arm identification,
referred to as Algorithm B, can be derived from Algorithm A. This derivation is straightforward: it begins with the
exploration phase using the first batch of Algorithm A, collects the data, updates the policy, and then diverges from
Algorithm A’s approach by outputting the arm, denoted as X, that is to be pulled more frequently in the second batch
of Algorithm A as the best-arm. Since the second batch of Algorithm A has size ©(T"), it must pull x for ©(T") times.
Given that Algorithm A is asymptotically optimal, the probability of selecting an incorrect arm is P(x # x*) < 1//T for
sufficiently large 7. Otherwise, the regret of Algorithm A would be at least O(T) x o x 1/v/T = ©(/T), for infinite
many 7', contradicting its asymptotic optimality, which is characterized by a regret of O(log T') order. However, viewing
Algorithm B as a best-arm identification algorithm introduces a new issue: achieving the bound P(x # x*) < 1/ VT for
sufficiently large T necessitates an exploration process involving more than ©(log T') samples, as indicated by Lemma B.1,
which is a contradiction. This implies that for Algorithm A to be asymptotically optimal, it cannot limit its initial batch to
only o(log T') samples. So ¢ cannot be o(log T'). Combining with t; = O(log T') we know t; = ©(logT').

But the main problem arises here: how many steps do we need to explore in the first batch? In fact, we have no information
about the unknown instance at the beginning. In the first batch, we may choose to pull each arm for ﬂ% logT + o(log T)
times, where 8 > 0 is a predetermined constant parameter. Then for instances with A = a > [and sufficiently large 7', the
regret of batch 1 is o - % logT + o(log T) > 21og T + o(log T'), which implies the algorithm is suboptimal. This shows
algorithms with only 2 batches cannot achieve asymptotic optimality, which ends the proof. O

B.2. Proof of Theorem 5.2

Firstly, any consistent algorithm must have at least 2 batches. We still consider instances given by given by arm set
X ={(1,0),(0,1)}, parameter 8* = (v, 0) or (0, «x), where o € (0,1). Then we aim to prove any asymptotically optimal
must have 3 batches in expectation as 7' — on all these instances, which leads to the desired conclusion. Now we prove by
contradiction. Suppose that an asymptotically optimal algorithm has 3 — § batches in expectation on some instance among
these, for some constant 6 € (0,1). Then we discuss the behavior of this algorithm on this certain bandit instance. Let M
be the event that the algorithm has only 2 batches, and p = P(M). Therefore the algorithm has at least 3 batches with
probability 1 — p. We have that the expected batch complexity of this algorithm

3—6>2-p+3-(1—p)=3-—np,
which implies p > 4.

We use the event M to decompose the regret:

T T
RT:]E|:Z<X*—Xt,0*>’M .p—f—E{Z(x*—xt,B*) MC] (1-p)
t=1 t=1
= Ar-p+ Br-(1-p)
ZAT'(Sa

here we use A7 = E[307_ (x* — x;,0%)|M] to denote the regret given M, and Br = E[32/, (x* — x;,0%)|M°] to
denote the regret given M€. Since we suppose the algorithm is asymptotically optimal, i.e.,
Ar -0 . Ry *

li < =
T log T = rhee log T “

which implies Ap < ¢*/§logT + o(logT). Given M, we denote T = t; + to, where ¢; and ¢, are the expected batch
sizes for two batches, respectively. Similar to the proof of Theorem B.2, we have t; = O(log T') and ¢, = O(T'), otherwise
the order of the regret would be larger than Q(log T"). We can also use the same arguments as the proof of Theorem B.2 to
prove that ¢; cannot be o(log T'). Otherwise, A7 = Q(+/T). Combining these results we know t; = ©(log T).

14

Optimal Batched Linear Bandits

The behavior of the algorithm in the first batch is not influenced by bandit instances. The algorithm must pull © (log T')
arms in the first batch. Then we just analyze the regret in the first batch. And the algorithm faces the same problem as the
proof of Theorem B.2: how many steps does it need to explore in the first batch? Use exactly the same way we can find
an instance where the algorithm is suboptimal, which is a contradiction. Actually, no matter how the agent allocates these
O(log T') steps of exploration, there exists an instance that makes the algorithm suboptimal. This ends the proof.

