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Abstract. This work studies several decoding algorithms for hyperbolic
codes. We use some previous ideas to describe how to decode a hyper-
bolic code using the largest Reed-Muller code contained in it or using
the smallest Reed-Muller code that contains it. A combination of these
two algorithms is proposed when hyperbolic codes are defined by poly-
nomials in two variables. Then, we compare hyperbolic codes and Cube
codes (tensor product of Reed-Solomon codes) and propose decoding al-
gorithms of hyperbolic codes based on their closest Cube codes. Finally,
we adapt to hyperbolic codes the Geil and Matsumoto’s generalization
of Sudan’s list decoding algorithm.

Keywords: Reed-Muller codes- evaluation codes - hyperbolic codes -
decoding algorithms.

1 Introduction

Let F, be a finite field with ¢ elements. Given two vectors x = (z1,...,2y)
and y = (y1,...,Yn) € Fy, the Hamming distance between x and y is defined
as dy(x,y) = |{¢ | ©; # y;}|, where | - | denotes the cardinality of the set.
The Hamming weight of x is given by wpy(x) = dg(x,0), where 0 denotes
de zero vector in Fy. The support of x is the set supp(x) = {i | =; # 0}.
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An [n(C),k(C),8(C)]q linear code C over Fy is an Fg-vector space of IF:;(C)
with dimension k(C'), and minimum distance 6(C) = min{dg(c,c’) : ¢,c¢’ €

C,c # '}, thus its error correction capability is t¢ = {%J When there

is no ambiguity, we write n,k, d, and ¢ instead of n(C),k(C), 6(C), and tc,
respectively.

Let N be the set of non-negative integers. For A C N, F,[A] is the F,-
vector subspace of polynomials in Fy[X] = F,[X4,..., X,,] with basis given by
the set of monomials {X'= X{' -+ Xim [i= (i1,...,in) € A}. Let P = FI",
where P = {P,..., P,} and n = |P| = ¢™. Define the following evaluation map

evp : Fy[Xq,..., X, ] — Fy

The monomial code associated to A, denoted by C4, is defined as

Ca = evp(Fy[A]) = {evp(f) | f € FylA]}.
For a,b € R and a < b, we denote by [a,b] the integer interval [a,b] N Z.
Definition 1 (Reed-Muller and Hyperbolic codes).

— Let s > 0,m > 1 be integers. The monomial code Cr where the set R is given
by R = {i = (i1,..-,im) € [0, — 1]™ | Z;n:1 ij < s}, is called the Reed-
Muller code over F, of degree s with m variables. This code is denoted by
RM,(s,m).

— Let d,m > 1 be integers. The monomial code Cy where the set H is given
by H = {i = (i1,.--,im) € [0,g —1]™ | H;nzl(q —ij) > d}, is called the hy-
perbolic code over F, of order d with m variables. This code is denoted by
Hyp,(d,m).

In our previous work [2] we proved there are two optimal Reed-Muller codes such
that RM,(s,m) € Hyp,(d,m) € RM,(s’,m). In other words, the largest Reed-
Muller code RM,(s,m) contained in Hyp,(d, m), and the smallest Reed-Muller
code RM, (s, m) that contains Hyp,(d,m). We will use that result to propose
several decoding procedures.

The paper is organized as follows. In Section 2, we describe two different
algorithms to decode a hyperbolic code Hyp, (d,m). These algorithms are based
on the optimal Reed-Muller code that approximates to our hyperbolic code,
that is, the largest Reed-Muller code RM, (s, m) contained in Hyp,(d,m), or the
smallest Reed-Muller code RM,(s’,m) that contains Hyp,(d,m). We will study
the advantages and disadvantages in terms of efficiency and correction capability
of these proposed algorithms. The choice of the algorithm to be used depends
on which Reed-Muller code is closest to the hyperbolic code Hypq(d, m) as well
as the efficiency or effectiveness that we need. At the end of that section, a third
algorithm, which is a combination of the previous two, is adapted for m = 2, the
case of two variables. In Section 3 a decoding algorithm for a hyperbolic code
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Hyp,(d,m) based on the tensor product of Reed-Solomon codes is presented.
In Section 4 we recover Geil and Matsumoto’s generalization of Sudan’s List
Decoding for order domain codes ([3]) but focus explicitly on hyperbolic codes.
The novel idea that we present here is that we explicitly describe each of the
sets involved in the algorithm or at least we give a subset of such sets. Finally in
Section 5, we compare the performance of the five decoding algorithms proposed
in this paper.

