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Abstract. We consider a dynamical system of nonlinear partial differential

equations modeling the motions of a suspension bridge. This fish-bone model
captures the flexural displacements of the bridge deck’s mid-line, and each

chordal filament’s rotation angle from the centerline. These two dynamics are
strongly coupled through the effect of cable-hanger, appearing through a sub-

linear function. Additionally, a structural nonlinearity of Woinowsky-Krieger

type is included, allowing for large displacements. Well-posedness of weak so-
lutions is shown and long-time dynamics are studied. In particular, to force the

dynamics, we invoke a non-conservative potential flow approximation which,

although greatly simplified from the full multi-physics fluid-structure interac-
tion, provides a driver for non-trivial end behaviors. We describe the conditions

under which the dynamics are uniformly stable, as well as demonstrate the ex-

istence of a compact global attractor under all nonlinear and non-conservative
effects. To do so, we invoke the theory of quasi-stability, first explicitly con-

structing an absorbing ball via stability estimates and, subsequently, demon-

strating a stabilizability estimate on trajectory differences applied to the afore-
said absorbing ball. Finally, numerical simulations are performed to examine

the possible end behaviors of the dynamics.

1. Introduction. In this paper we aim to model, analyze, and simulate the dynam-
ics of a suspension bridge deck with cables and hangers, under the effect of some
aerodynamical loading. We are particularly interested in the well-posedness and
long-time behavior—stability and the existence of a compact global attractor—for
the associated non-gradient dynamics [22]. In line with previous work on suspension
bridges (and/or associated plate models), we will consider nonlinear models with dis-
sipative effects, geometric and structural nonlinearities, as well as non-conservative
lower order PDE terms. We are motivated by several previous works which consid-
ered suspension bridge models of different types [8, 11, 15, 17, 26, 27, 30]. The model
presented here is termed fish-bone in [7], and a linear version of it was mentioned
in [37]; for a full overview on mathematical models for bridges see [20].
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The central reference for the analytical program here is the recent [9]. In that
paper, a simplified nonlinear plate model captures the deck dynamics under the
influence of a crude approximation of potential flow across the bridge deck sur-
face. Well-posedness, stability and the existence of attractors are discussed there.
In the present work, we utilize a more involved and refined fish-bone model of re-
cent interest for the suspension bridge dynamics. We do so by introducing both
cable-hanger nonlinearities, and a large displacement nonlinearity. The former is
sublinear, nonlocal and algebraically complex, and the latter is superlinear and non-
local. Concerning the modeling of the cable-hanger, different approaches have been
presented in the literature; in [17, 26, 27] the cables are assumed to be fixed, while
the hangers can slacken according to some nonlinear law. On the other hand, in [18],
the cables are movable, while the hangers are inextensible. This last approach is
quite common in the engineering literature. We mention an Austrian engineer, Josef
Melan [29], who in 1888 introduced the so called Melan equation; in particular, he
considered the bridge as a combination of a string (the cable) and a beam (the deck)
linked through some rigid hangers, assumed to be uniformly distributed along the
central span. In [15], a more realistic model for suspension bridges with both cables
and extensible hangers is proposed, but this produces a model of high complexity,
which, in the corresponding system (of differential inclusions, not equations), is
exceptionally difficult to mathematically treat.

In this paper the modeling of cable-hanger nonlinearity is strictly related to the
Melan equation, with some adaptations due to the presence of two cables and a
fish-bone deck. We also include in the analysis of deck prestressing effects through
the Woinowsky-Krieger nonlinearity [36] and the aerodynamical effects via first
order piston theory [3, 23, 24, 28]—see details in Subsection 1.1. We must adapt
the aerodynamic approximation utilized in [9] to the variables associated to the
fish-bone dynamics, resulting in a new manifestation of the aerodynamic loading.
The combination of these nonlinear terms behaves well at the level of individual
trajectories, but requires careful analysis at the level of trajectory differences, a
common feature for large deflection plate and beam models [13, 22]. Such analysis
is required for uniqueness considerations, as well as the invocation of the so called
quasi-stability theory [12, 13] in the long-time behavior analysis, which ultimately
yields our main results.

1.1. Modeling Discussion. In this treatment, we consider a model for a sus-
pension bridge with two degrees of freedom, given by the downward (transverse)
vertical displacement w := w(x, t) and the torsional rotation of the barycentric line
of the deck θ := θ(x, t); this provides the fish-bone model in Figure 1. A generic
cross section of the bridge is represented in Figure 1 (on the right); the circles are
the sections of the two main cables, the vertical elements are the hangers, and the
deck is filled in with black. Nonlinearity is introduced into the model through the
effects of the cable-hanger and the prestressing of the deck, as well as for the pos-
sibility of large deflections. The dynamics are driven by an external force, as well
as through several solution-dependent terms which provide a crude approximation
of aerodynamic loading. As we are mainly interested in the qualitative behavior
of the system, throughout the paper (except for Section 4) we take the length of
the main span equal to L = π. In Section 4 we provide some results on a physical
model using proper L > 0 and real physical quantities.

We now state the partial differential equation (PDE) model we aim to analyze,
and describe all of the terms involved. Let T > 0 (including possibly T = +∞),
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I := (0, π), IT := I × (0, T ), then consider

wtt + (

:=µ︷ ︸︸ ︷
δ + β)wt + wxxxx +

(
P − S

∫
I
w2

x

)
wxx +

(
f(w, θ)

)
x
=

g − βΥθt − ηθ in IT
ℓ2

3 θtt + ζ θt + ϵθxxxx − κθxx +
(
f(w, θ)

)
x
= 0 in IT

w = wxx = θ = θxx = 0 on {0, π} × (0, T )
w(x, 0) = w0(x), θ(x, 0) = θ0(x) on I
wt(x, 0) = w1(x), θt(x, 0) = θ1(x) on I.

(1)

We denote by ℓ > 0 the semi-width of the deck, we suppose the mass linear density
is constant and we take δ, ζ ≥ 0 as structural damping parameters. The presence
of the coefficient ℓ2/3 in the θ equation (1)2 is reminiscent of the rotational kinetic
energy, where the inertial moment is invoked.

Figure 1. Fish bone model on the left and a cross section for fixed
x on the right. Dotted lines are the deck and cables section in rest
position, s(x) is the cable initial shape, see Section 2.2.

As is common in the engineering literature, we consider linear terms (in space)
coming from the bending and torsional energies of the deck, according to the theory
of solids in classical mechanics. We also include, from the Vlasov theory [33], the
linear fourth order term in θ related to the warping of the deck, see (1)2. Hence,
ϵ > 0 is a warping stiffness parameter and κ ≥ 0 is the torsional stiffness that we
shall further clarify in Section 4.

To capture the transverse dynamics of the bridge deck, we employ classical model-
ing. The models of Bernoulli and Euler were modified in 1950 byWoinowsky-Krieger
[36] by assuming a nonlinear dependence of the axial strain on the deformation gra-
dient which accounts for stretching due to elongation (“the effect of stretching on
bending”). The corresponding term is in the w equation (1)1 and depends on P ≥ 0,
a prestressing parameter, and S > 0, the strength of the nonlinear restoring force
resulting from x-stretching. Let us note that the nonlocal stretching, giving rise to
the superquadratic energy, effects our model (and in general in suspension bridges
where L≫ ℓ) only in the x-direction; this is in line with [9].

Since we are interested in modeling a proper suspension bridge, we add to the
consideration of the deck two cables, possessing a parabolic shape s(x) at rest (as in
Figure 2). We assume these cables are movable, with rigid hangers, so the resulting
nonlinearity is of geometric type. We include the cable nonlinearity through terms
f(w, θ) and f(w, θ) in (1). These nonlinearities are benign with respect to the
theory of existence, since they are sublinear in their arguments; however, as they
are algebraically complex, careful treatment is needed to address their contributions



4 ALESSIO FALOCCHI AND JUSTIN WEBSTER

Figure 2. Sketch of the side view of the suspension bridge with
the quotes assumed positive; s(x) is the cable initial shape, see
Section 2.2.

in long-time behavior analysis. In particular, we must control their growth in the
Lyapunov-type analysis for the construction of an absorbing set for the dynamics,
as well as precise control of the differences of two nonlinear terms for the quasi-
stability analysis. We shall specify f and f precisely in Section 2.2, as the terms
are involved.

As mentioned above, we consider simple aerodynamic loading on the deck of the
bridge. The terms we invoke approximate an inviscid, irrotational potential flow
across the surface of the bridge deck. The primary focus here is on ability of the
wind to destabilize the dynamics and provide non-trivial (i.e., non-stationary) end
behaviors. In line with [9], we employ a rudimentary loading, modeled by the so-
called piston theoretic approximation of potential flow. This is a classical theory
utilized in the study of aerodynamical systems with high velocities or high fre-
quencies, introduced by Lighthill [24] and developed subsequently by other authors
(e.g., [3, 16]). Roughly speaking, it asserts that the pressure acting on an oscilla-
tory slender element, e.g. an airfoil, is comparable to the pressure on an oscillatory
1D piston. Such an approximation discards transport and memory effects, which
of course are physically relevant to the real-life dynamics of a suspension bridge.
On the other hand, in order to focus on structural nonlinearities and their effects,
we invoke this type of loading to incorporate forcing which is not external, but
rather based on the interaction of the airflow about the bridge deck and its result-
ing deformations. This allows us to analyze stability and long-time behavior under
some non-conservative aerodynamical loading, without the need for sophisticated
moving boundary problems and aeroelastic interactions involving the Navier-Stokes
equations (some preliminary such studies include [4, 10]). Piston-theoretic models
can be used to predict the so called flutter instability [9, 16, 28], before running
expensive computational fluid dynamics (CFD) simulations.

