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Abstract. This work studies several decoding algorithms for hyperbolic
codes. We use some previous ideas to describe how to decode a hyper-
bolic code using the largest Reed-Muller code contained in it or using
the smallest Reed-Muller code that contains it. A combination of these
two algorithms is proposed when hyperbolic codes are defined by poly-
nomials in two variables. Then, we compare hyperbolic codes and Cube
codes (tensor product of Reed-Solomon codes) and propose decoding al-
gorithms of hyperbolic codes based on their closest Cube codes. Finally,
we adapt to hyperbolic codes the Geil and Matsumoto’s generalization
of Sudan’s list decoding algorithm.
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1 Introduction

Let Fq be a finite field with q elements. Given two vectors x = (x1, . . . , xn)
and y = (y1, . . . , yn) ∈ Fn

q , the Hamming distance between x and y is defined
as dH(x,y) = |{i | xi ̸= yi}|, where | · | denotes the cardinality of the set.
The Hamming weight of x is given by wH(x) = dH(x,0), where 0 denotes
de zero vector in Fn

q . The support of x is the set supp(x) = {i | xi ̸= 0}.
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An [n(C), k(C), δ(C)]q linear code C over Fq is an Fq-vector space of Fn(C)
q

with dimension k(C), and minimum distance δ(C) = min{dH(c, c′) : c, c′ ∈
C, c ̸= c′}, thus its error correction capability is tC =

⌊
δ(C)−1

2

⌋
. When there

is no ambiguity, we write n, k, δ, and t instead of n(C), k(C), δ(C), and tC ,
respectively.

Let N be the set of non-negative integers. For A ⊆ Nm, Fq[A] is the Fq-
vector subspace of polynomials in Fq[X] = Fq[X1, . . . , Xm] with basis given by
the set of monomials

{
Xi = Xi1

1 · · ·Xim
m | i = (i1, . . . , im) ∈ A

}
. Let P = Fm

q ,
where P = {P1, . . . , Pn} and n = |P| = qm. Define the following evaluation map

evP : Fq[X1, . . . , Xm] −→ Fn
q

f 7−→ (f(P1), . . . , f(Pn)).

The monomial code associated to A, denoted by CA, is defined as

CA = evP(Fq[A]) = {evP(f) | f ∈ Fq[A]} .

For a, b ∈ R and a ≤ b, we denote by [[a, b]] the integer interval [a, b] ∩ Z.

Definition 1 (Reed-Muller and Hyperbolic codes).

– Let s ≥ 0,m ≥ 1 be integers. The monomial code CR where the set R is given

by R =
{
i = (i1, . . . , im) ∈ [[0, q − 1]]m |

∑m
j=1 ij ≤ s

}
, is called the Reed-

Muller code over Fq of degree s with m variables. This code is denoted by
RMq(s,m).

– Let d,m ≥ 1 be integers. The monomial code CH where the set H is given

by H =
{
i = (i1, . . . , im) ∈ [[0, q − 1]]m |

∏m
j=1(q − ij) ≥ d

}
, is called the hy-

perbolic code over Fq of order d with m variables. This code is denoted by
Hypq(d,m).

In our previous work [2] we proved there are two optimal Reed-Muller codes such
that RMq(s,m) ⊆ Hypq(d,m) ⊆ RMq(s

′,m). In other words, the largest Reed-
Muller code RMq(s,m) contained in Hypq(d,m), and the smallest Reed-Muller
code RMq(s

′,m) that contains Hypq(d,m). We will use that result to propose
several decoding procedures.

The paper is organized as follows. In Section 2, we describe two different
algorithms to decode a hyperbolic code Hypq(d,m). These algorithms are based
on the optimal Reed-Muller code that approximates to our hyperbolic code,
that is, the largest Reed-Muller code RMq(s,m) contained in Hypq(d,m), or the
smallest Reed-Muller code RMq(s

′,m) that contains Hypq(d,m). We will study
the advantages and disadvantages in terms of efficiency and correction capability
of these proposed algorithms. The choice of the algorithm to be used depends
on which Reed-Muller code is closest to the hyperbolic code Hypq(d,m) as well
as the efficiency or effectiveness that we need. At the end of that section, a third
algorithm, which is a combination of the previous two, is adapted for m = 2, the
case of two variables. In Section 3 a decoding algorithm for a hyperbolic code
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Hypq(d,m) based on the tensor product of Reed-Solomon codes is presented.
In Section 4 we recover Geil and Matsumoto’s generalization of Sudan’s List
Decoding for order domain codes ([3]) but focus explicitly on hyperbolic codes.
The novel idea that we present here is that we explicitly describe each of the
sets involved in the algorithm or at least we give a subset of such sets. Finally in
Section 5, we compare the performance of the five decoding algorithms proposed
in this paper.

2 Decoding based on known Reed-Muller decoders

2.1 Decoding algorithm based on the smallest Reed-Muller code

The main idea that we present in this section is well-known and works for any
pair of nested linear codes. Let C1 ⊆ C2 ⊆ Fn

q be two linear codes with parameters
[n, k1, d1]q and [n, k2, d2]q, respectively. Observe that a decoding algorithm for
C2 that corrects up to t2 errors is also a decoding algorithm for C1 that requires
the same number of operations as in C2, but corrects up to t2 errors. Note that
d2 ≤ d1 and the difference between these two values might be huge. That is, a
decoding algorithm for C2 is also a decoding algorithm for C1, but there is a loss
in the number of errors that one might expect to correct.

