A polyhedral reconstruction of a 3D object from a chain code
and a low-density point cloud

Osvaldo A. Tapia-Duefias’, Hiram H. Lépez?”, Hermilo Sanchez-Cruz?

!Department of Mathematics, Computer Science, and Data Science, John Carroll
University, University Heights, OH, USA.
2*Department of Mathematics, Virginia Tech, Blacksburg, VA, USA.
3Departamento de Ciencias de la Computacién, Universidad Auténoma de
Aguascalientes, Aguascalientes, Aguascalientes, México.

*Corresponding author(s). E-mail(s): hhlopez@vt.edu;
Contributing authors: otapiaduenas@jcu.edu; hermilo.sanchez@edu.uaa.mx;

Abstract

The manipulation of 3D objects is becoming crucial for many applications, such as health, industry, or
entertainment, to mention some. However, these 3D objects require substantial energy and different
types of resources. With the goal of obtaining a simplified representation of a 3D object that can
be easily managed, for example, for transmission, in some recent works, the authors associate low-
density point clouds with a 3D object that simplifies the original 3D object. More precisely, given a
3D object in a polyhedral format, some authors associate a chain code and then use grammar-free
context to obtain key points that give rise to several point clouds with different densities. In this
work, we complete the cycle by developing a polyhedral reconstruction from an associated low-density
point cloud and the chain code. The polyhedral reconstruction is crucial for handling 3D objects
because it allows us to visualize them after they are efficiently compressed and transmitted. We
apply our algorithms to well-known 3D objects in the literature. We use the Hausdorff and Chamfer
distances to compare our results with the state-of-the-art proposals. We show how our proposed
polyhedral reconstruction based on a helical chain code reconstructs a medical image represented or
transmitted by slices into a 3D object in a polyhedral format, helping thus to mitigate and alleviate
the management of 3D medical objects. The polyhedron that we propose provides better compression
when compared with the original set of slices of a 3D medical object.

Keywords: Point cloud, Triangulation, 3D Shape, Data reduction, Polyhedral approximation, 3D computed
tomography

1 Introduction

Three-dimensional (3D) image analysis and processing, as recognition, reconstruction, and optimal
storage, has significant importance in various fields and applications, such as health, industry, and enter-
tainment, or to extract useful information from three-dimensional scenes, to mention some. Some of the
critical reasons for their importance are artificial vision and robotics [1], virtual and augmented reality
[2, 3], scene reconstruction, and object detection and facial recognition [4].

*Hiram H. Lépez was partially supported by the NSF grants DMS-2201094 and DMS-2401558. Hermilo Sanchez-Cruz was
partially supported by Universidad Auténoma de Aguascalientes under grant PII24-4. Part of this work was done during the visit
of Osvaldo Tapia-Duenas to Hiram H. Lépez at Virginia Tech.

Among efforts to achieve the analysis, processing, and representation of 3D objects, some methods
without loss of information developed in the literature are [5-7]. In the recent work 3D object simplifica-
tion using chain code-based point clouds [8], the authors simplify a 3D object to a point cloud through a
chain code. To be more precise, given a 3D object in a polyhedral format, for example, in a PLY format,
the authors in [8] associate a sequence of point clouds of different densities that help the user decide
between the trade-off size versus simplification. The sequence of the point clouds depends on a chain code
and a helical path associated with the original 3D object. In this work, we propose reconstructing the 3D
object in a polyhedral format from a point cloud. The polyhedral reconstruction is crucial for handling
3D objects because it allows us to visualize them after they are efficiently compressed and transmitted.
We apply our algorithms to well-known 3D objects in the literature. Finally, we show how our proposed
polyhedral reconstruction based on a chain code helps mitigate and alleviate the management of medical
objects. The diagram in Fig. 1 represents where this paper is situated with respect to the state of the
art to manage 3D objects using chain codes.

3D Object in a Voxelizati Chain code and Free-context
polyhedral format oxelization helical path grammar
3D Object in a R N This paper Point clouds
polyhedral format ceonstruction L (from [8])
\\i(o
® o aain
Y
\;; ?(™
7

Applications

Fig. 1 This paper reconstructs the 3D object in a polyhedral format from a point cloud.

There are other methods to reconstruct simplified 3D point clouds in the literature. In [9], the authors
use optimized distance functions to reconstruct the 3D object while preserving the topology. The work
[10] presents a method to obtain simplified and uniform resample points for surface reconstruction. In [11],
the authors present new algorithms for global shape reconstructions from sparse tracked surface points.
In order to achieve 3D reconstruction from multiple layers, in [12], the authors propose a deep learning
architecture called Mesh Reconstruction Network (MR-NET) that is applied in real-time despite missing
data and sparse annotations, reaching accurate shape reconstruction in the presence of incomplete or
noisy contours. In [13], the authors use a sphere as a guide surface to obtain the surface reconstruction

from a point cloud. To reconstruct a 3D mesh that shows detailed characteristics of the objects, the
authors of [14] use the set of flat points progressively to avoid massive and quantitative calculations.

The strategy we follow in this article differs from other literature approaches because we aim to
reconstruct the 3D object from the point clouds with the help of a helical chain code. We highly rely on
the point clouds having an associated chain code. Even when the point clouds are enough to visualize the
shape of the object roughly, the helical chain code plays a crucial role in reconstructing the 3D object
because the code preserves the order of the original voxels. For example, our method differs from those
based on machine learning [15, 16] because our proposal already includes the shape features (chain codes
and point coordinates) to be used for the image representation, which avoids any other type of search or
learning by any model.

In the health area, the 3D image representation and analysis has found meaningful applications in
medicine and diagnosis [17], surgical planning, medical education, volumetric measurements [18], and
Digital Imaging and Communications in Medicine (DICOM) files to optimally store the thousands of
slices that tomographic medical imaging systems produce or for the display, storage, and transmission
of anatomical images for 3D model creation [19]. We show how our proposed polyhedral reconstruction
based on a helical chain code reconstructs a medical image represented or transmitted by slices into a 3D
object in a polyhedral format, helping to mitigate and alleviate the management of 3D medical objects.

The diagram in Fig. 2 represents what this paper is doing with respect to the reconstruction of 3D
medical objects using chain codes.

Chain code +
Medical object rep- Helical path + Thi 3D medical object in

resented by slices Free-context 1S paper a polyhedral format
grammar (from [8])

Fig. 2 This paper reconstructs the 3D medical object in a polyhedral format from the set of slices.

We follow this article in the following way. In Section 2, we give some definitions, concepts, and
procedures that we use throughout this paper, including how to obtain a helical chain code and a point
cloud from a 3D object. In Section 3, we present an algorithm to reconstruct a 3D object in a polyhedral
format from a point cloud and their respective helical chain code. In Section 4, we present the results and
analysis of our proposed reconstructive algorithm. We show in Section 5 how our proposed polyhedral
reconstruction based on a helical chain code reconstructs 3D medical images represented or transmitted
by slices, helping thus to mitigate and alleviate the management of medical objects. Finally, in Section
6, we give some conclusions and further work.