In [23], a piston-theoretic approximation is applied to a structure with two de-
grees of freedom. The difference, with respect to our model here, is that the wind
flows in the axial x-direction there, while we are interested in so called normal flow,
associated to the chord-wise direction for the bridge deck. We set the problem in the
planar domain Ω := (0, π)× (−ℓ, ℓ) ⊂ R2, so that, according to the fish-bone model
assumptions, we introduce a transverse displacement function u : Ω × [0, T ) → R
given by

u(x,Υ, t) = w(x, t) + Υ tan θ(x, t) ∀(x,Υ, t) ∈ Ω× [0, T ).
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Assuming the deck has constant thickness, the flow is parallel to the plane containing
Ω, rotations are small (tan θ ≈ θ), then the normal velocity of the structure can be
represented by

vN := β

(
∂u

∂t
+ U ∂u

∂Υ

)
= β (wt +Υθt) + βUθ,

where β ∈ R+ depends on the properties of the fluid flow and U is the freestream
fluid velocity. Considering the so called first order approximation, we obtain an
aeroelastic surface pressure given by

ϕL = −β(wt +Υθt)− ηθ, (2)

where β ∈ R+ and η := βU ∈ R include all the wind parameters. Introducing g as a
vertical stationary loading, e.g. gravity, and, taking the aerodynamic moment to be
zero due to the assumed symmetry, we obtain the system of PDEs in (1), complete
with aerodynamic terms; in the sequel we will typically put µ := δ + β.

Although we make several simplifying assumptions, the model presented here
represents a more realistic course of modeling than compared to previous simpli-
fied plate models; in Section 2 we provide some preliminary results in terms of
functional tools and existence and uniqueness of solutions to (1). This class of
models are complex mathematically, and take into account nonlinearities as well
as geometric coupling effects, see Section 2.2 and Appendix 6.2 for further details.
Owing to the aspect ratio associated with actual suspension bridges, it is indeed
appropriate to consider this class of fish-bone models. With non-conservative flow
effects incorporated, we ask questions about boundedness, compactness, and regu-
larity for the bridge dynamics as t → ∞. Additionally, we consider the interplay
between the nonlinear effects in the cables and the bridge deck. Through a Lya-
punov type analysis, we construct an absorbing ball. Subsequently, we utilize the
powerful quasi-stability [12, 13] here by providing a completely new analysis of this
novel model. This results in the construction of a smooth global attractor of fi-
nite dimension and additional regularity, and even a so called fractal exponential
attractor—see Section 3 for the main results and Appendix 6.1 for general results
in this context. In Section 4 we study the corresponding linear problem and we per-
form some numerical simulations on a suspension bridge case of study. In Section
5 we provide proofs of the main theorems.

2. Preliminaries. In this section we give some preliminaries related to the function
spaces needed in order to pose problem (1) in weak form and address well-posedness
of weak solutions. Moreover, we provide some details about the cable nonlinearity
and its functional properties; we then compute the energy of the system, highlighting
the positive contributions.

2.1. Function spaces. We denote by Hs(I) the Hilbert Sobolev spaces of order
s ∈ R with norm ∥ · ∥s, see the precise definition e.g. in [13, Section 1.1.1] (and
classical references therein). When we do not fall in the previous spaces we denote
by Lp(I) for 1 ≤ p ≤ ∞ the usual Lebesgue spaces with the norm ∥ · ∥Lp(Ω), and

by W k,p(I), for k ≥ 0, the classical Sobolev spaces. Throughout the paper we
primarily use the Hilbert spaces L2(I), H1

0 (I) and (H2 ∩H1
0 )(I) endowed with the
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following scalar product and norms

(u, v)0 =

∫
I

uv, (u, v)1 =

∫
I

uxvx, (u, v)2 =

∫
I

uxxvxx,

∥u∥20 =

∫
I

|u|2, ∥u∥21 =

∫
I

|ux|2, ∥u∥22 =

∫
I

|uxx|2.

The last two norms above are equivalent to the standard norms in H1(I) and H2(I),
respectively. Indeed, the eigenvalue problems{
v′′′′ = λv in I
v = v′′ = 0 on {0, π}

{
−v′′′′ = Λv′′ in I
v = v′′ = 0 on {0, π}

{
−v′′ = Λv in I
v = 0 on {0, π}

admit eigenvalues
√
λ = Λ = Λ = k2 (k ∈ Z \ {0}) and the same eigenfunctions

v(x) = a sin(kx), a ∈ R\{0}; if a function v(x) (resp. v(t)) depends only on x (resp.
t) we often use the notation v′(x) (resp. v̇(t)) instead of vx (resp. vt). We write
the variational characterization of the first eigenvalue for the previous problems,
respectively, as

λ1 = min
φ∈(H2∩H1

0 )(I)

∥φ∥22
∥φ∥20

Λ1 = min
φ∈(H2∩H1

0 )(I)

∥φ∥22
∥φ∥21

Λ1 = min
φ∈H1

0 (I)

∥φ∥21
∥φ∥20

.

This implies, since λ1 = Λ1 = Λ1 = 1,

∥φ∥0 ≤ ∥φ∥2 ∥φ∥0 ≤ ∥φ∥1 ∥φ∥1 ≤ ∥φ∥2 ∀φ ∈ (H2 ∩H1
0 )(I). (3)

We will also use the standard interpolation

∥φ∥21 ≤ C∥φ∥0∥φ∥2 ∀φ ∈ (H2 ∩H1
0 )(I), C > 0. (4)

Throughout the paper we will often denote by C a generic positive constant, that
may be different from line to line.

We denote by H the dual space of (H2 ∩H1
0 )(I) with the corresponding duality

pairing −2⟨·, ·⟩2. We will also need the usual duality pairing −1⟨·, ·⟩1 corresponding
to the space H−1, i.e. the dual of H1

0 (I). We introduce the self-adjoint operators
taken with boundary conditions (1)3: A,A : L2(I) → L2(I) given respectively by
Aw = wxx and Aθ = ϵθxx + κθx on the same domain

D :=
{
u ∈ (H4 ∩H1

0 )(I) : uxx = 0 on {0, π}
}
;

let us observe that the condition uxx = 0 on {0, π} is the natural boundary condition
associated both with w and θ in strong form.

The natural energy space for the trajectory y = (w,wt; θ, θt) is taken to be

Y =
(
(H2 ∩H1

0 )(I)× L2(I)
)2

,

defined through the norm

∥(w, v; θ, φ)∥2Y = ∥v∥20 + ∥w∥22 + ∥φ∥20 + ∥θ∥22.

2.2. Precise definition of the cable nonlinearity. Let us now define the cable
nonlinearities, denoted by f(w, θ) and f(w, θ) in equations (1). First, we recall the
equation representing the position of the two cables at rest

s(x) = −a
2
x2 +

a

2
πx+ s0 ∀x ∈ I,

where a > 0 is a tension parameter of the cable and s0 > 0 is the length of the
longest hanger—see Figure 2. The choice of this parabolic shape is common practice



NONLINEAR FISH-BONE MODEL 7

in the literature, see e.g. [20, 34]. Now we introduce b, c ≥ 0, two parameters related
to the mechanical properties of the cable, and the functions

Ξ(u) :=
√
1 + [ux + sx]2 ξ0 :=

√
1 + (sx)2

L(u) :=
∫
I

Ξ(u) L0 :=

∫
I

ξ0

h(u) :=
[
b
(
L0 − L(u)

)
− c ξ0

] ux + sx√
1 + [ux + sx]2

;

(5)

we observe that ξ0 = Ξ(0) and L0 = L(0). We define the cable nonlinearities as

f(w, θ) :=h(w + ℓθ) + h(w − ℓθ) f(w, θ) := ℓ[h(w + ℓθ)− h(w − ℓθ)]. (6)

We point out that when b = c = 0 the cable nonlinearities disappear, giving a
fish bone model without cables. To each cable we associate its nonlinear energy
functional

Π(u) =
b

2

(
L(u)− L0

)2
+ c

∫
I

ξ0
(
Ξ(u)− ξ0

)
, (7)

given by two contributes: the first is the energy required to increment the length
of the cable from L0 to L(u), while the second is the energy necessary to deform
the cable due to local variations of length times the local tension, see [2, 18, 20] for
further details.

This nonlinearity has some good functional properties, such as sublinear growth,
as we outline below in the technical lemmas—see Section 5.1.

2.3. Well-posedness. We now write the problem (1) in weak form, giving the
precise definition of weak solution.

Definition 2.1. Let T > 0, w0, θ0 ∈ H2 ∩ H1
0 (I) and g, w1, θ1 ∈ L2(I). A weak

solution to (1) is a pair (w, θ) with the regularity

w, θ ∈ C0([0, T ]; (H2 ∩H1
0 )(I)) ∩ C1([0, T ], L2(I)) ∩ C2([0, T ],H)

such that for all t ∈ (0, T ] and for all v, φ ∈ (H2 ∩H1
0 )(I), we have

−2⟨wtt, v⟩2 + µ(wt, v)0 + (w, v)2 +
[
S∥w∥21 − P

]
(w, v)1 − (f(w, θ), vx)0

= (g − βΥθt − ηθ, v)0
ℓ2

3 −2⟨θtt, φ⟩2 + ζ(θt, φ)0 + ϵ(θ, φ)2 + κ(θ, φ)1 − (f(w, θ), φx)0 = 0.