Given a hyperbolic code Hypq(d,m), by [2, Theorem 3.6] we know the small-
est integer s such that Hypq(d,m) ⊆ RMq(s,m). Thus, for each decoding al-
gorithm for RMq(s,m) we have one for Hypq(d,m). For example, if we use the
already mentioned Pellikaan-Wu’s list-decoding algorithm, one can correct up to
qm(1−

√
(qm − δ(RMq(s,m)))/qm) errors.

Example 1. We have C1 = Hyp9(9, 2) ⊆ C2 = RM9(s, 2), where s ≥ 12. Note
that δ(C2) = 5, while δ(C1) = 9. Using the algorithm explained in this section
and Pellikkan-Wu’s decoder for C2, we can correct up to 2 errors in C1 (which
coincides with the error correcting capability of C2), while the error-correcting
capability of the code C1 is tC1

= 4.

2.2 Decoding algorithm based on the largest Reed-Muller code

Take A ⊆ B ⊆ Nm. We consider the set Q = {f ∈ Fq[X] | supp(f) ⊆ B \A} ,
where the support of a polynomial f ∈ Fq[X] is defined as

supp(f) =

(i1, . . . , im) | f =
m∑
j=1

αijX
ij , αij ∈ Fq \ {0}

 .

Observe that |Q| = q|B\A|.
Let y ∈ Fn

q be a received word. The following proposition tells us that, if the
number of errors with respect to CB is at most its error-correcting capability, i.e.
dH(y, CB) ≤ tCB

, then, there exists a unique polynomial f ∈ Q such that the
nearest codeword to y − evP(f) is unique in CA.
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Proposition 1. Let y ∈ Fn
q be a received word. Then there exists a polynomial

f ∈ Q such that dH(y−evP(f), CA) = dH(y, CB). Moreover, if dH(y, CB) ≤ tCB
,

the polynomial f is unique.

Proof. We first prove the existence of such polynomial. Set t := dH(y, CB),
then there exists a codeword z = evP(g) ∈ CB , with supp(g) ⊆ B, such that
dH(y, z) = t. Writing g = f + f̃ , with supp(f) ⊆ B \ A and supp(f̃) ⊆ A, we
have t = dH(y, z) = dH(y − evP(f), evP(f̃)), with f ∈ Q and evP(f̃) ∈ CA.

Now we will prove the uniqueness when t ≤ tCB
. Let h ∈ Q be another

possible option. There exist two error-vectors e1, e2 ∈ Fn
q with weight smaller

or equal to tCB
, such that evP(f) + e1 = evP(h) + e2 = y. Therefore evP(f)−

evP(h) = e2 − e1 is an element of CB , with weight at most 2tCB
< δ(CB) − 1.

Thus, the difference evP(f)− evP(h) must be zero and f = h. ⊓⊔

Let CA ⊆ CB monomial codes such that A ⊆ B ⊆ Nm. Let DecCA
be a

decoding algorithm for CA, which corrects up to E errors. By Proposition 1, we
can define the following decoding algorithm for CB that corrects also up to E
errors.

Initialization: Let y ∈ Fn
q be the received word. For each f ∈ Q we follow these

steps
Step 1. Compute y − evP(f).
Step 2. Decode using DecCA

the word y − evP(f).
Step 3. Denote by L the output list of Step 2, that is L = {c ∈ CA | dH(c,y−
evP(f)) ≤ E}. If L is not empty, then for each cA ∈ L, we add to the output
list cA + evP(f).

The previous list-decoding algorithm for CB corrects up to E errors and
requires q|B\A| calls to DecCA

. Moreover, if E ≤ tCB
, one can easily transform

the previous list-decoding algorithm into the following unique decoding one:

Initialization: Let y ∈ Fn
q be the received word. Assume that the number of

errors is at most E ≤ tCB
.

Step 1 Compute y − evP(f) for some f ∈ Q.
Step 2 Decode using the decoder DecCA

the word y − evP(f).
Step 3 If the result of Step 2 is codeword cA such that wH(y − evP (f), cA) ≤
tCB

, then return cA + evP(f).
Step 4 Otherwise, go back to Step 1.

The correctness of this algorithm is justified by Proposition 1 and the fact
that E ≤ tCB

≤ tCA
and, hence, the output in Step 2 has at most one element.

The algorithms proposed involve at most |Q| = q|B\A| calls to DecCA
, which

could be interpreted as an inefficient algorithm from a theoretical point of view.
Nevertheless, for practical purposes, if the difference between the sets B and A
is small, this algorithm defines an efficient algorithm for CB that corrects up to
E errors, as long as an efficient algorithm for CA exists and corrects the same
number of errors.
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2.3 Intermediate case.

In this section we are going to study an intermediate proposal between the two
previous options. We will do our study for the case of two variables.

Proposition 2. Let s be the smallest integer such that Hypq(d, 2) ⊆ RMq(s, 2).
Let H,R ⊆ N2 such that CH = Hypq(d, 2) and CR = RMq(s− 1, 2). Then

|H −R| ≤ 2(
4
√
d+ 1).