2 Preliminaries

In [8], the authors present a method to obtain a chain code and a low-density point cloud from a
3D object. Among the main goals of the chain code and the low-density point cloud is to obtain a
simplified representation of the 3D object that can be easily managed, for example, for compression and
transmission. As our primary goal in this paper is to reconstruct the 3D object in a polyhedral format
from the point cloud and the chain code, in this section, we present a summary of [8] to obtain the chain
code and the low-density point clouds from the original 3D object. For a more detailed explanation, see [8].
In addition, we present a helical chain code that helps us keep order in the voxels for reconstruction. For
a more detailed explanation of helical chain codes, see [5] and the references therein.

A chain code is a common and compact way to represent a two-dimensional (2D) object. The Freeman
chain code (F8), proposed by Freeman in 1961 [20], is a sequence of symbols that belong to the set
{0,1,2,3,4,5,6,7} that codifies the information of the contour shape of a 2D object. Every symbol
represents two adjacent pixels (see Fig. 3).

R U
2l SEUINES

Fig. 3 Symbols to encode with F'8.

The angle Freeman chain code, based on the chain code F8 and proposed by Kui and Zalik in
2005 [21], is a sequence of symbols that belong to the set {a,b,c,d,e, f,g,h} and codifies the angles of
the contour shape of the 2D object (see Fig. 4). The symbol e arises when a pixel in the contour shape
of B is adjacent to only one pixel of the contour shape.

d

e N VY
T Y

Fig. 4 Symbols to encode with AF'8.

Example 2.1. Consider the 2D object B shown in Fig. 5. If we start to encode from the top left-
most pixel, we obtain that the chain codes are F'8(B) = 000221234444460075467 and AF8(B) =
baacahbbbaaaaccahghch.

Y
Y

Start

A

Y
A 4

Fig. 5 A 2D object B. Chain codes of B are F'8 (B) = 0002212334445600754467 and AF8 (B) = baacahbbbaaaaccahghch.

2.1 A helical chain code from a 3D object

We now describe the steps to obtain a helical chain code and a point cloud associated with a 3D object.

2.1.1 Voxelization

Given a 3D object in a polyhedral representation, the first step is to voxelize it. The voxelization can be
done with the Binvox software [22, 23].

2.1.2 A helical chain code

The general idea is to decompose the voxelized 3D object into 2D slices. Then, we encode every 2D slice
with the AF'8 chain code. However, we need to encode every slice in a certain order to generate the

helical path, which is crucial for reconstructing the 3D object.
n

A three-dimensional connected object D can be seen as a union of n > 1 z-slices: D = U D;. Each

i=1
z-slice D; can be considered a 2D object, which may be disconnected. Every single D; is the union of
m;
m; € Z>o connected components which are pairwise disjoint: D; = U D;;. Note that each connected
j=1

component D;; can also be considered as a 2D object.
Remark 2.2. As a consequence of the previous paragraph, we obtain that any 3D object D can be seen
as a union of 2D objects D;; that are pairwise disjoint:

D=JDi =
3 =1

mg
i=1 j

Umr
1

Jj=

The helical chain code of the 3D object D is obtained by the concatenation of the chain codes
AF8(D;;) and a few more symbols that help to encode an appropriate order.

Assume that the connected components D;1,D;a, ..., Dim, in every slice D; have been ordered from
the closest to the furthest respect to the origin of coordinates. Let C;; be the Cartesian coordinates of
the center of the voxel that is the closest to the origin among all the voxels in the connected component
D;j. Let £, be the natural number such that D1, is adjacent to Doy, Do is adjacent to Day, .. ., D, —1n1
is adjacent to Dy, 1, and Dy,; is not adjacent to any another connected component D;;. Define the
concatenation

HCC" (D) = C11AF8 (Dyy) -+~ Cy,1 AF8 (Dy,1) -
Observe that we start with D1, which is the 2D component closest to the origin, and then we encode
all the D;;’s that are adjacent to Dq;. Now, we remove D, ... D¢, 1 and repeat the previous step to find
the chains of the regions: HCC? (D),..., HCC* (D), for a non-zero integer t.
Definition 2.3. Let D be a 3D object. The helical chain code of D, denoted by HCC' (D), is defined by

HCC (D) = HCC' (D)yHCC? (D) y...yHCC' (D),

where y is a symbol that helps to distinguish the chains HCC® (D)’s. The set of voxels encoded by a
chain code HCC® (D) is called a region of D, and is denoted by D°.
Example 2.4. Fig. 6 (a) shows a 3D object D. Observe that D is the union of nine 2D sets. Specifically,

D = D11 UDg; UDyy UD3; UD3s UDyy UDys UDsy UDgy.

In order to compute the chain code HCC(D), we find AF8(D11). As Doy is adjacent to Diy, we
compute AF8 (D). As D is adjacent to Dap, we compute AF8 (Ds1). As Dy is adjacent to D3y, we
compute AF8(Dy;). Finally, as Dy; is not adjacent to the connected components on the slice D5, we
compute HCC' (D) = C11AF8 (D11) - - Cy1 AF8(Dy1), where C;; represents the Cartesian coordinates
of the center of the voxel in D;; that is closest to the origin of the space. Observe that HCC! (D)
represents the chain code of the object in Fig. 6 (b), which is a region of Fig. 6 (a).

The next step is to remove the connected components D11, Da1, D31 and Dy from the list of unvisited
connected components of D. Thus, we obtain Fig. 6 (c). As there are no more connected components in
slice Dy, we move to the next slice. We start with Dy and compute AF8 (D). As Dss is adjacent to
Daa, we compute AF8(D3y). As Dy is adjacent to Dsa, we compute AF8 (Dys). As Ds; is adjacent to
D42, we compute AF8 (Ds1). As Dg; is adjacent to Dy, we compute AF8 (Dgy1) . As there is no slice Dy
in the object, we finally compute HCC? (D) as the concatenation of the chains

CQQAF8 (DQQ) ngAFS (Dgg) C42AF8 (D42) and C51AF8 (D51) CGlAF8 (Dﬁl) 5

where Cj; represents the Cartesian coordinates of the center of the voxel in D;; that is closest to the
origin of the space. Observe that HCC? (D) represents the chain code of the object in Fig. 6 (c), which is
another region of Fig. 6 (a). The next step is to remove the connected components Dag, D32, Dya, D51 and
De1 of D from the list of unvisited connected components. As there are no more connected components
left to visit, we compute

HCC(D) = HCC* (D)yHCC? (D).

(a) (b) (c)

Fig. 6 (a) A 3D object D. (b) One region of D. (c) Another region of D. The helical chain code HCC (D) depends of
HCC4 (D), the chain code of (b), and HCC3 (D), the chain code of (c).

Example 2.5. Fig. 7 shows a 3D object D composed by three different regions. The helical chain code
HCC (D) of the 3D object is composed by HCC* (D), HCC? (D), and HCC? (D), which are the chain
codes of the regions. Specifically,

HCC(D) = HCC" (D)yHCC? (D)yHCC? (D).