2 Decoding based on known Reed-Muller decoders

2.1 Decoding algorithm based on the smallest Reed-Muller code

The main idea that we present in this section is well-known and works for any
pair of nested linear codes. Let C; C Cy C FZ be two linear codes with parameters
[n, k1,d1]q and [n, k2, da]q, respectively. Observe that a decoding algorithm for
Cs that corrects up to ty errors is also a decoding algorithm for C; that requires
the same number of operations as in C5, but corrects up to to errors. Note that
dy < di and the difference between these two values might be huge. That is, a
decoding algorithm for Cs is also a decoding algorithm for C;, but there is a loss
in the number of errors that one might expect to correct.

Given a hyperbolic code Hyp, (d, m), by [2, Theorem 3.6] we know the small-
est integer s such that Hyp,(d,m) € RM,(s,m). Thus, for each decoding al-
gorithm for RM,(s,m) we have one for Hyp,(d, m). For example, if we use the
already mentioned Pellikaan-Wu'’s list-decoding algorithm, one can correct up to

g™ (1 — /(g™ — 5(RM,(s,m)))/q™) errors.

Ezample 1. We have C; = Hypgy(9,2) C Cy = RMy(s,2), where s > 12. Note
that §(C2) = 5, while §(C1) = 9. Using the algorithm explained in this section
and Pellikkan-Wu’s decoder for Co, we can correct up to 2 errors in C; (which
coincides with the error correcting capability of Cs), while the error-correcting
capability of the code C; is t¢, = 4.

2.2 Decoding algorithm based on the largest Reed-Muller code

Take A C B C N™. We consider the set Q = {f € F,[X] | supp(f) C B\ 4},
where the support of a polynomial f € F,[X] is defined as

supp(f) =< (G1,--+yim) | f = Zaijxij,aij e F,\ {0}
j=1

Observe that |Q| = ¢/Z\Al.

Let y € F; be a received word. The following proposition tells us that, if the
number of errors with respect to Cp is at most its error-correcting capability, i.e.
dp(y,Cp) < tcy, then, there exists a unique polynomial f € Q such that the
nearest codeword to y — evp(f) is unique in C4.
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Proposition 1. Lety € Fy be a received word. Then there exists a polynomial
f € Q such that dg(y —evp(f),Ca) = du(y,Cp). Moreover, if dy(y,Cs) < tc,,
the polynomial [ is unique.

Proof. We first prove the existence of such polynomial. Set ¢ := dy(y,Cp),
then there exists a codeword z = evp(g) € Cp, with supp(g) C B, such that
du(y,z) = t. Writing ¢ = f + f, with supp(f) € B\ A and supp(f) C A, we
have t = dy(y,z) = du(y —evp(f),evp(f)), with f € Q and evp(f) € Ca.
Now we will prove the uniqueness when ¢t < t¢,. Let h € Q be another
possible option. There exist two error-vectors e;, e € Fy with weight smaller
or equal to tc,, such that evp(f) + e = evp(h) + ez = y. Therefore evp(f) —
evp(h) = e — e; is an element of Cp, with weight at most 2t¢, < J(Cp) — 1.
Thus, the difference evp(f) — evp(h) must be zero and f = h. O

Let C4 C Cp monomial codes such that A C B C N™. Let Decc, be a
decoding algorithm for C 4, which corrects up to E errors. By Proposition 1, we
can define the following decoding algorithm for Cp that corrects also up to FE
errors.

Initialization: Let y € Fy be the received word. For each f € Q we follow these
steps

Step 1. Compute y — evp(f).

Step 2. Decode using Decc, the word y — evp(f).

Step 3. Denote by L the output list of Step 2, that is L = {c € C4 |du(c,y —
evp(f)) < E}. If L is not empty, then for each ¢4 € L, we add to the output
list cq4 + evp(f).

The previous list-decoding algorithm for Cp corrects up to E errors and
requires ¢/P\A4l calls to Dece .- Moreover, if F < tc,, one can easily transform
the previous list-decoding algorithm into the following unique decoding one:

Initialization: Let y € F be the received word. Assume that the number of
errors is at most &' < t¢,.

Step 1 Compute y — evp(f) for some f € Q.

Step 2 Decode using the decoder Decc, the word y — evp(f).

Step 3 If the result of Step 2 is codeword c4 such that wy(y — evp(f),ca) <
tes, then return cy + evp(f).

Step 4 Otherwise, go back to Step 1.

The correctness of this algorithm is justified by Proposition 1 and the fact
that £ <t¢, <tc, and, hence, the output in Step 2 has at most one element.

The algorithms proposed involve at most |Q| = ¢/Z\4! calls to Decc,, which
could be interpreted as an inefficient algorithm from a theoretical point of view.
Nevertheless, for practical purposes, if the difference between the sets B and A
is small, this algorithm defines an efficient algorithm for Cp that corrects up to
FE errors, as long as an efficient algorithm for C4 exists and corrects the same
number of errors.



On decoding hyperbolic codes 5

2.3 Intermediate case.

In this section we are going to study an intermediate proposal between the two
previous options. We will do our study for the case of two variables.