Proof. We have that CH = Hypq(d, 2) ⊆ RMq(s, 2). An easy observation is that
whenever (i1, i2) ∈ H −R, then i1 + i2 = s. Thus,

H −R = {(t, s− t) | t ∈ [[0, s]] and (q − t)(q − s+ t) ≥ d}. (1)

Hence we are looking for those t ∈ [[0, s]] such that (q − t)(q − s + t) ≥ d, or
equivalently,(

q − s

2

)2

−
(s
2
− t

)2

≥ d ⇒
∣∣∣s
2
− t

∣∣∣ ≤ √(
q − s

2

)2

− d︸ ︷︷ ︸
∆

.

If we compute ∆, then: |H − R| ≤ 2∆ + 1. We separate the proof in two cases
depending on the parity of s. Recall that, by [2, Proposition 3.2], we know that

s =
⌊
2(q −

√
d)
⌋
.

1. If s + 1 = 2r, then (r, r) /∈ H. As a consequence, (q − s+1
2 )2 < d. Or

equivalently,
(
q − s

2

)2 − q + 2s+1
4 < d. Thus,

∆ ≤
√
q − 2q + 1

4
<

√
q − 4(q −

√
d)− 1

4
=

√√
d+

1

4
<

4
√
d+

1

2
, for d ≥ 1.

2. If s = 2r, then (r, r + 1) /∈ H. As a consequence,
(
q − s

2

) (
q − s

2 − 1
)
< d.

Or equivalently,
(
q − s

2

)2 − (
q − s

2

)
< d. Thus,

∆ ≤
√
q − s

2
<

√
q − 2(q −

√
d)− q

2
=

√√
d+

1

2
<

4
√
d+

1

2
for d ≥ 1.

⊓⊔

Now we have the ingredients to define a new decoding algorithm for the
code CH = Hypq(d, 2). Let s be the smallest integer such that Hypq(d, 2) ⊆
RMq(s, 2). See [2, Proposition 3.2] for a precise description of such parameter
s. We define R ⊆ N2 such that CR = RMq(s − 1, 2). By Proposition 2 we know

that |H −R| ≤ c 4
√
d. Let DecR be a decoding algorithm for CR that corrects up

to tR =
⌊
d(CR)−1

2

⌋
errors. Unifying the ideas of the above decoding algorithms

(see sections 2.1 and 2.2), we have a decoding algorithm for CH that corrects up
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to E errors and requires qc
4√
d calls to DecR. If we compare it with the algorithm

proposed in Section 2.1, we have a poorer complexity but we can correct more
errors. This approach is particulary well suited when d′ = δ(RMq(s, 2)) ≥ q and
|H − R| is small. In this case, δ(CR) = d′ − q + 1 and, as a consequence, the
correction capability of the auxiliary Reed-Muller code we are using to decode
is increased by around q/2.

Example 2. Consider C = Hypq(d, 2) with q = 11, and d = 32. See Figure 1 for a
representation of this example. Throughout this example, we use Pellikaan-Wu’s
list-decoder (PW) for Reed-Muller codes. By [2, Proposition 3.2, Proposition
4.2] we have that RMq(s

′, 2) ⊆ C ⊆ RMq(s, 2) for s
′ ≤ 8 and s ≥ 10.

1. Thus, C ⊆ CR1
= RMq(10, 2). Using Section 2.1 and applying PW algorithm

on CR1
we have an efficient decoding algorithm for C that corrects up to

5 errors and requires just one call to DecCR1
.

2. Thus, CR2 = RMq(8, 2) ⊆ C. Using Section 2.2 to decode C and applying PW
algorithm on CR2 we have a decoding algorithm for C that corrects up to
16 errors. This algorithm uses the decoder DecCR2

plus some brute force.

In particular, it requires q11 calls to DecCR2
, where 11 = |H − R2|, and H

and R2 are the sets in N2 that define C and CR2
, respectively.

3. The intermediate proposal between the two previous options is described in
Section 2.3. More precisely, we consider CR3

= RMq(9, 2) and we perform
q|H−R3| = q5 calls to the PW decoder for CR3

to correct up to 10 errors
in C, where R3 is the set in N2 that defines CR3

.

5

5

Fig. 1. Let q = 11 and m = 2. In this Figure the code Hypq(32, 2) is equal to CH ,
RMq(10, 2) is equal to CR1 , RMq(8, 2) is equal to CR2 and the code RMq(9, 2) equals
to CR, where H, R1, R2 and R are the sets of lattice points below the red, the blue,
the black and the green curve, respectively.
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3 Decoding based on tensor products of RS codes

Let f ∈ Fq[X1, . . . , Xm] be a polynomial. The maximum degree of f with respect
to Xi is denoted by degXi

(f). Now we define a family of monomial codes that
we call cube codes of order s, which consist of the evaluation of the polynomials
f ∈ Fq[X1, . . . , Xm] that satisfy that degXi

(f) ≤ s for each 1 ≤ i ≤ m, on the
qm points of Fm

q . The formal definition is as follows.

Definition 2 (Cube codes). Take s ∈ N and define A = [[0, s]]m. The mono-
mial code CA, denoted by Cubeq(s,m), is called the cube code over Fq of order
s ≥ 0 with m ≥ 1 variables.