»

(a) (b) ©

Fig. 7 (a) A 3D object D. (b) The 3D object is composed of three regions. (c) The helical chain code HCC (D) is composed
by HCC! (D), HCC? (D), and HCC? (D), which are the chain codes of the regions.

Remark 2.6. Limitations of the chain code approach As we explained in Subsection 2.1.1, given a
3D object in a polyhedral representation, the first step is to voxelize the object. The voxelization, which
can be done with the Binvox software [22, 23], captures the overall shape of the object, and it will result
in practically imperceptible changes in the shape of the object as long as there is sufficient resolution.
Thus, any chain code, helical or not, will keep all the information of the voxelized object. In other words,

the chain code will preserve the whole topology of the original 3D object as long as the number of voxels
used for the voxelization is sufficient.

We conclude that one of the limitations of the chain codes, helical or not, is given by the resolution
of the voxelization. The voxelization is not the primary topic of this manuscript, but we want to mention
that it can be tuned depending on the 3D objects being considered. For more information, see [22, 23].
Remark 2.7. Considerations about the helical chain code. The helical chain code has already
been considered in the literature to encode voxelized objects; see [5] and the references therein. The
helical chain code is crucial for this paper because, by Definition 2.3, it allows us to keep order on the
voxels so the polyhedral reconstruction can be made.

As we explained in Remark 2.6, the helical chain codes preserve the whole information of the vox-
elization of the 3D object. In addition, among the several chain codes in the literature, the helical code
is based on the A* algorithm when moving from one slice to another. The A* helps to find the closest
voxel in the next slice, which is crucial for Algorithm 1 to join adjacent slices.

2.1.3 Low-density point clouds

Here, we obtain the low-density point clouds associated with the 3D object with the help of the helical
chain code. The idea is based on [24], where the authors show digital straight segments of the contour
shape of a 2D object can be obtained by identifying a particular string of symbols on the angle Freeman
chain code. Then, after we identify the digital straight segments of the object in terms of the chain code,
the point cloud is defined by the endpoints of the straight segments.

Proposition 2.8. [24] A digital straight segment (DSS) of the contour shape of the 2D object B is given
by the a substring in AF8 (B) of the following form:

Xa? (Ya?)",

where X € {a,b,c,d,e, f,g,h},Y € {bh,hb}, and p,q,r are non-negative integers that represent the
number of times that a symbol, or set of symbols in case of the parenthesis, is concatenated.

Every symbol in the chain code AF'8 (BB) represents the center of a pixel that is in the contour shape
of B [21].

Let XaP? (Ya4)" be a digital straight segment in the 2D object B. The center of the pixel represented by
X is called a key point of B. By [24], it is clear that we can see the chain code AF8 (B) as a concatenation
of digital straight segments:

AF8(B) = X1a” (Y1a?)"™ -+ XpaP* (Yea®)"™ .

In this case, the set of key points of B is the set formed by the centers of the pixels defined by the symbols
Xp,..., X,
Definition 2.9. Let p, ¢, r, be non-negative integers, ¢ a positive integer, D a 3D object, and Dy, ..., D,
the z-slices of D. The low-density point cloud associated with p, ¢, r and ¢ that represents D is given by
the set of key points of the components of Dy, D144, D1426,-- - D1gisy----
Remark 2.10. Relation between the grammar and the point clouds. By Proposition 2.8, and
as it is explained in detail in [8, 24|, repetitions of the symbol a in the AF8(B) string will indicate that
there are a consecutive voxels in the 3D object are making contact by faces. Such voxels will produce
a DSS. The combination of the symbol a with hb or bh in the AF8(B) string will indicate that there
are voxels in the 3D object that are forming a stair, which can approach the concept of DSS. Thus, the
p, q, T, and § parameters indicate the length of substrings we are looking for inside the 3D object. For
example, if p is ten, we are looking for strings of ten consecutive face-connected voxels in the 3D object.
But, if p is two, we are looking for strings of two consecutive face-connected voxels in the 3D object.
Of course, there will be more strings of size two. Thus, there will be more DSS and more key points,
resulting in a more dense point cloud.

The parameter ¢ indicates the slices where we are looking for DSS. For example, if § is ten, we are
looking for DSS every ten slices. If § is two, we are looking for DSS every two slices in the 3D object.

As a summary, the density of the point cloud is inversely proportional to the p, ¢, r, and § values. In
other words, the larger the parameters p, ¢, r, and J, the more details of the original object can be lost.
In our experiments, we adjusted these values to achieve the densities shown in this article.

Example 2.11. Fig. 8 shows a 3D object and three associated point clouds for different p, ¢, r, and ¢
parameters to achieve distinct densities.

2\
65% of reduction. 80% of reduction. 90% of reduction.
Original bunny. p=10 ¢ =10 p =100 ¢ = 100 p=13¢=13
r=1046 = 4. r =100 = 5. r=136=11.

Fig. 8 An original object and three different point clouds with distinct densities.

3 Polyhedral reconstruction

In this section, we describe the process of reconstructing a 3D object using the helical chain code from
Subsection 2.1.2 and the point cloud from Subsection 2.1.3. We continue with the same notation from
previous sections. In particular, from the definitions of z-slices, connected components and regions given
above, a 3D object D can be seen as the following unions:

n nom; t
= e L= %
p=Ur.=JUr,=Ur" 0
i=1 i=1j=1 i=1
M~ ——— N ——
z-slices connected regions
components

Notation 3.1. As a point cloud of a 3D object D is given, we assume the integers p, ¢, r, and § are fixed
for this section. We use the following notation.
P denotes the polyhedron P (D, p, q,r,d) we want to reconstruct.
P denotes the set of vertices of the polyhedron P (D, p, q,r,0), which is given by the point cloud.
P, denotes the set of vertices that belong to the z-slice D;.
P;; denotes the set of vertices that belong to the connected component D;;.
P’ denotes the set of vertices that belong to the region D*.
Observe that P,NP; =0, for ¢ # j. A similar situation happens with the key points of the connected
components and the regions. Thus, Egs. (1) imply

n n m; t
P:UPi:UUPij:UPi.
i=1 i=1j=1 i=1

In order to define the faces of the polyhedron P, we need to determine the edges that belong to the
faces. From now on, we focus on defining the edges rather than the faces. The set of all the edges that
define the faces of the polyhedron P is denoted by £.

Let v; and ve be two vertices in P. The notation ||v1, v|| represents the Euclidean distance between
the centers of the voxels v; and v5. We now define a distance between voxels that belong to the same
connected component.