(8)

We introduce the energy of the fish-bone model as follows

E(w, θ) :=
∥wt∥20

2
+

∥w∥22
2

+ ℓ2
∥θt∥20
6

+ ϵ
∥θ∥22
2

+ κ
∥θ∥21
2

E(w, θ) := E
(
w, θ

)
+Π

(
w + ℓθ

)
+Π

(
w − ℓθ

)
+
S

4
∥w∥41 −

P

2
∥w∥21 −

(
g, w

)
0
,

where Π(u) is the cable nonlinearity given in (7). It is useful to isolate the positive
contributions of the energy, denoted

E+(w, θ) :=E(w, θ) +
S

4
∥w∥41 +Π

(
w + ℓθ

)
+Π(w − ℓθ).

Depending on the context, we may use E(t), E(t), E+(t) to emphasize time depen-
dence, or E, E , E+, suppressing all the dependencies.

The next theorem provides weak and strong well-posedness of (1), which is proved
in Section 5.2.
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Theorem 2.2. Assume T > 0, g ∈ L2(I), and let µ, ζ, ϵ, ℓ, β, S > 0, P, κ ≥ 0,
Υ ∈ [−ℓ, ℓ] and η ∈ R. For any initial data (w0, w1; θ0, θ1) ∈ Y there exists a
unique weak solution of (1). Moreover, if w0, θ0 ∈ D and w1, θ1 ∈ (H2 ∩ H1

0 )(I),
then

w, θ ∈ C0([0, T ];D) ∩ C1([0, T ], (H2 ∩H1
0 )(I)) ∩ C2([0, T ], L2(I))

and (w, θ) is a strong solution of (1), satisfying the equations and boundary condi-
tions point-wise a.e. x and t.

Any weak solution satisfies, for 0 ≤ s < t, the energy identity

E(t) + µ

∫ t

s

∥wt(τ)∥20dτ + ζ

∫ t

s

∥θt(τ)∥20dτ =

E(s)− βΥ

∫ t

s

(
θt(τ), wt(τ)

)
0
dτ − η

∫ t

s

(
θ(τ), wt(τ)

)
0
dτ.

(9)

Remark 2.3. Semigroup methods are also amenable to this (and comparable beam
and plate) problems, which can provide strong and so called generalized solutions—
see [13]. In all cases, energy estimates and Lyapunov calculations are performed on
smooth solutions, and extended by density for weak and/or mild solutions.

In the standard way, the well-posedness (in the weak and strong sense) allows us
to define the solution strongly continuous (nonlinear) semigroup St on the energy
space Y . Indeed, we define for any y0 = (w0, w1; θ0, θ1) ∈ Y , St(y0) = y(t) =
(w(t), wt(t); θ(t), θt(t)), which represents the unique weak solution to (1) with initial
data y0. As in [13], the pair (St, Y ) represents a dynamical system, and this is the
system to which we will provide our long-time behavior results below in Proposition
3.1 and our main theorem, Theorem 3.3.

3. Results and discussion. In stating our results, please take note of Appendix
6.1 for technical definitions concerning dissipative dynamical systems. Additionally,
that Appendix includes the abstract theorems we invoke—after proving estimates—
which will yield the results stated here.

3.1. Statement of main results and context. Let (St, Y ) denote the dynamical
system associated to the solution semigroup provided by Theorem 2.2. In the first
proposition we prove that this dynamical system has a uniform absorbing ball,
under a restriction on the θ-stiffness parameter ϵ. The proof is given in Section 5.3.

Proposition 3.1. Assume T > 0, g ∈ L2(I), with µ, ζ, ℓ, β, S > 0, P, κ ≥ 0,
Υ ∈ [−ℓ, ℓ], η ∈ R. Then, there is a constant ν = ν(µ, ζ), such that for any

ϵ ∈
(
0 ,

ℓ2ν2

3β2

)
the dynamical system (St, Y ) corresponding to weak solutions to (1) has a uniformly
absorbing set Bν̄ .

Remark 3.2. There are several ways to interpret the meaning of the parameter
relations above. We view the result as follows: given the damping parameters
µ, ζ > 0, there is a fixed ν which dictates the size of the absorbing set. That
absorbing set is uniform for all values of the warping stiffness parameter ϵ in the
above specified range.



NONLINEAR FISH-BONE MODEL 9

As the dynamics in (1) are non-gradient (with unsigned terms appearing in the
energy identity), we do not expect a clean characterization of the global attractor
as the unstable manifold of the stationary points [12, 13]. Thus, to show that
there is a compact global attractor for these dynamics, it is necessary to construct
the absorbing set “by hand” using Lyapunov methods. Our proof involves a novel
Lyapunov function, tailored to the two nonlinearities present here, as well as the
non-trivial flow contributions.

With an absorbing ball for (St, Y ) in hand, we proceed to our main result on
attractors for the system (1). This is proved in Section 5.4. The proof relies on
critically decomposing the nonlinear terms in a novel way; the resulting technical
lemmata which support the main result are found in Appendix 6.2.

Theorem 3.3. Under the same assumptions of Proposition 3.1, there exists a com-
pact global attractor A for the dynamical system (St, Y ) corresponding to weak so-
lutions to (1) (as in Theorem 2.2). Moreover,

• A is smooth in the sense that A ⊂ (H4 ∩ H1
0 )(I) × (H2 ∩ H1

0 )(I) and is a
bounded set in that topology;

• A has finite fractal dimension in the space Y ;

• there exists a generalized fractal exponential attractor Ãexp ⊂ Y with finite

fractal dimension in Ỹ := (L2(I)×H)2.

The compact global attractor here encapsulates the end behaviors of these flow-
driven, fish-bone dynamics. In particular, as we will investigate numerically below,
the attractor contains the stationary points for these nonlinear equations as well as
the possibility of dynamic end behavior. By invoking quasi-stability theory [12, 13],
as outlined in Appendix 6.1, we are able to show the first two bullet points above via
a single stabilizability estimate on the difference of two trajectories. In order to ob-
tain this estimate, some “compactness” must be harvested from the nonlinearities,
via particular algebraic decompositions of the nonlinear terms (in the aforemen-
tioned Section 6.2). Following this, a straightforward estimate on the difference of
trajectories in a weaker topology provides the (not necessarily unique) generalized
(fractal) exponential attractor. In this scenario, the presence of dissipation in both
components of the model is enough to stabilize—in a uniform way—all trajectories
to a smooth and finite dimensional set in the state space. By “fattening” this in-
variant attractor A, we are able to observe exponential convergence rates, though
the resulting set Aexp need not be unique nor finite dimensional in the state space
Y . In some sense, then, the structural dissipation present in the model works in
conjunction with the large-deflection nonlinearity to counter the non-dissipative and
non-conservative flow terms scaled by Υ and η as well as the nonlinear cable-hanger
effects. The result is that the overall dynamics remain bounded, and in fact squeeze
down to a “nice” (and uniform) set.

Remark 3.4. For the study of attractors, the structure of the stationary set is
certainly of interest. For these dynamics, being non-gradient and highly nonlinear,
the stationary set has the potential to be highly nontrivial. One can consult [9,
Section 3.1 and 3.2] for such a discussion in the case of a hinged-free plate with an
extensible spanning nonlinearity. Moreover, the stationary set associated with von
Karman dynamics is discussed in [13] for extensible plate nonlinearities. For our
purposes here, future work will address the structure of the stationary set associated
to the hanger cables; however, owing to the nontrivial interaction between the
extensible bridge deck nonlinearity and the hanger cable nonlinearities, this analysis
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is beyond the scope of the present work. In particular, the stationary set should
first be analyzed without the effects of the wind, manifested here by piston-theoretic
terms in (1).

3.2. Central challenges and contributions. We conclude this section by em-
phasizing some of the novelties and challenges overcome in this contribution:

• We consider a fully nonlinear structural model, taking into account cable-
hanger and nonlinear coupling between the transverse vertical and angular
dynamics; additionally, we allow the possibility of large transverse vertical
deflections, in line with previous analyses of suspension bridge models [9,
15, 18, 27]. This nonlinear, coupled hyperbolic-hyperbolic-type structural
dynamics has not previously appeared in the literature.

• We adapt the rudimentary aerodynamic approximation utilized in previous
works to the set of variables relevant here, allowing for the addition of non-
conservative, flow-driven loading in the fish-bone dynamics.

• In considering these two nonlinear effects and their interaction, it is not ob-
vious that compactness can be extracted to obtain a stabilizability estimate
(more broadly, some notion of asymptotic compactness or asymptotic smooth-
ness [13]); however, utilizing a new decomposition of the hanger nonlinearity in
conjunction with a decomposition for Woinowky-Krieger [22] type dynamics,
we precisely obtain this asymptotic notion of squeezing/compactness.

• To obtain the absorbing ball, low frequencies (lower norms) emanating from
the non-dissipative flow terms must be controlled through the structural non-
linearities. While this has been explored in depth for non-conservative beams
and plate models [13, 22], it was novel to consider whether the Woinowsky-
Krieger nonlinearity—acting only in the transverse vertical variable—is suf-
ficient to provide this control for the coupled dynamics. Indeed, a central
challenge is to get estimates for the Lyapunov function, including terms in
θ, using the control provided Lemma 5.5 appearing only in the transverse w
variable. Careful attention and sharpness is required in the process of ob-
taining the estimates in Seciton 5.3. Additionally, a novel, adapted Lyapunov
function in Section 5.3 accommodates the nonlinear coupling, as well as the
lower order flow terms in θ.

