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Cyber-AnDe: Cybersecurity Framework With
Adaptive Distributed Sampling for Anomaly
Detection on SDNs

Nadia Niknami“, Graduate Student Member, IEEE, Avinash Srinivasan, and Jie Wu

Abstract— By decoupling the control plane and data plane
in the software-defined network (SDN), the controller gains a
comprehensive global view of the network. The SDN controller
samples traffic from all switches to effectively manage data plane
traffic. The sampling rate of flow traffic significantly impacts
the accuracy of the controller’s decisions. While increasing the
sampling rate is desirable for improved detection accuracy,
it also escalates resource consumption on both switches and the
controller. Hence, it is crucial to carefully manage sampling on
switches to fine-tune anomaly detection accuracy. Existing flow
sampling solutions often struggle to strike a balance between
detection accuracy, sampling rate, and overhead. To address
this challenge, we propose a robust cybersecurity framework
for anomaly detection on SDNs through traffic flow inspection.
Our proposed framework, Cyber-AnDe, integrates adaptive dis-
tributed sampling (ADS) with a Reinforcement Learning (RL)
agent to enhance anomaly detection accuracy while minimizing
the increase in controller overhead. In our framework, the
controller leverages information gathered from each sampled
traffic flow to determine whether the flow’s state is malicious,
suspicious, or benign based on underlying anomaly detection
algorithms. Once the flow state is determined, the controller takes
the appropriate action with the help of the RL agent. Through
extensive simulations and SDN test-bed experiments, we confirm
a significant improvement of up to 93% in network traffic-based
anomaly detection compared to existing solutions.

Index Terms— Adaptive sampling, anomaly detection, attack,
cybersecurity, intrusion detection, load balancing, network mon-
itoring, sampling rate, software-defined networks.

I. INTRODUCTION

HE software-defined network (SDN) is an emerging

network architecture that decouples the network control
plane from the data plane [1]. In an SDN, a centralized
controller is responsible for all network control decisions.
Fig. 1 illustrates an SDN’s application layer, control plane,
and data plane. The controller monitors all the switches in the
data plane, and network applications help the controller with
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Fig. 1. SDN with sampling-based anomaly detection.

traffic management [2]. Deploying efficient monitoring tools
to assist with network management tasks without interfering
with normal operations has become increasingly important
in modern networks with high traffic volumes. A network
intrusion detection system (IDS), which monitors network
behavior and inspects data packets for evidence of malicious
activity, is a popular and widely used perimeter security
appliance to enhance network security, particularly against
external attacks.

For network monitoring, if every packet in a traffic flow
were captured and forwarded to a traffic analyzing engine, then
we could potentially have a very robust network security. How-
ever, such collection and processing of every packet would
double the traffic volume with the network soon beginning
to experience significant congestion. If the network traffic
to be inspected is much larger than the IDS capacity, then
the IDS cannot inspect all packets in the network. The SDN
controller seeks to minimize unnecessary overhead from the
large volume of sampled data sent to the IDS for analysis.
Consequently, selectively capturing network traffic through a
process known as traffic sampling is highly desirable. Network
traffic sampling is a plausible approach to make intrusion
detection much more efficient by directing only sampled traffic
to the controller for analysis. Sampling techniques are vital
to achieving efficient network measurements by reducing the
amount of traffic that is processed while attempting to maintain
the accuracy of network statistical behavior estimations.

Several techniques exist for implementing the process of
packet sampling that can be categorized into two broad type —
static sampling and dynamic sampling. A static sampling pro-
cess is conducted periodically or randomly following a given
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rule, which could be count-based, time-based, or content-
based rule. Dynamic or adaptive sampling algorithms use
different sampling intervals and or rules for data sampling
decisions. However, these methods overlook the challenge of
balancing the trade-off between detection accuracy and the
overhead associated with processing the immense volume of
traffic. When the appropriate sampling method is selected
and strategically implemented, it offers an excellent network
view and high detection accuracy, at an acceptable overhead.
Current network sampling techniques, primarily designed for
traffic engineering purposes, are ineffective for intrusion detec-
tion applications. Even with sampling, these methods still
incur significant network overhead.

In this paper, we introduce Cyber-AnDe, a cybersecu-
rity framework with an adaptive distributed sampling (ADS)
method for SDN traffic monitoring to address the aforemen-
tioned limitations. Our approach starts with a low sampling
rate and continuously adjusts it based on the current level
of network traffic maliciousness. By beginning with a con-
servative sampling rate and incrementally increasing it only
when benign flows exhibit suspicious behavior, we mitigate the
risk of overloading the controller with unnecessary data pro-
cessing tasks. This adaptive strategy ensures accurate anomaly
detection while optimizing resource utilization within the SDN
infrastructure. Consequently, the sampling rate’s impact on
IDS detection in SDN becomes a strategic consideration for
achieving both security and operational efficiency.

We employ a Reinforcement Learning (RL) agent within
a closed network control loop to dynamically adjust the
sampling rate. This control loop comprises essential compo-
nents and control functions. The intrusion detection system
report provides the RL agent with insights into the current
network status, classifying traffic as malicious, suspicious,
or benign. Based on this status, the RL agent decides on the
appropriate actions, particularly regarding the sampling rate on
specific switches. By aiding the controller in managing traffic
monitoring on network switches, the RL agent enhances the
network’s adaptability and responsiveness to evolving threat
landscapes.

Key contributions of our research presented in this paper
can be summarized as follows:

1) We propose Cyber-AnDe, a robust cybersecurity frame-
work for SDN traffic monitoring that effectively
and efficiently detects an anomaly. Our framework
achieves superior anomaly detection accuracy using
an ADS, which also results in significantly lower
communications costs between the controller and the
switch(es).

2) We have designed an RL-based network control loop
between the controller and the data plane to effectively
manage Cyber-AnDe’s ADS on SDN switches. The RL
agent helps the controller determine the best action to
take for sampling flow f on switch s at rate y based on
the current state of the system.

3) We leverage a multi-objective optimization problem-
solving approach to improve the trade-off between
detection accuracy and the monitoring process to reduce
overhead on the controller.
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4) We introduce an orchestration of flow monitoring that
separates sampling decisions for flows based on their
state. This orchestration also relieves the controller
from managing flow sampling across multiple switches,
allowing it to focus primarily on optimizing sampling
decisions to enhance anomaly detection accuracy on the
data plane.