Definition 3.2. Let v and v’ be two vertices that belong to the same connected component D;; =
{v1,...v¢}. There exist two integers k and k' such that v = v, and v/ = v,. Assume that k < k’. The
voxel distance given by D is denoted and defined by

|v1, vallp = min {|Jvk, vegall + - + e —1, v ||, lorr, vrga ||+ - 4 Jok—1, vl } -

Tt is not difficult to verify that ||vq, v2||p is a distance function. Indeed, it is straightforward to check
that given any three vertices v,v” and v” in the same connected component D;;, we have that

® ”vvaD =0,

* |lv,v'[lp = |[v',v]p, and

* |lv,v'[lp < v, 0" [lp + [[v", v p.
Remark 3.3. If two vertices v; and vy are not on the same connected component, we define ||vy, va||p :=
H'Uh V2 ” :
Definition 3.4. The distance between a voxel v and a set of voxels V; is denoted and defined by

o, Vall = min {llo, v}

For any two key points v; and vs in P, the notation [v1,vs] represents the edge from the vertex vy to
the vertex vs.

We come to one of the main results of this section. Algorithm 1 details how to find all the edges £ of
the polyhedron P.

Algorithm 1: Defines the edges, and as a consequence, the faces of P

Result: &, the set of edges of P

£ =0;

for every connected component D;; in D do

Assume P;; = {v1,..., v/} . We add the edges of every pair of consecutive vertices
['Ul,’UQ], R [0571705]7 ['Uz,Uﬂ to g;

C1 := Dyits); (adjacent connected component of D;; in the same region);

Let Co,...,Cy be the connected components of D, 5 such that each of them is either the first
or last z-slice of another region Dj;

Split D;; in terms of the C;’s;

for1<k</do
| Dy (k) = {v € Dy ¢ [lo,Cull < [lo,Cool, for & # K}

end
Take C/ = D”(l), [P ,Cé = DU(K),
Let Cy,1,--.,Cp be the connected components of D; such that each of them is either the first

or last z-slice of another region Dj;

for1 <k</¢do

A ={v eCy : ||lv,Di;(k)|| < |lv,Cp/]|, for k # '}

We now join D;;(k) and Ay;

Vi=PnND;k)={vi,...,v},V =PnA, ={v},...,up };

The order in V' and V”’ is defined by the helical chain code HCC (D), and v; and v} have
the property that |lv1, v{] is minimum over all possible pairs v, v’;

nn = o} vhllp 4+ + [y, vl + 10, 4

ng = [lvr, vellp + - + [Jve—1, vellp + [lve, vi D3

for every v € V do

Take v/ € V' such that the absolute value abs <||v'7 villp — kv, o1 HD) is minimum

over all v € V/;
We add the edge [v,v'] to €
end
for every v’ € V' do

Take v € V such that the absolute value abs (HU', villp — 22, U1HD) is minimum

over all v € V;
We add the edge [v/,v] to €
end
We eliminate the intersection of edges. See Fig. 9;
(V, V', E):=Algorithm 2(V, V' &);
We complete triangles. See Fig. 10;
(V, V', €):=Algorithm 3(V, V' &);
end
end

10

Remark 3.5. Even when Algorithm 1 depends on the metric ||-,-||p, it can handle cases where the
geometry of the object is highly non-linear or irregular; see Brain, Bunny, Cow, Dragon, and Heptoroid
(a more complicated 3D object) in Fig. 12. One of the reasons is that Algorithm 1 handles every region
separately, generating thus a single mesh for each connected region. Inside every region, Algorithm 1
utilizes the chain code to order and join the voxels of two consecutive slices. Thus, Algorithm 1 will
always return a mesh between two consecutive slices and then between regions in a finite number of
steps. We now give a more precise description.

One of the inputs of Algorithm 1 is the helical chain code of the 3D object. Such a code orders the
surface voxels and decomposes the 3D object into different regions. The ordering allows us to uniquely
define n, and no between two adjacent slices, where each vertex of these adjacent slices starts from the
nearest point. This characteristic enables us to determine how to create triangles either by connecting
two points from the current slice with one point from the previous slice (n1) or by connecting two points
from the last slice with one from the current slice (ns). Similarly, we can generate triangles between the
current slice and the adjacent next slice.

As we explained in Remark 2.6, one of the main limitations of our process comes from the voxelization
of the object. But even if the voxelization is large enough (in terms of the number of voxels), Algorithm 1
may fail with a low-density point cloud, for instance, when the p, ¢, v, and J parameters are large (see
Remark 2.10). In this scenario, the number of voxels between adjacent slices may differ considerably.
Thus, an inaccurate surface reconstruction can come from a single point on a slice, disproportionately
pulling all points from the previous one.

11

Algorithm 2: Eliminate intersections. See Fig. 9.
Data: V, V', &
Result: V, V' £, where there is no intersections between the edges from V to V’
for every vy € V and vy, € V' such that vy, vy] € £ do

if [vx_1,vp,,] € € then

dy == ||vk—1,vk||D;

dy = |[vg, vy [|D;

if dl S dg then

| Replace [v—1,v),] by [vg, vy] in &

else
| Replace [vg—1,v),] by [vk—1,v)] in €
end
end
if [vky1,vp 4] € € then
di = [[vg41, vk || p;
dy = |[vg, vy [|;

if dl S dg then

| Replace [v41,v)_1] by [vg,vy_] in €
else

| Replace [vi41,v)_1] by [vk11,vp] in €
end

end
end

@
o
+1

0
@

Fig. 9 Algorithm 2 eliminates intersections. The elimination depends on the distances d; and da.

Remark 3.6. In Algorithm 1, before calling Algorithm 2, the process has successfully joined every two
slices. However, it may happen that extra joints with intersections were created (see Fig. 9). The goal of
Algorithm 2 is to eliminate such intersections. We now give more details.

As we explained in Remark 3.5, Algorithm 1 highly depends on the helical chain code of the 3D
object. Such a code orders the surface voxels and, consequently, the vertex from each slice. The ordering
allows us to uniquely define d; and ds between two adjacent slices, where each vertex of these adjacent
slices starts from a nearby point. Thus, Algorithm 2 creates triangles with no intersections either by
connecting two points from the current slice with one point from the previous slice (d;) or by connecting
two points from the last slice with one from the current slice (ds).

The limitation of Algorithm 2 arises when adjacent slices show significant differences in their vertex
distribution. The triangulation process may produce irregular connections if one slice has widely spaced
vertices and the next has a more compact distribution. Specifically, a single vertex from the less dense
slice may disproportionately pull all the vertices from the denser slice, resulting in distorted triangles.
Similarly, all the vertices of the smaller slice may be drawn toward a single vertex in another slice. This
issue can arise when the value of § is too large.

12

Algorithm 3: Complete triangles. See Fig. 10.

Data: V, V' &

Result: V.V’ £, where the edges between V and V' form triangles
for every v, € V and v, € V' such that [vi,v)] € £ do

if [vk_1,v)_,]) € &, [vk—1,v)] & &, [v,v;_,] ¢ € then

dy == ||Jvg—1, vp||p;

dy = [vj_y, vklD;

if d; <dy then

| Add [vg_1,v)] to &

else
| Add [v,v)_] to €
end
end
if [vpy1,vp,,] € & [k, v 1] € &, [kg1,v)] ¢ € then
d1 = [|vk, Vi [lDs
d = |[v}; Vi1l

if d1 S dg then

| Add [vg, vy,] to €
else

| Add [vg41,v)] to €
end
end
end

Fig. 10 Algorithm 3 creates triangles in the last slice of a region that is joined to two or more regions. The added triangle
depends on the distances d; and da.