C. Proofs of Main Theorems in Section 5

The two lemmas outlined below offer a theoretical basis for the exploration of D-optimal design and the application of
Chernoff’s stopping rule mentioned in Section 4.

In practice, we use the Frank—Wolfe algorithm to solve the optimization problem in (4.1) to get a near-optimal solution
7r, which only exerts an impact on our theoretical analysis up to a constant order. In this way, the agent pulls each arm
x € X for [271xg(7) M /d] times. Besides, the number of iterations for this algorithm can be O(d log log d), which shows
the efficiency. See Section 21.2 in Lattimore & Szepesvari (2020) for more details.

Lemma C.1 (D-optimal design concentration (Lattimore & Szepesviri, 2020)). Let A be the active arm set. If the agent
performs a D-optimal design exploration on A with rate M defined in Definition 4.1, we can get the concentration results
for related least squares estimators: for any x € X, with probability at least 1 — 1/(KT?),

dlog(KT?)
< i .
Lemma C.2 ((Jedra & Proutiere, 2020)). Let § € (0,1), u > 0. Regardless of the sampling strategy, the Chernoff’s
Stopping Rule defined as
t
Z(t) > B(t,0) and ZXSX;— > cly
s=1
with ¢ = maxyey ||x||3 and
AR

Z(t) = min ———b
®) b7x 2[|%* — b2,

B(t,6) = (1 +u)log <“6t >

ensures that P(7 < 0o, (0*,x* — X%) > 0) < 6, where &} is the estimated best arm at time step 7. This shows that if the
stopping rule holds, we can find the best arm correctly with probability of at least 1 — §.

Note that we need different concentrations for each batches, with each just based on one batch of independent data. This
makes the proof much easier. The subsequent lemmas are crucial as they assist in demonstrating the asymptotic properties
of Algorithm 1. Lemma C.3 gives a concentration result in case that the agents use at least a D-optimal design exploration
with rate (log T')'/2.

Lemma C.3. Suppose in one batch of Algorithm 1, the agent conducts at least a D-optimal design exploration with rate
(log T)'/? given in Definition 4.1. This means (1)t, = © ((log T)1/2) pulls for D-optimal design exploration, (2) possibly
some other pulls. Lett > t1 be the total number of pulls in this batch, étl,ét be the least squares estimators of 0*

after the D-optimal design exploration and the whole batch of exploration, py = (0*,%), fix(t) = (0,,%) for x € X,
e = 1/loglogT. Define an event

& ={Vt 2 11, Vx € X, |fix(t) — pix| < €} (C.1)

Then for sufficiently large T, we have

Optimal Batched Linear Bandits

Next Lemma C.4 describes the exact concentration result for the first two batches in our Algorithm 1. Note that in the
estimation stage of the /-th batch, we only use data collected in the exploration stage of this batch to calculate the least
squares estimators.

Lemma C.4. Let ¢ = 1/loglog T, by and by be the batch size of the first two batches in Algorithm 1, respectively. For the
first two batches, we use ix(b1) = (0y,,X) and fix(bs) = (,,X) 10 denote the estimated expected rewards for x € X
using data collected in the first and the second batches, respectively. Define

& ={Vx € X, |ix(b1) — px| < € |fix(b2) — px| < €}. (C2)

Then for sufficiently large T, we have

. 2

Now we talk about some properties of the optimal allocation solved from Definition 4.3. Without loss of generality, we can
always assume the allocation for x* solved from Definition 4.3 satisfies

wgr = (logT)Y /au. (C3)

In fact, if we have one solution w(A) € [0,00)%X to the program in Definition 4.3, then we can increase the value
Wg* tO w;* > ws~ to get another solution. This is because the increase of wg~ doesn’t affect the objective function
> sz Wx(Ax — 4€). Moreover, this increase can minimize [|x — X* ||i1;1 for x # x*, which makes the constraint still
true.

In the following analysis we use {wx }xex to denote w(A) solved using estimated gaps. Next definition gives the allocation
solved from the true parameters, which we will use in our theoretic analysis. It’s easy to see Definition 4.3 is an approximate
version of Definition C.5. Using the same statements as above, we can assume wj. = o0.
Definition C.5. Let A = {Ax}xex € [0,00)% be the vector of gaps, x* = argmax,. (6%, x) be the best arm. We define
w(A) = {wk}xex € [0,00]% to be the solution to the optimisation problem
w2 nhs
2

A
st x —x% o < ==

He 5 Vxe X,

where Hy, = >y wx - XX |

The following lemma shows the solution from Definition 4.3 converges to the solution from Definition C.5 as T — oo.