• As demonstrated in [9, 22], non-conservative bridge models with Woinowksy-
Krieger (or Berger plate) nonlinearities are good candidates for the direct
application of quasi-stability, including harvesting its most powerful theorems
in application. Indeed, by constructing the absorbing ball B in Proposition
3.1 and obtaining a good decomposition of the nonlinear difference dynamics
on B, we can invoke Corollary 6.6 to obtain the existence of the attractor, as
well as its smoothness and finite dimensionality in “one shot”.

• Finally, we remark that there is a clear dependence of our results on the
strength of the coupling through the θ-stiffness parameter, ϵ. At present,
we do not feel like this can be eliminated without requiring large damping
through the ζ-parameter.

Remark 3.5 (Damping and linearity in the model). The linear model (taking both
nonlinear effects null) results in a one-way or partially coupled model. For this
model, one can produce a series representation for θ, and utilize that series in the
RHS of the w-dynamics. In Section 4 we discuss this further, including exponential
stability and the possibility of vanishing damping coefficients. A particularly salient
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case is the one where no damping is imposed in the system at all, other than what
comes from the aerodynamics terms in (2). For our results on attractors for the
nonlinear model, we note that the presence of the nonlinear cable-hanger provides
coupling in the system, so that it is in fact (nonlinearly) strongly coupled. In this
case, if it is of course to be expected that dissipation is required in both components
of the model to expect stability to a nice set in the state space Y .

4. Explicit solutions and numerical results. In this section we present some
numerical experiments on the system (1), taking g constant and I = (0, L), L being
the length of the span of the bridge; in the spirit of the proof of Theorem 2.2, we
apply the Galerkin procedure, approximating by in vacuo structural eigenfuctions
(modes). This modal approach has been utilized recently in the mathematically-
themed numerical works [21, 22]. Since the eigenfunctions of standard elasticity
operators form a basis for the state space, a good well-posedness result for the full
system justifies this kind of approximation. Hence, we reduce the evolutionary PDE
to a finite dimensional system of ODEs via modal truncation.

More precisely, given the boundary conditions, we seek approximate solutions in
the form

wN (x, t) =

√
2

L

N∑
j=1

wj(t) sin

(
jπx

L

)
, θN (x, t) =

√
2

L

N∑
j=1

θj(t) sin

(
jπx

L

)
(10)

with N ≥ 1 and initial data (i = 0, 1)

wi
N (x) =

√
2

L

N∑
j=1

wi
j sin

(
jπx

L

)
, θiN (x) =

√
2

L

N∑
j=1

θij sin

(
jπx

L

)
. (11)

In the next subsection we give a preliminary analysis on the corresponding linear
problem, where the shape of the eigenfunctions (identical for both w and θ) allows
to find the exact representation of the solution, i.e. N → ∞ in (10)-(11).

4.1. Linear modal and stability analysis. In this section we consider the linear
problem, i.e. (1) with P = S = 0 and f = f ≡ 0, or equivalently b = c = 0 in
(5)–(6); hence, we obtain

wtt + µwt + wxxxx = g − βΥθt − ηθ in IT
ℓ2

3 θtt + ζ θt + ϵθxxxx − κθxx = 0 in IT
w = wxx = θ = θxx = 0 on {0, L} × (0, T )
w(x, 0) = w0(x), θ(x, 0) = θ0(x) on I
wt(x, 0) = w1(x), θt(x, 0) = θ1(x) on I.

(12)

We note immediately that this linear problem is not strongly coupled. Indeed,
the presence of f, f provide nonlinear coupling (through the cable-hanger) in (1).
With the one-way coupled linear problem in (12), we can directly utilize the series
expansions introduced in (10). Moreover, we benefit from the unique structure
of the fish-bone equations, providing the same mode functions for both solution
variables in the system. Plugging (10) into (12), testing by

√
2/L sin(πkx/L) with
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k = 1, 2, . . . and integrating over (0, L) we produce the following system of ODEs
ẅj(t) + µẇj(t) +

j4π4

L4 wj(t) = −βΥθ̇j(t)− ηθj(t) + g
√
2L(1−(−1)j)

jπ

ℓ2

3
θ̈j(t) + ζθ̇j(t) +

(
ϵ j

4π4

L4 + κ j2π2

L2

)
θj(t) = 0

wj(0) = w0
j , ẇj(0) = w1

j

θj(0) = θ0j , θ̇j(0) = θ1j

(13)

for j = 1, 2, . . . Noting the decoupling, we can explicitly plug the θj solutions into
the equation for wj . Rewriting the system in matrix form, using reduction of order,
for each j fixed we obtain a first order linear system of four equations. That system
has eigenvalues λ which must satisfy the characteristic equation(

ℓ2

3
λ2 + ζλ+ ϵ

j4π4

L4
+ κ

j2π2

L2

)(
λ2 + µλ+

j4π4

L4

)
= 0. (14)

When we assume the damping coefficients are positive, so µ, ζ > 0, we see that the
real part of all eigenvalues is negative. Thus we observe, immediately, that solutions
to (12) are always exponentially stable. We state this as a lemma.

Lemma 4.1. Let µ, ζ, ϵ, ℓ, L, β > 0, κ ≥ 0, Υ ∈ [−ℓ, ℓ], η ∈ R and g = 0. Let
(w(t), wt(t); θ(t), θt(t)) be the corresponding weak solution to (12). Then there exists
γ,M > 0 such that

∥(w(t), wt(t); θ(t), θt(t))∥Y ≤Me−γt∥(w0, w1; θ0, θ1)∥Y .

Remark 4.2. The behavior of the decoupled linear problem is, in some sense, ele-
mentary, since it is clear that we have exponential stability. In particular, eschewing
the series solution, we see that the damping present in the θ equation is sufficient
to provide exponential stability for the θ dynamics. At this point, one can invoke
the variation of parameters formula for the w dynamics taking θ terms as given on
the RHS. With damping present there and exponential decay of θ, it is clear that
exponential decay follows immediately for w. We point out that the behavior of the
linear system is not a viable predictor of long time behavior for the nonlinear system
of interest, owing to the fact that the cable-hanger nonlinearity itself introduces the
nonlinear coupling into the problem. For this reason, the behavior of the nonlinear
dynamics in (1) remains highly non-trivial and of interest here; we demonstrate
the existence of a global attractor for those coupled dynamics, in addition to in-
vestigating qualitative features of the dynamics via numerical experiments in this
section.

In this context for large damping, overdamped solutions may appear, which are
in some sense not realistic. Hence, we focus on the realistic case of small damping,
which we describe in the next proposition, proved in Section 5.5.

Proposition 4.3. Let ϵ, ℓ, L, β > 0, κ ≥ 0, Υ ∈ [−ℓ, ℓ], g, η ∈ R. Moreover, assume

ζ ̸= ℓ2

3 µ, 0 < ζ < 2πℓ
L
√
3

√
ϵ π

2

L2 + κ and 0 < µ < 2π2

L2 , then the solution of (12) admits

the following representation

w(x, t) =

√
2

L

∞∑
j=1

wj(t) sin

(
jπx

L

)
, θ(x, t) =

√
2

L

∞∑
j=1

θj(t) sin

(
jπx

L

)
, (15)
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where

wj(t) =e
−µ

2 t

[
cj1 sin

(
ωj

2
t

)
+ cj2 cos

(
ωj

2
t

)]
+ g

L4
√
2L(1− (−1)j)

j5π5

+e−
3ζ

2ℓ2
t

[
Aj sin

(
3

2ℓ2
γjt

)
+Bj cos

(
3

2ℓ2
γjt

)]
,

θj(t) =e
− 3ζ

2ℓ2
t

[
1

γj

(
2ℓ2

3
θ1j + ζθ0j

)
sin

(
3

2ℓ2
γjt

)
+ θ0j cos

(
3

2ℓ2
γjt

)]
,

(16)

ωj :=
√

4j4π4

L4 − µ2, γj :=
√

4j2π2ℓ2

3L2

(
ϵ j

2π2

L2 + κ
)
− ζ2 and the coefficients Aj , Bj ,

cj1, c
j
2 ∈ R are computed in (47)–(48). The series converges uniformly in I ∀t ≥ 0.

Let us observe that for ζ = ℓ2

3 µ it is possible to have a different solution form.

This occurs if also ωj = 3
ℓ2 γj ; in this case, the solution w slightly changes, i.e. the

second line in (16) is multiplied by t. As indicated by Lemma 4.1, nothing changes
qualitatively, as exponential stability can still observed.

While the partially coupled system in (12) (and modally in (13)) is straight-
forward to examine when both damping parameters are positive, µ, ζ > 0, an in-
teresting question arises when damping effects are omitted in the θ dynamics. In
particular, in [1] some experiments are reported on a model similar to the Tacoma
Narrows bridge, showing that the damping values are of the order of 1%. We may
assume that such value concerns only the vertical displacements, i.e. δ, while for
the torsional damping ζ we have no viable information. One may thus assume
δ = ζ as in [27, 30], or more conservatively, one can put ζ = 0. In the latter
case from a mathematical viewpoint, however, the flow provides some dissipative
effects. This has been noted in several places, when potential flow interacts with
elastic deformations [13, 14, 22, 35]. In the context of the present flow description
in (2), we similarly observe the contribution of dissipation. In particular, we see
that we can take both intrinsic, structural damping parameters to be zero in the
dynamics—δ = ζ = 0. From the flow, then, we obtain θ damping in the w equation:

wtt + β wt + wxxxx = g − βΥθt − ηθ in IT .