A Reed-Solomon code can be seen as a Reed-Muller code RMq(d,m) of order d
and m = 1 variables. That is, the Reed-Solomon code of order s is defined as

RSq(s) = {evP(f) | f ∈ Fq[X] and deg(f) ≤ s} = RMq(s, 1).

Reed-Solomon codes are one of the most popular and important families
of codes. They are maximum distance separable (MDS) codes, thus a RSq(s)
is a code with parameters [q, s + 1, q − s]q. Reed-Solomon codes have efficient
decoding algorithms. In the literature, the two primary decoding algorithms for
Reed-Solomon codes are the Berlekamp-Massey algorithm [1], and the Sugiyama
et al. adaptation of the Euclidean algorithm [4], both designed to solve a key
equation.

Remark 1. Asume that the polynomials that define the Reed-Solomon code
RSiq(s) belong to Fq[Xi]. It is easy to see that the cube code Cubeq(s,m) is

the tensor product of the m Reed-Solomon codes RS1q(s), . . . ,RS
m
q (s). In other

words, we have that

Cubeq(s,m) = RS1q(s)⊗ · · · ⊗ RSmq (s).

Proposition 3. The minimum distance of the cube code Cubeq(s,m) coincides
with its footprint bound for the deglex monomial ordering. Therefore, the code
C = Cubeq(s,m) has length n(C) = qm, dimension k(C) = (s + 1)m, and mini-
mum distance δ(C) = (q − s)m.

Proof. This is a consequence of the fact that the cube code is the tensor product
of Reed-Solomon codes. ⊓⊔

Proposition 4. Take d ∈ N. Then,

(a) Cubeq(s,m) ⊆ Hypq(d,m) if and only if s ≤ q − m
√
d.

(b) Hypq(d,m) ⊆ Cubeq(s
′,m) if and only if s′ ≥ q −

⌈
d

qm−1

⌉
.

Proof. Let H ⊂ [[0, q − 1]]m such that CH = Hypq(d,m). If i = (i1, . . . , im)

satisfies that 0 ≤ ij ≤ q − m
√
d for all 1 ≤ j ≤ m, then

∏m
j=1(q − ij) ≥ d. Hence,
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Cubeq(s,m) ⊆ Hypq(d,m) for all s ≤ q− m
√
d. If s > q− m

√
d, then (q−s)m < d.

Therefore (s, . . . , s) /∈ H and Cubeq(s,m) ̸⊆ Hypq(d,m).

We now check that Hypq(d,m) ⊆ Cubeq(s
′,m) if and only if s′ ≥ r :=

q −
⌈

d
qm−1

⌉
. For s′ ≥ r, it suffices to observe that for all i = (i1, . . . , im) ∈ H,

we have that max{ij} ≤ r. Otherwise
∏m

j=1(q − ij) ≤ qm−1(q − max{ij}) <

qm−1(q− r) ≤ d, a contradiction. Moreover, we have that (r, 0, . . . , 0) ∈ H, so if
s′ < r then Hypq(d,m) ̸⊆ Cubeq(s

′,m). ⊓⊔

Theorem 1. Let DecRS be a decoding algorithm for RSq(s) that corrects up to
tRS errors. Then, there exists a decoding algorithm DecCubeq(s,m) for Cubeq(s,m)
that corrects up to (tRS + 1)m − 1 errors and requires calling f(m) times the
decoding algorithm DecRS, where

f(m) =
m−1∑
i=0

(s+ 1)m−1−iqi ≤ mqm−1 =
mn

q
, for all m ≥ 1.

Proof. We denote by α1, . . . , αq all the elements of Fq. We proceed by induction
on m ∈ N. For m = 1, since Cubeq(s, 1) = RSq(s) then, there exists DecRS that
corrects up to tRS errors.

Now assume that there exists a decoding algorithm for Cubeq(s,m− 1) that
corrects up to (tRS + 1)m−1 − 1 errors. Without loss of generality we reorder
the points P = {P1, . . . , Pn} = Fm

q with n = qm in such a way that the first
qm−1 points of P are those that have α1 in their first coordinate, then those
that have α2, and so on. Let v = (v1, . . . ,vq) ∈ Fn

q where vi ∈ Fqm−1

q be

such that there exists u = (u1, . . . ,uq) ∈ Cubeq(s,m) where ui ∈ Fqm−1

q with
d(v,u) < (tRS + 1)m. As u ∈ Cubeq(s,m), there exists

f(X1, . . . , Xm) =

s∑
i1,...,im=0

βi1,...,imXi1
1 · · ·Xim

m ∈ Fq[X1, . . . , Xm],

such that u = evP(f) and ui = evP′(f(αi, X2, . . . , Xm)) with P ′ = Fm−1
q . We

are going to show how to recover f(X1, . . . , Xm) from v by calling q times the
decoder DecCubeq(s,m−1) and (s+ 1)m−1 times the decoder DecRS.

For all i ∈ {1, . . . , q}, we define di = d(ui,vi). We say that i ∈ {1, . . . , q} is
GOOD if di < (tRS + 1)m−1; otherwise we say that i is BAD. Let dbad be the
number of BAD values i ∈ {1, . . . , q}. Since

(tRS + 1)m >

q∑
i=1

di ≥
∑

i is BAD

di ≥ (tRS + 1)m−1dbad,

we have that dbad < (tRS + 1).

