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Abstract

The spread of a graph G is the difference between the largest and smallest
eigenvalue of the adjacency matrix of G. In this paper, we consider the family of
graphs which contain no K ;-minor. We show that for any ¢t > s > 2 and sufficiently
large n, there is an integer & such that the extremal n-vertex K ;-minor-free graph
attaining the maximum spread is the graph obtained by joining a graph L on (s—1)
vertices to the disjoint union of LQ”TJ;&J copies of K; and n—s+1— tLQ"TJQ&J isolated
vertices. Furthermore, we give an explicit formula for & and an explicit description
for the graph L for t > 3(s — 3) + -4;.

Mathematics Subject Classifications: 05C50, 15A42

1 Introduction

Given a square matrix M, the spread of M, denoted by S(M), is defined as S(M) :=
max; j |\; — A;|, where the maximum is taken over all pairs of eigenvalues of M, so that
S(M) is the diameter of the spectrum of M. Given a graph G = (V, E) on n vertices, the
spread of G, denoted by S(G), is defined as the spread of the adjacency matrix A(G) of
G. The adjacency matrix A(G) is the n x n matrix with rows and columns indexed by the
vertices of G such that for every pair of vertices u,v € V(G), (A(G))w, = 1 if uv € E(G)
and (A(G))uw = 0 otherwise. Since A(G) is a real symmetric matrix, its eigenvalues are
all real numbers. Let A\ (G) = -+ > A\, (G) be the eigenvalues of A(G), where A is called
the spectral radius of G. Then S(G) = A\ — .

The systematic study of the spread of graphs was initiated by Gregory, Hershkowitz,
and Kirkland [13]. One of the central focuses of this area is to find the maximum or
minimum spread over a fixed family of graphs and characterize the extremal graphs. The
maximum-spread graph over the family of all n-vertex graphs was recently determined for
sufficiently large n by Breen, Riasanovsky, Tait and Urschel [3], building on much prior
work [2, 24, 26, 27, 31]. Other problems of such extremal flavor have been investigated
for trees [1], graphs with few cycles [11, 22, 33|, the family of bipartite graphs [3], graphs
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with a given matching number [16], girth [32], or size [15], outerplanar graphs [12, 17] and
planar graphs [17]. We note that the spreads of other matrices associated with a graph
have also been extensively studied (see e.g. references in [12, 6, §]).

Given two graphs G and H, the join of G and H, denoted by GV H, is the graph
obtained from the disjoint union of G' and H by connecting every vertex of G with every
vertex of H. Let P, denote the path on k vertices. Given two graphs G and H, let
G U H denote the disjoint union of G and H. Given a graph G and a positive integer
k, we use kG to denote the disjoint union of k copies of G. Given v C V(G), let Ng(v)
denote the set of neighbors of v in G, and let dg(v) denote the degree of v in G, i.e.,
dc(v) = |Ng(v)|. Given S C V(G), define Ng(S) as Ng(S) = Upes(Ng(v)\S). We may
ignore the subscript G when there is no ambiguity. A graph H is called a minor of a
graph G if a graph isomorphic to H can be obtained from a subgraph of G by contracting
edges. A graph G is called H-minor-free if H is not a minor of G.

There has been extensive work on finding the maximum spectral radius of K ;-minor-
free graphs. Let G,.(n) denote the family of all K ;-minor-free graphs on n vertices.
Nikiforov [21] proved an upper bound for the maximum spectral radius of a K5 ;-minor-
free graph. Nikiforov showed that this bound is tight for graphs with a sufficiently large
number of vertices n with n = 1 (mod ¢) and determined the extremal graph in these
cases. Tait [28] extended Nikiforov’s result by proving an upper bound on the maximum
spectral radius of K, ;-minor-free graphs, and determined the extremal graphs when n =
s—1 (mod t) and n is sufficiently large. Recently, Zhai and Lin [36] completely determined
the K ;-minor-free graph with maximum spectral radius for a sufficiently large number
of verticesn and all ¢t > s > 2.

In [18], the authors determined the maximum-spread Kj;-minor-free graph for suffi-
ciently large n for all ¢ > 2. In this follow-up paper, we determine the structure of the
maximum-spread K ;-minor-free graph on n vertices for sufficiently large n and for all
t>s> 2.

Theorem 1. Fort > s > 2 and n sufficiently large, the graph(s) that mazimizes the
spread over the family of K, -minor-free graphs on n vertices has the following form

max (&)Kt (TL — S+ 1-— tfo) Pl)
where

1. Lygy is a graph on s — 1 vertices which maximizes a function (L) (over all graphs
L on s — 1 vertices) as follows:

2

_3Zd2 331 ZdL (t=1) Y di(v). (1)

veV (L veV (L veV (L)

E(Lmax €
2. by = (%—M) (n—s41)4+ O(n°) for any € > 0.
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In particular, we have

_ “D(n—s (t— 1)2+¢(Lmaw)/(3_ 1) i
Gérgli)%n)S(G)—2\/(8 1)( +1) + N CESY Y +O<n3/2). (2)

We call a pair (s,t) admissible if Lyq, = (s—1)K7, i.e., (L) < 0 and ¢(L) = 0 only if
L = (s—1)K;. We determine the value of ¢, when (s, ) is admissible and thus determine
the precise extremal graph(s) for these cases.

Theorem 2. Let s and t be integers with t > s > 2, and suppose that the pair (s,t) is
admissible. For n sufficiently large, the maximum spread over the family of K, -minor-
free graphs on n wvertices is achieved by

(8—1)K1\/(€0KtU(7’L—S+1—tfo)Pl).

(t—1)2
9(s—1)
tremal graph is unique when {1 is not a half-integer. Otherwise, there are two extremal
graphs.

Here ly is the nearest integer(s) of ¢, == & (n —s+1-— ) In particular, the ex-

Furthermore, we determine all of the admissible pairs (s, ).
Theorem 3. A pair (s,t) with s <t is admissible if and only if t > %(s —-3)+ ﬁ.

The smallest non-admissible pair is (s,t) = (8, 8).