II. PRELIMINARIES
A. Intrusion Detection System in SDN

SDN traffic management can be defined as network traf-
fic monitoring and analyzing measures to improve network
performance and quality of service metrics. SDN traffic
management techniques can be divided into four distinct cat-
egories: routing, load balancing, congestion control, and flow
control. In SDN, the centralized controller communicates with
switches through a protocol like OpenFlow [3] and abstracts
the data plane’s routing and forwarding with a match-action
table. A key advantage of SDN centralization is its potential
for implementing a machine learning-based IDS solution [4].
The centralization of the controller allows for training a
machine learning IDS model to effectively identify and report
intrusion events to the controller [5]. While separating the
data and control planes in SDN offers a manageable and
programmable network, it also expands the attack surface,
thereby increasing security concerns. [6].

In this paper, we assume that the controller within the SDN
architecture is trustworthy and securely managed. Although
we recognize the potential risks associated with a centralized
controller, such as the possibility of a single point of failure,
addressing controller security is beyond the scope of this paper.
Our primary focus is exploring adaptive sampling strategies for
anomaly detection within this presumed secure framework. For
interested readers, existing solutions including [7], [8] address
attacks on SND controller.

B. Sampling Methods

With the ever-increasing network scale and traffic volume,
it becomes increasingly important to consider the limitations
of the IDS in terms of CPU power, memory access speeds,
and storage capacity. Traditionally, network management has
utilized simple and non-adaptive sampling methods. Such
methods use a fixed rule to determine when to sample data
on each switch, with the sampling rule itself being either
deterministic or random [9]. Fig. 2 presents three main packet
sampling methods: systematic sampling, random sampling,
and stratified random sampling. The systematic sampling
method samples data at a fixed time interval with a period of
T seconds. The random sampling method employs a random
distribution function to determine the sample. The stratified
random sampling method combines random sampling with the
fixed-time interval that is used in systematic. While stratified
sampling has some benefits, it also introduces the question of
how to stratify a population that can create more risk of bias.

When a large-scale anomaly occurs, the possibility of dis-
carding the attack packets increases. If some attack packets
are to be discarded, the loss will influence the detection rate
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Fig. 2. Sampling methods.
TABLE I
MAIN NOTATIONS
Symbol Meaning
f/F flow/set of flow f
s/S switch/switch set
Py probability of capture failure for flow f
C/Cs capacity/capacity of switch s
Df,s probability of capture failure for flow f on switch s
Ts rate of traffic on switch s
my rate of malicious flow f
T threshold for determining the level of suspicion of flow
p probability output of the classifier
vs/Vf sample rate on switch s / flow f
Y sampled flow
I/ normal/strange sampled flow
Sf list of switches that flow f passes through
“w capacity of IDS
T time interval between samplings

U(s, f,v) | utility value for sampling flow f in switch s using rate ~y
Rp(t) rate of received traffic at time ¢
Lp(t) rate of loss traffic at time ¢
Tp(t) rate of transmitted traffic at time ¢

greatly. The large-scale anomaly bears some distinct traffic
features. For example, the volume of packets and flows will
soar and exhaust IDS soon. A sampling rate management
application should be capable of controlling the sampling rate
to provide sufficient accuracy at minimal overhead for the
controller and switches. Every switch may have the same

. Capacity
sampling rate for each flow denoted as % =~ FFlou, OF may have a

rate that is proportional to its traffic rate denoted as Cap—a”;y

The sampling rate within SDN switches signiﬁ%ezfngly
impacts IDS detection in SDN by directly affecting anomaly
detection accuracy and resource utilization efficiency. Ideally,
IDSs would monitor all network traffic for optimal perfor-
mance, but the controller, responsible for managing various
control applications, may struggle to analyze large volumes of
data, especially during high traffic periods. If network traffic
exceeds the IDS capacity, not all packets can be inspected,
necessitating the use of SDN functionalities to sample a
portion of data traffic from network switches and forward it
to the IDS. A higher sampling rate increases the likelihood of
capturing anomalous behavior, thus improving detection capa-
bilities but potentially raising resource overhead. Conversely,
a lower sampling rate will reduce resource utilization but may
result in missed anomalies, thereby compromising network
security. Therefore, achieving the optimal balance in sampling
rate is crucial for effective IDS detection in SDN.

To illustrate this impact quantitatively, we consider two
hypothetical scenarios with sampling rates set at 1% and 5%,
both using the same IDS algorithm. In the first scenario, with a
1% sampling rate, the IDS inspects 1 out of every 100 pack-
ets traversing the network. This conservative sampling rate
reduces the computational burden on both the IDS and the
controller but increases the risk of missing certain anomalies,
particularly those occurring in less frequently sampled packets.
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For instance, let us assume that in this scenario, the IDS
detects 80% of anomalies present in the network. In contrast,
in the second scenario with a 5% sampling rate, the IDS
examines 1 out of every 20 packets. The increased sampling
rate improves the likelihood of detecting anomalies across
a broader spectrum of network traffic but also escalates the
computational demands on both the IDS and the controller.
For demonstration purposes, let us assume that this increased
coverage allows the IDS to achieve a detection rate of 95%.
These scenarios highlight the trade-off between sampling rate
and IDS detection efficacy. A lower sampling rate conserves
network resources but compromises detection accuracy, while
a higher sampling rate enhances accuracy at the cost of
increased resource consumption. Therefore, determining the
optimal sampling rate requires carefully balancing the desired
level of anomaly detection with efficient network resource
utilization.

III. THE PROPOSED CYBER-ANDE FRAMEWORK

In this paper, we propose Cyber-AnDe, a cybersecurity
framework for SDN network traffic flow inspection with a
robust ADS method. The framework has an SDN-based unified
architecture composed of an SDN controller, OpenFlow-
enabled switches, and necessary custom implemented applica-
tions, as shown in Fig. 1. Our framework runs the ADS on each
switch to enhance the inspection performance, while keeping
the total aggregated sampled traffic below the capacity of the
traffic collector. Our framework also minimizes the overhead
on both the controller and the individual switches to avoid
potential conflicts between data packets and control packets.
The controller is responsible for analyzing the sampled traffic
to detect anomalies.

In our framework, the controller combines the OpenFlow
and sFlow [10] protocols. OpenFlow is a programmable net-
working protocol that enables the controller to interact with the
switches. The OpenFlow-enabled switches primarily serve as
forwarding elements. The proposed Cyber-AnDe framework,
presented in Fig. 3, includes the following key components:

1) Traffic Sample Repository (TSR): This module collects
the sampled traffic flows from the sampling switches of
the data plane.