Write f(X1, . . . , Xm) =
∑s

j2,...,jm=0 hj2,...,jm(X1)X
j2
2 · · ·Xjm

m where the uni-
variate polynomial hj2,...,jm(X1) ∈ Fq[X1] has degree at most s, for all j2 . . . , jm ∈
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{0, . . . , s}. For all ℓ ∈ {1, . . . , q}, consider

gℓ(X2, . . . , Xm) := f(αℓ, X2, . . . , Xm) =
s∑

j1,...,jm=0

βj1,...,jmαℓ
j1Xj2

2 · · ·Xjm
m =

=
s∑

j2,...,jm=0

hj2,...,jm(αℓ)X
j2
2 · · ·Xjm

m ∈ Fq[X2, . . . , Xm],

which satisfyies that degXi
(gℓ) ≤ s for all i ∈ {2, . . . ,m}. Moreover, whenever ℓ

is GOOD, we can recover gℓ by means of DecCubeq(s,m−1) and the values vℓ =

(vℓ1 , . . . , vℓqm−1 ) ∈ Fqm−1

q .

Thus, if ℓ is GOOD, we have recovered the value hj2,...,jm(αℓ, X2, . . . , Xm)
for all j2, . . . , jm ∈ {0, . . . , s}. As there are at least (q− tRS) GOOD values, then
for each j2, . . . , jm ∈ {0, . . . , s} we have at least (q − tRS) correct evaluations of
hj2,...,jm(X1). Thus, by induction we can recover βj1,...,jm using (s+1)m−1 times
the decoder DecRS.

Now, let f(m) be the number of times that algorithm DecCubeq(s,m) calls
algorithm DecRS. We will deduce a formula for f(m) by induction on m ∈ N.
First notice that for m = 1, since Cubeq(s, 1) = RSq(s), we have that f(1) = 1.
Moreover, from the above paragraphs, we can deduce that f(m) = qf(m− 1) +
(s + 1)m−1f(1). Now we assume that f(r) = qf(r − 1) + (s + 1)r−1f(1) for all
r ≤ m and we try to show the result for f(m). Indeed,

f(m) = qf(m− 1) + (s+ 1)m−1f(1)

= q((s+ 1)m−2 + qf(m− 2)) + (s+ 1)m−1

= (s+ 1)m−1 + q(s+ 1)m−2 + q2f(m− 2)

= · · · = (s+ 1)m−1 + q(s+ 1)m−2 + q2(s+ 1)m−3 + · · ·+ qm−1f(1)

=
m−1∑
i=0

(s+ 1)m−1−iqi.

This completes the proof. ⊓⊔

Example 3. Consider C = Hypq(d, 2) with q = 32, and d = 225. See Figure 2 for
a representation of this example. We will give different decoding algorithms for
C using all ideas proposed in this article so far.

1. By [2, Proposition 3.2], C ⊆ RMq(s, 2), for s ≥ 34. Therefore, using Section
2.1, and applying PW algorithm on CR1

= RMq(34, 2), we have an efficient
decoding algorithm for C that corrects up to 11 errors and requires just
one call to DecCR1

.
2. By [2, Theorem 4.3], RMq(s, 2) ⊆ C, for s ≤ 24. Therefore, using Section

2.2 and applying PW algorithm on CR2
= RMq(24, 2), we have a decoding

algorithm for C that corrects up to 127 errors because the minimum
distance of RM32(24, 2) is 256 and so the error-correcting capability will be
127, which is beyond the error correction capability of C. The algorithm uses
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the decoder DecCR2
plus brute force. In particular it requires q156 calls to

DecCR2
where 156 = |H − R2|, and H and R2 are the sets in N2 defining C

and CR2
, respectively.

3. The intermediate proposal between the two previous options described in
Section 2.3 has a slight advantage in this example with respect to the first
option. More precisely, one should consider CR′ = RMq(33, 2) and perform

q|H−R′| = q calls to the PW decoder for CR′ to correct up to 14 errors be-
cause the minimum distance of RM32(33, 2) is 30 and so the error-correcting
capability will be 14.

4. By Proposition 4.(b), we have C ⊆ Cubeq(s, 2) for s ≥ 24. We know an
efficient decoding algorithm for C3 = Cubeq(24, 2) that corrects up to t3 =
(tRS + 1)m − 1 = 15, where tRS =

⌊
q−s−1

2

⌋
= 3 denotes the error correction

capability of RSq(s) with s = 24. Therefore, using Theorem 1, we have
an efficient decoding algorithm for C that corrects up to 15 errors and
requires calling q + s+ 1 = 57 times the decoder DecRS.

Fig. 2. Let q = 32 and m = 2. In this Figure the code Hypq(225, 2) is equal to CH ,
RMq(24, 2) equals CR1 , the code RMq(34, 2) is equal to CR2 and the code Cubeq(24, 2)
equals CA, where H, R1, R2 and A are the sets of lattice points below the red, the
black, the blue and the green curve, respectively.