Our paper is organized as follows. In Section 2, we recall some useful lemmas and prove
that in any maximum-spread K ;-minor-free graph G, there are (s—1) vertices uy, ..., us_;
which are adjacent to all other vertices in G. In Section 3, we show that G —{us, ..., us 1}
is a disjoint union of cliques on t vertices and isolated vertices and complete the proofs
of Theorems 1, 2, and 3. The non-admissible cases are more complicated and will be
handled in a sequel.

2 Notation and Lemmas

Let G be a graph which attains the maximum spread among all n-vertex K, ;-minor-free
graphs, and A\; > -+ > )\, be the eigenvalues of A(G). We first recall the following result
by Mader [19].

Theorem 4 ([19]). For every positive integer t, there exists a constant Cy such that every
graph with average degree at least Cy contains a K; minor.

Corollary 5. Let s and t be positive integers with s < t. There exists a constant Cy such
that for any K, -minor-free graph G' on n > 0 wvertices,

|E(G)| < Con.

Kostochka and Prince [14] gave a better upper bound on the maximum number of
edges in a K, ;-minor-free graph when ¢ is sufficiently large compared to s.
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Theorem 6. [1/] Let t > (180slog, s)1 701982 be q positive integer, and G be a graph on
n = s+t vertices with no Ky, minor. Then

B <

(n—s+1).

We mention here that in the case of s = 2, Chudnovsky, Reed and Seymour [7] showed
a tight upper bound |E(G)| < 3(t+1)(n— 1) for the number of edges in a K> ;~minor-free
graph G for any t > 2, which extends an earlier result of Myers [20].

We also need the following theorem by Thomason [30] on the number of edges of
K ;-minor-free bipartite graphs.

Theorem 7. [30] Let G be a bipartite graph with at least (s —1)n+4"T'sltm edges, where
n,m > 0 are the sizes of the two parts of G. Then G has a K, ;-minor.

Corollary 8. Suppose G is a bipartite graph on n wvertices such that one part has at
most c\/n vertices for some fized constant ¢ > 0. If G is Ky -minor-free, then |E(G)| <

16tcy/n.

As a first step towards proving Theorem 1, we want to show that G' must contain
K, 1,541 as a subgraph. We recall the result of Tait [28] on the maximum spectral
radius of K ;-minor-free graphs.

Theorem 9. [28] Lett > s > 2 and let G be a graph of order n with no Ks; minor. For
sufficiently large n, the spectral radius A\ (G) satisfies

M) < s+t—3+/(t—s+1)2+4(s—1)(n—s+1)
1 X 9 ’

with equality if and only if n = s —1 (mod t) and G = Ks_1 V [n/t] K.

We first give some upper and lower bounds on A\, (G) and |\, (G)| when n is sufficiently
large. We use known expressions for the eigenvalues of a join of two regular graphs [4,

pg.19].

Lemma 10. [}/ Let G and H be reqular graphs with degrees k and ¢ respectively. Suppose

that |V(G)| = m and |V(H)| = n. Then, the characteristic polynomial of G V H is
pova(t) = ((t — k)(t —0) — mn)%. In particular, if the eigenvalues of G are
k=X = ... 2\, and the eigenvalues of H are { = puy > ... > p,, then the eigenvalues

of GVH are {\;:2<i<m}U{p;:2<j<n}U{x: (z—k)(x—¢) —mn=0}

We will apply Lemma 10 to the graph (s — 1)K, V ¢K; where ¢ = |(n —s+1)/t]. Let
apg=(s—1)(n—s+1).

Lemma 11. We have

s+t—3 1 s+t—3 1
fap — —— — | < < < W/ _ — .
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Proof. The upper bound of \; is due to Theorem 9. Now let us prove the lower bound.
By Lemma 10, for sufficiently large n, A((s — 1)K; V ¢K;) and A\, ((s — 1) K; V ¢K})
are the roots of the equation

AN = (t—1)) — (s — 1)gt = 0.

Thus, we have

t—1++/(t—1)2+4(s—1)gt
2 )
t—1—/(t—1)2+4(s—1)qgt
5 :

Thus S((s — 1)K; V gK;) = /(t —1)2+4(s — 1)gt. Let ¢ = [(n — s+ 1)/t]. By the
eigenvalue interlacing theorem, we then have

S(G) =/t —1)2+4(s — gt
> VAs—1)(n—s+1)+(t—1)2—4(s—1)(t— 1)

:2\/@+0(%).

M((s— DKV gK,) =

A((s = 1)KV gKy) =

Therefore,

[An(G)] = S(G) = M(G)

amo(()- (0247 o()

().
Ul

For the rest of this paper, let x and z be the eigenvectors of A(G) corresponding to
the eigenvalues A\; and )\, respectively. For convenience, let x and z be indexed by the
vertices of GG. By the Perron-Frobenius theorem, we may assume that all entries of x are
positive. We also assume that x and z are normalized so that the maximum absolute
values of the entries of x and z are equal to 1, and so there are vertices ug and wg with
Xug = |Zu| = 1.

Let Vi = {v: z, > 0}, Vy = {v: 2z, =0}, and V_ = {v: z, < 0}. Since z is a non-zero
vector, at least one of V. and V_ is non-empty. By considering the eigen-equations of
An D vev, Zv O An D ey Zy, We obtain that both Vi and V_ are non-empty. For any
vertex subset S, we define the volume of S, denoted by Vol(S), as Vol(S) = > ¢ 2|
In the following lemmas, we use the bounds of \,, to deduce some information on V,, V_
and Vj.

Lemma 12. We have

Vol(V(G)) = O(v/n).
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Proof. For any vertex v € V(G), we have

0) 21 Yzl = llzl.

YyEN (v)

Applying Theorem 4 and Corollary 5, we have

AalVOl(V) = > [Aallzo] < Z d(v

veV(Q) veV (G
By Lemma 11, [A,| > /(n — s + 1)—*£=2—-0 (%) We thus have Vol(V) = O(y/n). O

Without loss of generality, we assume |V, | <

wl§

Lemma 13. We have
Vol(V,) = O(1).