Lemma C.6. We use w(A) = {wx }xex from Definition 4.3 and w(A) = {wi}xex from Definition C.5. Then if E; holds,

lim wyx =wg, VxeX.
T—o00

The following lemmas demonstrate that for sufficiently large 7" the stopping rule in the second batch of Algorithm 1 holds
with probability larger than 1 — 1/(log T')2, and while loop breaks after the third batch with probability larger than 1 — 1/7".

Lemma C.7. If & holds, then for sufficiently large T, the stopping condition (4.2) holds in the second batch.

Namely, Algorithm 1 skip the while loop after the second batch and enter the Exploitation stage with probability of at least
1 —2/(log T)?, since P(ES) < 2/(log T)>.

Lemma C.8. If the stopping rule (4.2) doesn’t hold in the second batch, for sufficiently large T, the algorithm would
eliminate all suboptimal arms in the third batch with probability of at least 1 — 1/T.

Let Regret, be the regret for batch £ = 2 of Algorithm 1. The following lemma implies that Regret, matches the leading

term in the asymptotic lower bound in Lemma 3.1.
Lemma C.9. Regret of the second batch can be bounded by:

m Regret, < o
T—oo logT

where ¢* = c*(0*) defined in Lemma 3.1.

16

Optimal Batched Linear Bandits

C.1. Proof of Theorem 5.4

Now we prove the results in Theorem 5.4. Note that under the choice of exploration rate 77, we want to show that E*
achieves the optimal regret and the batch complexity in both the finite-time setting and the asymptotic setting.

C.1.1. THE FINITE-TIME SETTING
We first prove the batch complexity and the worst case regret bound in the finite-time setting.

Batch complexity: In this part, we analyze the upper bound of batch complexity. It is sufficient to count the number of
while loops starting from the third batch in Algorithm 1 before Exploitation in Line 1. For £ > 4, the ¢-th batch has size
S) (Tl_z‘f#f3), so the (loglog T + 3)-th batch has size ©(T'). Suppose the (loglog T + 3)-th batch size is larger than T'/M,
where M > 0 is a constant. By definition, the batch size increases as t increases, so the sizes of batches after this batch
is larger than T'/M. Therefore, the algorithm would have at most loglog T' + 3 + M batches. Then we prove the batch
complexity upper bound O(log log T)).

Minimax optimality: First, we assume the agent doesn’t eliminate any arms in the first two batches, because it’s easier the
other way as we will show at the end of this part of the proof. Since the number of time steps for the first two batches is at
most O ((log T)**7), the regret of the first two batches is at most O ((log T')**7), due to the bounded rewards assumption.
Besides, the property of Chernoff’s Stopping Rule (Lemma C.2) means the agent finds the best arm correctly with probability
larger than 1 — 1/T, then the regret of Line 1 Exploitation stage can be bounded by a small constant. Hence we don’t need
to consider the regret in Line 1 Exploitation stage.

In Algorithm 1, we let A be the current active arm set. Note that .4 may shrink after some batches due to the Elimination
stages. We define an arm x to be active in batch /, if it is in the active arm set .4 of this batch. The same as (Esfandiari et al.,
2021) and (Lattimore & Szepesvari, 2020), we define the following good event £y (C.4) that we will use in the following
proof constantly:

&y = {For any arm x that is active in the beginning of batch ¢, (C4)
at the end of this batch we have |(x,0 — 8*)| < &;.}
By Definition 4.1, for any x € X, after the ¢-th batch, with probability at least 1 — 1/(KT?), we have
(x,6 - 07)] < <.

Since there are K arms and at most 7" batches, by union bound we know the good event & (C.4) happens with probability
atleast 1 — 1/7T. Consequently, we know

T T
Rr=E I)zgi%;(x —x¢,0%) Sg] -P(ES) +E r}?ea%;@—xt,@ﬂ 501 -P(&)
T
< 2LTP(&S) +E max (x —x4,0%)|E | - P(&)
e
=0(1)+E {(nea%(;(X—xt,O >50] P(&).