2) Behavior Monitor Application (BMA): This module is
responsible for checking the sampled traffic’s fields
and identifying the headers. BMA can easily observe
the packet’s structure. It can roughly estimate the flow
number and aggregate statistics, which can be helpful to
detect anomalies.

3) Sampler Scheduler Application (SSA): This module
determines the sampling strategy, i.e., which flow should
be sampled by which switch and at what rate.

The Traffic Sampling and Reporting (TSR) module is
responsible for collecting sampled traffic from switches in
the data plane and is a sub-component of Cyber-AnDe in
the control plane. If the TSR module is integrated within the
SDN switch, it can have both positive and negative impacts on
the switch’s security and performance. On the positive side,
processing sampled traffic locally within the switch reduces
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Fig. 3. Control plane, data plane, and Cyber-AnDe.

the latency associated with sending traffic data to a centralized
controller for analysis. This local processing can enhance
the network’s responsiveness to security events. However,
integrating the TSR module within the SDN switch intro-
duces additional processing overhead. This increased load can
potentially affect the switch’s performance, particularly if it is
already operating near its capacity. The TSR module would
also consume scarce switch resources such as CPU cycles
and memory, which are essential for packet forwarding. Under
heavy traffic loads or in switches with limited resources, this
additional resource consumption could lead to performance
degradation.

The BMA module processes the sampled traffic it receives
from the TSR. During this processing, the BMA module
analyzes packet header features such as source IP, destination
IP, source port, destination port, transport protocol, flow size,
and packet count fields. These features directly reflect the
state of the traffic. After the analysis, the BMA generates a
report detailing the flow statistics and behavior of the sampled
traffic, which is then sent to both the controller and the SSA
module. This report determines whether the traffic is classified
as benign, suspicious, or malicious. We establish a threshold,
denoted as t, to gauge the level of suspicion. This threshold t
defines the confidence level of the predictions made by the
attack classifier within the BMA module. Fig. 4 shows the
flow of information and control between the BMA and SSA
modules within the ML subsystem.

Based on input from the BMA, the SSA module adjusts
the sampling rate. While a higher sampling rate is generally
preferable, as it enhances the controller’s accuracy in detecting
malicious traffic, caution is necessary. Blindly increasing the
sampling rate can lead to diminishing returns, resulting in
network congestion and added overhead on both the sampling
switches and the controller. The proposed Cyber-AnDe’s ADS
method starts at a minimum sampling rate and then gradu-
ally increases the sample size until no further improvement,
in terms of detection accuracy, can be achieved. SSA also
sends an update to the controller recommending what sampling
strategies to use on different switches. Based on the input
from the SSA and BMA modules, the controller determines
the switches and rates at which the flows should be sampled.
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In our framework, we maintain two tables for each switch:
a forwarding table and a sampling table. The controller
populates and maintains the entries of both these tables.
The forwarding table is populated and updated based on
the underlying routing algorithm. It has information about
forwarding packets from the source to the destination, which
is set by the controller. On the other hand, the sampling table
is populated and updated based on the SSA module’s input.
The sampling table has information regarding the sampling
rate and the time interval for forwarding sampled traffic to the
BMA module.

Fig. 5 shows the timeline for message exchange between
the various components of our framework, including the
SDN. Updating sampling strategy messages and forwarding
messages are the actions of the controller, which are based on
the reports the controller receives from the ML_Subsystem.
The FWDApp is the default forwarding application in the
SDN, helping the controller install proper flow rules on the
flow tables of each switch. There are three possible actions
that a controller can choose from:

1) Blocking: When the attack traffic information is exact
and does not overlap with any non-malicious traffic, the
controller installs a block rule on the flow table of the
switch associated with the attack traffic.

2) Rate Control: When the traffic observed is suspicious,
the controller increases the sampling rate for deeper
analysis.

3) Forwarding: When traffic is non-malicious, the con-
troller finds the forwarding path and installs the flow
rule on the flow table.

These actions are configured on switches in the data plane
through messages from the controller. We consider different
types of control messages that are sent from the controller to
the switches in the data plane:

1) Forward-flow message: (interface, path, action:forward)

2) Block-flow message: (interface, src, action:block)

3) Sample-flow message: (interface, interval, sample size,

action:sampling)

If the sampled traffic is identified as malicious according
to the BMA log, the controller should promptly handle the
Block-flow message. For suspected traffic, the flow inspection
schedule should be adjusted. The BMA’s task is to monitor
the traffic to detect any inconsistencies in the data plane
traffic. In addition, this application checks the frequency
of packet-in messages and extracts some features to detect
anomalies. Additionally, this application monitors the fre-
quency of packet-in messages and extracts features to detect
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anomalies. It assigns a security score based on these features
within a given time period (") and categorizes incoming traffic
into three types of flows: newly generated, suspicious, and
malicious.

A. Placement of Sampling Switches

Network traffic is monitored by capturing traffic flows
at strategic location, which significantly impacts the mon-
itoring performance. There are two possible locations for
traffic capture — core switches and edge switches. Unlike a
core switch on the network backbone, the number of flows
at an edge switch is relatively small since it is directly
connected to client devices. Therefore, it is possible to mon-
itor individual flows that pass through each edge switch
at a more granular level. As each monitored edge switch
requires a dedicated capturing device, the number of capturing
devices required for network-wide traffic monitoring will be
substantial. Furthermore, managing many hardware devices
will result in substantial additional management overhead.
Therefore, this solution approach to network traffic moni-
toring for anomalies is not a practical solution for large
networks.

SDNs do not necessitate differentiating edge and core
switches [11]. Leveraging hardware-based capturing devices is
important to capturing traffic on SDNs. Such hardware-based
capturing further relies on OpenFlow to capture traffic packets.
In practice, this involves updating the flow table of each switch
using OpenFlow. In the proposed Cyber-AnDe framework,
we design a greedy set-cover algorithm that iteratively selects
the most cost-effective set and removes the covered elements.
The same greedy set-cover algorithm also selects the location
of traffic capture by selecting a subset of switches as sampling
switches. Once a subset of switches is chosen, packets passing
through each switch can be fairly sampled at a certain rate.
Our proposed greedy set-cover algorithm guarantees the size
of the set sampling switch is minimal. We are cognizant
of the capacity limitation of switches and design a separate
capacitated set-cover algorithm [12], [13].

The capacitated set-cover algorithm takes into consideration
the capacity limitation when selecting the switches. The capac-
itated set-cover switch selection problem can be formulated as

Forwarding rule
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Control and information flow in Cyber-AnDe.

