A repair scheme for a distributed storage system
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Abstract A distributed storage system stores data across multiple nodes, with the
primary objective of enabling efficient data recovery even in the event of node fail-
ures. The main goal of an exact repair scheme is to recover the data from a failed
node by accessing and downloading information from the rest of the nodes. In a
groundbreaking paper, Guruswami and Wootters (2017) developed an exact repair
scheme for a distributed storage system that is based on Reed-Solomon codes, which
depend on single-variable polynomials. In these notes, we extend the repair scheme
to the family of distributed storage systems based on Reed-Muller codes, which
are linear codes based on multivariate polynomials. The repair scheme we propose
repairs any single node failure and multiple node failures, provided the positions
satisfy certain conditions.
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Introduction

The goal of a distributed storage system is to store data over multiple storage nodes.
A linear code, which is a vector space over a finite field, may be used in a distributed
storage system setting to allow the information stored on a failed node to be recov-
ered using the information stored on the remaining nodes. The general idea is the
following.

* The information to be stored is encoded into codewords using a linear code.

» Every codeword is distributed across nodes so that each node stores a symbol.

* Recovering a failed node exactly is equivalent to fixing an erasure in the code-
word Dimakis et al (2010), Dimakis et al (2011).

A repair scheme is an algorithm that recovers the value at any node using limited
information from the values at the other nodes. Under certain conditions, some re-
pair schemes require less information than standard approaches to repair. Thus, the
mathematical goal is the following.

* Design a set of vectors in such a way that every entry of every vector can be
recovered from the rest of the entries. In these notes, we use evaluation codes,
meaning that the set of vectors is a vector space over a finite field, and every
vector depends on the evaluation of a certain polynomial.

* Give an explicit description of an exact repair scheme. In other words, give the
algorithm describing how every vector entry can be recovered from the rest of
the entries. In these notes, we use the trace function from finite fields to describe
the repair scheme.

An evaluation code is a linear code defined by evaluating a collection of poly-
nomials on a set of points. Reed-Solomon codes, the most well-known family of
evaluation codes, are defined by the evaluation of single-variable polynomials up to
a certain degree on a set of points of the finite field IF, of size g. The design of linear
exact repair schemes for distributed storage systems using evaluation codes began
with the foundational work of Guruswami and Wootters in which they developed a
repair scheme (GW scheme) to efficiently repair an erasure in a Reed-Solomon (RS)
code; see Guruswami and Wootters (2017). The GW scheme highly depends on the
dual of a Reed-Solomon code, which is a generalized Reed-Solomon code. For a
general framework for evaluation codes, see Jaramillo et al (2021). For the dual of
an evaluation code, see Lopez et al (2021).

The GW scheme inspired the linear exact repair schemes for algebraic geometry
codes Jin et al (2018) and Reed-Muller codes Chen and Zhang (2019). Similarly to
Reed-Solomon codes, the Reed-Muller codes are defined by evaluating polynomials
up to a certain degree in m variables on the points F”;.

In these notes, we develop a repair scheme for several failures on a distributed
storage system that is based on Reed-Muller codes, provided the positions satisfy a
certain restriction. The approach we develop in these notes, which relies on the dual
of an evaluation code Lépez et al (2021), is different from the one used in Chen
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and Zhang (2019), and it gives the basis to extend it to other families of codes, for
instance, the family of Cartesian codes Lépez et al (2014).

Preliminaries

Let g be a power of a prime p and [F; be a field extension of degree ¢ = [F : ;] of
[F,. Let C be an [n,k]-linear code over I+, meaning a k-dimensional IF;-subspace
of ;. The elements of ]qu are called symbols and the elements of I, are called
subsymbols. As F is a vector space of dimension ¢ over F,, any codeword ¢ € C
(or more generally any element w € IF;,) can be represented using n symbols or tn
subsymbols.

Field trace
The field trace can be defined as the polynomial TrFq, /F, () € Fy[x] given by

t—1
Trg, i, (x) = x7 +-o- 2 fx.