Proposition 2. Let s be the smallest integer such that Hyp,(d,2) € RM,(s,2).
Let H, R C N? such that Cy = Hyp,(d,2) and Cr = RMy(s — 1,2). Then

|H — R| < 2(Vd+1).

Proof. We have that Cy = Hyp,(d,2) € RM,(s,2). An easy observation is that
whenever (i1,i2) € H — R, then i1 + ia = s. Thus,

H—-R={(t,s—1t)|t€]0,s] and (¢ —t)(qg —s+1t) >d}. (1)

Hence we are looking for those ¢ € [0, s] such that (¢ —t)(¢ — s +t) > d, or
equivalently,

N

—_———
A

If we compute A, then: |H — R| < 2A + 1. We separate the proof in two cases
depending on the parity of s. Recall that, by [2, Proposition 3.2], we know that

5= {2(61* \@J-

1. If s+ 1 = 2r, then (r,r) ¢ H. As a consequence, (¢ — 3)? < d. Or
equivalently, (q — %)2 —q+ 2547+1 < d. Thus,

2+ 1 Alq—Vd) -1 1T .1
A<yq— q: <\/q—(qu=\/\/&+4<\/3+2, for d > 1.

2. If s = 2r, then (r,r + 1) ¢ H. As a consequence, (¢ — %) (¢—%—1) < d.
Or equivalently, (q — %)2 — (q — %) < d. Thus,

2(q — Vd) — Lz 1
as it om0 AT L
a

Now we have the ingredients to define a new decoding algorithm for the
code Cy = Hyp,(d,2). Let s be the smallest integer such that Hyp,(d,2) C
RM,(s,2). See [2, Proposition 3.2] for a precise description of such parameter
s. We define R C N? such that Cg = RM,(s — 1,2). By Proposition 2 we know

that |[H — R| < cv/d. Let Decy be a decoding algorithm for Cr that corrects up
d(Cr)—1
2

totrp = { J errors. Unifying the ideas of the above decoding algorithms

(see sections 2.1 and 2.2), we have a decoding algorithm for Cy that corrects up
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to E errors and requires (]Cé/a calls to Decg. If we compare it with the algorithm
proposed in Section 2.1, we have a poorer complexity but we can correct more
errors. This approach is particulary well suited when d’ = §(RM,(s,2)) > ¢ and
|H — R| is small. In this case, §(Cg) = d' — ¢+ 1 and, as a consequence, the
correction capability of the auxiliary Reed-Muller code we are using to decode
is increased by around ¢/2.

Ezample 2. Consider C = Hyp,(d,2) with ¢ = 11, and d = 32. See Figure 1 for a
representation of this example. Throughout this example, we use Pellikaan-Wu’s
list-decoder (PW) for Reed-Muller codes. By [2, Proposition 3.2, Proposition
4.2] we have that RM,(s",2) C C C RM,(s,2) for s’ <8 and s > 10.

1. Thus, C C Cgr, = RM,(10,2). Using Section 2.1 and applying PW algorithm
on Cr, we have an efficient decoding algorithm for C that corrects up to
5 errors and requires just one call to Deccy, .

2. Thus, Cr, = RM,(8,2) C C. Using Section 2.2 to decode C and applying PW
algorithm on Cr, we have a decoding algorithm for C that corrects up to
16 errors. This algorithm uses the decoder Decc,, plus some brute force.
In particular, it requires ¢'! calls to Deccp,, , where 11 = |H — Ry|, and H
and Ry are the sets in N? that define C and Cg,, respectively.

3. The intermediate proposal between the two previous options is described in
Section 2.3. More precisely, we consider Cr, = RM,(9,2) and we perform
qH—Fsl = ¢ calls to the PW decoder for Cg, to correct up to 10 errors
in C, where Rj is the set in N2 that defines Cg,.

Fig.1. Let ¢ = 11 and m = 2. In this Figure the code Hypq(32,2) is equal to Cw,
RM,(10,2) is equal to Cr,, RMg(8,2) is equal to Cr, and the code RM4(9,2) equals
to Cr, where H, R1, R and R are the sets of lattice points below the red, the blue,
the black and the green curve, respectively.
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3 Decoding based on tensor products of RS codes

Let f € Fy[X1,...,X,,] be a polynomial. The maximum degree of f with respect
to X; is denoted by degy, (f). Now we define a family of monomial codes that
we call cube codes of order s, which consist of the evaluation of the polynomials
[ € Fg[Xy,..., X;] that satisfy that degy (f) < s for each 1 <4 < m, on the
q™ points of Fy'. The formal definition is as follows.

Definition 2 (Cube codes). Take s € N and define A = [0, s]™. The mono-
mial code Ca, denoted by Cubey(s, m), is called the cube code over F, of order
s >0 with m > 1 variables.