An interesting question, therefore, is the extent to which this dissipation can be
harvested for the θ dynamics, through the w dynamics, when there is no imposed
structural damping. The next lemma answers this question in the negative, which is
contrary to the outcome in [14]. We omit the proof since it follows as for Proposition
4.3.

Lemma 4.4. Let δ = ζ = 0, ϵ, ℓ, L, β > 0, κ ≥ 0, Υ ∈ [−ℓ, ℓ], g, η ∈ R. Let wj(t)
and θj(t) for j ∈ N+ correspond to the solutions to (13). Then the Fourier modes
obey:

wj(t) =e
− β

2 t

[
cj1 sin

(
ωj

2
t

)
+ cj2 cos

(
ωj

2
t

)]
+ g

L4
√
2L(1− (−1)j)

j5π5

+Aj sin(γjt) +Bj cos(γjt) j ∈ N+,

θj(t) =
θ1j
γj

sin(γjt) + θ0j cos(γjt) j ∈ N+.

ωj :=
√

4j4π4

L4 − µ2, γj :=
√
3jπ
ℓL

√
ϵ j

2π2

L2 + κ and some coefficients Aj , Bj , c
j
1, c

j
2 ∈ R.

The series converges uniformly in I for all t ≥ 0.
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Let us note that in the case when no damping is imposed in the θ dynamics, so
ζ = 0 in (12), the eigenvalues corresponding to θj(t) solutions are pure imaginary

λ = ±i
√
3jπ

ℓL

√
ϵ
j2π2

L2
+ κ.

It is clear, then that the resulting system is Lyapunov stable, but not asymptotically
stable, owing to the persistence of θj eigenfunctions which need not decay in time.
We also observe, however, that resonance is not possible—which is to say that the
damping in the wj modes is enough to offset the RHS contributions from g and
from the flow terms.

4.2. Nonlinear modal analysis: a case of study. In this section we rewrite
(1), considering the mechanical parameters involved in a real suspension bridge
structure. More precisely, we introduce the (constant) mass linear density of the
deck M and we study

Mwtt + (δ + β)wt +Dwxxxx +
(
P − S

∫ L

0
w2

x

)
wxx +

(
f(w, θ)

)
x
=

Mg − βΥθt − ηθ in IT
Mℓ2

3 θtt + ζ θt + ϵθxxxx − κθxx +
(
f(w, θ)

)
x
= 0 in IT

w = wxx = θ = θxx = 0 on {0, L} × (0, T )
w(x, 0) = w0(x), θ(x, 0) = θ0(x) on I
wt(x, 0) = w1(x), θt(x, 0) = θ1(x) on I,

where D = EI, ϵ = EJ , κ = GK, being E the Young modulus, I the moment of
inertia, G the shear constant, K the torsional constant and J the warping constant
of the deck. With an abuse of notation, we take, g(= 9.8m

s2 ) as the acceleration due
to gravity, so that the constant load Mg is the weight of the deck. Concerning the
cable nonlinearity, see Section 2.2; we take a = Mg

2H , b = AcEc

L0
and c = H where

H is the cable horizontal tension, Ec is the Young modulus, Ac the sectional area
and L0 the length of the two cables. In the Woinowsky-Krieger nonlinearity, P
represents the deck tension in the rest position and S = AE

2L with A the deck cross
section area, see e.g., [25].

From the piston theoretic flow approximation [23, 28] we have considered η = βU
where U is the freestream fluid velocity and β ∈ R+ depends on the properties of
the fluid. In line with [21, 32] we take β varying in the range 10−5 ≤ β ≤ 10−2

(without specifying the unit of measure); for the wind velocity we consider the range
|U| ≤ 30m/s.

We fix the structural parameters, considering the case of the Tacoma Narrows
bridge (TNB), for which there is a vast literature; the mechanical parameters are
summarized in Table 1, see [1, 15, 17, 30].

For the modal approximation (10), let us recall some important facts about TNB.
When we speak about a mode like sin(kπL x), we refer to a motion with k− 1 nodes,
in which the latter are the zeros of the sine function in (0, L). Some meaningful
witnesses during the Tacoma Narrows bridge collapse led our modeling choices.
From [1, p.28] we know that “seven different motions have been definitely identified
on the main span of the bridge”. The morning of the failure, Prof. Farquharson
described a torsional motion like sin(2πL x), writing [1, V-2] “a violent change in the
motion was noted. . . . the motions, which a moment before had involved a number
of waves (nine or ten) had shifted almost instantly to two . . . the node was at the
center of the main span and the structure was subjected to a violent torsional action



NONLINEAR FISH-BONE MODEL 15

E 210 000MPa Young modulus of the deck (steel)
Ec 185 000MPa Young modulus of the cables (steel)
G 81 000MPa Shear modulus of the deck (steel)
L 853.44m Length of the main span
ℓ 6m Half width of the deck
f 70.71m Sag of the cable, see Fig. 2
I 0.154m4 Moment of inertia of the deck cross section
K 6.07 · 10−6m4 Torsional constant of the deck
J 5.44m6 Warping constant of the deck
A ≈ 1.85m2 Area of the deck cross section
Ac 0.1228m2 Area of the cables section
M 7198kg/m Mass linear density of the deck

H 45 413kN Horizontal tension in the cables, H = MgL2

16f

L0 868.815m Initial length of the cables, see (5)

Table 1. TNB mechanical features.

about this point”. From [1] we learn that in the TNB case, oscillations with more
than 10 nodes on the main span were never seen. Hence, we consider the first 10
transverse vertical modes and the first 4 torsional modes; this is a good compromise
between limiting computational burden and focusing on the real phenomena viewed
in the TNB disaster.

Definition 4.5. We call wj(t) :=
√

2
Lwj(t) the jth transverse vertical mode

and θj(t) :=
√

2
Lθj(t) the jth torsional mode.

Consequently, w0
j :=

√
2
Lw

0
j , w

1
j :=

√
2
Lw

1
j are respectively the initial amplitude

and velocity of transverse vertical oscillation, similarly for the θ initial conditions
in (11). According to the observations during the TNB collapse we fix the initial
condition exciting the 9th transverse vertical mode, i.e. w0

9 = 3m, and we apply an
initial condition 10−3 smaller on all the other components, i.e.

w0
j = 10−3 · w0

9, ∀j ̸= 9, θ
0

j = w1
j = θ

1

j = 10−3 · w0
9, ∀j.

It is not the purpose of this analysis to show how the results are affected by the
choice of the excited mode at the initial time, as many tests in this direction (without
the wind) are performed in [15, 17]. Here we are interested in observing how the
torsional modes, in particular the 2nd, behave with respect to the presence (or
lack thereof) of the dampings, the Woinowsky-Krieger nonlinearity, and the flow
parameters.

Let us consider at first the system undamped, i.e. δ = ζ = 0, without prestressing
of the deck as in the real TNB, i.e. P = S = 0, and no wind in the system, i.e.
β = 0. In Figure 3 we plot the θj(t) coefficients with j = 1, . . . , 4, observing that
they continue to oscillate around their initial datum. For brevity we do not plot the
transverse vertical modes, since for the bridges the most dangerous are the torsional
ones, see [20].

On the other hand in Figure 4 we plot the θj(t) coefficients with j = 1, . . . , 4 in
the extremal case β = 10−2 where the wind is very strong U = 30m/s. In this case
the 2nd torsional mode sees amplitude increase, predicting a possible uncontrolled
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Figure 3. Plots θj(t) (j = 1, . . . , 4) on [0, 120s] with δ = ζ = 0,
P = S = 0 and β = 0.

Figure 4. Plots θj(t) (j = 1, . . . , 4) on [0, 120s] with δ = ζ = 0,
P = S = 0 and β = 10−2, U = 30m/s.

growth beyond the time-lapse simulation; the other three torsional modes oscillate
more or less around their initial datum. Here and in all the simulations in this
section, we put Υ = ℓ observing that the results are not meaningly affected if we
take Υ = 0,−ℓ or U with opposite sign; indeed, the model is essentially symmetric
with respect to the sign of U .

If we introduce into the system the nonlinear contribution due to the effect of
stretching on bending, i.e. P = 0 and S > 0, in absence of wind we obtain a behavior
which is qualitatively similar to that reported in Figure 3; this is consistent with
[21, 22]. Including the effect of the wind, we observe that the Woinowsky-Krieger
nonlinearity acts, as expected, in favor of stability, see Figure 5; there the θ2(t)
growth is less marked than in Figure 4. This stabilizing behavior is also observed
for a beam model in [21], where the “strength” of the nonlinearity prohibits arbitrary
growth of the elastic displacements.

Figure 5. Plots θj(t) (j = 1, . . . , 4) on [0, 120s] with δ = ζ = 0,

P = 0, S = EA
2L and β = 10−2, U = 30m/s.

If we include in the system the damping effects in both model components, i.e.
δ = ζ = 0.01 [1, 27], we obtain the expected damped oscillations for torsional modes,
although the wind parameters play an important role, see Figure 6. If we damp
only the w component, i.e. δ = 0.01 and ζ = 0, we qualitatively obtain torsional
oscillations around the initial datum, as in the unforced (and undamped) situation,
see Figure 3.

The plots showed in this section are representative of an extremal wind condition
β = 10−2 and U = 30m/s; for lower values of β and U in the ranges declared at the
beginning of this section we obtain intermediate situations which qualitatively fall
between those presented here in presence or absence of wind.
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Figure 6. Plots θj(t) (j = 1, . . . , 4) on [0, 120s] with δ = ζ = 0.01,

P = 0, S = EA
2L and β = 10−2, U = 30m/s.