So we can just bound the regret when &, happen. Under &, at the end of each batch £ > 3, we know for each arm,

[(x,0 — 0")| < &y.

Denote the best arm and estimated best arm (ties broken arbitrarily) by:

x* = argmax(x, 0),
x€A

X* = argmax(x, 6).
x€A

17

Optimal Batched Linear Bandits

Then,
I&&j{(@ y—x") =(6,x" —x")
:<A_0*+0*7)A(*_X*>
= (6—6",%") — (6 — 6", x") + (0", %" —x")
<|(6— 0", %)+ (0 — 6°,x7)| + (6", X" —x7)
S2€e+<9*,§<*—X*>
S2E(.

Compared this with the elimination rule in Algorithm 1 for £ > 3, we know the best arm won’t be eliminated, namely,
x" e Ay, WI>3,

here we use A, to denote the active action set in the ¢-th batch. Correspondingly, for each suboptimal arm x, define
Uy = min{¢ : 4ey < A} to be the first phase where the suboptimality gap of arm x bigger than 4¢,. Then if x # x* is not
eliminated in the first £ — 1 batches, in the ¢-th batch,

—x)> (0 x* —
r;lgi((H y —x) > (0,x* —x)

=(0—6*+0"x —x)

6 — 0", x" —x) + (0", x" —x)
—(6 —6",%")| — (6 — 6,)| + Ax
28[.

VoIV

Compared this with the elimination rule in Algorithm 1 for ¢ > 3, we know x # x* would be eliminated in the first ¢
batches, namely,

x ¢ Ap 41, VX #X, (C.5)

where Ay, is the active action set in the /5 + 1 batch. Thus when the good event &, (C.4) happens, arms active in phase ¢
have the property: Ay < 4ep_;.

When T3 = (log T)'*7, T, = T'"3% ¢ >4and e, = \/dlog(KT?)/T,, Algorithm 1 has at most B = O(loglogT')
batches. We use Regret, to denote the regret of the ¢-th batch, then the regret for batches ¢ > 5 under & can be bounded as

B B
Z Regrety < Z ATyer_q
1=5

< Z 4CT" 2 \/ dlog(KT?)/T" 27
£=5

B
:Z 4C+/dT log(KT?)

~

(loglogT \/dT log(KT)

As a result, the regret for batches ¢ > 3 under &, can be bounded as
B B
Z Regrety < Z 4Tyer_ 1
(=3 £=3
= O(T3 + 0 T4 Z4Tg€/ 1

18

Optimal Batched Linear Bandits

= 0((log 7)) + O(VT) + Y 4C+/dT log(KT?)
£=5

= O(loglogT~ \/dTlog(KT)).

All of the proofs above suppose the algorithm doesn’t eliminate any arms in the first two batches, i.e. the stopping rule in
the second batch doesn’t hold. Now we suppose the algorithm eliminates all suboptimal arms after the second batch. The
property of Chernoff’s Stopping Rule Lemma C.2 means the agent finds the optimal arm with probability at least 1 — 1/7,
then the regret of Line 1 Exploitation after the second batch can be bounded by a constant. We can combine these to end the
proof.

C.1.2. THE ASYMPTOTIC SETTING

Now we investigate the batch complexity and the regret bound of E* when 7' — oc.

Batch complexity: By Lemma C.7, we know for sufficiently large 7', with probability 1 — 2/(log T')?, the stopping rule
(4.2) in the second batch of Algorithm 1 holds. This means the algorithm identifies the best arm and goes into the Line 1,
the Exploitation stage. According to the last parts of proof, with time grid selections 77 (and even 75), the algorithm has at
most O(log T') batches in total. So we can calculate the expected batch complexity by

Jim 3 (1—2/(ogT)?) +O(logT/(logT)?) = 3, (C.6)
— 00
because the algorithm just has 3 batches when the stopping rule holds, and this event happens with probability at least

1 —2/(log T')%. Thus we complete the proof of asymptotic batch complexity.

Asymptotic optimality: Lemmas C.7 and C.8 demonstrate that for sufficiently large 7' the stopping rule in the second batch
of Algorithm 1 holds with probability larger than 1 — 2/(log T")2, and the while loop starting from batch ¢ = 3 breaks after
the third batch with probability larger than 1 — 1/7.