13

Remark 3.7. Independently of the shape of the object, by Algorithm 1, right before calling Algorithm 3
(after Algorithm 2), we have that at this stage, any two consecutive slices and regions are joined by
edges with no intersections (by Algorithm 2). Sometimes, depending on the number and the shape of
the regions, the vertices of the last slice of a region could be joined to two or more different regions. In
this case, we need one more step, which is Algorithm 10, to create an appropriate triangulation. We now
give a formal description.

Assume that D is a region that is joined to two different regions. Let vq,...,v; be the vertices of
the last slice of D. Assume that the vertices vy, ..., v, are joined to one of the regions, and the vertices
Vg+1,.-.,V; are joined to another region. In this case, the vertices vy, vy, ve11, and v, will create a
hole because there is no triangle; see Fig. 10. To address this situation, we propose Algorithm 3, which
triangulates these four vertices within the same layer. Unlike Algorithms 1 and 2, which do not handle
this scenario, Algorithm 3 aims to generate triangles with the shortest possible distance between d; and
ds, which is given by the helical chain code.

We present a summary of how Algorithm 1 works. We also show in Example 3.8 the main steps of
Algorithm 1.

® Selects a connected component D;;.

® Adds the edges defined by two consecutive key points in D;;.

e Splits D;; as a union U D;;(k) and strategically selects subsets Ay, of the connected components of

the next slice Djys.

o Creates edges between D;; (k) and Ay.

® Uses Algorithm 2 to eliminate intersections of edges between D;; (k) and Aj.

® Uses Algorithm 3 to complete triangles between D;;(k) and Ay.
It is important to remark that the previous steps are a superficial description of Algorithm 1. We remark
that Algorithm 1 is strongly supported by the fact that the object has a helical chain code, which helps,
for instance, to determine where the algorithm looks for subsets of the connected components to join
them. Algorithm 1 also relies on the voxel distance and the relative distance, which helps to join two
consecutive slices properly.

Algorithm 1 almost completes the polyhedron. A pair of cases need to be addressed: the caps, which
are the first and last slices. For these cases, we use the very well-known Delaunay triangulation [25].

The Example 3.8 illustrates the steps of Algorithm 1.

Example 3.8. Fig. 11 shows the main steps of Algorithm 1. For simplicity, we are showing the view of
the yz-plane. The four different colors of the object represent the four regions. (a) All the key points of
the object. (b) The key points are delineated by the regions. (¢) The algorithm generates the polyhedron
for each region. (d) The algorithm strategically partitions the key points from the slices ¢ and i + J. (e)
The selected key points from slice i are connected to the selected key points from slice i + 6. (f) The
algorithm terminates when the polyhedron is acquired.

4 Results

Fig. 12 shows five original objects (from left to right and from top to bottom: Cow, Dragon, Brain,
Bunny, and Heptoroid). In this section, we apply the polyhedral reconstruction from Algorithm 1 to
different low-density point clouds representing these five original objects.

As we explained in Subsection 2.1.3, different values of p, ¢, r, and § give rise to point clouds with
distinct densities. Table 1 shows the (p,q,r,d) parameters we used to achieve the point clouds with
different percentages of simplification with respect to the original objects in Fig. 12. The point clouds
associated with Fig. 12 and the (p,q,r,d) parameters from Table 1 are shown from Fig. 13 (b) to
Fig. 21 (b).

Finally, we apply Algorithm 1 to reconstruct the polyhedrons from the low-density point clouds and
their respective helical chain codes. The results are shown from Fig. 13 (c) to Fig. 21 (c).

We can see from the experiments that our process, Algorithm 1, retrieves the main shape of the object
from a low-density point cloud. However, we need to be careful because very few points may break the
topology of the object, as the Cow with a 90% simplification shows in Fig. 14 (b).

14

(f)

Fig. 11 Main steps of Algorithm 1. (a) All the key points of the object. (b) The key points are divided by the regions.
(c) The algorithm creates the polyhedron for each region. (d) The algorithm strategically divides the key points from the
slices ¢ and ¢ + 4. (e) The selected key points from slice ¢ are joined with the selected key points from slice ¢ + §. (f) The
algorithm finishes when the polyhedron is obtained.

Fig. 12 Original set of three-dimensional objects.

4.1 Comparisons

Here, we compare our method, Algorithm 1, with other approaches in the literature to reconstruct
polyhedrons from point clouds. We start by defining two metrics between sets of points.

15

Object # Points (original) (p,q,7,90) Simplification | # Points (simplified)
Cow 2,903 (100,100,100,17) 65% 1,007
Cow 2,903 (100,100,100,50) 90% 290
Dragon 22,998 (18,18,18,5) 65% 8,017
Brain 18,844 (100,100,100,17) 65% 6,488
Heptoroid 286,678 (2,3.1,2) 65% 100,337
Bunny 35,947 (10,10,10,4) 65% 12,406
Bunny 35,947 (9,10,8,5) 75% 8,978
Bunny 35,947 (100,100,100,5) 80% 7,308
Bunny 35,947 (13,13,13,11) 90% 3,501

Table 1 Different (p, ¢, r,d) parameters to achieve distinct simplification percentages.

Fig. 13 (a) Original Cow. (b) Point cloud with a 65% reduction. (c) Reconstruction using our method, Algorithm 1. (d)
Reconstruction using MeshLab [26].

Fig. 14 (a) Original Cow. (b) Point cloud with a 90% reduction. (c) Reconstruction using our method, Algorithm 1. (d)
Reconstruction using MeshLab [26].

o .

Fig. 15 (a) Original Dragon. (b) Point cloud with a 90% reduction. (c¢) Reconstruction using our method, Algorithm 1.
(d) Reconstruction using MeshLab [26].

Fig. 16 (a) Original Brain. (b) Point cloud with a 65% reduction. (c) Reconstruction using our method, Algorithm 1. (d)
Reconstruction using MeshLab [26].

16

Fig. 17 (a) Original Heptorid. (b) Point cloud with a 65% reduction. (c) Reconstruction using our method, Algorithm 1.
(d) Reconstruction using MeshLab [26].

Fig. 18 (a) Original Bunny. (b) Point cloud with a 65% reduction. (c) Reconstruction using our method, Algorithm 1.
(d) Reconstruction using MeshLab [26].

(b)

Fig. 19 (a) Original Bunny. (b) Point cloud with a 75% reduction. (c¢) Reconstruction using our method, Algorithm 1.
(d) Reconstruction using MeshLab [26].

(b) | @

Fig. 20 (a) Original Bunny. (b) Point cloud with an 80% reduction. (c) Reconstruction using our method, Algorithm 1.
(d) Reconstruction using MeshLab [26].

