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Abstract—In this paper, we study binary triorthogonal
codes and their relation to CSS-T quantum codes. We
characterize the binary triorthogonal codes that are
minimal or maximal with respect to the CSS-T poset,
and we also study how to derive new triorthogonal
matrices from existing ones. Given a binary triorthogonal
matrix, we characterize which of its equivalent matrices
are also triorthogonal. As a consequence, we show that
a binary triorthogonal matrix uniquely determines the
parameters of the corresponding triorthogonal quantum
code, meaning that any other equivalent matrix that is
also triorthogonal gives rise to a triorthogonal quantum
code with the same parameters.

Index Terms—Triorthogonal codes, quantum codes,
CSS construction, linear codes

I. INTRODUCTION

Due to noise and decoherence, quantum error-
correction is required to achieve quantum fault-tolerant
computation. The most well-known construction of
quantum error-correcting codes (QECCs) is the CSS
construction, obtained independently in the works of
Calderbank and Shor [3] and Steane [8]. Since this
construction requires a nested pair of classical codes

C2 ⊆ C1, it provides a bridge between QECCs and
classical coding theory.

Due to Eastin–Knill theorem [5], it is not possible to
find a QECC that implements a universal gate set trans-
versely. One strategy to circumvent this limitation is
to use magic state distillation protocols to implement a
logical non-Clifford gate, usually the T gate [2], which
requires QECCs implementing the logical T gate. In
this context, triorthogonal codes and CSS-T codes
have gained attention because of their potential for
magic state distillation. Triorthogonal matrices were
introduced by Bravyi and Haah [1] as binary matrices
in which the common supports of all pairs and of all
triples of rows have even cardinalities. From such a
matrix, one can construct a QECC that implements the
logical T gate when applying a physical transversal T
gate, up to a possible Clifford correction. In fact, if one
wants to avoid the Clifford correction, then [7] shows
that triorthogonality, plus some weight conditions, is a
necessary and sufficient condition to obtain the logical
T from the physical transversal T gate.

CSS-T codes are a generalization of triorthogonal
codes introduced in [7]. These codes only require the



physical transversal T gate to induce some logical
operation on the logical qubits, which might not be
the logical T . In [4], an alternative characterization of
binary CSS-T codes is given, and the poset of binary
CSS-T pairs is introduced. By definition, triorthogonal
codes are CSS-T codes, and some of the connections
between both types of codes are studied in [7]. In this
paper, we further explore the relations between binary
triorthogonal and binary CSS-T quantum codes, and
we study how binary triorthogonal codes fit within the
binary CSS-T poset.

The main contributions of this paper include

• a propagation rule for triorthogonal codes: The-
orem III.14 and Corollary III.15 shows that if
C is linear code giving rise to a triorthogonal
[[n, k, d]] QECC and v ∈ (C∗2)⊥ \ C is a vector
of odd weight, then C+⟨v⟩ yields a triorthogonal
[[n, k + 1, d]] QECC via the CSS construction.

• a description of the poset of linear codes giving
rise to triorthogonal QECCs via the CSS con-
struction (see Definition III.17) with minimal and
maximal elements given in Theorem III.18.

This paper is organized as follows. Section II covers
the necessary background. Section III discusses the
poset of triorthogonal codes and some relations to the
CSS-T poset. A conclusion is provided in Section IV.

II. PRELIMINARIES

We use the standard notation for finite fields and
matrices: F2 denotes the finite field with two elements
0 and 1; Fm×n

2 denotes the set of m × n matrices
with entries in F2; and Fn

2 := F1×n
2 . Given u, v ∈ Fn

2 ,
u · v :=

∑n
i=1 uivi ∈ F2 denotes their usual dot

product. The weight of a vector v ∈ Fn
2 is taken to be

its Hamming weight wt(v) :=
∑n

i=1 vi. Sometimes we
write |v| = wt(v) mod 2, or, equivalently, |v| = ⟨v, v⟩.
The set of rows of a matrix M ∈ Fm×n

2 is denoted
by Rows(M), the rowspace of M is denoted by
Rowsp(M), and the transpose of M is M t ∈ Fn×m

2 .
The all-ones vector is 1 := (1, . . . , 1) ∈ Fn

2 , and the
k × k identity matrix is denoted by Ik. We also use
the standard notation from coding theory. A binary
linear code C of length n, dimension k, and minimum
distance d is a k-dimensional F2-subspace of Fn