Decompose accumulative regret by batches as:
Rt = Regrety + Regrets + Regrets + Regreteyse,

where Regret, represents the regret in the ¢-th batch (¢ = 1, 2, 3), and Regret,;s. represents the regret after the third batch.

We research on the asymptotic setting, so all of the statements below assumes that 7" is sufficiently large. With the assumption
of bounded rewards, regret in the first batch is negligible compared with © (log T') order, namely, Regret; = o(logT):

. Regret; (logT)'/?
lim = =0
T—oo logT log T

Note that the stopping rule (4.2) in the second batch holds with probability at least 1 — 2/(log T')%. But the batch £ = 3 in
the while loop is encountered only when the stopping rule fails to hold. Given that the batch 3 has a size of O ((log T)H”/) ,
the regret in this batch is considered negligible:

i = li 1+v) —
Th~1>1c1>o Regr@tl% - Th~I>IC1>o W . O((logT) 7) =0.

Similarly, note that the agent eliminates all suboptimal arms after the third batch with probability 1 — 1/T, according to
Lemma C.8, so the regret after this batch Regret.;s. is negligible, too:

1
-O(T

li Regretelse li T () 0

T—oo logT T—oo log’l

The only term of care about is the regret of the second batch of Algorithm 1. Therefore, it is sufficient to use Lemma C.9 to
conclude the proof of asymptotically optimal regret, which shows

Regrets .
m —<c
T—oo logT

19

Optimal Batched Linear Bandits

Now we can conclude our prove of the main Theorem 5.4 by combining all these results about different parts of regret:

Regret; + Regrety + Regrets + Regretese

lim sup = lim sup
T— o0 log T T—00 log T
. Regret,
= limsup ————
T~>oop IOg T
<c*

—)

which matches the lower bound in Lemma 3.1.

C.2. Proof of Theorem 5.7

Finite-time instance-dependent batch complexity and regret bound: This part of proof is similar to the analysis
in the proof of Theorem 5.4. We use the same good event &, in (C.4). Here we choose Ty = O(dlog(KT?) - 2¢73),
g¢ = +/1/2¢=3,¢ > 4. Then the log T-th batch in Algorithm 1 has size ©(d log(KT?)T). Therefore, the while loop in the
algorithm would break with batches at most O(log T').

In this part we can also suppose the agent doesn’t eliminate any arms in the first two batches. The reason for this is the same
as the proof of Theorem 5.4. Similarly, the regret of the first three batches is at most O ((log T)HV) and the regret of Line 1
Exploitation stage is O(1), which is negligible. To analyze the instance-dependent regret, we focus on batches for ¢ > 4.
Define Apin = miny—y- Ax. Recall that under the good event & (C.4), the arm x # x* would be eliminated after the ¢,
batch. We can explicitly calculate when would all suboptimal arms be eliminated. Solving

Amin > 4e¢ (C.7)
we get
1
(>log 5o | +7. (C.8)

Define Ly = [log (A%)—‘ +7= O(log(ﬁ)). We just need to consider regret in the first Ly batches. Because after
that the only active action is the optimal one.

Absolute the same as the proof of Theorem 5.4, we have

Lo

<) 4C-dlog(KT?) - 273 [1/2¢4

(=4

Lo
= 8C - dlog(KT?)2!" 4/

(=4
< 8C - dlog(KT?)2F0=3)/2 (C.9)
= O(d1og(KT)/Amin).

Combining with the regret of the first three batches, we have:
Ry = O((log 7)™ + dlog(KT)/Amin)- (C.10)

Since the good event &, (C.4) happens with probability at least 1 — 1/T', the expected batch complexity of the algorithm is

o) ver)-o(om ()

20

Optimal Batched Linear Bandits

Minimax optimality: We can also prove Ry = O(v/dT'), which implies the algorithm with {T;};°, = T3 is nearly
minimax optimal.

When Ay > m, (C.10) is a tighter bound compared to O(\/dT) So we just need to consider the case A, < /d/T.
Here the same as the methods in (C.7)-(C.8), we can prove that under &y, arms with gap larger than \/d/iT would be
eliminated in the first L/ = [log(T/ dﬂ + 5 batches. However, the regret caused by arms with gaps less than \/W is at
most T - \/d/iT = V/dT. Note that the regret for batches £ = 4, ..., L’ in the while loop can be bounded by

L L
Z Regrety < Z 4Tyer 1
(=4 (=4

< 8C - dlog(KT?)2' —3)/2 (C.11)
= O(VdT -log(KT)),
where we get (C.11) the same as (C.9). As a result, the total regret can be bounded by

3 1%
Rr < Z Regrety + Z Regret; + VdT (C.12)
=1 =4
%
= O((log 7)) + Z Regret; +VdT
(=4

= O(\/ﬁ -log(KT)).