For the sake of convenience, we will often refer to Trg, /g, (x) as simply Tr(x) when
the extension being used is obvious from context.

The following property of the trace function is crucial to developing the repair
scheme.

Remark 1. Let B = {z1,...,%} be a basis for F; over IF,. Then there exists a dual
basis B' = {z,...,z;} of Fy over F,, such that

1 i=j
Tr(ZiZIJ') = 5,‘]' = { J

0 otherwise.

In this case, B and B’ are called dual bases. For o, € Fy,

a=Y Tr(az)z.

-

i=1

Thus, given dual bases B and B’, determining ¢ is equivalent to finding Tr(az;) for
alli € [rf] :={1,...,t}; see Lidl and Niederreiter (1994).
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Reed-Muller codes

By Reed-Muller codes, we mean the evaluation codes obtained when polynomials
in m variables up to a certain total degree d € Z>( are evaluated at all the points of
F”!. The precise definition is as follows.

Let Fy[x1,...,x,] be the polynomial ring of m variables over F,. Denote by
g [x1,...,X%m]<a the set of those polynomials up to a certain total degree d.

Definition 1. Assume {P},...,P,} = F’q’f, fixing an order on the n := ¢'™ elements
of IE"q’f . The Reed-Muller code of degree d is given by

RM(Fyd) = {f(F) : fE€Fylr,....vnla} CFy,

where f(IFZ?) =(f(P1),.., f(Pn)).

Definition 2. Note that a Reed-Solomon code of dimension k of length ¢’ is defined
as
RS(Fy, k) :=RM(Fy,k—1).

The dual of a Reed-Muller code, denoted by RM(F;", ,d )L, isthe setof all @ € F’;,
such that or- B =0 forall § € RM(IFZ% ,d), where a - 3 is the ordinary inner product
in 7. The dual code RM(IF’q",,d)L has been extensively studied in the literature.
See, for instance, Delsarte et al (1970) and Huffman and Pless (2003), where it is
shown that the dual of a RM-code is another RM-code:

RM(Fy;,d)" = RM(F,d"),

where d* :=m(|Fy|—1)—d—1=m(q' —1)—d — 1.

Exact repair scheme

In terms of distributed storage systems, each entry c; of a codeword ¢ € C represents
the information stored on one of n different storage nodes. Informally, when one
of the storage nodes fails, meaning that it is unavailable to serve a data request,
an exact repair scheme is an algorithm designed to recover the information of the
erased node in terms of data held by the other storage nodes. Formally, we have the
following definition.

Definition 3. Let C be a linear code over s of length n and dimension k, given by
a collection of functions .% and a set of evaluation points A. A linear exact repair
scheme for C over I, consists of the following.

* Foreach o* € A, and for each o € A\ {*}, a set of queries Qg (") C Fy.
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¢ Foreach a* € A, a linear reconstruction algorithm that computes
fla’)y=Y Az
i

for coefficients A; € B and a basis {z1,...,z} for F, over F, so that the coeffi-
cients A; are [F,-linear combinations of the queries

U {Trmq,/wq(?’f(a)) ye Qa(a*)},

acA\{a*}

We often omit the word linear because we consider only linear exact repair schemes.
The repair bandwidth b is the number of subsymbols the scheme downloads to
recover the erased entry. As any element ¢ € IFZ, depends on nt subsymbols, the

number % can be seen as the fraction of the codeword that is needed by the exact
repair scheme to recover the erased symbol. It is important to note that to recover a
symbol ¢; € Fr of a codeword c, these b elements of I, rely on the entries ¢, j # i,
of ¢ but are not necessarily b of them.

A one-erasure repair scheme of a Reed-Muller code

In this section, we adapt the GW scheme of one erasure from Reed-Solomon codes
to Reed-Muller codes.