Algorithm 1 Capacitated Set-Cover Selection

Require: Switch set S, Flow set F, Capacity C
1: Initialize total number of the sampling switch k

2: Initialize cover switch set S* = &

3: Initialize cover flow set 7*¥ = &

4: for each switch s € (§ — S°) do

5. while C; > 0 do

6: for each f € (F — F*) do

7 Flow f will be sampled by switch s
8: SY <« S Us

9: FP«—FUf

10: Calculate remaining capacity Cs

—
—_

: return List of sampling switches S*

an optimization problem as follows:

k
Zi:l Ci-xi
subject to: ZfeF

Xi € {O, 1}

minimize:
1/2)/() *rpuXp < C
VS € S.

Here, x; indicates whether switch S; is chosen or not. ry
denotes the traffic flow rate f, and yy presents the minimum
sampling rate. For each switch, the total amount of sampling is
at most C. Algorithm 1 shows Capacitated Set-Cover selection
for the sampling switches. Based on the switches’ capacity,
C,, a subset of switches S € S is selected to cover all the
incoming traffic. Suppose we change the sampling rate from
1 to minimum sampling rate 1/2yyp, a subset 55" € 8% can cover
the traffic. Algorithm 2 illustrates the process of selecting s’
from the regular set-cover algorithm (or from the set cover
output by Algorithm 1).

A Toy Example: Fig. 6 shows the steps involved in selecting
the sampling switches and setting the sampling rate. S is
the set of candidate switches for the sampling based on the
capacitated set-cover. As mentioned before, the selection of
switches in this step is based on the assumption that each
switch can cover one flow. Fig. 6(a) displays the capaci-
tated set-cover S. Now, with the help of a regular set-cover
algorithm, a subset of switch S’ € S can be selected. Fig. 6(b)
displays the capacitated set-cover S’. The sampling rate for the
switches in S’ is based on the minimum sampling rate, which
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Algorithm 2 Set-Cover Selection

Require: Switch set S*, Flow set F, Sampling rate yg
1: Initialize cover switch set S° = &
2: Initialize cover flow set F"* = &
3y =1/2p )
4: for each f € (F —F*) do
5:  for each s € §° do
6 if (ry x y) < Cs then
7: Assign flow f to switch s for sampling
8 S« 8 Us
9: F—Fuf
10: Co=Cs—(ryxy)
11: break
12: return List of sampling switches S

Algorithm 3 Adaptive Distributed Sampling Algorithm

Require: Flow set F' and switch set S
1: Initialize y = 1/2y9

2: 8 « Candidate switches selected by Algorithm 2
3. for each switch s € S do

4:  Switch s sends traffic sampled at rate y to TSR
5: TSR gathers sampled traffic

6: TSR sends report to the controller

7. while Not Converged do

8:  for each suspicious flow f do

9: y' =2xy

10:  if switch s can handle y’ then

11: Switch s continues with new sampling rate
12:  else

13: for each switch s’ € S’ do

14: C;= Remaining capacity of s’

15: if 2y’ < C} then

16: Migrate flow f to the switch s’

17: else

18: Migrate flow f to the new switch s,

19: Allocate remaining sampling rate to s,

is 1/2yp, which is less than the sampling rate associated with
the selected switches in S. Therefore, this minimum number
of sampling switches can cover all the flows.

When a suspicious flow is detected, the controller must
continue increasing the sampling rate on the affected switch
until it reaches the predefined confidence level. This con-
fidence level enables the controller to determine whether
to forward the sampled traffic as legitimate or block it as
malicious. However, switches have a limitation on how much

1/2y0
~1/2v0

(b) Set-cover S’ € S
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Element
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sampling they can handle. When a switch reaches its maximum
capacity for sampling rates, it becomes necessary to migrate
the sampling of suspicious flows to other switches. In such
cases, the controller reallocates a portion of the sampling
load to a new switch. Fig. 6(c) illustrates the reassigning of
the sampling task of suspicious flow f>. By doing so, the
traffic collector gathers sufficient sampled traffic to analyze
the suspicious flows effectively. This enables the controller to
determine the appropriate action for the incoming traffic.

Theorem 1: Let CSC(F, S, C) be a capacitated set-cover
problem instance. Capacitated set-cover S covers all flows f €
F, where it is subject to the sampling capacity C. If we change
the sampling rate from 1 to the minimum sampling rate 1/2yy,
CS(F, S, C, yp) selects a subset S’ from S with the help of
the regular set-cover problem, and the max number of flows
cover by each sampling switch in set S’.

Proof: Suppose that each flow f needs a sampling rate
of 1. The capacitated set-cover problem selects some switches
covering all the flows f under capacity C. By changing
sampling rate from 1 to 1/2yp, each switch can cover more
flow because 1 x ry > y9 x ry when yy < 1. Therefore,
by using the regular set-cover on S, we have the minimum
number of sampling switch set S’ that covers all the flows f.
]

B. Network Control Loop

The proposed Cyber-AnDe framework utilizes a closed
network control loop (including an RL agent) to dynamically
adjust the sampling rate. The control loop is composed of
necessary components and control functions, as illustrated in
Fig. 4. Generally, the traffic collector starts with an initial
sampling rate, yp, which is distributed among the selected
switches. The controller in Cyber-AnDe operates as part of
a closed control loop to determine the optimal sampling
rate and the best action for each incoming network traffic
flow. This closed control loop allows the sampling rate to be
automatically adjusted based on the state of the traffic flow
as assessed by the controller. Details of the sampling rate
adjustment process are outlined in Algorithm 3. The anomaly
detector sends a report to the controller, which then decides
on the subsequent sampling process based on this report and
its learning from the current status of the data plane.

For suspicious traffic, the controller increases the sampling
rate until reaching a convergence point regarding the status of
the given traffic. However, switches have limited capacity and
may be unable to handle the updated sampling rate. To make
an accurate decision, the switch will require assistance pro-
cessing at the new sampling rate. Consequently, the controller
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will add a new switch to the sampling set. The dynamic set-
cover method [14], outlined in lines 13-20 of algorithm 3,
effectively addresses this issue.

As discussed, increasing the sampling rate results in more
sampled traffic, which, when forwarded to the traffic collec-
tor, consumes network resources and may cause congestion,
interfering with normal traffic flow. Therefore, it is crucial
to minimize duplicated packets for traffic sampling to reduce
the impact of traffic monitoring. The detection engine, used
for analyzing sampled traffic during inspection, has limited
processing capacity. If the incoming traffic rate exceeds its
capability, the detection engine will drop packets. Thus, sam-
pled traffic should not exceed the detection engine’s processing
capacity.