Remark 2. All the ideas proposed in Section 2 can be adapted to decode a hy-
perbolic code using a cube code. That is, by Proposition 4, given a hyperbolic
code Hyp we can find the largest (respectively smallest) cube code contained in
(respectively that contains) Hyp. And this result allow us to give decoding algo-
rithms for hyperbolic codes in terms of the decoding algorithms of cube codes.
Furthermore, an intermediate proposal between the two options can be used (as
in Section 2.3).
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4 Decoding based on a generalized Sudan’s list decoding

Definition 3. Let CH = Hypq(d,m) be a hyperbolic code with H ⊂ [[q − 1]]m.
For r ≥ 1, take Hr ⊂ [[q − 1]]m such that CHr

= Hypq(r + 1,m). For i ≥ 0, we
define

L(d, r, i) = {a ∈ [[q − 1]]m | a+ iH ⊆ Hr}.

Observe that L(d, r, 0) = Hr for any d. We also have that L(d, r, i + 1) ⊆
L(d, r, i). Indeed, as L(d, r, i+1)+(i+1)H ⊂ Hr, then L(d, r, i+1) ⊂ L(d, r, i+
1) +H ⊂ L(d, r, i).

For the following algorithm, we assume that the numbers r and t satisfy the
following conditions:

∞∑
i=0

#L(d, r, i) > n and t = min

i′ |
i′∑

i=0

#L(d, r, i) > n

 . (2)

Notation: Given u,v ∈ Fn
q , we define the Schur product as the component wise

product on Fn
q , i.e. (u ∗ v)i = uivi and (u∗j)i = uj

i , for j ≥ 1. We will write u∗0

for the word with all the components equal to 1.
Initialization: Let y ∈ Fn

q be the received word, and define r and t according
to the conditions (2).

Step 1 For 0 ≤ i ≤ t, find Qi ∈ Fq[L(d, r, i)], not all zero, such that
∑t

i=0 ev(Qi) ∗
y∗i = 0.

Step 2 Factorize Q(Y ) =
∑t

i=0 QiY
i ∈ Fq[X, Y ] and detect all possible f ∈ Fq[X]

such that (Y − f)|Q(Y ). This can be done by the method of Wu [5].
Step 3 Return {ev(f) ∈ CH | f is a solution of Step 2}.

The list {ev(f) ∈ Fq[X] | f is a solution of Step 2} is a list of at most t
elements that contains all the codewords x in CH such that dH(x,y) ≤ r.

For completion, we write the proof of the last algorithm adapting it to the
notation proposed in the previous lines.

Theorem 2. ([3, Theorem 4]) The last algorithm gives the claimed output.

Proof. Since
∑t

i=0 #L(d, r, i) > n, then the equation
∑t

i=0 ev(Qi) ∗ y∗i = 0 has
more indeterminates than equations and then a non-zero solution exists. Now,
suppose that there exists x = ev(f) ∈ CH such that dH(y,x) ≤ r. Since f ∈ H,
then all the monomials in the support of f i are in iH. Then, all the monomials
Xa appearing in Qif

i satisfies a ∈ Hr by definition of L(d, r, i). This implies
that ev(Q(f)) ∈ CHr

and

wH(ev(Q(f))) ≥ r + 1 or Q(f) = 0. (3)

On the other hand, since dH(y,x) ≤ r, we have that
∑t

i=0 ev(Qi) ∗ y∗i = 0
and ev(Q(f)) can differ in at most r distinct positions. Thus wH(ev(Q(f))) ≤ r.
By Equation (3) we conclude that Q(f) = 0, which means (Y − f)|Q(Y ). ⊓⊔
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To use the previous algorithm and to know the number of errors that we can
correct, we just need to compute L(d, r, i) along with their sizes. In general, it
is not clear what is the form of L(d, r, i), but with the following results we can
estimate their sizes, which is one of the main contributions of this section.

Proposition 5. Let CA = Hypq(dA,m) and CB = Hypq(dB ,m). Then CA+B ⊂
Hypq(dA + dB − qm,m).

Proof. Take f ∈ Fq[A] and g ∈ Fq[B]. Denote the set of zeros of f (resp. g) in
Fm
q by Z(f) (resp. Z(g)). We know that |Z(f)| ≤ qm−dA and |Z(g)| ≤ qm−dB .

This implies that |Z(fg)| ≤ |Z(f)| + |Z(g)| ≤ 2qm − dA − dB . In other words,
for any fg ∈ CA+B , we have that wH(ev(f) ∗ ev(g)) ≥ dA + dB − qm. Then
δ(CA+B) ≥ dA + dB − qm. As CA+B is a monomial code, its minimum distance
is the minimum of the footprints of its defining monomials. Thus we obtain the
conclusion. ⊓⊔

With the above result we can bound the size of the set L(d, r, 1) and so, we
can bound the number of errors that we can correct with the proposed algorithm
when we adapt it to unique decoding.

Corollary 1. Let C = Hypq(d,m) and d ≥ r ≥ 1. If CH1
= Hypq(q

m + r − d+
1,m), then H1 ⊆ L(d, r, 1).

The number of errors that we can uniquely decode with the proposed algo-
rithm is given by an easy-to-check formula.

Corollary 2. If #Hr +#H1 > n, then the algorithm can correct up to r errors
solving a linear equation in (Fq[X])[Y ].