Proof. Let ¢ > 0 be a small constant depending on s and ¢ to be chosen later. Define two
sets L and S as follows:

L={veV.:|Nw)NnV_| > en},
and S =V, \ L. Let C' = 45"1s!t. By Theorem 7, we have

|L|<M<@:g' (4)

AN
en en €
We then have that

A2Vol(S) = A2 "z,

vES

LYY -

vES ueEN (v)

< D

vES ueN (v)NV-

ZZ Zzy

veS weN (v)NV_ yeVLNN (u)

=Y z,|E(S,N(y)nV.)|

yeVy
= z,|E(S,N(y) N Vo) + ) 2, |E(S,N(y) nV_)|. (5)
yeL yeS

We apply the following estimation. For y € L, we have
[E(S,N(y) N Vo) < [E(S,V-)| < Cn. (6)
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For y € S, by Theorem 7, we have

[E(S,N(y) N V)| < (s — 1)[S] + Cen. (7)
Now we apply the assumption that |V, | < 5. We have

IE(S, N(y) N V)] < (s — 1)% + Cen. (8)
Plugging Equations (6) and (8) into Equation (5), we get

A2Vol(S) < Vol(L)Cn + Vol(S) ((5 - 1)% + Cen) . 9)

By Lemma 11, [A\,| = /(s —1)(n —s+ 1) — == — 0O (\/Lﬁ) Set € = ==. We have that

for sufficiently large n,

A2 ((s— 1)%+Cen) > (8_41)”. (10)

Combining Equations (9) and (10) and solving Vol(S), we get

Vol(L). (11)

This implies

At the last step, we apply Inequality (4). The proof of this lemma is thus finished. O

Corollary 14. For any v € V_, we have

-o()

In particular, wy € Vi and |N(wo) NV_| = Q(n).
Proof. For any v € V_, we have

IAnl|Zo| = Az < z, < Vol(V4) = O(1).

yeN (v)NV
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This implies z, = O (ﬁ) . In particular, we have wy € V. Thus z,, = 1. We then
obtain that

2 _ 2
)‘n - )‘nzwo

<A D

vEN (wp)NV_
<IN(wo) V| 2wy + Y 2, |N(y) N N(wo) NV_|
yeVi\{wo}

< |N(wp) N V_|Vol(V).
Since Vol(V,) = O(1) and A2 > (s — 1 — o(1))n, we have |N(wy) NV_| = Q(n). O
Lemma 15. We have |V_| > n — O(y/n) and |V, | = O(y/n).
Proof. We define L now as follows. Let

L={veV.:|Nw)nV_| > Civn},

where (' is some big constant chosen later. Let S =V, \ L. We have

E(LV) _ Cn _C

U< —Gm Sava -V (12)
By Corollary 14, we have wy € L. In particular, Vol(L) > 1.
Similar to Inequality (5), we have
MVOl(L) < ) 2| E(L, N(y) N Vo))
yeVy
= 2 |E(L,N(y) N V)| + > = |E(L, N(y) N V). (13)
yeL yeS
We apply the following estimation. For y € L, we have
IB(L, N(y) V)] < [E(L V)| < (s = DIV_| + CIL. (14)
For y € S, we have
|E(L,N(y) NV2)| < (s — 1)|L[ + CCrv/n. (15)
Combining Equations (13), (14), and (15), we get
A2Vol(L) < Vol(L) ((s — 1)|VZ| + C|L|) 4+ Vol(S) ((s — 1)|L| + CC1y/n) . (16)

Equivalently, we have

A2 Vol(S)

V> ol —

IV-| s—1 ClL Vol(L)
>n—C'n

for some sufficiently large constant C’. Here we apply Inequality (12) that Vol(S) <

Vol(V,) = O(1) and Vol(L) > 1. Thus, we have |V, | = O(y/n). O

(s = DIL] + CCry)

0
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Lemma 16. There exist some constant Cy and s — 1 vertices uy, ..., us_1 satisfying
(i) For any 1 <i < s— 1, we have d(u;) = n — Cay/n.
(i1) For any vertex v & {uy,...,us_1}, we have d(v) < sCay/n.
Proof. This time we define L as follows:
L={veVi:|Nw)nV_|>n—Co/n},

where Cj is some big constant chosen later, and let S =V, \ L.
We first claim that |L| < s — 1. Otherwise, there exist s vertices uy,...,us € L. We

have
S

(YN () NV2) > V| = sCov/n > t,
i=1
when n is sufficiently large. Therefore, G contains a subgraph K, giving a contradiction.
Hence |L| < s — 1.
Now let us consider A2Vol(V, ). By Lemma 15, we know that |V, | < C'y/n for some
constant C’. As before, we have

AVol(Vy) < Y 2| E(Vy, N(y) N V)|

=D 2| E(Vi, N(y) N V)| + Y2, |E(Vi, N(y) N Vo). (17)
yeL yeSs

We apply the following estimation. We let C' = 45t1slt. For y € S, we have
[E(V, N(y) NVl < (s = DIN() N VA + CVe| < (s = 1)(n — Cav/n) + CC'Vn. (18)
For y € L, we have
[E(Ve, N(y) NVl < TE(V, Vo) < (s = D+ CC'n. (19)
Plugging Equations (18) and (19) into Equation (17), we get
A2Vol(V) < Vol(S) ((s — 1)(n — Cav/n) + CC'/n) + Vol(L) ((s — )n + CC'v/n))
= Vol(V3) ((s — Dn + CC"y/n)) — Vol(S)(s — 1)Cav/n. (20)
Applying the lower bound of |A,| in Lemma 11, we conclude

o CC'"+(s—1)(s+t—3)+0(1)

Vol(S) -1

Vol(V2.). (21)

Choose (5 large enough such that CC,HS*&Z(‘;;C’??’HO(I) < &5 and Coy/n — [Vi| > ¢ (recall

that [V, | = O(y/n) by Lemma 15). We then have that
1
Vol(S) < EVOI(V;L).
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This implies

1
Vol(S) < o 1Vol(L).
Since Vol(L) < |L| < s — 1, we get
s—1 1
1(8) < - .
VllS) < =1 = 551

Now we do the similar calculation for Vol(L). We have

AVol(L) < ) 2| B(L, N(y) N V)]

=Y 2 |E(L,N(y) N V)| + Y 2| E(L,N(y) N V). (22)
yeL yeS

We apply the following estimation. For y € S, we have
|E(L,N(y)NV_)| < (s=1|N@y)NV)|+C|L| < (s —1)(n— Cyy/n) + C(s —1). (23)

For y € L, we have

[E(L, N(y) V)| < |E(L, V)| < [Lin. (24)
Plugging Equations (23) and (24) into Equation (22), we get
AzVol(L) < Vol(S) ((s — 1)(n — Cyy/n) + C(s — 1)) + Vol(L)|L|n. (25)
Since wy € L, we have Vol(L) > 1. We then obtain that
% e (- - G + Ot~ 1)
n  (s2—=1)n 2
1
> 61—
>s—1 ] +o(1)
Since |L| is an integer, we have
|L| > s— 1.