Remark 2. In Lépez et al (2022), the authors developed a repair scheme of one era-
sure for certain decreasing monomial-Cartesian and augmented Reed-Muller codes.
We decided to focus these notes on Reed-Muller codes to determine, in Theorem 1,
to what degree a Reed-Muller code can be repaired using ideas similar to Gu-
ruswami and Wootters (2017).

Theorem 1. Let RM(FJ; . d) be a Reed-Muller code such thatd < m(q' —1) — g
There exists a repair scheme for one erasure with bandwidth at most

b=g" —1+(—1) (q(m*)f— 1).

Proof. Let ¢ := (f(P1),...,f(Fy)) € RM(F},d). Assume that the entry of ¢ corre-
sponding to P* = (p1,...,pm) € [F% . meaning f(P*), has been erased.

Recall that {z1,...,z} is a basis for IF; over IF,. For i € [t], define the following
t polynomials, which we refer to as recovery polynomials:

Tr(zi(x1 — p1))
(x1—p1)
_ t—1 t—1_
=zt m—p)" g a—p)?

ri(x) =
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Asd <m(q' —1)—¢'~", then

dt=m(d —1)—d—1
>m(q' —1)—(ml¢' —1)—¢"")—1
=g ' —1>degri(x).

It follows that every polynomial r;(x) defines an element in RM(]FZ},d )+, meaning

ri(Fl) € RM(F7,d) .
As a consequence, we obtain the ¢ equations

r(PYf(P Y==Y. r(P)f(P) Viell] (1)

LAY

As r;(P*) = z;, applying the trace function to both sides of the previous equations
and employing the linearity of the trace function, we obtain

Te(uf(P) =~ ), Te(n(P)f(P)) Vielr.

FOA{P}
Define the set I" := {p1} xFy x--- xFy C % Then,

Zi ifPel’
V,'(P) =
Tr(zi(sp—p1)
(sp—p1) if P¢I,

where sp is the first entry of the point P € IFZ%. Note P* € I'. Therefore, we obtain
that for i € [t],

Tr (@ (P1)) = e o) Tr (P £(P)
= Xy po) Te((P)S(P)) + Zon r Te (1(P) £ (P)
= Xy po) Tr(@f (P)) 4 B Tr (2200 ()
= ) Te @f (P) + L Te(zisp—P1) T (£20)

The properties of the trace function imply that the entry f(P*) can be recovered
from its 7 independent traces Tr(z;f(P*)), which can be obtained by downloading
the following information from every element P # P*:

o ifPeI'\{P*}, download f(P).

« ifP¢ T, download Tr<f(P>).
sp—pi
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Hence, the bandwidth is

b=¢t(|'|—-1)+ |IE";§ \T| :t(q(mfl)t — 1) +q™ _q(mfl)t

(m—1)t (m—1)t

=1q —t+q" —q
_ (l— l)q(mfl)t_t+qmt
:qmt71+(t71) (q(m—l)t71>,

which concludes the proof.

As a consequence of Theorem 1, when m = 1, we obtain the GW repair scheme
for Reed-Solomon codes.

Corollary 1. Let RM(F,d) be a Reed-Muller code such that d < ¢' —q'~' —1,
meaning a Reed-Solomon code. Then, there exists a repair scheme for one erasure
with bandwidth at most

b=gq —1.

Proof. By Definition 2, RS(IFZ’,k) = RM(F,,k—1). So, we obtain the result as a
consequence of Theorem 1.

A two-erasures repair scheme of a Reed-Muller code

In this section, we adapt the GW scheme of one erasure from Reed-Solomon codes
to two erasures on a Reed-Muller code.

We keep the same notation as in previous sections and develop a repair scheme
that repairs two simultaneous erasures f(s') and f(s*) on a distributed storage sys-
tem based on a Reed-Muller code RM(IF;,d) provided the erasure positions satisfy
a certain condition.

Remark 3. In Lopez et al (2022), the authors developed a repair scheme of two
erasures for certain decreasing monomial-Cartesian and augmented Reed-Muller
codes. We focused these notes on Reed-Muller codes to determine in Theorem 1 to
which degree a Reed-Muller code can be repaired using ideas similar to Guruswami
and Wootters (2017).