If m = 2 we can do even better. In the case of two variables, we can not only
bound the size of the set L(d, r, 1) but we can also know exactly what monomial
code is associated with such subset.

Proposition 6. Let CH = Hypq(d, 2), with d > q. Take a =
⌊
q − d

q

⌋
and b =

q − d
q−a . For r < a− b+ 1, we have CL(d,r,1) = Cubeq(q − 1− a, 2).

Proof. Take c = q − 1 − a. Observe that (0, a) ∈ H but for any a < i2 ∈ Z,
(0, i2) /∈ H. Similarly, (q − a)(q − b) ≥ d but for any i1 > b, (q − a)(q − i1) < d.
As

(q − c− a)(q − c− b) = a− b+ 1 > r,

and since {(i1, i2) | i1 + i2 ≤ a + b} and Hr are both convex sets, then for any
(i1, i2) ∈ H such that i1 + i2 ≤ a+ b, we have (i1 + c, i2 + c) ∈ Hr.

Now, suppose that (i1, i2) ∈ H but i1 + i2 > a+ b. Then we have

(q − i1 − c)(q − i2 − c) = (q − i1)(q − i2) + c(i1 + i2 − 2q) + c2

≥ (q − a)(q − b) + c(i1 + i2 − 2q) + c2

> (q − a)(q − b) + c(a+ b− 2q) + c2

= (q − a− c)(q − b− c)

= a− b+ 1

> r.
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This means that (i1+c, i2+c) ∈ Hr. Then we have c+H ⊂ Hr. By Definition 3,
we can easily see that if (i1, i2) satisfies the property that i1, i2 ≤ c, then (i1, i2) ∈
L(d, r, 1).

Finally, we can assure L(d, r, 1) = {(i1, i2) | i1, i2 ≤ c}, otherwise it would
exist some (i1, i2) ∈ L(d, r, 1) with i1 > c such that i1 + a > q − 1 and (i1 +
c, i2 + c) ∈ Hr, which is a contradiction. ⊓⊔

The last result can be generalized for all the sets L(d, r, i).

Corollary 3. Let CH = Hypq(d, 2), d > q, and a, b and r as before. Then
CL(d,r,i) = Cubeq(q − 1− ia, 2).

Proof. We know the case i = 1. Assume the result is true for i ∈ N. As L(d, r, i+
1) + H ⊆ L(d, r, i) = Cubeq(q − 1 − ia, 2) and Hypq(d, 2) ⊆ Cubeq(a, 2) [2,
Theorem 4.3], then we have that for any (i1, i2) ∈ H, i1, i2 ≤ a. This implies
that

(q − 1− (i+ 1)a+ i1, q − 1− (i+ 1)a+ i2) ≤ (q − 1− ia, q − 1− ia).

We conclude that {(i1, i2) | i1, i2 ≤ q−1− (i+1)a} ⊆ L(d, r, i+1). The equality
follows from the fact that (a, 0) is a point in H. ⊓⊔

Remark 3. Using the previous results, for m = 2 we have the following bound
for the number of errors that our algorithm uniquely corrects. Take t =

⌊
q−1
a

⌋
and r < a−b+1, with a and b as before for CH = Hypq(d, 2). If #Hr+

∑t
i=1(q−

1− ia)2 > n, then the algorithm can correct up to r errors.

Example 4. Consider C = Hypq(d, 2) with q = 16 and d = 81. See Figure 3 for
a representation of this example. Take r = 8. Brute force computation on Geil
and Matsumoto’s algorithm gives that:

– CL(d,r,0) = Hypq(r + 1, 2), which coincide with Definition 3.
– Moreover, CL(d,r,1) = Cubeq(5, 2), which matches with Proposition 6 since

Cubeq(5, 2) = Cubeq(q − 1− a, 2) with a =

⌊
q − d

q

⌋
= 10.

– Finally, CL(d,r,2) = {0}.

Moreover, following Remark 3, r = 8 is the maximum number of errors that we
can correct with this algorithm since

r < a− b+ 1, where a =

⌊
q − d

q

⌋
= 10 and b = q − d

q − a
= 2.5.

Observe that #Hr +
∑t

i=1(q − 1 − ia)2 = #L(d, r, 0) + #L(d, r, 1) > n = 256,
where t =

⌊
q−1
a

⌋
= 1 and L(d, r, 0) and L(d, r, 1) are the set of lattice points

below the green and the black curve of Figure 3, respectively. The sets L(d, r, 0)
and L(d, r, 1) are, in general, difficult to describe. Using the results of this section
we explicitly describe these sets when m = 2, and we provide a lower bound on
their sizes for the cases when m > 2.
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10

10

15

15

Fig. 3. Let q = 16 and m = 2. In this Figure the code C = Hypq(81, 2) is equal to
CH , CL(81,8,0) = Hypq(9, 2) is equal to CL0 and CL(81,8,1) = Cubeq(5, 2) is equal to CL1

where H, L0 and L1 are the sets of lattice points below the red, the black and the
green curve, respectively.

5 Comparisons and Conclusions

Table 1 compares the performance of the five decoding algorithms proposed in
this paper for the hyperbolic code C = Hypq(d,m), where q = 32,m = 2 and d
takes different values. Table 1 is composed by 6 blocks, one for each value of d.
Each block contains 5 lines, which represent the following:

– First line refers to the algorithm of Section 2.1. Here, we compute the small-
est integer s such that C ⊆ RMq(s,m). Then, we use Pellikaan-Wu list-
decoding algorithm for Reed-Muller codes to decode C.