Together with the upper bound in Inequality (12), we get |L| = s — 1.
Now we could write L = {uy,...,us_1}. We then have that

s—1

WV (w)NVo)

i=1

> Vo] — (s — 1)Cav/. (26)

Now we claim that for any vertex v € L, d(v) < sCyy/n. Otherwise, since Cy is chosen
such that Cyy/n — |Vy| > ¢, we then have

N(®)N (h(N(ui) N v_)>

i=1

> sCov/n — V| = (s = 1)Cov/n > Cov/n — [V | 2 ¢,

which implies that L U {v} and ¢ of their common neighbors form a K, in G, giving a
contradiction. Thus, d, < sCqy/n for any v ¢ L. O
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Lemma 17. We have

(i) For any 1 <i<s—1, zuizl—O(ﬁ),

(ii) For any vertex v € {uy,...,us_1}, we have |z,| = O(ﬁ)

Proof. We will prove (ii) first. Let Cy be the same constant obtained from Lemma 16.
Let L = {v € Vy: [N(v)NV_| = n— Cyy/n}, and S = V. \ L. By Corollary 14, we
know that for every v € V| |z,| = O(ﬁ) Thus it suffices to show that for every v € S,
|z, | = O(ﬁ) Indeed, for every v € S, we have that

Anl?2y < [An] Z |Z.|

u€N (v)NV_

<2 > m

ueN (v)NV_ yeN (u)NV4

=Y 2, IN() NN N V|

yeVy
< sCy - Z Zy
yeVy
< 802 : O(l)
Thus, z, = O (%) This completes the proof of (ii).
Finally, we estimate z,, for 1 < ¢ < s — 1. By previous lemmas, we know that
wo € {uq,...,us_1}. From the eigen-equations, we obtain that for each u; (1 <i < s—1),

Aal(Zwo — 2u,) = — Z Zy + Z Zy (27)

uw€N (wo)\N (u;) u€N (u;)\N (wo)
< Z |Z,| + Z Zy (28)
u€ (N (wo)\N (u;))NV_ u€ (N (u;)\N(wo))NV4
< > 2] + O(1) (29)
u€(N (wo)\N (us))NV-
1
<G O —= O(1 30
Wi 072 + o) (30)
= 0(1). (31)
Therefore, we have z,, > 1 — O (ﬁ) since z,,, = 1 and z,,, — 2, = O(ﬁ) O

Recall that we let L := {uy, ug, -+ ,us_1}. Let V' ={v € V(G)\L : |[IN(v)NL| =s—1}
and let V" = V(G)\(L UV’). We have the following lemma on the structure of G.

Lemma 18. We have the following properties.
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(i) V| Zn—(s—=1)Cay/n.
(i) For anyv € V(G)\L, |IN(v)NV'| <t —1.
(iii) In H = G[V(G)\L], for any vertex v € V(H), [INg(Ng(v)) N V'] < 2

Proof. By Lemma 16, mln d(u) = n — Cyy/n. Tt follows that [V/| > n — (s — 1)Ca/n >

For any v € V(G)\L, v has at most ¢ — 1 neighbors in V', otherwise, L U {v} and ¢ of
their common neighbors in V' would form a K, in G.

Now for any v € V(G)\L, we claim that |Ng(Ng(v)) N V'] < 2. Indeed, suppose
not, then by (ii) and the Pigeonhole principle, there exist ¢ vertex-disjoint 2-vertex paths
from v to ¢ distinct vertices in V’. But then it is not hard to see that L U {v} and these
t distinct vertices would form a K, minor, giving a contradiction. O

Lemma 19. We have

(i) Foranylgigs—l,xui:1—O(ﬁ).

n

(i) For any vertex v & {uy,...,us_1}, we have X, = O(\/i—)

Proof. Let us prove (ii) first. For any vertex v ¢ {uy,...,us_1}, by the eigen-equations,
we have that

—)\1 Z Xu

ueN (v

=)\ Z X, + Z X, + Z Xy,

ueN (v)NV/ ueN(v)NL ueN (v)NV"

Sh|[E-D+6E-D+ D x,

ueN(v)NV"

=(t+s—2DMh+ Y Aix,

ueN (v)NV"

=(t+s—2)\ + Z Z Xy

ueN (v)NV" weN (u)

=({t+s—2)\ + Z Z Xy + Z Xy + Z Xy

ueN V)NV \weN(u)NL weN (u)NV’ weN (u)NV"
St+s—2DM+(s— DV +2+ > > ox
wEN (v)NV” weN (uw)NV"
<(t+s5—2)A + (s = DV + >+ 2|E(G]V")]
< (t+5—2)A + (s —1)(sCav/n) + 2 + O(y/n)
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= O(v/n).

It follows that x, = O(ﬁ)

Now we will prove (i). Recall that g is a vertex such that x,, = 1. Thus ug € L. Let
u; be an arbitrary vertex in L\{ug}.

If upu; is not an edge of GG, then we have

<D xt > x,

A1 Xy — X,

veV” veL
1
<W-0( )+t

= 0(1).

If ugu; is an edge of G, we have

(A1 — 1)|xuy — X0, | < Z xv+ZxU

vev” vel
<|V'-0 (%) +(s—1)
= O(1).
In both cases, we have
It follows that x,, =1— 0O (%) for any i € [s — 1]. O

Now we are ready to show that G has s — 1 vertices that are connected to each of the
rest of the n — s 4 1 vertices.