2 in
which the minimum Hamming weight of a nonzero
codeword is d, and referred to as an [n, k, d] code.
The dual of such a code C is an [n, n − k, d′] code
C⊥ := {u ∈ F2 : u · c = 0 ∀c ∈ C}. A generator ma-

trix for C is a matrix G ∈ Fk×n
2 where n ≥ k with

Rowsp(G) = C. In this paper, we restrict our attention
to binary linear codes and, hence, say code to mean a
binary linear code. The relative hull of a code C1 with
respect to another code C2 of the same length is

HullC2(C1) := C1 ∩ C⊥
2 ,

and the hull of a code C is the relative hull of C with
respect to itself:

Hull(C) := C ∩ C⊥.

The Schur product of vectors u = (u1, . . . , un) and
v = (v1, . . . , vn) in Fn

2 is the vector

u ⋆ v := (u1v1, . . . , unvn) ∈ Fn
2 .

The Schur product of codes C,C ′ ⊆ Fn
2 is the code

C ⋆ C ′ := Span {c ⋆ c′ : c ∈ C, c′ ∈ C ′} ⊆ Fn
2 .

The square of the code C is C⋆2 := C ⋆ C, and for
a positive integer i, the i-th power of C is C⋆i :=
C ⋆ · · · ⋆ C︸ ︷︷ ︸

i times

.

Codes C1 and C2 satisfying C2 ⊆ C1 may be used
to define a quantum stabilizer code Q(C1, C2) via the
CSS construction [3], [8]. The CSS code Q(C1, C2) is
an

[[n, k1 − k2,≥ min{d1, d⊥2 }]]

quantum code, where Ci is an [n, ki, dk] code, for i =
1, 2, and d⊥2 is the minimum distance of C⊥

2 . It was
shown in [4, Theorem 2.3] that such a code is CSS-T
if and only if

C2 ⊆ HullC⋆2
1

C1 = C1 ∩
(
C⋆2

1

)⊥
. (II.1)

In this case, we refer to (C1, C2) as a CSS-T pair.
Moreover, we can say more about the parameters of
the resulting quantum code.

Proposition II.1. [4, Corollary 2.5] If (C1, C2) is a
CSS-T pair, then Q(C1, C2) is an [[n, k1 − k2,≥ d⊥2 ]]
code.

III. POSET OF TRIORTHOGONAL CODES

In this section, we consider binary triorthogonal
matrices and the codes they define.

Definition III.1. A binary matrix G is called triorthog-
onal if for every triple of distinct u, v, w ∈ Rows(G)
the Schur products u⋆v and u⋆v⋆w have even weights.



A binary linear code C ⊂ Fn
2 is called triorthogonal

if it has a triorthogonal generator matrix.

Remark III.2. Note that a binary linear code may have
several triorthogonal generator matrices G. However,
the span of the even weighted rows of G is unique and
equals the hull of C, as shown in [1, Lemma 1]; that
is, given any triorthogonal generator matrix G ∈ Fk×n

2

of a code C, one has

Rowsp (G0) = Hull(C),

regardless of the choice of G, where G0 ∈ Fk′×n
2

denotes the submatrix of G consisting of all even
weighted rows of G. We do not distinguish between
matrices with the same set of rows, only permuted, as
they generate the same code. Hence, we may assume
that given a generator matrix G, its rows are ordered
so that

G =

(
G1

G0

)
(III.1)

where the rows of G1 are all of odd weight and the
rows of G0 are all of even weight.

As mentioned above, CSS-T codes are a general-
ization of triorthogonal codes. This can be concluded
from the following proposition.

Proposition III.3. Let C be a binary triorthogonal
code. Then

C⋆2 ⊆ C + C⊥.

As a consequence, if we let C1 = C, C2 = Hull(C),
then (C1, C2) is a CSS-T pair.

Proof. Let G be a triorthogonal generator matrix for
C. Let x =

∑k
i=1 ui⋆vi be an element of C⋆2 for some

ui, vi ∈ Rows(G). If ui = vi then ui ⋆ vi = ui ⋆ ui =
ui ∈ C. If ui ̸= vi then for any w ∈ C the vector
ui⋆vi⋆w is even weighted and, hence, (ui⋆vi)·w = 0.
This shows that ui ⋆vi ∈ C⊥. Therefore, x ∈ C+C⊥.