Asymptotic regret and batch complexity: When {7},}9°, is set to either 77 or 73, Algorithm 1 yields identical performances
within the initial three batches. Thus the corresponding portion of the proof aligns with that of Theorem 5.4. Specifically,
according to Lemmas C.7 and C.8, for a sufficiently large T, the probability that the algorithm avoids batch ¢ = 3 exploration
at least 1 — 2/(log T')2. Similarly, the probability that it avoids batch £ = 4 is at least 1 — 1/7'. By utilizing the same
rationale, we can complete this part of the proof.

D. Proofs of Technical Lemmas

D.1. Proof of Lemma B.1

We prove the statement by contradiction. Suppose there is an algorithm 7 such that for sufficient large T'
P(x # x*) < 1/VT.

The algorithm terminates after b = o(log T') steps and output the estimated best arm X. By the assumption above we know
P(x # x*) < 1//T, so this is a §-PAC algorithm with § = 1//T.

However, by the Theorem 1 in Jedra & Proutiere (2020), for a (1/+/T')-PAC strategy, any bandit instance * and sufficiently
large T',

b>T*(0%)log (VT) = ©(log T),
which is contradictory with b = o(log T"). Therefore, the initial assumption is incorrect. We can now conclude the proof of
P(x # x*) > 1/+/T for infinite many 7.
D.2. Proof of Lemma C.4
Here we can use Lemma C.3 directly.

In the first batch of Algorithm 1, the agent just use a D-optimal design exploration given in Definition 4.1 with b; =
t1 = G)((log Y 2) pulls. In the second batch of Algorithm 1, the agent use a D-optimal design exploration given in

21

Optimal Batched Linear Bandits

Definition 4.1 with b; = #; = ©((log T)*/?) pulls, and pull arms x € X’ for another min {wy - a/log T, (log T')1*7} times.
The behavior of the first two batches satisfies the conditions of Lemma C.3. Therefore, by the conclusion of Lemma C.3,

1
PV X Ax b - Mx S 21_73
(X € 7|:u (1) H | 6) (10gT)2
1
PV X, |ix(b2) —px| <€) > 1 — ——=.
(X € 7|:u (2) H | 6) (logT)2

Hence by union bound we have

2
= 1 - < i - < = " (loe T)2
P(&2) = P(vx € X, liic(br) = pix| = € lfix(b2) = gl <€) 21 = 0

as needed.

D.3. Proof of Lemma C.6

First, if £ holds, for sufficiently large T, ¢ = 1/loglogT < Apnin/2, so the estimated best arm is really the best arm,
namely, X* = x*. Then

lim wy- = lim (logT)" /o = 00 = wia.
T— o0 T—ro00

Besides, as T' — 00, (logT)7 /e — o0, so the last restricted condition wy= < (logT)”/« in the optimisation problem in
Definition 4.3 has no effect. In addition, by the concentration result of £, we know

lim Ax —4e = A, Vx € X.

T—o0

Then we can compare the two programs in Definition 4.3 and Definition C.5 line by line. By the continuity of the program
we know

lim wyx =wy, VxeX.
T—o0

D.4. Proof of Lemma C.7
If £ holds,

e(b1) — il < €, [i(B2) — x| < 6, Vx € X. D.1)
For sufficiently large T', e = 1/loglog T < Amin/2. Hence by (D.1), for sufficiently large 7" and x # x*,

fiex (b1) = fix(b1) = fixe= (b1) — e — (fix(b1) — pixc) + Ax
_|[1'x* (bl) - .UX*| - mxa’l) - NX| + Ax
—2e+ Ay >0,

(AVARYS

which implies the estimated best arm is really the best arm, namely, X* = x*. And for suboptimal arm x # x*, we have

|Ax - Ax| = |(ﬂx* - ﬂx) - (Mx* - Mx)l < ‘/:Lx* — Mxx| + Iﬂx - Mx| < 2e. (D.2)

The second stopping rule 22:1 XX, > ¢l holds easily for sufficiently large T', with the D-optimal design exploration in
the second batch, because features of arms used in D-optimal design exploration spans R¢ (Lattimore & Szepesvari, 2020).