5. Proofs of stated theorems. We begin with two technical lemmas concerning
the nonlinear structure of the cable nonlinearity. We then move on to the proof
of Theorem 2.2 concerning weak and strong well-posedness. Subsequently, we con-
struct an absorbing ball for the dynamical system (St, Y ) associated with weak
solutions in Proposition 3.1; this is done through Lyapunov methods. Finally, we
show that the dynamical system (St, Y ) is quasi-stable on the absorbing ball, which
yields Theorem 3.3.

5.1. Technical lemmas on the cable nonlinearity. We give here some technical
lemmas on the cable nonlinearity that we use throughout the paper.

Lemma 5.1. Let Ξ(·), L(·) and Π(·) be defined (respectively) as in (5)1, (5)2 and
(7). Then the functional Ξ : C1(I) → C0(I) is locally Lipschitz, and there exists
C > 0, depending on the cable parameters, such that

|L(v)− L(z)| ≤ ∥ux − zx∥L1(I) ∀v, z ∈W 1,1(I) (17)

|Π(v)−Π(z)| ≤ C∥vx − zx∥L1(I) ∀v, z ∈W 1,1(I). (18)

Proof. Given v, z ∈ C1[0, π], we apply the Lagrange theorem, so that there exists
ϱ ∈ (ux, zx) such that

|Ξ(u)− Ξ(z)| = |ϱ||ux − zx|√
1 + ϱ2

≤ |ux − zx|.

Since L(u)− L(z) =
∫
I

(
Ξ(u)− Ξ(z)

)
(17) follows.

Recalling that ξ0 is bounded, we infer the existence of C > 0 such that

|Π(v)−Π(z)| =
∣∣∣∣ b2[L(u)− L0

]2 − b

2

[
L
(
z
)
− L0

]2
+ c

∫
I

ξ0[Ξ(u)− Ξ(z)]

∣∣∣∣
≤ b

2

∣∣∣[L(u)− L0

]2 − [
L
(
z
)
− L0

]2∣∣∣+ cmax
x∈I

|ξ0|
∫
I

∣∣Ξ(u)− Ξ
(
z
)∣∣

≤ b

2

∣∣L(u)− L(z)
∣∣∣∣L(u) + L(z)− 2L0

∣∣+ C∥ux − zx∥L1(I)

≤ C∥ux − zx∥L1(I).

Lemma 5.2. Let h(·) and Π(·) be respectively as in (5)3 and (18), then there exist
Cc, Cc, cc, cc > 0, depending on the cable parameters, such that(

h(u), ux
)
0
≤ −Π(u) + Cc∥ux∥L1(I) + Cc ∀u ∈W 1,1(I) (19)

and

∥h(u)∥20 ≤ cc∥ux∥2L1(I) + cc ∀u ∈W 1,1(I). (20)
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Proof. Let us begin with (19). From (5) we write(
h(u), ux

)
0
=−

∫
I

(
b
(
L(u)− L0

)
+ c ξ0(x)

)(
u+ s

)
x

Ξ(u)
ux

=−
∫
I

(
b
(
L(u)− L0

)
+ c ξ0(x)

)
[
(
u+ s

)
x
]2 − (u+ s)xsx

Ξ(u)

=−
∫
I

(
b
(
L(u)− L0

)
+ c ξ0(x)

)(
Ξ(u)− 1 + (u+ s)xsx

Ξ(u)

)
.

Adding and subtracting bL0

(
L(u)− L0

)
and c

∫
I
ξ20 we obtain(

h(u), ux
)
0
=− b

(
L(u)− L0

)(∫
I

Ξ(u)− L0

)
− bL0

(
L(u)− L0

)
− c

∫
I

ξ0
(
Ξ(u)− ξ0

)
− c

∫
I

ξ20 +

∫
I

(
b
(
L(u)− L0

)
+ cξ0

)
1 + (u+ s)xsx

Ξ(u)

=−Π(u)− b

2

(
L(u)− L0

)2 − c

∫
I

ξ20 − bL0

(
L(u)− L0

)
+

∫
I

(
b
(
L(u)− L0

)
+ cξ0

)
1 + (u+ s)xsx

Ξ(u)

≤−Π(u) + bL2
0 +

∣∣∣∣ ∫
I

(
b
(
L(u)− L0

)
+ cξ0

)
1 + (u+ s)xsx

Ξ(u)

∣∣∣∣.
By the definition of Ξ(u) in (5) we have 1/Ξ(u) ≤ 1 and |(u+ s)x|/Ξ(u) ≤ 1 so that
we may bound the term∣∣∣∣ ∫

I

(
b
(
L(u)− L0

)
+ cξ0

)
1 + (u+ s)xsx

Ξ(u)

∣∣∣∣
≤ (b

∣∣L(u)− L0

∣∣+ cmax
x∈I

|ξ0|)
∫
I

1

Ξ(u)
+

|(u+ s)x||sx|
Ξ(u)

≤ (b∥ux∥L1(I) + cmax
x∈I

|ξ0|)
(
π +

∫
I

|sx|
)
;

in the last inequality we used (17). The inequality (19) follows taking Cc := b(π +∫
I
|sx|) and Cc := cmaxI |ξ0|(π +

∫
I
|sx|) + bL2

0.
We now establish (20). We write

∥h(u)∥20 =

∫
I

(
b
(
L(u)− L0

)
+ c ξ0(x)

)2
[(u+ s)x]

2

Ξ(u)2

≤2

(
b2π

(
L(u)− L0

)2
+ c2

∫
I

ξ20

)
≤2

(
b2π∥ux∥2L1(I) + c2

∫
I

ξ20

)
,

where we used Young’s inequality and (17). The inequality (20) follows taking
cc := 2b2π and cc := 2c2

∫
I
ξ20 .

5.2. Proof of Theorem 2.2. In the calculations and estimates that follow, we
must test the equations with wt or θt. This can be justified by density, operating
on smooth solutions and passing to the limit. However, we recall a general result
from [31] for second order (in time) systems, which circumvents the lack of regularity
for weak solutions.
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Lemma 5.3. [31, Lemma 4.1] Let (V,H, V ′) be a Hilbert triplet. Let a(·, ·) be a
continuous and coercive bilinear form on V , associated to an operator A contin-
uously extending from V to V ′. This is to say that a(u, v) = V ′⟨Au, v⟩V for all
u, v ∈ V .

If w is such that

w ∈ L2((0, T ), V ) wt ∈ L2((0, T ), H) wtt +Aw ∈ L2(0, T,H)

then, after a modification on a set of measure zero, w ∈ C0([0, T ];V ), wt ∈
C0([0, T ];H) and, in the sense of distributions on (0, T ),

(wtt +Aw,wt)H =
1

2

d

dt

(
∥wt∥20 + a(w,w)

)
.

We split the proof of Theorem 2.2 in different steps concerning: existence of weak
solutions, uniqueness of weak solutions, existence of strong solutions and the energy
identity.

• Existence of weak solutions. The existence of a weak solution is proved applying
the Galerkin scheme, see e.g. [6, 11, 18, 19]. We give a complete proof here; for
additional details, see also [18, Theorem 1] where a similar cable-hanger nonlinearity
is considered.

We denote by {ek}∞k=1 an orthogonal basis of L2(I), H1
0 (I), H

2 ∩H1
0 (I), given

by ek(x) =
√
2/π sin(kx); then for any n ≥ 1, we introduce the space En :=

span{e1, . . . , en}. We put for any n ≥ 1

w0
n :=

n∑
k=1

(w0, ek)0 ek =
n∑

k=1

(w0, ek)2
k4

ek, θ0n :=
n∑

k=1

(θ0, ek)0 ek =
n∑

k=1

(θ0, ek)2
k4

ek,

w1
n :=

n∑
k=1

(w1, ek)0 ek, θ1n :=

n∑
k=1

(θ1, ek)0 ek,

so that

w0
n → w0 in H2(I), θ0n → θ0 in H2(I), w1

n → w1 in L2(I), θ1n → θ1 in L2(I)

as n→ ∞. For any n ≥ 1 we seek (wn, θn) such that

wn(x, t) =

n∑
k=1

wk
n(t) ek, θn(x, t) =

n∑
k=1

θkn(t) ek,

which solves the problem (8)—thus we need to solve for the Fourier coefficients
{wk

n(t), θ
k
n(t)}nk=1. Restricting the test functions v, φ ∈ En, (8) becomes for each

j = 1, 2, ..., n.
(
(wn)tt, ej

)
0
+ µ

(
(wn)t, ej

)
0
+

(
wn, ej

)
2
+

[
S∥wn∥21 − P

]
(wn, ej)1 =(

f(wn, θn), e
′
j

)
0
+

(
g − βΥ(θn)t − ηθn, ej

)
0

ℓ2

3

(
(θn)tt, ej

)
0
+ ζ

(
(θn)t, ej

)
0
+ ϵ

(
θn, ej

)
2
+ κ

(
θn, ej

)
1
−

(
f(wn, θn), e

′
j

)
0
= 0.