A Reed-Solomon code can be seen as a Reed-Muller code RM,(d, m) of order d
and m = 1 variables. That is, the Reed-Solomon code of order s is defined as

RS4(s) = {evp(f) | f € Fo[X] and deg(f) < s} = RM,(s,1).

Reed-Solomon codes are one of the most popular and important families
of codes. They are maximum distance separable (MDS) codes, thus a RS,(s)
is a code with parameters [¢,s + 1,¢ — s],. Reed-Solomon codes have efficient
decoding algorithms. In the literature, the two primary decoding algorithms for
Reed-Solomon codes are the Berlekamp-Massey algorithm [1], and the Sugiyama
et al. adaptation of the Euclidean algorithm [4], both designed to solve a key
equation.

Remark 1. Asume that the polynomials that define the Reed-Solomon code
RS, (s) belong to F [X;]. It is easy to see that the cube code Cube,(s,m) is

the tensor product of the m Reed-Solomon codes RSé(s)7 ..., RS*(s). In other
words, we have that

Cubey(s,m) = RS;(S) ® - ® RS (s).

Proposition 3. The minimum distance of the cube code Cube,(s,m) coincides
with its footprint bound for the deglex monomial ordering. Therefore, the code
C = Cubey(s,m) has length n(C) = ¢, dimension k(C) = (s + 1)™, and mini-
mum distance 6(C) = (¢ — s)™.

Proof. This is a consequence of the fact that the cube code is the tensor product
of Reed-Solomon codes. a

Proposition 4. Take d € N. Then,
(a) Cubey(s,m) C Hyp,(d,m) if and only if s < q — /d.
(b) Hyp,(d,m) C Cube,(s’,m) if and only if s" > q — [%—‘ .

Proof. Let H C [0,q — 1]™ such that Cg = Hyp,(d,m). If i = .

(i1, .
satisfies that 0 <1i; < ¢ — %/d for all 1 < j < m, then H;”:l(q — 1) > d. Hence,
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Cube, (s, m) € Hyp,(d,m) for all s < g— R/d. If s > q— ¥/d, then (¢—s)™ < d.
Therefore (s,...,s) ¢ H and Cube,(s,m)  Hyp,(d, m).

We now check that Hyp,(d,m) C Cube,(s’,m) if and only if s > r :=
q— [qm%_‘. For s’ > r, it suffices to observe that for all i = (i1,...,4m) € H,
we have that max{i;} < r. Otherwise [}" (¢ —i;) < ¢"'(¢ — max{i;}) <

q™ (¢ —r) < d, a contradiction. Moreover, we have that (r,0,...,0) € H, so if
s" <r then Hyp,(d, m) Z Cube,(s’,m). O

Theorem 1. Let Decrg be a decoding algorithm for RS,(s) that corrects up to
trs errors. Then, there exists a decoding algorithm Deccupe, (s,m) for Cubey(s,m)
that corrects up to (trs + 1)™ — 1 errors and requires calling f(m) times the
decoding algorithm Decgrg, where

fm) =Y (s +1)" 17l <mg™ ! = % for allm > 1.

Proof. We denote by ay,. .., a4 all the elements of F,. We proceed by induction
on m € N. For m = 1, since Cube,(s, 1) = RS,(s) then, there exists Decrg that
corrects up to trs errors.

Now assume that there exists a decoding algorithm for Cubey(s,m — 1) that
corrects up to (trs + 1)™~! — 1 errors. Without loss of generality we reorder
the points P = {P,..., P} = F;* with n = ¢™ in such a way that the first

g™ 1 points of P are those that have a; in their first coordinate, then t}lose
that have as, and so on. Let v = (vi,...,v,) € Fy where v; € Fgm be
such that there exists u = (uy,...,u,) € Cube,(s, m) where u; € Fg"kl with

d(v,u) < (tgrs +1)™. As u € Cube,(s, m), there exists

F(Xy,. . X)) = Z Bivrin X1 Xim € Fy[ X1,y X,

11 yeeeyim =0

such that u = evp(f) and w; = evp/ (f(as, Xa, ..., Xy,)) with P/ = F'~1. We
are going to show how to recover f(Xi,...,X,,) from v by calling ¢ times the
decoder Deccupe, (s,m—1) and (s + 1)™~! times the decoder Decgs.