Now, all that’s left to do is to calculate the stopping statistic Z(by) defined in (4.3) and to show it is larger than the threshold
value §(bz, 1/T) defined in (4.4) as T — oo.

After the first batch, the agent calculates the allocation w(A) = {wy}xex according to Definition 4.3, where we use
A to denote estimated gaps based on data in the first batch. Correspondingly, we define w(A) = {w }xcx to denote
the proportion solved from Definition C.5 using the true instance parameter 8*. Under the concentration event £ and

Lemma C.6, we know limr_, o Ax = Ay, limy_, oo wx = wk,Vx € X.

22

Optimal Batched Linear Bandits

Note that when ¢ = 2, since wj for x € X'~ is independent of 7',

. wx-alogT . wy-alogT
lim =

x — o7 = - = X
T—oo (logT)1+Y 70 (log T)1+~ 0.x €

Thus for sufficiently large 7",

wy - alogT < (log 7)™, x € X~

Besides, by (C.3) we know wx+ = (logT')? /c. It follows that

wy - alog T = (log T)' 7.

Therefore, the exploration rule in the second batch should be D-optimal design exploration with rate 7%, then pull each arm
X € X for wy - alog T times. Here we use by to denote the batch size of the second batch, ay = Y 4 f(x, A, T2) =
@((log Y 2) to denote the total number of D-optimal design exploration steps in this batch given by Definition 4.1.
Consequently, we know

by = ag + (log T)' ™7 + Z wy - alogT. (D.3)
xXEX

Likewise, we can split the data {x,}%2 | into {x,}?2, and {Xs}gia2 1, With the former one denoting the arms in D-optimal
design exploration and the latter one denoting the remaining arms according to the allocation w in the second batch.

By the constraint condition in the convex program of Definition 4.3, we have

(Ay — 4¢)?

I = (2 = 1 — %[0 < xe X

Then we get
Ax —46)2/2 (Ax —4€)2/2
(*6)2/ | Af)z/ >1,Vx € X (D.4)

In the second batch of exploration, the agent collects data and estimates the parameters. To avoid confusion, here we use 0,
A and X* to denote related estimators based on data in the second batch, and they have the same concentration properties

with estimators before. Namely, limr_,.o A = A and X* = x*. And similar to (D.2), we have

|Ax — Ax| < 2¢,Vx € X

Further, combining this with (D.2), we have for sufficiently large 7',

Ay > A —4e>0,¥x € X, (D.5)

where the second inequality is because limp_,o, Ax = Ax > 0,Vx € X~ and limp_, o € = limyp_, o 1/loglogT = 0.
We can calculate the stopping statistic given by (4.3):

A2 A2
x* 2||x — X*||2, _ = 2||x —x*||2, -
XF£X Hb21 XF£X Hb;
Here we get
. A2
TNy £ 5% YT T
Z(bQ) _ 2Hx x HHb_zl
alogT alogT

23

Optimal Batched Linear Bandits

(Ay — 4¢)?

>
gx* 2 alogT||x — x*||%,_,
H,

(D.6)

(Ay — 4e)?

min 3
= 2=,

—1
Hy, /(alog T))

. (Ax — 4e)?
> min (D.7)
XFEX* 2HX — X*HH—l

V

where (D.6) is because of (D.5), and (D.7) holds because

ba T
Hb2 Zs:l XsXg

alogT alogT

1 < T 2 T
ozlogT(}lesxS + Z szs)

s=az+1

ba

1 T
>
~ alogT Z XoXs
s=as+1

1 < 1 *_ % 1 T
= (log T)' T7x*x* ' + E wxalogT - XX,
alogT -

= (logT)" /o~ x*x*T + Z Wy - XX
XEX ™
= H,,.