Lemma 20. G contains the subgraph Ks_1 ,—si+1.

Proof. Let x and z be the eigenvectors associated with A; and \,, respectively. Assume
that x and z are both normalized such that the largest entries of them in absolute value
are 1. By Lemma 16, there exist s — 1 vertices L = {uy,ug,- -+ ,us 1} such that for
every v € L, d(v) > n — Cyy/n and for every v ¢ L, d(v) < sCyy/n. Recall that
Vi={veV(G\L:|Nwv)NL =s—1} and V' = V(G)\(LUV’).

To prove the lemma, it suffices to show that V" is empty. Suppose otherwise that
V" is not empty. Note that V" induces a K ;-minor-free graph, and by Theorem 4 and
its corollary, we know that there exists some constant Cy and some vertex vy € V" such
that dgpy»(ve) < Co. Moreover, observe that vy has at most (¢ — 1) neighbors in V’, as
otherwise L U {vp} and t of their common neighbors would form a K, in G.

Let G’ be obtained from G by removing all the edges of GG incident with vy and adding
an edge from vy to every vertex of L, so that E(G") = E(G—wvo)U{vouy, vousg, - -+ , Vols—_1}-
Observe G is still K ;-minor-free.
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We claim that A\,(G’") < \,(G). Indeed, consider the vector z such that z, = z, for
u # vy and Z,, = —|2z,,|. Then

ZAG)zZ= Y 22,2, + 2%, - Vol(L)

weE(G—wvo)
= 22,2, — 2 Z ZyZy, — 2|2y, |VOl(L)

weE(G) y~v0
SZAG)Z 42 |2y24| — 2|2y,| - VOI(L)

Yy~vo
p 1 1

<ZA(G>Z+2<t+Co)O ﬁ "Zv0|—2 1—0 ﬁ ’ZU(]’
<7 A(GQ)z.

Similarly, we claim that A;(G’) > A\1(G). Indeed,
x'x\(G) = x'A(G")x
=x'A(G)x — 2 Z X, Xy, + 2%y, VOI(L)

Yy~vo

> x'x\(G) =2 (t+Cp) - O (%) Xy, + 2 (1 -0 (%)) Xop
> x'x)\(G).

Hence we have S(G') = M (G") — A\ (G') > M (G) — M\ (G) = S(G), giving a contradiction.
U

3 Proof of Theorem 1

By Lemma 20, a maximum-spread K ;-minor-free graph G contains a complete bipartite
subgraph K 1,_s+1. We denote the part of s — 1 vertices by L and the other part of
n—s-+ 1 vertices by R. Let a be a normalized eigenvector corresponding to an eigenvalue
A of the adjacency matrix of G. Let Ay (or Ag) be the adjacency matrix of the induced
subgraph G[L] (or G[R]) respectively.

Let aj (respectively, ar) denote the restriction of o to L (respectively, R). The
following lemma computes the vectors oy, and ag.

Lemma 21. If |\| >t — 1, then

o)

R = (]_IOéL) Z )\_(]H_l)Al;%]_, (32)
k=0

ap = (Tag) ) A *HDAfL (33)
k=0
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Proof. Note that since G is K, ;-minor-free and every vertex in L is adjacent to every
vertex in R, it follows that G[R] is K ;-minor-free, and thus the maximum degree of G|[R]
is at most t — 1. For n sufficiently large, both A\;(G) and |\, (G)| are greater than ¢ — 1.
Hence when restricting the coordinates of A(G)a to R, we have that

Agag + ('ap)l = \ag. (34)
It then follows that
ar = (Vap)(M — Ag)™*
= (Vap)A\ NI —XAR) ™!
= (1 ap )\ ! io:()\_l

Z )\ (k+1) Ak (35)
k=0

Here we use the assumption that |A| > ¢t —1 > A\ (Ag) so that the infinite series converges.
Similarly, we have

ayp = (1’0&3) Z )\_(k+1)Alzl.
k=0

Lemma 22. Both A\ and )\, satisfy the following equation.

_ (i )\_kl’A'Z1> . (io: )\_kl’A’fJ) ) (36)

k=0

Proof. From Equations (32) and (33), we have

Vag = (ay) Zw (b1 Ak, (37)
Voy = (ag)d UA¢VALL (38)
k=0
Thus
ag = (1ag) (Zl A(+D) gk ) : (Z )C(’““)l’A’;%l) : (39)
k=0 k=0
Since 1'ag > 0, equation (36) is obtained by canceling 1'ag. O

For k=1,2,3... let I = 1A}1, r, = A%1, and a; = Z?:o ljrk—;. Then Equation

(36) can be written as:
=)t (40)
k=0
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In particular, we have

lp=s5—1;

Ly =2|E(G[L])[;
ro=n-—s+1;
r1 = 2|E(G[R]);

ap =loro =(s—1)(n —s+1),

a; = loT'l + llT'().

Lemma 23. We have the following estimation on the spread of G:

2¢y 2¢cy 2cq —7/2
S(G) = 2v/ag + + =5+ 52+O( )
vV @o aO/ ao/

Here

ap=(s—1)(n—s+1)
. 3 ay 2 1a2
02——5(50) HET

105 (@' 35
64__58(_) +16(
3003 % 3003
“ 1024( ) 256

e\ e 693 ()" ()" 21 (a)°
ap) ay 64 \ag ag 16 \ ag

Proof. Recall that by (40), we have that for A € {\1, \,.},

o0
N =aqy+ Z ap\ "
k=1

By the main lemma in the appendix of [17], A has the following series expansion:

\/_+c1+\/—_+ +W+_+%+O( ")

Similarly,

Cq Cs Ce —7/2
\/_+cl——+ — +———+O(a )
Vao 3/2 ag a3/2 ‘
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Using SageMath, we get that cs,cq,cs are the values in Equations (49), (50), (51)
respectively. It follows that

262 204 206 —7/2
S@=h-h=2mt b 5+ e +0(a"?).