For all ¢ € {1,...,q}, we define d; = d(u;,v;). We say that i € {1,...,q} is
GOOD if d; < (tgs + 1)™™1; otherwise we say that i is BAD. Let dpaq be the
number of BAD values i € {1,...,q}. Since

tRS"'l >Zd > Z d; > tRS+ )mildbad,
i is BAD

we have that dpeq < (trs + 1). 4
Write f(X1,...,Xm) = Zj ..... =0 Pz i (X1)X3? -+ XJm where the uni-

variate polynomial hj, . ; (X1) € F,[X1] has degree at most s, forall jo ..., j, €
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{0,...,s}. Forall £ € {1,...,q}, consider

S
9(Xoyooo X)) = flon, Xoyoo X)) = Y Bigpd X5 X =
i =0
S

= Z hj27~~;jm<af)XgQ X1Jnm € ]Fq[X%"'aXm]»

J25e-Jm=0

which satisfyies that degy, (g¢) < s for all i € {2,...,m}. Moreover, whenever ¢
is GOOD, we can recover gy by means of Deccupe,(s,m—1) and the values v, =
(Ugl, C ,vzq"kl) S ]Fq

Thus, if £ is GOOD we have recovered the value hj, ;i (ag, Xo, ..., Xpm)
for all jo,...,5m € {0,...,s}. As there are at least (¢—trs) GOOD values, then
for each jo,...,jm € {0,...,s} we have at least (¢ — trg) correct evaluations of
Rj,....in (X1). Thus, by induction we can recover 3;,, ; using (s+1)™"! times
the decoder Decrs.

Now, let f(m) be the number of times that algorithm Deccupe,(s,m) calls
algorithm Decrs. We will deduce a formula for f(m) by induction on m € N.
First notice that for m = 1, since Cube,(s, 1) = RS4(s), we have that f(1) = 1.
Moreover, from the above paragraphs, we can deduce that f(m) =qf(m —1) +
(s +1)m=1£(1). Now we assume that f(r) = qf(r — 1) + (s + 1)" "L f(1) for all
r < m and we try to show the result for f(m). Indeed,

f(m) =qf(m—1)+ (s +1)" (1)
=q((s +1)" 2+ qf(m —=2)) + (s + )"
=+ s+ 1) 2+ ¢ f(m—2)
=+ g+ )" TP+ A5+ )T+ g (D)

m—1
E S+1m17,z
i=0

This completes the proof. a

m—1

Ezample 3. Consider C = Hyp,(d,2) with ¢ = 32, and d = 225. See Figure 2 for
a representation of this example. We will give different decoding algorithms for
C using all ideas proposed in this article so far.

1. By [2, Proposition 3.2], C € RM,(s, 2), for s > 34. Therefore, using Section
2.1, and applying PW algorithm on Cr, = RM,(34,2), we have an efficient
decoding algorithm for C that corrects up to 11 errors and requires just
one call to Deccy,, -

2. By [2, Theorem 4.3], RM,(s,2) C C, for s < 24. Therefore, using Section
2.2 and applying PW algorithm on Cr, = RM,(24, 2), we have a decoding
algorithm for C that corrects up to 127 errors because the minimum
distance of RM32(24,2) is 256 and so the error-correcting capability will be
127, which is beyond the error correction capability of C. The algorithm uses
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the decoder Deccy, plus brute force. In particular it requires q*®% calls to
Decc,,, where 156 = |[H — Ry|, and H and R; are the sets in N? defining C
and Cg,, respectively.

3. The intermediate proposal between the two previous options described in
Section 2.3 has a slight advantage in this example with respect to the first
option. More precisely, one should consider Crr = RM,(33,2) and perform
q'H_R/‘ = ¢ calls to the PW decoder for Cg/ to correct up to 14 errors be-
cause the minimum distance of RM32(33,2) is 30 and so the error-correcting
capability will be 14.

4. By Proposition 4.(b), we have C C Cubey(s,2) for s > 24. We know an
efficient decoding algorithm for C3 = Cubey(24,2) that corrects up to t3 =
(trs +1)™ — 1 = 15, where trg = L&;J = 3 denotes the error correction
capability of RS,(s) with s = 24. Therefore, using Theorem 1, we have
an efficient decoding algorithm for C that corrects up to 15 errors and
requires calling ¢ + s + 1 = 57 times the decoder Decgsg.

Fig. 2. Let ¢ = 32 and m = 2. In this Figure the code Hyp,(225,2) is equal to Cm,
RM,(24,2) equals Cr,, the code RM4(34, 2) is equal to Cr, and the code Cubegq(24, 2)
equals Ca, where H, R1, Rz and A are the sets of lattice points below the red, the
black, the blue and the green curve, respectively.

Remark 2. All the ideas proposed in Section 2 can be adapted to decode a hy-
perbolic code using a cube code. That is, by Proposition 4, given a hyperbolic
code Hyp we can find the largest (respectively smallest) cube code contained in
(respectively that contains) Hyp. And this result allow us to give decoding algo-
rithms for hyperbolic codes in terms of the decoding algorithms of cube codes.
Furthermore, an intermediate proposal between the two options can be used (as
in Section 2.3).
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4 Decoding based on a generalized Sudan’s list decoding

Definition 3. Let Cy = Hyp,(d,m) be a hyperbolic code with H C [q — 1]™
Forr > 1, take H, C [q — 1]™ such that Cy, = Hyp,(r + 1,m). For i > 0, we
define

L(d,ri)={a€e¢g—1]" | a+iH C H.}.