Then we can combine (D.4) and (D.7) to get

VA A 2
(2) - i (Bx =19
alogT = xx 2|lx —x*[2 _,

> 1. (D.8)

By the selection of « = (1 4+ 1/loglog T')(1 + dloglog T/ log T') in Theorem 5.4, we have

log T)¢
alogT = (14 1/loglogT)(1 + dloglogT/logT)logT = (1 + 1/loglogT)log ((Olg/T)) (D.9)

Besides, for sufficiently large 7', by Lemma C.6 we have

Combining this with (D.3), we get

by = ay + (log 7)™ + Z wy - alogT
XEX ™
< ap+ (logT)**7 42 Z wy - alogT
xEX
:@((logT)l/Q)+(logT)1+"’+2 Z wy - alogT
XeEX ™

= O((log 7)'*7),

since {w} }xex- is determined by the bandit instance which is independent of T'. Hence for sufficiently large T', we have
by < U(logT)**7 for some constant number U > 0. Then, putting this upper bound of b, into the the expression of
B(b2,1/T) from (4.4), we get

/
B(ba,1/T) = (14 1/loglogT)log ((bgloglogT)d2>

1T

24

Optimal Batched Linear Bandits

(D.10)

(U loglog T)%/?(log T)?(1+7)/2)

§(1+1/1oglogT)log(/T

for some constant number U > 0. Combining (D.8), (D.9), (D.10), we have for sufficiently large T',

Z(bg) > alogT

log T)¢
=(141/loglogT)log ((Olg/T))
log log T)4/2 (1o T)E(1+7)/2
> (1+1/loglogT)log <(U oglogT) 1/;0g))

Z ﬂ (b27 1/ T)a
which implies Z(b2) > B(ba, 1/T) for sufficiently large T
So we prove that if &5 holds, for sufficiently large 7, the stopping condition (4.2) holds in the second batch. In addition, by
Lemma C.4, & happens with probability at least 1 — 2/(log 7). Now it can be concluded that the Chernoft’s stopping rule
in (4.2) holds with probability at least 1 — 2/(log T')?
D.5. Proof of Lemma C.8

In this proof we continue using the good event &, (C.4) defined before. Since it happens with probability at least 1 — 1/7,
we can just assume it happens, then prove the elimination fact.

Under the good event & (C.4), we have shown in (C.5) that arm x # x* with gap

Ay > 4eg = 4+/dlog(KT?)/(log T)1+7 (D.11)

would be eliminated after the third batch. As T' — oo, (D.11) holds for all suboptimal arms x # x*, since Ap,;, > 0 and
€3 — 0as T — oco. So we finish our proof.

D.6. Proof of Lemma C.9
With &, defined in (C.2), we can decompose the regret of the second batch by
Regrety = Regretag,P(E2) + Regretogs P(E3),

where we let Regretag, and Regretag: be the regret of the second batch given &; and £5, respectively. Lemma C.4 shows
P(&;) > 1 —2/(logT)?. In &5, the regret is negligible for this O((log T")'*7)-size batch as T' — oo, because

.) , 2 -
Am RegretagsP(E5) = Jim o T O((log T)**7) = 0.

This implies
. Regrety . Regretas,P(E2) + RegretagsP(E5)
lim sup ———— = lim sup
T— 00 IOg T T—o0 1Og T
. Regretag,P(E)
= limsup ————=
T—o0 log T
R t
< lim sup Jvegretae,
T— o0 logT

Moreover, when & appears, we can use the continuity of the problem to end the proof.

In fact,when the conceptration result & holds, for all arms X, |fix — x| < € = 1/loglogT. So limy_, o fix = px. Ina
similar way, im0 Ax = limp o0 (fixr — fix) = phxr — fix = Ax. Then using Lemma C.6, we get limp_, oo wx = wik
for all x € X, where we use {wZ }xecx to denote w(A) solved using the true gaps defined in Definition C.5, and {wx }xex

to denote w(A) solved using estimated gaps defined in Definition 4.3. As we discussed in (D.3), for sufficiently large 7', in

25

Optimal Batched Linear Bandits

the second batch the agent first explores with a D-optimal design multi-set with size o(log T"), then pull the best arm for
(log T)' ™ times and each suboptimal arm x € X for wy - alog T' times. Thus the regret is

. Regrets) Regretag,
limsup ——— < lim O e
Tooo logT Tooo logT

. o(log T') + > e qwxlog TAx
= lim sup

T—o0 log T

_ awy log TAx

= lim sup Lxex- x10g

T—o0 IOg T
= Z wiAyx = .

xXEX

This completes the proof.

26