Given two finite sets of points A := {a1,...,ap} and B := {b1,..., by}, the Hausdorff distance [27]
between A and B is denoted and defined as

H(A, B) = max(h(A, B), h(B, A)),

17

\ TN

S & N
! K ‘
R \’ F N
T

)
(a) (b) (©) @

Fig. 21 (a) Original Bunny. (b) Point cloud with a 90% reduction. (c) Reconstruction using our method, Algorithm 1.
(d) Reconstruction using MeshLab [26].

where
h(A, B) = maxmin ||a — b||
acA beB
and || - || denotes the Euclidean norm on the points of A and B. More information about the Hausdorff

distance can be found in [27].
Given two finite sets of points A = {a1,...,a,} and B = {b1,...,b,}, the Chamfer distance [27]
between A and B is denoted and defined as

1 1
dchamter (A, B) = — infla —b||* + =: in [|b— al|®
Chamfer(4, B) |A|a§4221§”“ [+|B\§33¥2” al?,

where || - || is the Euclidean norm and |A| and |B| are the cardinalities of A and B, respectively.

We compare our method, Algorithm 1, with other approaches in the literature to reconstruct polyhe-
drons from point clouds. The reconstruction using MeshLab [26] is shown from Fig. 13 (d) to Fig. 21 (d).
Visually, we can see that MeshLab [26] tries to make the object softer, which can make the reconstruction
lose some characteristics with respect to the original 3D object. Another advantage of Algorithm 1 is that
it can recover the shape even when there are fewer points. Tables 2 and 3 show the comparisons, using
the Hausdorff and Chamfer distances, respectively, between the original 3D object and the polyhedron
obtained with our method, Algorithm 1, and the polyhedral reconstruction using MeshLab [26].

Hausdorff Distance
Polyhedral reconstruction Cow Cow Dragon | Brain | Heptoroid | Bunny | Bunny | Bunny | Bunny
65% 90% 65% 65% 65% 65% 75% 80% 90%
Algorithm 1 0.807 | 1.279 0.010 0.562 0.876 1.355 1.470 1.592 1.715
MeshLab [26] 1.015 1.341 0.011 1.102 0.873 1.491 1.424 1.584 3.917

Table 2 A comparative analysis of polyhedral reconstruction using the Hausdorff distance between the original 3D object
and the polyhedron obtained with our method, Algorithm 1, and the polyhedral reconstruction using MeshLab [26]. The
lowest values are marked in bold.

Chamfer Distance
Polyhedral reconstruction Cow Cow Dragon | Brain | Heptoroid | Bunny | Bunny | Bunny | Bunny
65% 90% 65% 65% 65% 65% 75% 80% 90%
Algorithm 1 0.287 | 0.701 0.006 0.206 0.334 0.347 0.283 0.312 0.562
MeshLab [26] 0.333 0.709 0.005 0.353 0.379 0.398 0.260 | 0.308 0.852

Table 3 A comparative analysis of polyhedral reconstruction using the Chamfer distance between the original 3D object
and the polyhedron obtained with our method, Algorithm 1, and the polyhedral reconstruction using MeshLab [26]. The
lowest values are marked in bold.

We compare our method, Algorithm 1, with [28] and [14]. Table 4 shows the results. As expected,
Algorithm 1 runs faster when there is a simplification because it uses fewer points.

18

Model Points | Triangular mesh number | Time of [14] | Time of [28] | Time of Algorithm 1
Dragon 41842 80118 37.91 38.51 35.28
Bunny 35337 67662 26.77 26.61 27.22
Bunny (after 8304 17455 11.53 / 4.33
simplification)

Table 4 Times for polyhedrons reconstruction.

5 Medical applications

We present in this section the results of applying our method, Algorithm 1, to the reconstruction of 3D

medical images that are represented or transmitted by slices.
Fig. 22 shows the polyhedrons obtained using our method, Algorithm 1, to different sets of slices. We

give more details below.

(b) Polyhedral Type-B

: Aortic Dissection (c) Polyhedral .
Polyhedral L d) Polyhedral L
(a) Polyhedral Liver Abdominal Aortic (d) Polyhedral Lungs

Aneurysm
Fig. 22 Polyhedrons using our method, Algorithm 1, to different sets of slices.

5.1 Liver

Fig. 23 shows a sample of slices of a liver. The result of applying Algorithm 1 to the complete set of
slices [29] is a polyhedron that represents the liver, which is shown in Fig 24.

Fig. 23 A sample of slices of a liver. The full set consists of 94 slices of a liver [29].

5.2 Type-B Aortic Dissection

Fig. 25 shows a sample of slices of a Type-B Aortic Dissection. The result of applying our method, Algo-
rithm 1, to the complete set of slices [30] is a polyhedron that represents the Type-B Aortic Dissection,
which is shown in Fig 26.

19

Fig. 24 A polyhedron that represents the liver obtained from the complete set of slices [29] and Algorithm 1.

Fig. 25 A sample of slices of a Type-B Aortic Dissection. The full set consists of 316 slices of a Type-B Aortic
Dissection [30].

Fig. 26 A polyhedron that represents the Type-B Aortic Dissection obtained from the complete set of slices [30] and
Algorithm 1.
5.3 Abdominal Aortic Aneurysm

Fig. 27 shows a sample of slices of a tree showing an abdominal aortic aneurysm. The result of applying
Algorithm 1 to the complete set of slices [5] is a polyhedron that represents the tree showing an abdominal
aortic aneurysm, which is shown in Fig 28.

5.4 Lung nodule

Fig. 29 shows a sample of slices of a lung nodule. The result of applying Algorithm 1 to the complete set
of slices [31] is a polyhedron that represents the lung nodule, which is shown in Fig 30.

5.5 Comparisons

Chain codes, which are strings of symbols representing the contour of a 2D image or a 3D object, have
been extensively considered in the literature because of their compressive properties. This compact and
efficient representation allows us to manipulate and analyze the shape of the object easily. In addition, the
string represents a data reduction that improves performance in applications that handle large volumes

20

Fig. 27 A sample of slices of a tree showing an abdominal aortic aneurysm. The full set consists of 340 slices of a tree

showing an abdominal aortic aneurysm [5].

™, ft s (
t’\. x(t fif /‘ T
o AN :
\,4‘:_"' ¥ ‘y ; 4R \\
.‘M\‘ . ! R
i \ ese
o UTTN

Fig. 28 A polyhedron that represents a tree showing an abdominal aortic aneurysm obtained from the complete set of

slices [5] and Algorithm 1.

Fig. 29 A sample of slices of a lung nodule. The full set consists of 57 slices of the lung nodule [31].

of data. In [32], the authors describe a lossless data compression block-sorting algorithm that reorders the
input text for simpler compression. The authors proved that the algorithm, which is based on the move-
to-front coding, achieves speeds similar to Lempel-Ziv algorithms and compression rates comparable to
top statistical models. In [33], the authors use interpolative coding for lossless chain code compression.
The compression pipelines include the burrows-wheeler transform, move-to-front transform and enhanced
interpolative coding.