Observe that L(d,r,0) = H, for any d. We also have that L(d,r,i+ 1) C
L(d,r,i). Indeed, as L(d,r,i+1)+ (i+1)H C H,, then L(d,r,i+1) C L(d,r,i+
1)+ H C L(d,r,1i).

For the following algorithm, we assume that the numbers r and ¢ satisfy the
following conditions:

v
7

Z#L(d, ri)>n and t =min < i | Z#L(d, ri)>np.  (2)

=0

Notation: Given u,v € Fj, we define the Schur product as the component Wise
product on F7, i.e. (u*v); = uw;v; and (u*); = ], for j > 1. We will write u*
for the word with all the components equal to 1.

Initialization: Let y € Fj be the received word, and define r and ¢ according
to the conditions (2).

Step 1 For 0 < ¢ <, find Q; € Fy[L(d,,1)], not all zero, such that ZE:O ev(Q;) *
y*i =0.

Step 2 Factorize Q(Y) = ZE:O Q;Y'" € F,[X,Y] and detect all possible f € F,[X]
such that (Y — f)|Q(Y"). This can be done by the method of Wu [5].

Step 3 Return {ev(f) € Cy | f is a solution of Step 2}.

The list {ev(f) € F4[X] | f is a solution of Step 2} is a list of at most ¢
elements that contains all the codewords x in Cg such that dg(x,y) < r.

For completion, we write the proof of the last algorithm adapting it to the
notation proposed in the previous lines.

Theorem 2. ([3, Theorem 4]) The last algorithm gives the claimed output.

Proof. Since 22:0 #L(d,r,i) > n, then the equation Z::O ev(Q;) *y*' = 0 has
more indeterminates than equations and then a non-zero solution exists. Now,
suppose that there exists x = ev(f) € Cy such that dy(y,x) < r. Since f € H,
then all the monomials in the support of f* are in iH. Then, all the monomials
X? appearing in Q,f* satisfies a € H,. by definition of L(d,r,4). This implies
that ev(Q(f)) € Cq, and

wi(ev(Q(f))) = r+1 or Q(f) = 0. 3)

On the other hand, since dy(y,x) < r, we have that ZZ:O ev(Q;) xy* =0
and ev(Q(f)) can differ in at most r distinct positions. Thus wg(ev(Q(f))) < r.
By Equation (3) we conclude that Q(f) = 0, which means (Y — f)|Q(Y). O



12 E. Camps-Moreno et al.

To use the previous algorithm and to know the number of errors that we can
correct, we just need to compute L(d,r,:) along with their sizes. In general, it
is not clear what is the form of L(d, i), but with the following results we can
estimate their sizes, which is one of the main contributions of this section.

Proposition 5. Let C4 = Hyp,(da,m) and Cp = Hyp,(dg,m). Then Cayp C
Hyp,(da +dp — ¢™,m).

Proof. Take f € Fy,[A] and g € F,[B]. Denote the set of zeros of f (resp. g) in
Fy* by Z(f) (vesp. Z(g)). We know that |Z(f)| < ¢™ —da and |Z(g)| < ¢" —dp.
This implies that |Z(fg)] < |Z(f)| +|Z(g9)] < 2¢™ — da — dp. In other words,
for any fg € Cayp, we have that wgy(ev(f) xev(g)) > da + dp — ¢"™. Then
0(CayB) > da+dp —q™. As Catp is a monomial code, its minimum distance
is the minimum of the footprints of its defining monomials. Thus we obtain the
conclusion. ad

With the above result we can bound the size of the set L(d,r,1) and so, we
can bound the number of errors that we can correct with the proposed algorithm
when we adapt it to unique decoding.

Corollary 1. Let C = Hyp,(d,m) and d > r > 1. If Cy, = Hyp,(¢™ +r —d +
1,m), then Hy C L(d,r,1).

The number of errors that we can uniquely decode with the proposed algo-
rithm is given by an easy-to-check formula.

Corollary 2. If #H, +#H; > n, then the algorithm can correct up to r errors
solving a linear equation in (F [X])[Y].

If m = 2 we can do even better. In the case of two variables, we can not only
bound the size of the set L(d,r,1) but we can also know exactly what monomial
code is associated with such subset.

Proposition 6. Let Cy = Hyp,(d,2), with d > q. Take a = {q — %J and b =

q-— qiia. Forr <a—0b+1, we have Crq,r1) = Cubeg(¢ — 1 —a,2).