Theorem 2. Let ¢ = (f(s1),..., f(sa)) € RM(F;.d), where RM(F},d) is a Reed-
Muller code with d < m(q' —1) —¢'~" and n = ¢'"™. Assume that ¢ has the two
erasures f(s') and f(s*), where s’ = (s),...,s),) and s* = (s},...,s}). If there is
J € n such that s} — s}f € F}, then there exists a repair scheme for the two erasures
with bandwidth at most

b=2[n—2+(-1) <q<m—1>’72)} .
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Proof. Note that the kernel of the trace ker Tr = {a € F : Tr(a) = 0} has dimen-
sion r — 1 as an F,-vector space. Let {z1,...,%1} be an [F -basis for kerTr and
7z an element in Fy such that {z1,...,%1,%} is an Fy-basis for . Finally, let
T € kerTr. We are ready to define the repair polynomials. For i € [¢], take

Tr (zi(xj —sjf))
pilx) =1T—— %
o)

J

B Tr (z,'(xj — s’]))

and qi (x) - (X] 7 S,-)
J

As d <m(q —1) —¢'~!, the polynomials p;(x) and ¢;(x) define elements in the
dual code RM(IFZ? , d)J-. Therefore, in a similar way to the proof of Theorem 1, we
obtain the following 2¢ equations:

pisSf () + i) () == ¥ p®fls), i€l 2)

se]F;”, \{s*,s'}

and

a(s) () +as) ()=~ Y als)fs), i€l (©)

seIF’;',\{s*,s’}
By definition of the p;’s, we have
pi(s’ )=tz and  pi(s)=7Tr(z), i€l
By definition of the g;’s, we have
qi(s") =Tr(z:) and  ¢i(s') =z, i€ r].
Equations 2 and 3 become

tf(s)+1Tr(m) f(s) == Y. pi(s)f(s), i€l

seIF;’j \{s*,s'}
and

Tr(z) f(s)+zf(s)=— Y qis)f(s), i€t

se]F;’} \{s*,s'}

As {z1,...,%—1} is an F-basis for ker Tr, the last two equations imply
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Tr(tzf(s)) =~ ), Tr(p(s)f(s)), i€l—1],

se]F;'} \{s*,s'}

4

Tr(tzf(s)+Tr(z)Te(of(s)) == Y Te(pi(s)f(s)), o)
se]F;", \{s*,s'}

Tr(zf(s)=— ), Te(au(®)f(s), icl—1], 6
SEIF;';\{S*,.\"}

Tr(z)Te(f(s) +Tr(zaf(s) == ), Tr(a(s)f(s))- 7

s \{s*s}
We claim that the elements f(s*) and f(s") can be recovered from the set

Ri={Te(pi(s) () Tr (a(s)f(s)) i € 1], s € Fp \ {s".5'} }.

To prove this claim, we take the following steps.

Step 1: For i € [r — 1], Tr(z;f (s")) can be recovered from set R and Equation 6.
Step 2: We have 7 € kerTr, whose [ -basis is {z1,...,z—1}. Hence, there exist
o1,...,0_1 inF, such that T = oyz; +... + 04121 and

i—1
Tr(tf(s)) = ; o Tr (zif (5)) .

Thus, Tr (7f(s)) can be recovered from Step 1.
Step 3: From Step 2 and Equations 4 and 5, (7z;f(s*)) can be recovered for i € [t].
The element 7f(s*) can then be recovered from the # traces Tr(tz;f(s*)) by

Tf(s*) = Tr(tz1 £(s*))Z) + ... + Tr(tz,. £(s%))z),

where {2}, ...,z } is the dual basis of {z1,...,z}; see Remark 1. Thus, f(s*) can be
recovered by

F(s*) =t ' Tr(tz f(s*)2h + ...+ 7 ' Te(tz £ (57))Z.