(21)

Using orthogonality of the basis {ek}∞k=1, we obtain the system for all k = 1, . . . , n

ẅk
n(t) + µ ẇk

n(t) + k4wk
n(t) +

[
S
(∑n

r=1 r
2wr

n(t)
2
)
− P

]
k2wk

n(t) =(
f(wk

n, θ
k
n), e

′
k

)
0
+

(
g, ek

)
0
− βΥθ̇kn(t)− ηθkn(t)

ℓ2

3
θ̈kn(t) + ζ θ̇kn(t) + (ϵk2 + κ)k2 θkn(t) =

(
f(wk

n, θ
k
n), e

′
k

)
0

wk
n(0) = (w0, ek)0 ẇk

n(0) = (w1, ek)0

θkn(0) = (θ0, ek)0 θ̇kn(0) = (θ1, ek)0.

(22)
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Since f(·, ·) and f(·, ·) are scalar functions continuous in their arguments, see (6),
and g is constant in time, from the standard theory of ODEs this finite-dimensional
system admits a local solution, defined on some [0, tn) with tn ∈ (0, T ].

For simplicity, in the sequel we often denote the time partial derivative of a func-
tion by v̇, instead of vt. The obtained solution (wn, θn) is C

2([0, tn), En); therefore,

testing the first equation in (21) by ẇn ∈ En, the second by θ̇n ∈ En, summing the
equations and integrating over t ∈ (0, tn) we obtain

∥ẇn(t)∥20
2

+
∥wn(t)∥22

2
+
ℓ2

6
∥θ̇n(t)∥20 + ϵ

∥θn(t)∥22
2

+ κ
∥θn(t)∥21

2
− P

∥wn(t)∥21
2

+

S
∥wn(t)∥41

4
+ Π(wn(t) + ℓθn(t)

)
+Π(wn(t)− ℓθn(t)

)
+ µ

∫ t

0

∥ẇn(s)∥20 ds+

ζ

∫ t

0

∥θ̇n(s)∥20 ds =
∥w1

n∥20
2

+
∥w0

n∥22
2

+
ℓ2

6
∥θ1n∥20 + ϵ

∥θ0n∥22
2

+ κ
∥θ0n∥21
2

+

− P
∥w0

n∥21
2

+ S
∥w0

n∥41
4

+ Π
(
w0

n + ℓθ0n
)
+Π

(
w0

n − ℓθ0n
)
+

∫ t

0

(
g, ẇn(s)

)
0
ds+

−
∫ t

0

(
βΥθ̇n(s) + ηθn(s), ẇn(s)

)
0
ds.

(23)

We apply the Hölder and Young inequalities to the terms∣∣∣∣ ∫ t

0

(
g, ẇn(s)

)
0
ds

∣∣∣∣ ≤ 1

2

(
t∥g∥20 +

∫ t

0

∥ẇn(s)∥20 ds
)

(24)∣∣∣∣ ∫ t

0

(
βΥθ̇n(s) + ηθn(s), ẇn(s)

)
0
ds

∣∣∣∣
≤ βℓ+ |η|

2

∫ t

0

(∥θ̇n(s)∥20 + ∥θn(s)∥20 + 2∥ẇn(s)∥20) ds. (25)

Combining these inequalities, considering the regularity of the initial conditions,

and noting the fact that τ 7→ P
2 τ

2 − S
4 τ

4 has the maximum P 2

4S , we obtain

∥ẇn(t)∥20
2

+
∥wn(t)∥22

2
+
ℓ2

6
∥θ̇n(t)∥20 + ϵ

∥θn(t)∥22
2

+ κ
∥θn(t)∥21

2
+

Π(wn(t) + ℓθn(t)
)
+Π(wn(t)− ℓθn(t)

)
+ µ

∫ t

0

∥ẇn(s)∥20 ds+

ζ

∫ t

0

∥θ̇n(s)∥20 ds ≤
∥w1∥22

2
+

∥w0∥22
2

+
ℓ2

6
∥θ1∥20 + ϵ

∥θ0∥22
2

+ κ
∥θ0∥21
2

+

S
∥w0∥41

4
+ Π

(
w0 + ℓθ0

)
+Π

(
w0 − ℓθ0

)
+
T

2
∥g∥20 +

P 2

4S
+

βℓ+ |η|
2

∫ t

0

(∥θ̇n(s)∥20 + ∥θn(s)∥20 + 2∥ẇn(s)∥20) ds+
∫ t

0

∥ẇn(s)∥20
2

ds.

(26)

Observing that Π(wn + ℓθn) +Π(wn − ℓθn) + 2c
∫
I
ξ20 > 0, applying (3) and (18)

with v = w0 ± ℓθ0 and z = 0, we infer the existence of C, c > 0 such that

∥ẇn(t)∥20 + ∥wn(t)∥22 + ∥θ̇n(t)∥20 + ∥θn(t)∥22
≤ C

(
∥w1∥20 + ∥w0∥22 + ∥θ1∥20 + ∥θ0∥22 + ∥w0∥42 + 1 + T

)
+ c

∫ t

0

(∥ẇn(s)∥20 + ∥wn(s)∥22 + ∥θ̇n(s)∥20 + ∥θ(s)∥22) ds.
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Hence, by the Gronwall inequality, we obtain

∥
(
wn(t), ẇn(t); θn(t), θ̇n(t)

)
∥2Y ≤ C

(
∥(w0, w1; θ0, θ

1)∥2Y + ∥w0∥42 + 1 + T
)
ecT , (27)

for any t ∈ [0, tn), where the constants C and c are now independent of n and t.
Hence, wn and θn are globally defined in R+ for every n ≥ 1 and the sequences
{wn}n and {θn}n are uniformly bounded in the space C0([0, T ]; (H2 ∩ H1

0 )(I)) ∩
C1([0, T ], L2(I)) for each finite T > 0. We now show that {wn}n and {θn}n admit
strongly convergent subsequences in the same spaces.

The estimate (27) shows that {wn}n and {θn}n are bounded and equicontinuous
in C0([0, T ];L2(I)); then, by the Ascoli–Arzelà theorem, we conclude that, up to a
subsequence, un → u strongly in C0([0, T ];L2(I)).

For every n > m ≥ 1, we consider the two equations in (21) satisfied by (wn, θn)

and tested respectively by ẇn and θ̇n; afterwards, we consider the two equations in
(21) satisfied by (wm, θm) and tested respectively by ẇm and θ̇m. We then subtract
(21)m from (21)n and we put wn,m := wn − wm and θn,m := θn − θm. Summing
and integrating in time, we find the estimate for all t ∈ [0, T ]

∥ẇn,m(t)∥20
2

+
∥wn,m(t)∥22

2
+
ℓ2

6
∥θ̇n,m(t)∥20 + ϵ

∥θn,m(t)∥22
2

+ κ
∥θn,m(t)∥21

2

+ µ

∫ t

0

∥ẇn,m(s)∥20 ds+ ζ

∫ t

0

∥θ̇n,m(s)∥20 ds

= P
∥wn,m(t)∥21

2
− S

4

(
∥wn(t)∥41 − ∥wm(t)∥41

)
+

∥w1
n,m∥20
2

+
∥w0

n,m∥22
2

+
ℓ2

6
∥θ1n,m∥20 + ϵ

∥θ0n,m∥22
2

+ κ
∥θ0n,m∥21

2
− P

∥w0
n,m∥21
2

+
S

4

(
∥w0

n∥41 − ∥w0
m∥41

)
+

∫ t

0

(
g, ẇn,m(s)

)
0
ds−

∫ t

0

(
βΥθ̇n,m(s) + ηθn,m(s), ẇn,m(s)

)
0
ds+

−Π(wn(t) + ℓθn(t)) + Π(wm(t) + ℓθm(t)) + Π(w0
n + ℓθ0n)−Π(w0

m + ℓθ0m)

−Π(wn(t)− ℓθn(t)) + Π(wm(t)− ℓθm(t)) + Π(w0
n − ℓθ0n)−Π(w0

m − ℓθ0m).

(28)

We apply Lemma 5.1 with v = wn + ℓθn and z = wm + ℓθm, so that through (4) we
infer the existence of C > 0 such that

|Π(wn(t) + ℓθn(t))−Π(wm(t) + ℓθm(t))| ≤ C
(
∥wn(t)− wm(t)∥1+∥θn(t)− θm(t)∥1

)
≤ C

(
∥wn,m(t)∥1/20 + ∥θn,m(t)∥1/20

)
and similarly for each of the terms involving Π(·). Again through (4) we infer

P

2
∥wn,m(t)∥21 −

S

4

(
∥wn(t)∥41 − ∥wm(t)∥41

)
=

P

2
∥wn,m(t)∥21 −

S

4
(∥wn(t)∥21 − ∥wm(t)∥21)(∥wn(t)∥21 + ∥wm(t)∥21)

≤ C
(
∥wn,m(t)∥0 + ∥wn,m(t)∥1

)
≤ C

(
∥wn,m(t)∥0 + ∥wn,m(t)∥1/20

)
,

and similarly for −P
2 ∥w

0
n,m∥21 + S

4 (∥w
0
n∥41 − ∥w0

m∥41). As in (24), we bound∣∣∣∣ ∫ t

0

(
βΥθ̇n,m(s) + ηθn,m(s), ẇn,m(s)

)
2
ds

∣∣∣∣
≤βℓ+ |η|

2

∫ t

0

(∥θ̇n,m(s)∥20 + ∥θn,m(s)∥20 + 2∥ẇn,m(s)∥20) ds;
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from (27) we know that {ẇn(s)}n is bounded in C0([0, T ];L2(I)), and since g ∈
L2(I), denoting by Pn (resp. Pm) its projection on the first n (resp. m) modes we
obtain∣∣∣∣ ∫ t

0

(
g, ẇn,m(s)

)
0
ds

∣∣∣∣ ≤ ∥ẇn,m∥C0([0,T ];L2(I))

∫ t

0

∥Png−Pmg∥0ds ≤ CT∥Png−Pmg∥0.