Let C1 and C2 be as in the statement of the
proposition. Then (C⋆2

1 )⊥ ⊇ Hull(C1) by the previous
reasoning, which implies

HullC⋆2
1
(C1) ⊇ Hull(C1) = C2.

We finish by recalling Equation (II.1).

Before continuing, let us clarify that Proposition
III.3 does not characterize triorthogonal codes. The
next example demonstrates that the condition C⋆2 ⊆

C+C⊥ (in fact, even C⋆2 = C+C⊥) is not sufficient
to guarantee that C is triorthogonal.

Example III.4. Consider the binary code C with

generator matrix G =

1 1 0 0 0
0 1 1 0 0
0 0 0 1 1

. Then C⊥

and C∗2 are generated respectively by

(
1 1 1 0 0
0 0 0 1 1

)
and


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1

 .

From this, it is easy to see that C∗2 = C + C⊥.
However, C cannot be generated by a triorthogonal
matrix, since C is even but

Hull(C) = Span{
(
0 0 0 1 1

)
}.

This contradicts the condition given in Remark III.2.

If G is a generator matrix of a binary triorthog-
onal code C, then the associated CSS-T pair is
(C,Hull(C)). Thus, we can speak about the triorthog-
onal code C generated by G or we can speak about
the triorthogonal pair (C,Hull(C)).

Definition III.5. A quantum triorthogonal code Q
is the quantum code obtained using the CSS-T pair
(C,Hull(C)), where C is a triorthogonal code.

Remark III.6. Let C be a binary triorthogonal code
with generator matrix as in Equation (III.1). By Re-
mark III.2 we have Rowsp(G0) = Hull(C) ⊇
HullC⋆2(C). Since (C,Hull(C)) is a CSS-T pair, from
Equation (II.1) we obtain

Rowsp(G0) = Hull(C) = HullC⋆2(C).

It is important to observe that triorthogonality is
a property of the code rather than a property of a
specific generator matrix. This suggests then that the
triorthogonal matrix that generates a triorthogonal code
is unique up to specific transformations. This is indeed
the case, according to the following Theorem III.9
below.

First, we require a couple of lemmas.

Lemma III.7. Let G be a binary triorthogonal matrix
as in (III.1). Then

GGt =

(
Ik1

0
0 0

)
,



or equivalently G1G
t
1 = Ik1 and GiG

t
0 = 0 for i =

0, 1.

Proof. It follows from the definition of triorthogonal-
ity.

Lemma III.8. Let G ∈ Fn×n
2 . If G is nonsingular and

triorthogonal, then G is a permutation matrix.

Proof. Let gi, 1 ≤ i ≤ n, be the rows of G. Since G
is nonsingular, its rows generate Fn

2 and thus, the hull
is zero (Remark III.2), implying that gi is odd for each
i. Even more, for i ̸= j, we have

gi ⋆ gj =

n∑
h=1

αhgh,

for some α1, . . . , αn ∈ F2. Since G is triorthogonal,
we obtain

0 = |gi ⋆ gj ⋆ gk| =

∣∣∣∣∣
n∑

h=1

αhgk ⋆ gh

∣∣∣∣∣ = |αkgk|

where |v| denotes the weight modulo 2. Since each gk
is odd, we have αk = 0. Hence, gi ⋆ gj = 0, which
implies the rows of G have pairwise disjoint support,
proving the statement.

Theorem III.9. Let Gi ∈ Fki×n
2 , i = 0, 1, where

G1 has rows of odd weight and G0 has rows of even
weight. Suppose G as in Expression (III.1) forms a
triorthogonal matrix, and let M ∈ F(k0+k1)×(k0+k1)

2

be a non-singular matrix. Then MG is a triorthogonal
matrix if and only if

M =

(
P M2

0 M4

)
,

where P ∈ Fk1×k1
2 is a permutation matrix, M4 ∈

Fk0×k0
2 is non-singular, and M2 ∈ Fk1×k0

2 .

Proof. The “if” statement can be easily checked. Now,
assume

M =

(
M1 M2

M3 M4

)
is non-singular, where M1 ∈ Fk1×k1 , M4 ∈ Fk0×k0 .
We have

MG =

(
M1G1 +M2G0

M3G1 +M4G0

)
.