Fig. 7 illustrates the RL control loop and stopping points.
RL is a sub-field of machine learning that addresses the
problem of learning optimal decisions over time. It is a
machine learning technique based on the Markov Decision
Process (MDP) and can be used to tackle this task. In RL,
the agent keeps interacting with the environment to find
the optimal policy mw to maximize his expected accumulated
rewards [15]. RL aims to learn a policy to determine which
action a to take given a specific environment represented by
the state 5. In our situation, the state s can be presented by one
of three possible traffic statuses on each switch: 1) Legitimate,
2) Suspicious, and 3) Malicious.

The flow’s status is determined by evaluating the probability
outputs of the classifier in BMA, where p; is the probability
of being malicious and p; is the probability of being benign.
If (p1 > t), the flow is categorized as malicious. If (py >
7), the flow is categorized as benign. Conversely, if neither
p1 nor py exceeds t, the flow is flagged as suspicious.
This threshold-based classification mechanism enables the
identification of potentially anomalous network behavior for
further assessment.

Based on the status that RL determines, the corresponding
action a to take can be one of:

1) Increasing the sampling rate,

2) Stopping the sampling rate,

3) Adding an assistant switch.

In RL, the reward reflects the success of the agent’s recent
activity and not all the successes achieved by the agent so far.
In our approach, the agent’s objective is to learn the policy of
monitoring the traffic that maximizes the expected detection
rate and guarantees minimum overhead for the controller. The
Q function for reward is defined as follows:

Orv1(st,ar) = (1 — ) Qs (s¢, ar) + a(U (s, ar)
+ Agl'ﬂ( Q(st41,ar+1)), (1)
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where U (s, a;) denotes the reward value of a given action a;
at state s;.

RL would be helpful based on the traffic status on the given
switch, which is based on the average rate of received traffic
and the average rate of loss traffic. We formulate average rate
of traffic R(r) as (Rp(t) — Rp(t — 1))/ (t — ©), where R, ()
is received traffic rate at time ¢ and t denotes the end of the
previous time interval. The average loss of traffic £(r) can
be formulated as (R,(t —t) — T,(t — 7))/ Rp(t — T), where
T,(t) represents the transmission rate of traffic at time ¢. The
observed state of a switch is denoted as follows: state =
{(R1(1), L1(1)), ... (Ru(1), Ln(1))}. We define actions of real-
location as: 1) New allocation (extra space) for control at time
t and 2) New allocation (extra space) for data at time ¢. Here,
RL aims to minimize the penalty, which is the cost of lack of
space. The Q function is defined as:

Ory1(st,ar) = (1 —a)(Qq(st, ar) + a(P(sy, ar)
+)\r£?j( Q(st+17al‘+1))s (2)

where P(s;, a;) is the penalty function, and the value of
penalty can be calculated by C x R,(1)/b,(t) where R,(t)
and b,(t) represent the current rate and the allocated rate
respectively. Minimizing the probability of capture failure is
the objective of the sampling methods. We can formulate the
objective as min, {max s p s} = min, {maxs [[, ps}.

We need to evaluate the framework’s performance with
different sampling rates resulting from applications. We define
a utility function Uy(s, f, y) to find the best option to the
current system for sampling flow f in switch s using rate y.
The utility function can be defined as follows:

Uss, ) =20 o 20 @ 95 vp)
—B- M) = P(T.0). G)

where G(fs, rr, yr) denotes the function computing the accu-
racy of detection on flow f; on the given switch s with data
rate ry and sampling rate yr. The function M represents the
cost value for computation/processing of flow f and commu-
nication between components. The function P represents the
penalty, which is based on the delay in this approach. This
utility function helps the controller to find [switch, flow, rate]
by considering the capacity limitation of the TSR. We can
formulate this problem as an optimization problem:

maximize: Uy (s, f,y)
subject to: ZfeF rg-ys <C foreachseS
ZSES sp>1 foreach f e F. (@)

The total sampling rate is calculated by summation of flows’
sampling rates, denoted by y, for each switch s € S. The
aggregated volume of sampled packets is retained below the
maximum TSR capacity. The total capacity of the TSR is
denoted by C in bits per second. Let sy denotes the list of
switches that flow f is sampled on. Each flow f should be
sampled at least one switch. The controller updates the time
interval between the sampling based on the current state of
the network. T, representing the time interval «. Sampling
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begins with a low period Tp. The controller will update
the time interval according to 7, = (1 + «)Tp, where «
is a confidence index. The controller can change « based
on the result of the detection. If there is no alert from the
TSR, the controller will increase «. Otherwise, it will be
decreased. We need to take into account «,,; to control
the maximum time interval between samplings. Therefore,
we consider « = min(« + 1, &,4,) in the implementation of
our adaptive sampling module in the Cyber-AnDe framework.
Sampling generally takes place for a predetermined period of
time. In contrast, duration needs to be carefully determined as
each security attack requires a different observation time to be
accurately classified with a high detection rate and a low false
positive rate.

A false negative is an important metric for intrusion detec-
tion. It shows the rate of not detecting an attack when an
attack has taken place. If the malicious traffic is not sampled,
then the intrusion detection component does not detect the
existence of the attack. Therefore, different sampling strategies
should be applied in various cases, and we will discuss
them separately in the following sections. The performance
of the intrusion detection component can be shown by the
false negative rate. We define the false negative rate as
follows:

Definition 1 (False Negative Rate): A flow f passes sev-
eral switches to reach its destination. Let p  be the probability
that the BMA fails to capture flow f* as p = py,. e Dfs
where 0 < py < 1. The total probability of capture failure
for the f" flow is the product of the probability of capture
failure at every passed switch denoted by py = [[;cs Prs.
where py is the probability of capture failure for f " flow
in a switch s. The process of sampling packets is the same as
picking ry.y; balls out of r balls. Therefore, the probability of
capture failure for flow f on switch s is pyy = (" 7/)/(,”.).

. VsTs VsTs
We can rewrite as (ry—m ¢)!-(ry—ys-rs)!/rsl-(rg—m g —ys-ry)l.