O

Proof of Theorem 1. Recall that by Lemma 23, we have the following estimation of the
spread of G:

2co . 2¢y n 2ce
Vao (12 (- 1)

where ¢y, ¢4 and cg are as in Lemma 23.
Since G is K, -minor free, G[R] is K ;-minor free. Thus the maximum degree of G[R)]

is at most t — 1. In particular, 7 < (¢ —1)r;. All ¢;’s are bounded by constants depending
on t. Note that

S(G) = 2/ag +

+0 (n7?). (52)

3 aq 2 1(12
“=7% (‘) " 24,
B _§ l17”0 + l07"1 2 llg?"o + llTl + lo?”g
N 8 107'0 2 Tolg
3l on 21l Lt
B 8(lo+7’0) +2(ZO+ZOT’O+T0
. 3 ll 1 2 lg l% T2
N 8 3l0+r0) +210 3l%+2T0
t—1)2 l 2 S t—1L B —(t—1
_ (=1 3 boyn o 2g g I )1__12 ry— (= 1)
6 8 310 To 3 2[0 6[0 3[0 27’0
_-1r 3 (h o m 20 N W(GIED e (E= D
6 8\3ly 1 3 6lo 2r¢
t—1)2 Liaa
(=12 (L)
6 6l

At the last step, the equality holds only if
L (L) = Y(Lmaz),
2. ry=(t—1)ry,
3o+ 2—2(t—1)=0.

Thus, we have

a (t B 1)2 + ¢(Lmax)/(5 - 1) 1
S(G) < 2v/ag + 3 a +O( )

THE ELECTRONIC JOURNAL OF COMBINATORICS 32(1) (2025), #P1.5 17




This upper bound is asymptotically tight. Consider
Go :Lmax\/(&)KtU(n—S+1—t€0)P1)

where /; is an integer such that ?leo + - %(t — 1) is close to zero. Thus

(t =124+ Y(Lpaz) /(s — 1) 1
o)/ 1) (1)

S(Go) = 2y/a +

Claim 24. G[L] = Ly

Proof. Otherwise, we have ¥)(G[L]) < ¥(Laz). Also, by the definition of 1, we have that
Y(G[L]) < Y(Liaz) — =5 It then follows that for sufficiently large n,

(t=1)°+¢(GIL])/(s — 1) 1
3\/a O (W)

(t _ 1)2 + w([/maz)/(s - 1) 1
3\/a O (W)

S(G) < 2y/a +

< 2y/ag +
= S(Gy),
giving a contradiction. O

Claim 25. There is a constant C' such that the value of 3[710 + 1L that mazimizes S(G) lies
in the interval (%(t —-1)— Cn=1/2, %(t —1)+ Cn‘1/2).

Proof. Otherwise, for any ?f—l + L not in this interval (where C'is chosen later), we have

lo
t—12 3 , o (Lma) 72— (t—1)n
< _2¢c
“ 6 e A
t—10? 3 5 1, Y(Lmas)
<O )2 Yilimaz)
6 SR T

This implies that

§Cz -1
S(G) — S(Go) < — A= +0(i)<o,

/g n3/2
3,2, —1
giving a contradiction when C'is chosen to be large enough such that — 46:/% +0 (n3—1/2) <

0. O
From now on, we assume that ?leo +oe(3(t-1)— Cnt/2 2(t — 1) + Cn'/?).

Claim 26. There is a constant Cy such that the value of ro lies in the interval [(t—1)ry —

02, (t — 1)7‘1].
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Proof. Otherwise, we assume 7o < (t — 1)r; — C3 for some Cy chosen later. We then have

(t =12+ ¢(Linaz) /(s — 1) Co 1
S(G) <2 - O —7 | < S(Go),
(@) Go + 3/ao T0+/G0 tO\er) < (Go)
when (5 is chosen to be sufficiently large, giving a contradiction. O

Claim 27. Fori > 3, we have r; € [(t — 1) (r; — (1 — 1)Cy),r(t — 1)"1].

Proof. Let R’ be the set of vertices in R such that its degree is in the interval [1,¢ — 2].
We have
Co>(t—1ri—m =) (t—1-d(v))dv) > (t—2)|R.

vER'
This implies
/ 02
< .
We have ' '
(t—1Drig —r < (t=2)| Rt — 1)1 < Cy(t — 1) (53)
Thus,
ri > (t— 1) — Co(t — 1)1

> (t—1D((t = 1)rig — Co(t — 1)72) = Cy(t — 1)1 by induction

= (t — 1)27‘i_2 — QCQ(t — 1)i_1

2 .

> (-1 ) — (i —1)Co(t — 1)1

Claim 28. 7o, = (t — 1)ry and 35710 + o - 2(t—1) = O(n="=9) for any given € > 0.

Proof. Assume that ;710 + - 2t—1) = A, and r, = (t — 1)ry — B, where A €
[~Cn~2,Cn~Y?] and 0 < B < Cy. It follows that

e2(G) = e2(Go) =0 (n7?) — 37,42 - %,
and
c1(G) — e4(Go) = O(n~V?).
Thus

CQ(G) — C2(G0) 4 2

5(G) = 5(Gy) =272 "

0

cs(G) — ca(Go) I (a_5/2)
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This implies B = 0 and A = O(n=3/%).

Notice that A = O(n=%/%) implies c4(G) — c4(Gy) = O(n~"*), which implies A =
O(n~7/8). Tterate this process finitely many times. We get A = O(n~(179) for any given
e > 0. U

Claim 29. G[R] is the union of vertex disjoint K;s and isolated vertices.

Proof. Recall that r = 1"Agl = Y, pdgr(i) = 2|E(G[R])|, and ry = 1A}l =
> icrdarr (). By Claim 28, we have that

S dom (i) = (t— 1) dam(i).

i€ER i€ER

Since dgp(v) < t — 1 for every v € R, it follows that G[R] is the disjoint union of
(t — 1)-regular graphs and isolated vertices. Let K be an arbitrary non-trivial component
of G[R]. We will show that K is a clique on ¢ vertices.

For any u,v € V(K) with uv ¢ E(K), we claim that |[Ng(u) N Ng(v)| > t — 2.
Otherwise, |Ng(u)\Nk(v)| > 2 and |Ng(v)\Nk(u)| = 2. Pick an arbitrary vertex w €
Ng(u)NNg(v) and contract uw and wv, we then obtain a K ;-minor in K, and thus a K ;-
minor in G. Similarly, for any u,v € V(K) with uwv € E(K), we have | Nk (u) N Ng(v)| >
t—3.