– Second line refers to the algorithm of Section 2.2. Here, we compute the
largest integer s such that RMq(s,m) ⊆ C. Then, we use the Pellikaan-Wu
list-decoding algorithm for Reed-Muller codes to decode C plus some brute
force.

– Third line refers to the algorithm of Section 2.3, an intermediate case between
the above two options. In this case, we use again the Pellikaan-Wu list-
decoding algorithm for Reed-Muller codes to decode C.

– Fourth line refers to the algorithm of Section 3. More precisely, we compute
the smaller integer s such that C ⊆ Cubeq(s,m). Then, we use the algorithm
described in Section 3 for cube codes to decode C.

– Fifth line refers to the specific algorithm known for C described in Section
4.

The third column describes the number of calls to the corresponding decoder.
The last column represents the minimum distance of the auxiliary code that we
are using in each case.

In Table 1 we observe that the algorithm with the greatest error correcting
capability is always achieved by the method given in the second line. However,
the huge amount of calls to the decoder makes it highly impractical. The third
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method always corrects more errors than the first one, but requires more calls
to the decoder. Concerning the third, fourth and fifth method, we find instances
where each of the methods outperforms the others. All the algorithms we pro-
pose except the fifth one, rely on a known decoder for either a Reed-Muller or
a cube code. As a consequence, a better decoder for any of these codes would
imply better error correction capability. Interestingly, when decoding in terms
of cube codes, we reduce many times the problem to a code with a promisingly
high minimum distance, but then we use a decoding algorithm with poor error
correcting capability. We consider that it is an interesting problem to find bet-
ter decoding algorithms for cube codes which, in particular, will lead to better
decoding algorithms for hyperbolic codes.
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Error
Number Called Minimum

correcting
of calls algorithm distance

capability

d = 257

E1 = 16 1 Dec(RMq(31, 2)) δ(RMq(31, 2)) = 32

E2 = 155 q134 Dec(RMq(23, 2)) δ(RMq(23, 2)) = 288

E3 = 32 q8 Dec(RMq(30, 2)) δ(RMq(30, 2)) = 64

E4 = 24 56 Dec(RSq(23)) δ(Cubeq(24, 2)) = 81

E5 = 23 1 Dec(Hypq(d, 2)) δ(Hypq(d, 2)) = 257

d = 225

E1 = 14 1 Dec(RMq(34, 2)) δ(RMq(34, 2)) = 29

E2 = 137 q156 Dec(RMq(24, 2)) δ(RMq(24, 2)) = 256

E3 = 15 q Dec(RMq(33, 2)) δ(RMq(33, 2)) = 30

E4 = 15 57 Dec(RSq(24)) δ(Cubeq(24, 2)) = 64

E5 = 19 1 Dec(Hypq(d, 2)) δ(Hypq(d, 2)) = 225

d = 193

E1 = 13 1 Dec(RMq(36, 2)) δ(RMq(36, 2)) = 27

E2 = 118 q182 Dec(RMq(25, 2)) δ(RMq(25, 2)) = 224

E3 = 14 q3 Dec(RMq(35, 2)) δ(RMq(35, 2)) = 28

E4 = 15 58 Dec(Cubeq(25, 2)) δ(Cubeq(25, 2)) = 49

E5 = 15 1 Dec(Hypq(d, 2)) δ(Hypq(d, 2)) = 193

d = 150

E1 = 12 1 Dec(RMq(39, 2)) δ(RMq(39, 2)) = 24

E2 = 83 q212 Dec(RMq(27, 2)) δ(RMq(27, 2)) = 160

E3 = 12 q6 Dec(RMq(38, 2)) δ(RMq(38, 2)) = 25

E4 = 8 60 Dec(RSq(27)) δ(Cubeq(27, 2)) = 25

E5 = 9 1 Dec(Hypq(d, 2)) δ(Hypq(d, 2)) = 150

d = 65

E1 = 8 1 Dec(RMq(47, 2)) δ(RMq(47, 2)) = 16

E2 = 49 q343 Dec(RMq(29, 2)) δ(RMq(29, 2)) = 96

E3 = 8 q6 Dec(RMq(46, 2)) δ(RMq(46, 2)) = 17

E4 = 3 62 Dec(RSq(29)) δ(Cubeq(29, 2)) = 9

E5 = 5 1 Dec(Hypq(d, 2)) δ(Hypq(d, 2)) = 65

d = 15

E1 = 3 1 Dec(RMq(56, 2)) δ(RMq(56, 2)) = 7

E2 = 7 q64 Dec(RMq(48, 2)) δ(RMq(48, 2)) = 15

E3 = 4 q3 Dec(RMq(55, 2)) δ(RMq(55, 2)) = 8

E4 = 0 64 Dec(RSq(31)) δ(Cubeq(31, 2)) = 1

E5 = 0 1 Dec(Hypq(d, 2)) δ(Hypq(d, 2)) = 15

Table 1. Comparison between the five different algorithms described above to decode
Hyp32(d, 2), for different values of d.