C. Detecting the Convergence

A key assumption behind Cyber-AnDe’s ADS is that
convergence can be detected accurately and efficiently.
The Cyber-AnDe’s ADS method continues taking samples
according to the report received from SSA until it detects
convergence. The convergence point is still unknown or is
an open problem [16]. We need some bound for termination.
We check the accurate measurement of the algorithm for where
the controller can get a good approximation. Within the scope
of our research presented in this paper, we can define a bound
for the anomaly detector. Whenever the detector reaches this
bound, the controller does not need to continue updating the
sampling rate. The value for this bound can be set by entropy
threshold and ML classification methods. Convergence detec-
tion is fundamentally a statistical judgment to estimate whether
the given criterion has been met. Specifically, convergence is
reached when Pr((U(N) — U(n;)) > €) < 8, where U() is
the utility of the model, ¢ denotes the maximum acceptable
decrease in utility, and § is a probability that the maximum
utility value difference from the previous run will be exceeded
on any run.
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IV. RELATED WORKS

A. Sampling Strategy for Detection of Malicious Traffic

Previous studies have dived into the impact of sampling
on network management and anomaly detection [17], [18],
[19], [20]. Campazas-Vega et al. [21] presented influence of
sampling rate in different detection methods based on machine
learning. They trained machine learning-based models with
different flow datasets. They found out that with a sampling
threshold of 1 out of 250 packets, all the algorithms tested
achieved high detection rates. Also, they proved that the
KNN-based one is the best model in terms of detection
capability at all thresholds, but also the worst in execution
performance. Du et al. [22] introduced self-adaptive sampling,
tailoring the sampling probability to each flow’s size and
spread. Biswas et al. [23] claimed The effect of sampling rate
on the DDoS detection rate of the monitors. They proposed
a flow grouping approach based on behavioral similarity
among virtual machines. They formulated the problem as an
optimization problem and found the optimal sampling rate
distribution.

B. Sampling Strategies in SDN

In the world of SDN network architecture, researchers
have been diving into the fusion of IDS with SDN [24], [25],
[26], [27], [28]. Kim et al. [29] proposed a less-intrusive
traffic sampling mechanism for multiple traffic analyzers on
an SDN-capable network using a deep deterministic policy
gradient (DDPG), which is a representative deep reinforcement
learning algorithm for continuous action control. Wang et al.
[30] proposed a Spatial-Temporal Collaborative Sampling
framework, aiming to maximize sampling accuracy for
different flows by considering the influences of switches
and the collaborative strategy among switches in the spatial-
temporal dimension. Their proposed approach improved the
sampling accuracy of total/mice/elephant flows and reducing
the redundant sampling packets, which can be applied in the
practical systems.

Ujjan et al. [10] introduced sFlow and adaptive
polling-based sampling with an IDS deep learning model to
detect unwanted IoT nodes DDoS traffic at data plane of
SDN. Sadrhaghighi et al. [31] presented a per-flow sampling
system, optimizing for long flows by delegating short-flow
sampling decisions to edge switches. Cai et al. [32] proposed
a Spatio-Temporal Collaborative Sampling (STCS) for SDN.
They considered the influences of nodes and the effect on
sampling accuracy imposed by the collaborative strategy
among nodes in the time dimension.

In contrast to previous works, our proposed method, Cyber-
AnDe’s ADS, leverages central control in SDN and feedback
from the intrusion detection loop. The controller dynamically
adjusts the sampling rate based on traffic sampling repository
data and behavior monitoring. In cases where switches reach
their sampling capacity, the controller smoothly transitions to
new sampling switches using a migration method, providing
an adaptive and efficient sampling solution.
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V. PERFORMANCE EVALUATION

In this section, we present a comprehensive evaluation of
CyberAnDe approach, focusing on its performance across
various scale of traffic, malicious traffic rate, and network
topologies. The primary objectives of this evaluation are to
assess the detection rate and overhead associated with Cyber-
AnDe. To evaluate the proposed approach, we provide traffic
including both malicious and normal flows. For generating
malicious traffic, we utilize the hping3 tool, with which we can
launch SYN flood, UDP flood, and malformed packet attacks
at different data rates. The legitimate traffic is generated using
the Ostinato traffic generator, which can operate in one of
two modes — normal mode or burst mode. Finally, the ntopng
tool provides a detailed view of the sampled traffic. We have
developed and implemented an SDN application to collect
sampled traffic using Snort in signature mode.

Our data-center, shown in Fig. 8, is composed of the follow-
ing — 35 servers, 15 SDN switches, and 4 regular L2 switches.
All the servers, except the Gateway, are Dell PowerEdge
210 servers with the following configuration - 2 cores 2.4 GHz
processor, 4 GB RAM, 500 GB storage, minimum 2 gigabit
Ethernet ports. We set up two networks — a control network
and a data network. An L2 switch connects all management
ports of SDN switches and the SDN controller in the control
network. SDN switches are configured as out-of-band con-
trollers. The data ports of the SDN switches and the Gateway
are connected in the data network resulting in a three-level
complete binary tree topology. The Gateway is connected to
the root SDN switch, and the other servers are connected
to the leaf SDN switches. We use Open Network Operating
System (ONOS) as the SDN controller, which is installed on
the Gateway. Using the OpenFlow Discovery Protocol, ONOS
communicates with OpenFlow switches and maintains a state
graph of the switches. Additionally, it exposes a northbound
API to the OpenFlow applications. We install routing flow
rules using ONOS proactive forwarding.

We consider the following four switch selection algorithms
to evaluate our proposed method against different approaches:

1) Top-k based on Betweenness Centrality (BC): select
the K sampling switches with the highest structural
influence in the topology [33],

2) Random-k: select K switches randomly,

3) Set-Cover selection (SC): select K switches maximizing
the coverage of all current active flows,

4) Adaptive Distributed Sampling (ADS): switch selection
algorithm in Cyber-AnDe.
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A. Measurements

Increasing sampling rates results in an increase in the
amount of traffic that is sampled. Due to the fact that the
sampled traffic is forwarded to the TSR, it consumes network
resources and may lead to network congestion, which inter-
feres with the normal collection of traffic flow data. To evaluate
our approach, we report the following performance metrics:

« False Negative — percentage of malicious packets that
were not detected. This is because of a lack of enough
samples to detect malicious status for a given flow.

o Detection Rate - the proportion of the whole sample
where the anomalies were detected correctly.

« Detection/Responding Time — the duration between the
occurrence of a security event (such as an intrusion or
anomaly) and the time the IDS identifies, send report to
the controller and the controller responds to it.

« Network Sampling Load — the number of control mes-
sages sent from the controller to the switches.

e Minimum Sampling Switches — absolute minimum
number of switches required to provide the necessary traf-
fic flow coverage for sampling that achieves the required
anomaly detection rate.