By Lemma III.7, we have G1G
t
1 = Ik1 and GiG

t
0 = 0,

for i = 0, 1. Thus

MG(MG)t =

(
M1M

t
1 M1M

t
3

M3M
t
1 M3M

t
3

)
.

If MG is also triorthogonal, by Lemma III.7, we
have

MG(MG)t =

(
M1M

t
1 M1M

t
3

M3M
t
1 M3M

t
3

)
=

(
Ik1

0
0 0

)
,

permuting rows if necessary (which is allowed accord-
ing to Remark III.2).

Since M1M
t
1 = Ik1

, M1 is invertible, and from
M3M

t
1 = 0 we deduce M3 = 0. Since M is invertible,

we also have det(M4) ̸= 0. The only thing left to
prove is that M1 is a permutation matrix. Let gi be the
i-th row of G and observe that the i-th row of MG,
1 ≤ i ≤ k1 is of the form

g′i =

k1∑
j=1

(M1)ijgj +

k0∑
j=1

(M2)ijgk1+j .

Observe that for 1 ≤ i1, i2, i3 ≤ k1 we have

|g′i1 ⋆ g
′
i2 ⋆ g

′
i3 |

=

∣∣∣∣∣∣
k1∑

j1=1

k1∑
j2=1

k1∑
j3=1

(
3∏

h=1

(M1)ihjh

)
gj1 ⋆ gj2 ⋆ gj3

∣∣∣∣∣∣ ,
where the products with at least one row of G0

are not relevant since Rowsp(G0) = HullC∗2(C) by
Remark III.6, where C is the span of G. Since G is
triorthogonal, then gj1 ⋆gj2 ⋆gj3 is even if at least two
of the ji’s are different, thus

|g′i1 ⋆ g
′
i2 ⋆ g

′
i3 | =

∣∣∣∣∣∣
k1∑
j=1

3∏
h=1

(M1)ihjgj

∣∣∣∣∣∣
= |(M1)i1 ⋆ (M1)i2 ⋆ (M1)i3 |,

where we have used that |gj | = 1 and the fact that the
weight modulo 2 is a linear map from Fn

2 to F2.
Therefore, MG is triorthogonal if and only if M1

is triorthogonal and det(M4) ̸= 0. Since M1 is non-
singular then it is a permutation matrix by Lemma III.8
and we have the conclusion.

Remark III.10. Notice that Theorem III.9 also high-
lights the fact that a binary triorthogonal code may
have a generator matrix which is not a binary triorthog-



onal matrix.

Theorem III.9 proves that a triorthogonal basis of
C (in the sense that the elements of the basis form a
triorthogonal matrix) is unique modulo Hull(C). As a
corollary we have the following.

Corollary III.11. Let C ⊆ Fn
2 be a binary triorthogo-

nal code. Then the corresponding quantum triorthog-
onal code has parameters

[[n, dimC − dimHull(C),≥ d(C + C⊥)]]2.

Remark III.12. The X-stabilizers of a quantum tri-
orthogonal code are given by Hull(C) while the Z-
stabilizers are given by C⊥. Once again, the choice of
a triorthogonal matrix for C is not relevant, since any
of such matrices gives the same quantum code.

In analogy with CSS-T pairs, we will see that
we can either increase or reduce the dimension of a
triorthogonal code.

Proposition III.13. Let C be a binary triorthogonal
code of dimension at least 2. There is a triorthogonal
code C ′ such that dimC = dimC ′ + 1.

Proof. This follows immediately by deleting an odd
row in a triorthogonal generator matrix of C.

Theorem III.14. Let C be a binary triorthogonal
code. If v ∈ (C∗2)⊥, then C + ⟨v⟩ is a triorthogonal
code.

Proof. By hypothesis, C has a triorthogonal generator
matrix

G =

(
G1

G0

)
.

We consider the matrix

G′ =

(
G′

1

G′
0

)
,

where G′
1 =

(
v
G1

)
and G′

0 = G0 if v is odd weighted;

and G′
1 = G1 and G0 =

(
v
G0

)
if v is even weighted.