Proof. Take ¢ = ¢ — 1 — a. Observe that (0,a) € H but for any a < iy € Z,
(0,42) ¢ H. Similarly, (¢ — a)(qg — b) > d but for any 41 > b, (¢ —a)(qg —i1) < d.
As
(g—c—a)(g—c—b)=a—-b+1>r,
and since {(i1,42) | i1 +i2 < a + b} and H, are both convex sets, then for any
(i1,12) € H such that i1 4+ is < a + b, we have (i1 + ¢,i2 +¢) € H,.
Now, suppose that (i1,i2) € H but i; +is > a + b. Then we have

(q—i1 —¢)(q—iz —c) = (q —i1)(q — i) + c(iy + iz — 2¢) + ¢*
—a)(q—0b) +c(iy +ip —2¢q) + 2
—a)(q—0b) +cla+b—2q) +c?
—a-e)g—b-0)
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This means that (i +¢,ia+¢) € H,. Then we have c+ H C H,. By Definition 3,
we can easily see that if (i1, i2) satisfies the property that i1, is < ¢, then (i1,i3) €
L(d,r1).

Finally, we can assure L(d,r,1) = {(i1,42) | i1,i2 < ¢}, otherwise it would
exist some (i1,i2) € L(d,r,1) with 41 > ¢ such that i1 +a > ¢ — 1 and (i; +
¢, i3 + ¢) € H,., which is a contradiction. O

The last result can be generalized for all the sets L(d,r,1).

Corollary 3. Let Cy = Hyp,(d,2), d > q, and a, b and r as before. Then
Cr(d.ri) = Cubey(q — 1 —ia, 2).

Proof. We know the case i = 1. Assume the result is true for ¢ € N. As L(d,r,i+
1)+ H C L(d,r,i) = Cubey(q — 1 — ia,2) and Hyp,(d,2) C Cube,(a,2) [2,
Theorem 4.3], then we have that for any (i1,i2) € H, 41,72 < a. This implies
that

(g—1-(G+1)a+i,g—1—(i+1a+i) <(¢—1—ia,q—1—ria).
We conclude that {(i1,42) | i1,i2 < ¢—1—(i+1)a} C L(d,r,i+1). The equality
follows from the fact that (a,0) is a point in H. O

Remark 3. Using the previous results, for m = 2 we have the following bound
for the number of errors that our algorithm uniquely corrects. Take t = {%J

and 7 < a—b+1, with a and b as before for Cy = Hyp,(d, 2). If #HT+Z§:1(Q_
1 —ia)? > n, then the algorithm can correct up to 7 errors.

Ezample 4. Consider C = Hyp,(d,2) with ¢ = 16 and d = 81. See Figure 3 for
a representation of this example. Take r = 8. Brute force computation on Geil
and Matsumoto’s algorithm gives that:

— Cr,r0) = Hyp,(r +1,2), which coincide with Definition 3.
— Moreover, Cp,q,r1) = Cubey(5,2), which matches with Proposition 6 since

d
Cubey(5,2) = Cubey(q — 1 —a,2) with a = {q — qJ = 10.

— Finally, Cp(4,r2) = {0}.

Moreover, following Remark 3, » = 8 is the maximum number of errors that we
can correct with this algorithm since

d
qg—a

d
r<a—b+1, Wherea:Lq—J:m and b=gq-— = 2.5.
q

Observe that #H, + >'_, (¢ — 1 —ia)® = #L(d,r,0) + #L(d,r,1) > n = 256,
where t = Lq%.LlJ =1 and L(d,r,0) and L(d,r,1) are the set of lattice points
below the green and the black curve of Figure 3, respectively. The sets L(d,r,0)
and L(d,r, 1) are, in general, difficult to describe. Using the results of this section
we explicitly describe these sets when m = 2, and we provide a lower bound on
their sizes for the cases when m > 2.
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Fig.3. Let ¢ = 16 and m = 2. In this Figure the code C = Hyp,(81,2) is equal to
Cu, Crs1,8,0) = Hyp,(9,2) is equal to Cr, and Cr(s1,8,1) = Cubeq(5,2) is equal to Cr,
where H, Lo and L; are the sets of lattice points below the red, the black and the
green curve, respectively.

5 Comparisons and Conclusions

Table 1 compares the performance of the five decoding algorithms proposed in
this paper for the hyperbolic code C = Hyp, (d,m), where ¢ = 32, = 2 and d
takes different values. Table 1 is composed by 6 blocks, one for each value of d.
Each block contains 5 lines, which represent the following:

— First line refers to the algorithm of Section 2.1. Here, we compute the small-
est integer s such that C C RMg(s,m). Then, we use Pellikaan-Wu list-
decoding algorithm for Reed-Muller codes to decode C.