B. Evaluation Results

Fig. 9 illustrates the performance of our proposed
Cyber-AnDe framework with early detection and early
response. Compared to OpenFlow, Cyber-AnDe achieves
approximately 46% faster detection at the cost of approxi-
mately 15% increase in number of alert messages as overhead
for the controller. To find the relationship between the sam-
pling rate and the detection rate, we need to vary the sampling
rate and record the detection rate.

Fig. 10 displays how the sampling rate in SDN switches
impacts the IDS detection in SDN. Three different sampling
rates — yp = 1/10, yo = 1/100, and yp = 1/1000 — are
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compared across three different traffic scales — small, medium
and large with MT R = 2.5% and switch capacity = 1Gb/s.
This allows us to explore the effect of sampling rate on
detection performance. The analysis of the results reveals a
clear trend: higher sampling rates (g 1/10) consistently
yield better detection rates across all traffic levels. For small,
medium, and large traffic volumes, the detection rates are
highest with yy = 1/10, followed by y9 = 1/100 and yy =
1/1000. This trend suggests that increasing the sampling rate
enhances the system’s ability to detect intrusions effectively.
Therefore, optimizing the sampling rate to higher values is
crucial for improving the IDS’s detection performance, espe-
cially as incoming traffic volume increases.

In Fig. 11, we present Cyber-AnDe’s detection time, false
negative rate, and anomaly detection rate for varying rates of
malicious traffic. From the results in Fig. 11(a), we can see
that for higher rates of malicious traffic, both the overhead
and the detection time increase. Fig. 11(b) illustrates that with
a capacity of 1Gb/s for the sampling switches Cyber-AnDe
improves detection performance with respect to false negative
by around 90% in comparison to fixed sampling.

Fig. 11(c) presents results comparing the performance of
anomaly detection rate of our proposed Cyber-AnDe and
Fixed sampling. Since some normal flows can exhibit behavior
very similar to that of a malicious flow, it is impractical to
develop a model with 100% detection accuracy. The pro-
posed Cyber-AnDe has significantly better results in detecting
malicious flows since it takes into consideration the capacity
limitation of the switches. Note that the sampling capacity of
each switch is limited. When the controller requests sampling
from a switch at a rate that exceeds the switch’s capacity,
the switch will be unable to handle this request. This will
result in a smaller sample size than what the controller
expects. However, by reassigning the higher rate sampling
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tasks to other switches that have the capacity, our framework
effectively achieves better performance.

In Fig. 12, we present the effect of traffic scale and capacity
of sampling switches on the performance of CyberAnDe
compared to other fixed sampling and OpenFlow methods.
Fig. 12(a) shows the minimum number of sampling switches
required to achieve a minimum required anomaly detection
rate of 90% or higher for the three methods for vary-
ing flow rates. Also, an MTR of 2.5% is considered in
this case. From the results, we can conclude that among
the three methods, Cyber-AnDe has the best performance.
Cyber-AnDe achieves the required 90% or higher anomaly
detection with much fewer switches compared to the other
two methods. For example, for 280 flow, Cyber-AnDe requires
only 4 switches compared to OpenFlow and Fixed methods
require 7 and 12 switches respectively. Even when the number
of flows increases from 260 to 320, Cyber-AnDe can achieve
the minimum required anomaly detection rate of 90% or higher
without the need for any additional switches. In conclusion,
the minimum number of required sampling switches for an
anomaly detection rate of 90% or higher is on average 48%
lower with Cyber-AnDe.

Fig. 12(b) illustrates the overhead of controllers under dif-
ferent volumes of incoming traffic with a fixed MTR of 2.5%.
While the control messages generated by our framework
increase with increasing volume of incoming traffic, it still is
significantly lower compared to OpenFlow and Fixed sampling
techniques. Once again, from the results it can be seen that of
the three methods Cyber-AnDe has the best performance. The
controller overhead with Cyber-AnDe is 42% lower compared
to OpenFlow and 26% lower compared to Fixed sampling.
Fig. 12(c) shows the impact of the capacity of sampling
switches on the false negative rate with a fixed MTR of 2.5%.
With our framework, the false negative rate is around 78%
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lower for switches with 0.2 Gb/s capacity, around 95% lower
for switches with 0.5 Gb/s capacity, and between 99%-100%
lower for switches with capacity > 0.9 Gb/s.

In Fig. 13, we compare the detection time performance of
Cyber-AnDe’s ADS with three other popular switch selection
algorithms — BC, SC, and Random-k. Additionally, we con-
sider three scenarios under a fixed incoming malicious traffic
rate (MTR) of 2.5%. From the results in Fig. 13(a), it can be
seen that our sampling technique achieves the fastest detection
time. Fig. 13(b) presents the detection rate performance of
four methods we have implemented for selecting sampling
switches. From the results, it can be seen that our framework’s
sampling switch selection algorithm has the best performance,
i.e., the most accurate anomaly detection.

Fig. 13(c) presents the overhead performance of four meth-
ods we have implemented for selecting sampling switches.
It can be seen from the results that Cyber-AnDe’s sampling
switch selection algorithm adds the lowest overhead on the
controller while achieving the highest anomaly detection rate.
We consider a fixed MTR to evaluate the four methods for
selecting switches for traffic sampling.

Fig. 14(a) compares the detection rate performance of
Cyber-AnDe’ ADS to fixed sampling method. From the results
shown, it can be concluded that our ADS has better anomaly
detection performance because it considers the capacity limi-
tation of the switches when selecting the sampling switches.
Fig. 14(b) shows the impact of the capacity of sampling
switches on the FN. We have considered a fixed malicious rate
of 2.5% for this simulation. It can be seen that Cyber-AnDe
has significantly better performance in both cases, i.e., 200 and
500 flows.

Fig. 14(c) shows the amount of controller’s overhead for dif-
ferent sampling methods: 1)Uniform Packet Sampling (UPS):
Each switch samples every arriving packet with probability p.

UPS is a representative of per-port sampling solutions and
resembles sFlow [34], 2)Uniform Flow Sampling (UFS): Each
switch samples every flow with rate p. Once a switch has
captured p fraction of a flow, it stops sampling that flow.
To achieve this, UPS assumes a priori knowledge about flow
rates. UFS represents uniform per-flow sampling solutions
and resembles NetFlow [35], and 3)Adaptive Distributed
Sampling (ADS): The proposed sampling method. In this
experiment, we assumed p = 0.1. It can be seen that Cyber-
AnDe’s ADS has the best performance as it has the least
amount of overhead.