We have that G′
1 has odd weighted rows and G′

0

has even weighted rows. We will prove that G′ is
triorthogonal. The only conditions we need to check
are those that involve v since G is triorthogonal. Let
g ̸= v be a row of G′. Then g ∈ C and v · g = 0 since
v ∈ (C⋆2)⊥ ⊂ C⊥ (recall C ⊂ C⋆2 as C is a binary
code). Let g1 ̸= g2 be two rows of G′ different from

v. Then g1 ⋆ g2 ∈ C⋆2, which implies (g1 ⋆ g2) · v = 0,
proving that G′ is triorthogonal.

Corollary III.15. Let C be a triorthogonal binary lin-
ear code, v ∈ (C∗2)⊥ and denote by C ′ = C+⟨v⟩. Let
Q and Q′ be the corresponding quantum triorthogonal
codes. If v is odd and Q is [[n, k, d]], then Q′ is a
binary [[n, k + 1, d]] triorthogonal code.

Proof. The result follows from Theorem III.14 and the
fact that we are changing C without changing its hull.
Thus, the bound on the minimum distance remains the
same.

Remark III.16. Keeping the same notation as in
Corollary III.15 above, if v is even, dimQ = dimQ′

but the lower bound on the minimum distance of the
codes can be different since d(C+C⊥) ≤ d(C ′+C ′⊥).

Recall that the poset of binary CSS-T pairs (C1, C2)
is defined using the entry-wise partial order on the
pairs, i.e. (C1, C2) ≤ (C ′

1, C
′
2) if and only if C1 ⊆

C ′
1 and C2 ⊆ C ′

2; see [4] for additional details.
As any trigorthogonal code C defines a CSS-T pair
(C,Hull(C)), we propose the following definition of
a poset of binary triorthogonal codes.

Definition III.17. Let C and C ′ be triorthogonal codes
in Fn

2 . Define a partial order

C ≤ C ′

if and only if

C ⊆ C ′ and Hull(C) ⊆ Hull(C ′).

Denote by T the poset of triorthogonal codes under
this partial order.

The above definition allows us to view the poset T
as a subposet of the poset of CSS-T pairs.

The next result characterizes the minimal and max-
imal elements of T .

Theorem III.18. Let C be a binary triorthogonal
code.

1) C is a minimal element of T if and only C is a
one-dimensional even code.

2) C is a maximal element of T if and only if
(C⋆2)⊥ = Hull(C).

Proof. 1) This result follows immediately from the
definition.



2) The code C is maximal if and only if (C⋆2)⊥ ⊆
C (one direction is clear by Theorem III.14, and the
other one follows from the definition of triorthogonal
codes). Since C is binary, C ⊆ C⋆2, i.e., (C⋆2)⊥ ⊆
C⊥. We have (C⋆2)⊥ ⊆ Hull(C) = HullC⋆2(C) by
Remark III.6, which implies (C⋆2)⊥ = HullC⋆2(C) =
Hull(C).

As a Corollary of Theorem III.14, we can obtain the
following result about the poset of triorthogonal codes.

Corollary III.19. Let C be a binary triorthogonal
code. If 1 ∈ C⋆2, then C cannot be extended to another
triorthogonal code without modifying the hull.

Proof. To extend C to another triorthogonal code we
need to find vectors in (C⋆2)⊥. If 1 ∈ C⋆2, all of
these vectors are even weighted. The argument from
Theorem III.14 for the even weighted case shows
that resulting code after extending has increased the
dimension of its hull.

In [4] it is proven that a binary CSS-T pair (C1, C2)
is maximal in the second component if and only if
C2 = C1 ∩ (C⋆2

1 )⊥. This is always the case with
triorthogonal quantum codes (C,Hull(C)) by Remark
III.6. Therefore, we obtain the following.

Corollary III.20. If C is a binary triorthogonal code,
then the CSS-T pair (C,Hull(C)) is maximal in the
second component with respect to the CSS-T poset.

IV. CONCLUSION

In this paper we have studied binary triorthogo-
nal codes and their poset. We have also shown that
equivalent triorthogonal matrices give rise to quan-
tum codes with the same parameters and we have
given a propagation rule for quantum triorthogonal
codes. Future research agenda includes constructing
triorthogonal codes with good parameters using well
known families of classical codes, such as cyclic or
quasi-cyclic codes, and studying the generalization of
triorthogonal codes to the p-ary case [6].
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