The combination of a chain code with a compression algorithm provides an effective solution for
compressing, improving storage efficiency and transmission speed [7, 21]. PAQ file archivers [32, 33], which
are distributed as free software under the GNU General Public License (https://mattmahoney.net/dc/),
are a family of lossless data compressors based on context mixing. Context mixing is an algorithm in

21

Fig. 30 A polyhedron that represents the lung nodule obtained from the complete set of slices [31] and Algorithm 1.

which predictions of the next symbol in the chain are calculated by combining two or more statistical
models to produce a better prediction. In particular, among the PAQ archivers, one of them is PAQ8I,
which we used for lossless compression in our data type. It is known for its high compression rate,
although it may be slower than other archivers because of its focus on the highest possible compression.

In Table 5, we compare the size of the objects from Fig. 22 using different representations and PAQ8I.
We see that the size of the polyhedron obtained from Algorithm 1 is less than the size of the object using
the slices representation. Table 5 shows that the .PLY files obtained from our method, Algorithm 1, have
better compression than the original files in a .PNG format. The high compression ratios are because
we represented the surfaces of the objects in terms of triangulations (edges and vertices) in comparison
with the volumetric data from the original 3D object.

3D medical dataset Size Slices (png) Size Polyhedron
from Algorithm 1 (ply)
Liver [29] 67 KB 30 KB
Type-B Aortic Dissection [30] 358 KB 34 KB
Abdominal aortic aneurysm [5] 74 KB 19 KB
Lung nodule [31] 148 KB 26 KB

Table 5 Compression obtained when Pag8l [33] is applied to the complete set
of slices and the polyhedron obtained with our method, Algorithm 1.

Remark 5.1. For medical applications, it is crucial to consider that our approach, Algorithm 1, will
fail if there is no segmentation. In other words, if the set of slices contains different organs that are not
segmented, then Algorithm 1 will fail.

6 Conclusions and further work

In this work, we presented an algorithm that constructs a polyhedron that reliably represents a 3D object
from a low-density point cloud and a helical chain code. The proposed algorithm takes advantage of the
compression that comes from the chain code. In addition, as the chain code contains the information
on the contour shape of the 3D object, we use context-free grammar to detect the so-called key points
of the 3D object and the digital straight segments. The experiments show that even with a 65% of
simplification, which means only 35% of the points, the constructive algorithm reliably reconstructs
the original 3D object. We showed that our proposed algorithm can reconstruct 3D medical images
represented or transmitted by slices.

Algorithm 1 highly depends on the (p,q,r,d) parameters and the helical chain code. As explained
in Remark 2.10, there is a strong relation between the density of the points cloud and the (p,q,r,J)
parameters. Future work is to develop a formal statistical analysis to determine the (p, g, r,d) for which
a given 3D object starts to lose its main topological properties.

For medical applications, Algorithm 1 considers that the set of slices contains different organs that
are already segmented. Future work is to modify Algorithm 1 so it works even if the organs are not
segmented.

22

Algorithm 1 depends on the voxelization and the chain code of the original 3D object. Future work
would be to adapt Algorithm 1 so it can work with 3D objects that are not voxelized. This could be a
huge improvement with potential applications to virtual reality or 3D scene reconstruction.

Declarations

Availability of data and material

Data will be made available on request.

Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Funding

Hiram H. Lépez was partially supported by the NSF grants DMS-2201094 and DMS-2401558. Hermilo
Sanchez-Cruz was partially supported by Universidad Auténoma de Aguascalientes under grant P1124-4.

Authors’ contributions

All the authors contributed equally to the development of this manuscript.

References

[1] Montarfio-Serrano, V.M., Jacinto-Villegas, J.M., Vilchis-Gonzalez, A .H., Portillo-Rodriguez, O.: Arti-
ficial vision algorithms for socially assistive robot applications: A review of the literature. Sensors
21(17), 5728 (2021) https://doi.org/10.3390/s21175728

[2] Lai, J.W., Cheong, K.H.: Adoption of virtual and augmented reality for mathematics education:
A scoping review. IEEE Access 10, 13693-13703 (2022) https://doi.org/10.1109/ACCESS.2022.
3145991

[3] McCloskey, K., Turlip, R., Ahmad, H.S., Ghenbot, Y.G., Chauhan, D., Yoon, J.W.: Virtual and
augmented reality in spine surgery: A systematic review. World Neurosurgery 173, 96-107 (2023)
https://doi.org/10.1016/j.wneu.2023.02.068

[4] Han, X.-F., Laga, H., Bennamoun, M.: Image-based 3d object reconstruction: State-of-the-art and
trends in the deep learning era. IEEE Transactions on Pattern Analysis and Machine Intelligence
43(5), 1578-1604 (2021) https://doi.org/10.1109/TPAMI.2019.2954885

[5] Aldemir, E., Arturo Tapia Duenas, O., Emre Kavur, A., Tohumoglu, G., Sdnchez-Cruz, H., Alper
Selver, M.: Chain code strategy for lossless storage and transfer of segmented binary medical data.
Expert Systems with Applications 216, 119449 (2023) https://doi.org/10.1016/j.eswa.2022.119449

[6] Pervan, B., Tomic, S., Ivandic, H., Knezovic, J.: Midom?a dicom-based medical image communica-
tion system. Applied Sciences 13(10) (2023) https://doi.org/10.3390/app13106075

[7] Erdo?an Aldemir, G.T., Selver, M.A.: Binary medical image compression using the volumetric
run-length approach. The Imaging Science Journal 67(3), 123-135 (2019) https://doi.org/10.1080/
13682199.2019.1565695

[8] Tapia-Duenas, O.A., Sdnchez-Cruz, H., Lépez, H.H.: 3d object simplification using chain code-based
point clouds. Multimedia Tools and Applications 82(6), 9491-9515 (2023) https://doi.org/10.1007/
s11042-022-13588-3

[9] Briiel-Gabrielsson, R., Ganapathi-Subramanian, V., Skraba, P.: Topology-aware surface reconstruc-

tion for point clouds. Computers Graphics Forum 39(5), 197-207 (2020) https://doi.org/10.1111/
cgf.14079

23

https://doi.org/10.3390/s21175728
https://doi.org/10.1109/ACCESS.2022.3145991
https://doi.org/10.1109/ACCESS.2022.3145991
https://doi.org/10.1016/j.wneu.2023.02.068
https://doi.org/10.1109/TPAMI.2019.2954885
https://doi.org/10.1016/j.eswa.2022.119449
https://doi.org/10.3390/app13106075
https://doi.org/10.1080/13682199.2019.1565695
https://doi.org/10.1080/13682199.2019.1565695
https://doi.org/10.1007/s11042-022-13588-3
https://doi.org/10.1007/s11042-022-13588-3
https://doi.org/10.1111/cgf.14079
https://doi.org/10.1111/cgf.14079

[10]

[11]

[12]

Zhu, L., Kukko, A., Virtanen, J.-P., Hyyppa, J., Kaartinen, H., Hyyppa, H., Turppa, T.: Multisource
point clouds, point simplification and surface reconstruction. Remote Sensing 11(22) (2019) https:
//doi.org/10.3390/rs11222659