We claim now that for any u,v € V(K), |[Ng(u) N Ng(v)| < t —2. Suppose otherwise
that there exist vertices u,v € V(K) such that |[Ng(u) N Ng(v)| =t — 1. Let w be an
arbitrary vertex in L. Note that when n is sufficiently large, we could find a length-two
path from w to each vertex in L\{w} using distinct vertices in R\V(K) as the internal
vertices of these paths. It follows that (L\{w})U{u,v} and (Ng(u) NNk (v)) U{w} would
form a K, -minor in G.

Hence, we have that for any u,v € V(K) with wv ¢ E(K), |[Ng(u) N Ng(v)| =t — 2.
It then follows that there exist u',v" € V(K) such that ' € Ng(u)\Nk(v) and v' €
Ni(v)\Ng(u). We claim that v'v" ¢ E(K). Indeed, if u'v' € E(K), we could contract
v'u/ into w’” and obtain a K, minor the same way as above.

Now note that since v'v ¢ E(K), we have |[Ng(u') N Ng(v)| =t — 2. It follows that
N ()N Ng(v) = Ng(u) N Ng(v). Similarly, Ng(v') N Ng(u) = Ng(u) N Ng(v). We will
now analyze Nk (u) N Nk (v).

Let G1 = G[Nk(u) N Nk (v)]. Note that for each vertex w € V(G;), w must have at
most two non-neighbors in Gy, otherwise | Ng(u) N Nk (w)| < t—4, giving a contradiction.
Moreover, each vertex w € V(G7) has at least two non-neighbors in Gy, otherwise dgx (w) >
t —4+4 =t, giving a contradiction. It follows that each vertex in G; has exactly two
non-neighbors in Gj.

Now, if G is a clique, we could easily find a K;; in K (by identifying one of the
vertices in N(u) NN (v) as the center). Hence together with L, we have a K ;-minor in G.
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Otherwise, we find a,b € G, such that ab ¢ E(K). Since |Ng(a) NN (b)| = t—2 and each
of a and b has exactly one non-neighbor in Gy, we then obtain that |Ng, (a) N Ng, (b)| =
t—6, and there exist a’, b’ € V(G;) such that a’ € Ng, (a)\Ng, (b) and ¥’ € Ng, (b)\Ng, (a).
Similar to before, we have o't/ ¢ E(K), and o',V is each adjacent to Ng, (a) N Ng, ().
Repeat this process, eventually, this process has to terminate, and we will have a K ;-
minor in K, thus a K, minor in G. O

This completes the proof of Theorem 1. O

We now determine the maximum spread K ;-minor-free graphs for all admissible pairs
(s,t).
Proof of Theorem 2 . Since (s,t) is admissible, we have G[L] = (s — 1) K;. We only need
to consider the graph Gy, = (s — 1)K, V ((K; U (n — s+ 1 — £t)P;). We have [y = (s — 1)
and [; =0 for i > 1. We have ro = (n — s+ 1), and r; = £t(t — 1)’ for each i > 1.

Now we apply Lemma 22 to simplify the equation satisfied by both \; and \,,. Equa-
tion (36) can be simplified as

A2 = (Z /\—kl’A’;1> : (Z A—’Cl’A’;l)
k=0 k=0
=(s—1) <n—s+1+ZA—ket(t— 1)k>

k=1
=L
=(s—1) (n—s+1+ 1_;\__1>
)
(s—=1D((n—s+DA—=(n—s+1—=1t)(t—1))
B A—(t—1) '
Simplifying it, we get the following cubic equation:
NMot—DN=(s—1)n—s+DA+(s—=1)(t—1)(n—s+1—1t) =0. (54)
Now let A =z + % We get the following reduced cubic equation ¢(x) = 0.
2> —pr+q=0, (55)
where p = (s—1)(n—s+1)+3(t—1)?and ¢ = (s—1)(t—1) (3(n — s+ 1) — (1) — 2 (t—1)3.

Since ¢(x) has at least two real roots, we know from number theory that p > %qQ.

We now need a lemma on the spread of a cubic polynomial. If f is a cubic polynomial
with three real roots, then the spread S(f) is defined to be the difference between the
largest and smallest roots of f.

Lemma 30. Assume p® > %qQ. Let S(q) (with p fixed) be the spread of the cubic equation
2* —pr+q=0. (56)

12 ()" > || > |gal, then
S(q1) < S(q2).
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Before we give the proof of Lemma 30, we complete the proof of Theorem 2 using
Lemma 30.

Applying Lemma 30, we conclude that S(Gy) = S(¢) reaches the maximum if and
only if |g| reaches the minimum. Let ¢; be the real root of the equation ¢ = 0. We have

€1:%<n—s+1—é§8_—_1)12)).

Since ¢ is a linear function on /¢, the function |¢g| reaches the minimum at the nearest
integer of /1. This completes the proof of Theorem 2. O

We now give the proof of Lemma 30.

Proof of Lemma 30. Since p® > 2 q the equation 2% — pr + ¢ = 0 has three distinct real
roots, say x; > xy > 3. Observe that —xy, —xo, —x3 are the roots of 2* — pr — q = 0.
Thus, these two cubic polynomials have the same spread. Without loss of generality, we

can assume ¢ > 0. Let a = %arccos(—ﬁ) € [%,5). We have

q/2
(p/3)%%

Applying the triple angle cosine formula, we have

cos(3a) = —

q/2
(p/3)32

s—=17z and simplifying it, we get

4 cos®(a) — 3cos(a) = —

Plugging cos(a) = 7 /3)

23 —pr+q=0.
Thus 2; = 2(p/3)"?cos(a) is a root of Equation (56). Similarly, we get that x, =
2(p/3)"? cos (a — &), and x5 = 2(p/3)"/?cos (a + %) are also the roots of Equatlon

):
5):

(56). Since a € [§, §), we have
) <ot 2 -
—<at+—<m
6 3
s < 2 T
2 3 3
Therefore
Ty > 29 > 0> x5.
In particular, we have
S(q) = v1 — w3

2(p/3)'/? (cos(a) — cos(a + 2%))
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= 2(p/3)"? - 2sin (%) sin (a + g)
= 2,/psin (a + %) .