Step 4: From Step 3, and Equations 6 and 7, Tr (z;f(s")) can be recovered for i € [¢]
by the set R. Then, similarly to Step 3, the element f(s’) can be recovered from the
traces Tr(z;f(s")). This completes the proof of the claim.

Recall that for i € [t], we have the following expressions:

Tr (zi(xj —s’j))

(xj —5})

Tr (z,-(xj —sj))

pi(x) = TW and qi(x) =

J

Define the sets
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r* ;:]th ><--~><{S;~}><---><th :{(’}/1,...,’)/,1) EFZ% ’)/j:Sj}

and
I’ ::Fq’ ><~~-><{s/j}><~~~><Ith :{(Yla---v’Yn)GF:;:’yj:slj}'

As a consequence of the claim, both erasures f(s") and f(s*) can be recovered from
the set

U {Tr(q,-(s)f(s)) ri€ft],s €FR\{s" s’}}
={Tr(pi(s)f(s)) ri € t],s € T"\ {s", s} }
U{Tr(pi(s)f(s)) i€ lt],s ¢ I}
U{Tr(qi(s)f(s)) i€ [t],seI"\{s",s'}}
U{Tr(qi(s)f(s)) i€t s¢I"}.
Observe that
TZ ifsel* Z ifseIl”’
pi(s) = . and  g;(s) = ,
7TTIE§;',(Z;;"” ifs¢ I ety ) if;y D ifsgr

where sp is the first entry of the point s € IE‘Z%. Thus, the set R can be written as

R={Tr(tzf(s)):i€[r],s eI\ {s*,s'}}

o e () o)) i s
(sp—s7)

U{Tr(zif(s)) i€ fr],s eI\ {s*,s'}}

ot (TEC D ) i s 1
(sp—57)

={Tr(tzif(s)):i€[t],s eI\ {s*s}}
U{Tr(zi(sP—s;))Tr< wf(s) ):ie[z],s¢r*}

(sp—s57)
U{Tr(zif(s)) i€ lr],s eI\ {s*s'}}
U{Tr(z&s;:s}))Tr( f(s) ) i€ [t],sgéf’}.

(sp—s})
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Thus, both erasures f(s’) and f(s*) can be recovered by downloading the fol-
lowing information from every element s € % \ {s", s’}

o ifsel™\{s* s}, download f(s).

o ifs¢I*, download Tr L(S)*
sSp— j

o ifseI”\{s* s}, download f(s).

©f(s)

o ifs¢I’, download Tr -]
Sp—sj

Note |I™*| = |I''|. Hence, the bandwidth is at most
b=2(s(IT1~2)+ [FG\ L) =2 (1(g" " =2) 14" g ")
2 (1~ 20 g7 — ")
=2((t=1)g" "~ 20 +4™)
2 (qm’ 24 (t—1) (q<'"*1>’ —2))
=2 (n—2+ (t—1) (q<'"*‘>f —2)) ,

which concludes the proof.

An /-erasures repair scheme of a Reed-Muller code

In this section, we adapt the GW scheme of one erasure from Reed-Solomon codes
to several erasures on a Reed-Muller code. We give the sketch to prove the case of
three erasures. Such a sketch gives the key steps for the general case.

Let ¢ = (f(s1),...,f(sn)) be an element of a Reed-Muller code RM(IFZ},d),

where d <m(q' —1) —¢'~! and n = ¢"". Assume that ¢ has the three erasures f(s'),

f(s%), and f(s*), where s’ = (s%,...,s!,) for i = 1,2,3. If there is j € [n] such that
s’j‘ - s'j2 € Iy, for every i = ip € [3], then there exists a repair scheme for the three
erasures with bandwidth at most

b=3{n—3+(r—1)<q<m*1>'—3)}.