— Second line refers to the algorithm of Section 2.2. Here, we compute the
largest integer s such that RM,(s,m) C C. Then, we use the Pellikaan-Wu
list-decoding algorithm for Reed-Muller codes to decode C plus some brute
force.

— Third line refers to the algorithm of Section 2.3, an intermediate case between
the above two options. In this case, we use again the Pellikaan-Wu list-
decoding algorithm for Reed-Muller codes to decode C.

— Fourth line refers to the algorithm of Section 3. More precisely, we compute
the smaller integer s such that C C Cube, (s, m). Then, we use the algorithm
described in Section 3 for cube codes to decode C.

— Fifth line refers to the specific algorithm known for C described in Section
4.

The third column describes the number of calls to the corresponding decoder.
The last column represents the minimum distance of the auxiliary code that we
are using in each case.

In Table 1 we observe that the algorithm with the greatest error correcting
capability is always achieved by the method given in the second line. However,
the huge amount of calls to the decoder makes it highly impractical. The third
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method always corrects more errors than the first one, but requires more calls
to the decoder. Concerning the third, fourth and fifth method, we find instances
where each of the methods outperforms the others. All the algorithms we pro-
pose except the fifth one, rely on a known decoder for either a Reed-Muller or
a cube code. As a consequence, a better decoder for any of these codes would
imply better error correction capability. Interestingly, when decoding in terms
of cube codes, we reduce many times the problem to a code with a promisingly
high minimum distance, but then we use a decoding algorithm with poor error
correcting capability. We consider that it is an interesting problem to find bet-
ter decoding algorithms for cube codes which, in particular, will lead to better
decoding algorithms for hyperbolic codes.
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Table 1. Comparison between the five different algorithms described above to decode
Hyps,(d, 2), for different values of d.

E. Camps-Moreno et al.

Error Number Called Minimum
ZZ;?S;:S of calls algorithm distance
FEi =16 1 Dec(RM,4(31,2)) | (RM,(31,2)) =
E>=155| ¢"* | Dec(RM4(23,2)) [§(RM,(23,2)) =
d=257| B3 =32 | ¢* |Dec(RM,(30,2)) | §(RM,(30,2)) =
Ey =24 56 Dec(RS4(23)) |6(Cubegy(24, ))
Es =23 1 Dec(Hyp,(d,2)) | 6(Hyp,(d,2)) =
FEi =14 1 Dec(RMy(34,2)) | (RMg(34,2)) = 29
By =137| ¢ | Dec(RM4(24,2)) |[§(RM,(24,2)) = 256
d=225| B3 =15 q | Dec(RMg(33,2)) | §(RMy(33,2)) = 30
Ey=15| 57 Dec(RS,(24)) 5(Cubeq(24 )) 64
Es =19 1 Dec(Hyp,(d,2)) | 6(Hyp,(d,2)) =
FEi1 =13 1 Dec(RM4(36,2)) | (RM,(36,2)) = 27
By =118| ¢'® | Dec(RM4(25,2)) |[§(RM,(25,2)) = 224
d=193| E3 =14 | ¢* | Dec(RM,(35,2)) | 6(RM,(35,2)) = 28
Eys=15| 58 |Dec(Cubey(25,2))|5(Cube,(25,2)) =
Es =15 1 Dec(Hyp, (d,2)) | 6(Hyp,(d,2)) = 193
Ei =12 1 Dec(RM4(39,2)) | 6(RM(39,2)) = 24
FEy =83 | ¢*'? | Dec(RM4(27,2)) |§(RM,(27,2)) = 160
d=150| B3 =12 | ¢° | Dec(RM,(38,2)) | 6(RM,(38,2)) = 25
E,=38 60 Dec(RS,(27))  [§(Cubey(27,2)) = 25
Es =9 1 Dec(Hyp,(d,2)) | 6(Hyp,(d,2)) = 150
E,=38 1 Dec(RM(47,2)) | (RM,(47,2)) = 16
FEy =49 | ¢*3 | Dec(RM4(29,2)) | §(RM4(29,2)) = 96
d=65| E3=38 q® | Dec(RM,(46,2)) | 6(RM4(46,2)) = 17
E,=3 62 Dec(RS4(29)) | 0(Cubeq(29,2)) =9
Es =5 1 Dec(Hyp, (d,2)) | 6(Hyp,(d,2)) =65
Ei=3 1 Dec(RM4(56,2)) | 6(RMy(56,2)) =7
By=17 54| Dec(RM,(48,2)) | 6(RM,(48,2)) = 15
d=15| B3 =4 3 | Dec(RM,(55,2)) | 6(RM,(55,2)) =8
E,=0 64 Dec(RS4(31)) | 0(Cubeq(31,2)) =
Es = 1 Dec(Hyp,(d,2)) | 6(Hyp,(d,2)) =15