Since « is an increasing function on ¢ and S(q) is a decreasing function on a, we conclude
S(q) is a decreasing function on q. O

We now determine all admissible pairs (s, t).

Proof of Theorem 3. We will first show the ‘only if’ direction of Theorem 3. Recall that
by definition, the pair (s,t) is admissible if /(L) < 0 for all graphs L on s — 1 vertices,
and (L) =0 only if L = (s — 1)K;. For L = K; 5_», we have that

V(Kie0)=3((s—2°+s—2) — (2(5 —2))? — (t — 1)2(s — 2)

s—1
S (s -2~ 2t~ 1)(s - 2),

S —

=3(s—2)(s—1)—

from which it easily follows that ¥ (K o) > 0 if and only if

3 4(s —2) 3 4
—1<=(s—1)— —(s—3)+ .
t <2(s ) 1 =>t<2(s 3) 1

Thus we can conclude that if (s, ¢) is admissible, then ¢ > 3(s — 3) + 5.
Before we show the ‘if” direction of Theorem 3, we need two upper bounds on the sum
of the squared degrees of a graph due to de Caen [5] and Das [9], respectively.

Theorem 31 (de Caen [5]). Let G be a graph with n vertices, e edges and degrees d; >

do > --->d,. Then,
il 2
deée( ‘ +n—2).
— n—1

Theorem 32 (Das [9]). Let G be a graph with n vertices and e edges. Let dy and d,, be,
respectively, the highest and lowest degrees of G. Then,

> d? < 2e(dy +d,) — ndyd,.
=1

We first prove a lemma that almost covers the entire range of ¢ using only Theorem 31.
Lemma 33. Ift > s and t > 3(s — 3) + 1, then the pair (s,t) is admissible.

Proof of Lemma 33. We may assume s > 3. Let L be a graph on s — 1 vertices with at
least one edge. By Theorem 31,

i (v ds
3 Y & <3Z’€V(“ (Zlev(” +s—3>

s—2
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2
3 (ZieV(L) di) . 3(s —3) ZieV(L) d;
2(s—2) 2 '

Therefore,

2

@z)(L)g(Q(s?’_m—SEl) > di +<@ t—1>Zd

i€V (L) i€V (L)

It follows that (L) < 0, as 2(3372) - < 0for s > 6, and by assumption @ —(t—
1) < 0. For s € {3,4,5}, it could be easﬂy checked by hand that (L) < 0 for all L on
s — 1 vertices with at least one edge (by computing (L) for all two-vertex, three-vertex
and four-vertex graphs L).

This implies that the pair (s,t) is admissible for all t > s and t > 3(s —3)+1. [0

The only cases missed by Lemma 33 are the following: s > 10 is even and t = 5s — 4.
To take care of these cases, we use both Theorem 31 and Theorem 32.
Assume t = %s — 4, where s > 10 and s is even. As in the proof of Lemma 33, we can

use Theorem 31 to bound (L) by

5

2

(L) < (2(33—2) - :1) > di Z d;, (57)

1€V (L) ’LGV(L

where L is any graph on s — 1 vertices with at least one edge. Viewing the right-hand side
of (57) as a quadratic polynomial in the variable Ziev( 1) di, we see that the quadratic
polynomial has two solutions: one with ZiEV( L) d; = 0, and one with

S o b (-D6=2)

2 _ _3 _
ieV (L) s—1 2(s—2) §—9
Since 2(53—2) — ﬁ < 0, it follows that if
> a2
5 )
i€V (L)

then 1(L) < 0. Thus, assume that >, ;) di < (s_?_ﬁ, i.e., that the number of edges

5
e in L is bounded as e < 1%

We distinguish two cases: (1) the graph L has at least two isolated vertices; (2) the
graph L has no isolated vertices or one isolated vertex. We assume s > 12 as the case
s = 10 can be directly checked by computer.

Suppose L has at least two isolated vertices. Let L_5 be the graph obtained by
deleting two of the isolated vertices. Then, >,y 1y & = D ey, 47 and ooy di =
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Ziev( L2 d;. We use induction on s. So, we assume s > 12, whence by the inductive
hypothesis,

) 2
—SZd G0 Zd

i€V (L

_ ((g(s ~9) _4> _ 1) P )d@-

We show ¢(L_5) > 1 (L). We have

< 0.

v v = (- ) [ T ) 3% 4
zEVL)

i€V (L)

4
P Py Z d| +3 Z d;.

i€V (L) i€V (L)

Viewing ¢(L_») — (L) as a quadratic polynomial in } ;. ;) d;, it follows that ¢)(L_2) —
(L) > 0if 3 2cy L) d; < 3(s —1)(s — 3). Indeed we have that dicviny di < % <
3(s —1)(s — 3) if s > 10. Therefore, (L) < ¢(L_3) <0

Now, assume that instead L has at most one isolated vertex. Recall that by our
assumption,

—1)(s—2 12
R Gl
S

-5 s—5
1€V (L)

Without loss of generality, let dy > dy > --- > ds_1 be the degree sequence of L. We
could easily check by hand that (L) < 0 for all L with degree sequence of the form
(dq,1,---,1,1), (dq,1,---,1,0), (dq,2,1,1,--- ,1,1), or (d1,2,1,1,~~ ,1,0).

Otherwise, we have that d; < 2 —(s—1) =3+ 1f ds—1 = 0 and
similarly dy < 2+ % ifdsy = 1. In elther case, di +ds_1 < 3 —|— = if s > 12. Since
dy +ds_ 1 is an mteger we have that d; +d,_; < 4 for s > 12. Therefore by Theorem 32,

ZzeV (L) z < 4ZzEV(L dla S0

2

)=3 > dtil Z d; —(%—5)2 d;

1€V (L) 1€V (L i€V (L)
2
<<12—<—s—5)> Zd——l Z d;
ieV(L) i€V (L)
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But now we see that (L) < 0, since — -2+ (Ziev(m d,-) <0and 17— 35 <0 if s > 12.
This completes the proof of Theorem 3.
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