The sketch of the proof is as follows. Let {zj,...,z—1} be an IF,-basis for ker Tr
and z; an element in F; such that {21y sz—1,2z } is an IF,-basis for F. Let 7 and
T, be two elements of ker Tr that are independent over . For i € [t], take
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7Tr (zi(xj —s?))

pi(x)z(), qi(x) = N
Xj—s$

(xj — 57

7 Tr (Zi(x]' — Sj’))
(xj—s7)

Asd <m(q —1)—q'~!, the polynomials p;(x), g;(x), and r;(x) define elements
in the dual code RM(F},d)* Lopez et al (2021). Define the set S = {s',ss°}.
Similarly to the proof of Theorem 2, we obtain the following 3¢ equations:

and ri(x) =

™.

pi(s)f(s)) ==Y, pils)f(s), i€l

J se]FZ’, \S

Mm

gi(s))f(s)) =~ Y a(®)f(s), i€l

sE]FZ’, \S

~.
Il
—_

and
3
eri(sj)f(sj):— Y, ri(s)f(s), i€ [t].
=

The last equations give rise to

Tr(zif(s") == Y Tr(pi(s)f(s)),

SEF:}\S
Tr(zf(s")+ Y Tr)Tr(f(s) == Y Tr(pi(s)f(s)),
Jj=23 se]Fg;\S
Tr(tizif(s?) =— Y. Tr(qi(s)f(s)),
se]F;'}\S
Y Tr(@)Tr(nf(s) +Tr(nzf(s) == Y Tr(a(s)f(s),
j=13 SEFT\S
Tr(nzf(s’)) == Y, Tr(ni(s)f(s)),
SeFT\S
Y Tr(z)Tr(nf(s)) +Tr (naf(s)) = - Z\ Tr (ri(s)f(s)) .
j=12 se]FZ} S

forie [t —1].
In a similar way to the proof of Theorem 2, the elements f(s'), f(s?), and f(s3)
can be recovered from the set
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Ri= {Tr(pi(s)£(5) Tr (ai(8)f(5) Tr (ri(s)f(s)) i € 1.5 € Fp\ S}
For i € [3], define the sets
r =Fp o x{sipx-xFu ={(n,..-, 1) E]FZ% :yj-:s;}.

As a consequence, following the proof of Theorem 2, the three erasures f(s!), f (sz),
and f(s3) can be recovered by downloading the following information for every
element s € Fg'i \Sandi=1,2,3:

e ifseI'"\S, download f(s).

s ifs¢ I, download Tr f(s). ) .

Sp*S]

As [I''| = |I'?| = |I?|, the bandwidth is at most

b=3(r(Ir|-3)+[Fy\T)
t(q(mfl)r _3)+qmt _q(mfl)t)
tq(m—l)t o 3t+q1nt _q(m—l)t)

(l _ l)q(mfl)t — 34 qmt)

:3(n—3+(t—1) (q('"fl)’—3>),

which concludes the sketch of the proof.
In general, the case of ¢ erasures for the Reed-Muller code can be stated in the
following way.

Theorem 3. Let ¢ = (f(s1),...,f(s4)) € RM(IB‘;’i,d), where RM(IF'q”t,d) is a Reed-

Muller code with d < m(q — 1) ¢~ " and n = ¢"™. Assume that c has ¢ erasures
F(sY),... f(s°), where s' = (si,....s}) fori=1,...,L If there is j € [n] such that

ll_

s; s’j2 € Fy, for every iy # ir € [€), then there exists a repair scheme for the {

erasures wzth bandwidth at most

bzﬁ[n—ﬁ—i—(t—l) (q(mfl)l—f)}.

Summary/Conclusion

A distributed storage system stores data across multiple nodes, with the primary
objective of enabling efficient data recovery even in the event of node failures. The



14 Hiram H. Lépez, Gretchen L. Matthews, and Daniel Valvo

main goal of an exact repair scheme is to recover the data from a failed node by
accessing and downloading information from the rest of the nodes. In these notes,
we extended the exact repair scheme developed in Guruswami and Wootters (2017)
from Reed-Solomon codes to Reed-Muller codes with several erasures that satisfy
certain conditions.
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