In this section, we present the results of evaluation on a
DDoS dataset, HLD-DDoSDN, in [36] which includes three
types of DDoS attacks: 1) High and low rates TCP DDoS
attacks, 2) High and low-rate UDP DDoS, and 3) High and
low-rate ICMP DDoS attacks. According to [37], a sending
packet rate of 0.2(s) and 0.03(s) indicate high-rate and low-
rate DDoS flooding attacks, respectively.

Table II presents a comparison of recent sampling methods
for SDN which are Spatial-temporal Collaborative Sam-
pling (STCS) [30] and FlowShark [31] with Cyber-AnDe over
the HLD-DDoSDN dataset. We consider traffic with different
rates and protocols to demonstrate the performance of these
methods in various scenarios. The results in Table II indicate
that Cyber-AnDe consistently outperforms the other methods
across all traffic conditions. Specifically, Cyber-AnDe achieves
the lowest detection times, with values ranging from 21.32ms
to 37.21ms, indicating its superior speed in identifying DDoS
attacks. Furthermore, Cyber-AnDe demonstrates the highest
detection rates, maintaining above 93.45% across all scenarios,
which underscores its reliability and accuracy in detecting
threats. In terms of overhead, Cyber-AnDe maintains a low
impact on system resources, with values comparable to those
of FlowShark and slightly higher than STCS, demonstrat-
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TABLE II
COMPARING RECENT SAMPLING METHODS OVER VARIATION OF DDOS ATTACK ON SDN
Detection Time(ms) Detection Rate(%) Overhead(%)
High | Low | High | Low High | Low | High | Low High | Low | High | Low
Sampling Approaches | Rate | Rate | Rate | Rate Rate | Rate | Rate | Rate Rate | Rate | Rate | Rate
TCP | TCP | UDP | UDP TCP | TCP | UDP | UDP TCP | TCP | UDP | UDP
STCS [30] 28.31 | 3428 | 37.12 | 435 93.23 | 89.88 | 885 | 87.78 0.17 | 028 | 0.25 | 0.32
FlowShark [31] 25.61 | 31.31 | 35.85 | 41.43 || 95.11 | 92.78 | 91.34 | 90.67 0.13 | 0.20 | 0.21 0.26
Cyber-AnDe 21.32 | 28.15 | 325 | 37.21 || 9746 | 95.72 | 95.29 | 93.45 0.14 | 022 | 0.18 | 0.25
TABLE III
EVALUATION OF CYBER-ANDE OVER DIFFERENT NETWORK TOPOLOGIES WHEN yy = 1/100, MTR = 2.5%
Network Topology Detection rate(%) Overhead (%)
Small Traffic | Large Traffic Small Traffic | Large Traffic
Star 0.83 0.65 0.25 0.43
Ring 0.83 0.65 0.28 0.46
Mesh 0.87 0.71 0.18 0.30
Fat-tree 0.90 0.87 0.18 0.31

ing a balanced trade-off between performance and resource
consumption. These results suggest that Cyber-AnDe is a
robust and efficient solution for DDoS attack detection in SDN
environments, offering a combination of fast response times
and high detection accuracy with a manageable overhead.

Table III presents the evaluation of Cyber-AnDe over differ-
ent network topologies, given y = 1/100 and MT R = 2.5%.
Results demonstrate that the Fat-tree topology outperforms the
others by offering the highest detection rates and maintaining
low overheads, making it the most efficient choice. The Mesh
topology also shows strong performance with good detection
rates and low overheads. In comparison, the Star and Ring
topologies have lower detection rates and slightly higher
overheads, indicating that they are less effective in managing
both small and large traffic scenarios. Overall, the Fat-tree
topology provides the best balance of high detection rates
and low overheads, making it the most efficient among the
evaluated topologies.

VI. DISCUSSION

Although the study aims to show that the algorithm can be
used universally, there are still potential threats to its validity.
These threats come from both practical application issues
and limitations within the algorithm itself. These concerns
include the compromise or failure of the SDN controller. This
paper assumes that the SDN controller within the Cyber-AnDe
framework is trustworthy and securely managed. While we
acknowledge the risks associated with having a centralized
controller, our focus is on exploring adaptive sampling strate-
gies for anomaly detection within this secure framework.
Another concern is the performance of the individual com-
ponents within the Cyber-AnDe framework. To this end, the
success of the proposed solution depends on how well both
the RL agent and the BMA module perform. Additionally, the
ability of attackers presents a threat. An adaptive attacker who
knows the mechanism may manipulate network traffic to evade
detection by the IDS.

This paper discusses routine attacks without directly
addressing adaptive adversaries, but acknowledges their

importance in real-world situations. It proposes a system that
can adapt, thanks to a controller and a RL agent, allowing
updates to sampling scenarios in response to changing threats.
Future research will explore how well the proposed sys-
tem works against adaptive adversaries, including multi-stage
attackers to thoroughly assess its robustness under different
threat conditions.

This paper primarily focused on assessing the system’s
runtime overhead but acknowledges the importance of consid-
ering memory limitations in real-world deployment scenarios.
It proposes a strategy to allocate sampling switch assistance to
devices with potential memory constraints to mitigate overload
and ensure feasibility. While memory overhead is considered,
the paper’s main objectives are to evaluate Cyber-AnDe’s
detection rate and time, crucial for its effectiveness as an
intrusion detection system. Future research will explore how
well the proposed system works against adaptive adversaries,
including multi-stage attackers to thoroughly assess its robust-
ness under different threat conditions.

VII. CONCLUSION

Effective network monitoring plays an increasingly critical
role in the overall security posture of an enterprise. SDNs are
very promising and have the potential to enable robust security
solutions if their ability to decouple the control plane and
data plane can be effectively leveraged. Leveraging the SDNs’
programmable functionality of OpenFlow switches, incoming
traffic can be selectively sampled by the controller. How-
ever, it is vital that sampling on SDN switches be carefully
managed such that the anomaly detection rate is maximized
while keeping the overhead and congestion to a minimum.
In this paper, we propose Cyber-AnDe — a robust cybersecurity
framework with an adaptive distributed sampling method for
network traffic-based anomaly detection on SDNs. Through
simulations and SDN test-bed-based experiments, we evaluate
the performance of Cyber-AnDe in terms of detection time,
detection rate, and overhead.

Results confirm that our solution significantly outperforms
existing methods, demonstrating a 93% improvement in net-
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work traffic-based anomaly detection. Cyber-AnDe achieves
the required detection accuracy of 90% or higher while utiliz-
ing 48% fewer switches on average. It also reduces overhead
by an average of 34% and improves false-negative rates by
at least 78%. In conclusion, our proposed Cyber-AnDe frame-
work offers superior anomaly detection performance compared
to current solutions.
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