Jarvis, B., Choi, G.P.T., Hockman, B., Morrell, B., Bandopadhyay, S., Lubey, D., Villa, J.,
Bhaskaran, S., Bayard, D., Nesnas, I.A.: 3d shape reconstruction of small bodies from sparse features.
IEEE Robotics and Automation Letters 6(4), 7089-7096 (2021) https://doi.org/10.1109/LRA.2021.
3097273

Chen, X., Ravikumar, N., Xia, Y., Attar, R., Diaz-Pinto, A., Piechnik, S.K., Neubauer, S., Petersen,
S.E., Frangi, A.F.: Shape registration with learned deformations for 3d shape reconstruction from
sparse and incomplete point clouds. Medical Image Analysis 74, 102228 (2021) https://doi.org/10.
1016/j.media.2021.102228

Wang, P., Wang, Z., Xin, S., Gao, X., Wang, W., Tu, C.: Restricted delaunay triangulation for
explicit surface reconstruction. ACM Transactions on Graphics 41(5) (2022) https://doi.org/10.
1145/3533768

Li, H-A., Zhang, M., Yu, K., Qi, X., Hua, Q., Zhu, Y.: R3mr: Region growing based 3d mesh
reconstruction for big data platform. IEEE Access 8, 91740-91750 (2020) https://doi.org/10.1109/
ACCESS.2020.2993964

Sheikhpour, R., Berahmand, K., Mohammadi, M., Khosravi, H.: Sparse feature selection using
hypergraph laplacian-based semi-supervised discriminant analysis. Pattern Recognition 157, 110882
(2025) https://doi.org/10.1016/j.patcog.2024.110882

Sheikhpour, R., Mohammadi, M., Berahmand, K., Saberi-Movahed, F., Khosravi, H.: Robust semi-
supervised multi-label feature selection based on shared subspace and manifold learning. Information
Sciences 699, 121800 (2025) https://doi.org/10.1016/j.ins.2024.121800

Parvaiz, A., Khalid, M.A., Zafar, R., Ameer, H., Ali, M., Fraz, M.M.: Vision transformers in medical
computer vision—a contemplative retrospection. Engineering Applications of Artificial Intelligence
122, 106126 (2023) https://doi.org/10.1016/j.engappai.2023.106126

Fischer, F., Selver, M.A., Gezer, S., Dicle, O., Hillen, W.: Systematic parameterization, storage,
and representation of volumetric dicom data. Journal of Medical and Biological Engineering 35(6),
709-723 (2015) https://doi.org/10.1007/s40846-015-0097-5

Popescu, D., Marinescu, R., Laptoiu, D., Deac, G., Cotet, C.: Dicom 3d viewers, virtual reality or
3d printing — a pilot usability study for assessing the preference of orthopedic surgeons. Proceedings
of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 235(9),
1014-1024 (2021) https://doi.org/10.1177/09544119211020148

Freeman, H.: On the encoding of arbitrary geometric configurations. IRE Transactions on Electronic
Computers EC-10(2), 260-268 (1961) https://doi.org/10.1109/TEC.1961.5219197

Liu, Y.K., Zalik, B.: An efficient chain code with huffman coding. Pattern Recognition 38(4), 553-557
(2005) https://doi.org/10.1016/j.patcog.2004.08.017

Min, P.: Binvox. http://www.patrickmin.com/binvox (2004 - 2019)

Nooruddin, F.S., Turk, G.: Simplification and repair of polygonal models using volumetric
techniques. IEEE Transactions on Visualization and Computer Graphics 9(2), 191-205 (2003)

Tapia-Duenas, O.A., Sanchez-Cruz, H.: Context-free grammars to detect straight segments and a

novel polygonal approximation method. Signal Processing: Image Communication 91, 116080 (2021)
https://doi.org/10.1016/j.image.2020.116080

24

https://doi.org/10.3390/rs11222659
https://doi.org/10.3390/rs11222659
https://doi.org/10.1109/LRA.2021.3097273
https://doi.org/10.1109/LRA.2021.3097273
https://doi.org/10.1016/j.media.2021.102228
https://doi.org/10.1016/j.media.2021.102228
https://doi.org/10.1145/3533768
https://doi.org/10.1145/3533768
https://doi.org/10.1109/ACCESS.2020.2993964
https://doi.org/10.1109/ACCESS.2020.2993964
https://doi.org/10.1016/j.patcog.2024.110882
https://doi.org/10.1016/j.ins.2024.121800
https://doi.org/10.1016/j.engappai.2023.106126
https://doi.org/10.1007/s40846-015-0097-5
https://doi.org/10.1177/09544119211020148
https://doi.org/10.1109/TEC.1961.5219197
https://doi.org/10.1016/j.patcog.2004.08.017
https://doi.org/10.1016/j.image.2020.116080

[25]

[26]

[27]

28]

Delaunay, B.: Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka
Nauk 7(793-800), 1-2 (1934)

Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth
Eurographics Symposium on Geometry Processing, vol. 7 (2006)

Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the hausdorff
distance. IEEE Transactions on pattern analysis and machine intelligence 15(9), 850-863 (1993)

Nan, L., Wonka, P.: Polyfit: Polygonal surface reconstruction from point clouds. In: 2017 IEEE
International Conference on Computer Vision (ICCV), pp. 2372-2380 (2017). https://doi.org/10.
1109/ICCV.2017.258

Kavur, A.E., Selver, M.A., Dicle, O., Barlg, M., Gezer, N.S.: Chaos - combined (ct-mr) healthy
abdominal organ segmentation challenge data (2019) https://doi.org/10.5281/zenodo.3362844

Yao, Z., Xie, W., Zhang, J., Dong, Y., Qiu, H., Yuan, H., Jia, Q., Wang, T., Shi, Y., Zhuang, J., et
al.: Imagetbad: A 3d computed tomography angiography image dataset for automatic segmentation

of type-b aortic dissection. Frontiers in Physiology 12, 732711 (2021)

Zhou, X.: segmented images. figshare. Dataset. (2015). https://doi.org/10.6084/m9.figshare.
1579435.v1

Mahoney, M.V.: Adaptive weighing of context models for lossless data compression. (2005). https:
//api.semanticscholar.org/CorpusID:17386893

Mahoney, M.: Data compression programs. Overview over PAQ based compression software.
http://mattmahoney. net/dc ... (2009)

25

https://doi.org/10.1109/ICCV.2017.258
https://doi.org/10.1109/ICCV.2017.258
https://doi.org/10.5281/zenodo.3362844
https://doi.org/10.6084/m9.figshare.1579435.v1
https://doi.org/10.6084/m9.figshare.1579435.v1
https://api.semanticscholar.org/CorpusID:17386893
https://api.semanticscholar.org/CorpusID:17386893

	Introduction
	Preliminaries
	A helical chain code from a 3D object
	Voxelization
	A helical chain code
	Low-density point clouds

	Polyhedral reconstruction
	Results
	Comparisons

	Medical applications
	Liver
	Type-B Aortic Dissection
	Abdominal Aortic Aneurysm
	Lung nodule
	Comparisons

	Conclusions and further work