Combing all these inequalities, from (28) we infer the existence of c, C > 0 such
that

∥ẇn,m(t)∥20 + ∥wn,m(t)∥22 + ∥θ̇n,m(t)∥20 + ∥θn,m(t)∥22

≤C
{
∥w1

n,m∥20 + ∥w0
n,m∥22 + ∥θ1n,m∥20 + ∥θ0n,m∥22 + ∥w0

n,m∥0 + ∥w0
n,m∥1/20 + ∥θ0n,m∥1/20

+ ∥wm,n∥C0([0,T ];L2(I)) + ∥wn,m∥1/2C0([0,T ];L2(I)) + ∥θn,m∥1/2C0([0,T ];L2(I)) + T ·

∥Png − Pmg∥0
}
+ c

∫ t

0

(∥ẇn,m(s)∥20 + ∥wn,m(s)∥22 + ∥θ̇n,m(s)∥20 + ∥θn,m(s)∥22)ds.

Applying the Gronwall Lemma we infer

∥
(
wn,m(t), ẇn,m(t); θn,m(t), θ̇n,m(t)

)
∥2Y

≤ C
{
∥(w0

n,m, w
1
n,m; θ0n,m, θ

1
n,m)∥2Y + ∥w0

n,m∥0+

∥w0
n,m∥1/20 + ∥θ0n,m∥1/20 + ∥wm,n∥C0([0,T ];L2(I))+

∥wn,m∥1/2C0([0,T ];L2(I)) + ∥θn,m∥1/2C0([0,T ];L2(I))+

T∥Png − Pmg∥0
}
ecT → 0 as n,m→ ∞,

thanks to the strong convergence in C0([0, T ];L2(I)). Therefore {wn}n and {θn}n
are Cauchy sequences in the space C0([0, T ]; (H2 ∩ H1

0 )(I)) ∩ C1([0, T ], L2(I)); in
turn, this yields, up to a subsequence,

wn → w, θn → θ in C0([0, T ]; (H2 ∩H1
0 )(I)) ∩ C1([0, T ], L2(I)). (29)

Now take v, φ ∈ (H2∩H1
0 )(I) and consider the sequences of projections Pnv and

Pnφ. Taking Pnv and Pnφ as test functions in (21), multiplying by ψ ∈ C∞
c (0, T )

and integrating over [0, T ] we get

∫ T

0

(
(wn)t, Pnv

)
0
ψ′ =

∫ T

0

{(
µ(wn)t + βΥ(θn)t + ηθn − g, Pnv

)
0
+(

wn, Pnv
)
2
−
(
f(wn, θn), Pnv

′)
0
+
[
S∥wn∥21 − P

](
wn, Pnv

)
1

}
ψ∫ T

0
ℓ2

3

(
(θn)t, Pnφ

)
0
ψ′ =

∫ T

0

[
ζ
(
(θn)t, Pnφ

)
0
+ ϵ

(
θn, Pnφ

)
2
+

κ
(
θn, Pnφ

)
1
−
(
f(wn, θn), Pnφ

′)
0

]
ψ.

(30)

To pass to the limit in (30) we must consider the nonlinear terms. In particular, we
have as n→ ∞
S(∥wn(t)∥21 − ∥w(t)∥21) ≤ C∥wn(t)− w(t)∥1 ≤ C∥wn − w∥C0([0,T ];H1(I)) → 0; (31)

concerning cable nonlinearities, f(w, θ) and f(wn, θn), from (17) and (29) we have

|L(wn ± ℓθn)− L(w±ℓθ)| ≤ C
(
∥wn(t)− w(t)∥1 + ∥θn(t)− θ(t)∥1

)
≤ C

(
∥wn − w∥C0([0,T ];H1(I)) + ∥θn − θ∥C0([0,T ];H1(I))

)
→0,

implying L(wn ± ℓθn) → L(w ± ℓθ) as n→ ∞. Moreover, we obtain∫ T

0

∫
I

[(wn ± ℓθn + s)x]
2

Ξ(wn ± ℓθn)2
dt < Tπ.
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Hence, f(wn, θn) and f(wn, θn), being continuous in their arguments, converge
weakly, up to a subsequence, to f(w, θ) and f(w, θ) in L2(IT ). Therefore, it is
possible to pass to the limit the equations (30). We then obtain, by rewriting, that
∫ T

0

(
wt, v

)
0
ψ′ =

∫ T

0

{(
µwt + βΥθt + ηθ − g, v

)
0
+

(
w, v

)
2
+

[
S∥w∥21 − P

](
w, v

)
1
+

−
(
f(w, θ), v′

)
0

}
ψ∫ T

0
ℓ2

3

(
θt, φ

)
0
ψ′ =

∫ T

0

[
ζ
(
θt, φ

)
0
+ ϵ

(
θ, φ

)
2
+ κ

(
θ, φ

)
1
−

(
f(w, θ), φ′)

0

]
ψ.

For our choice of test functions, we deduce that wtt, θtt ∈ C0([0, T ];H) and they
solve a.e. t ∈ (0, T ){

wtt = −Lw − µwt +
(
S∥w∥21 − P

)
wxx − [f(w, θ)]x + g − βΥθt − ηθ

ℓ2

3 θtt = −Lθ − ζθt − [f(w, θ)]x
(32)

where L,L : (H2 ∩ H1
0 )(I) → H stand for the canonical Riesz isometric isomor-

phisms respectively given by −2⟨Lw, v⟩2 := (w, v)2 for all w, v ∈ (H2 ∩H1
0 )(I) and

−2⟨Lθ, φ⟩2 := κ(θ, φ)1+ ϵ(θ, φ)2 for all θ, φ ∈ (H2 ∩H1
0 )(I). We thus conclude that

(w, θ) is a weak solution of (8).
• Uniqueness of weak solution. For contradiction, let us consider two solutions

(wI , θI), (wII , θII) satisfying the same initial conditions and the regularity in
Definition 2.1. By subtracting the two systems and denoting by W = wI − wII

and Θ = θI − θII , we see that (W,Θ) is a solution to
−2⟨Wtt, v⟩2 + µ(Wt, v)0 + (W, v)2 − P (W, v)1 + βΥ(Θt, v)0 + η(Θ, v)0

= S
(
∥wI∥21wI

xx − ∥wII∥21wII
xx , v

)
0
−

(
[f(wI , θI)− f(wII , θII)]x, v

)
0

ℓ2

3 −2⟨Θtt, φ⟩2 + ζ(Θt, φ)0 + ϵ(Θ, φ)2 + κ(Θ, φ)1 =

−
(
[f(wI , θI)− f(wII , θII)]x, φ

)
0

for all v, φ ∈ (H2 ∩H1
0 )(I) with homogeneous initial conditions and t > 0.

By (32) and Lemma 5.3, we test the equations by v = Ẇ and φ = Θ̇. Summing
the equations and integrating over (0, t) (omitting the dependence on t), we end up
with

∥Ẇ∥20
2

+
∥W∥22

2
+

∥Θ̇∥20
2

+ ϵ
∥Θ∥22
2

+ κ
∥Θ∥21
2

− P
∥W∥21

2
+ µ

∫ t

0

∥Ẇ∥20 + ζ

∫ t

0

∥Θ̇∥20

=−
∫ t

0

(
[f(wI , θI)− f(wII , θII)]x, Ẇ

)
0
−

∫ t

0

(
[f(wI , θI)− f(wII , θII)]x, Θ̇

)
0

+ S

∫ t

0

(
∥wI∥21Wxx + [∥wI∥21 − ∥wII∥21]wII

xx , Ẇ
)
0
−
∫ t

0

(
βΥΘ̇ + ηΘ, Ẇ

)
0
.

To estimate the cable nonlinearity terms on the right hand side (see f and f in (6)),
we need the following inequalities: let uI , uII ∈ (H2∩H1

0 )(I) then, by Lemma (5.1),
it holds∣∣∣∣ (uI + s)xx

Ξ(uI)3
− (uII + s)xx

Ξ(uII)3

∣∣∣∣ = ∣∣∣∣Ξ(uII)3(uI + s)xx − Ξ(uI)3(uII + s)xx
Ξ(uI)3Ξ(uII)3

∣∣∣∣



24 ALESSIO FALOCCHI AND JUSTIN WEBSTER∣∣∣∣Ξ(uII)3(uI − uII)xx − [Ξ(uI)3 − Ξ(uII)3](uII + s)xx
Ξ(uI)3Ξ(uII)3

∣∣∣∣
≤|(uI − uII)xx|+|[Ξ(uI)− Ξ(uII)]

[
Ξ(uI)2+Ξ(uI)Ξ(uII)+Ξ(uII)2

]
(uII + s)xx|

≤ |(uI − uII)xx|+
3

2
|(uI − uII)x|

(
Ξ(uI)2 + Ξ(uII)2

)
|(uII + s)xx|

≤ |(uI − uII)xx|+
3

2

(
2 + (uI)2x + (uII)2x

)
|(uII + s)xx||(uI − uII)x|;

due to the compact embedding H2(I) ⊂⊂ C1(I), applying the Hölder and Young
inequalities, and choosing uI = wI ± ℓθI and uII = wII ± ℓθII ; we then infer the
existence of C > 0 such that∣∣∣∣( (wI ± ℓθI + s)xx

Ξ(wI ± ℓθI)3
− (wII ± ℓθII + s)xx

Ξ(wII ± ℓθII)3
, Ẇ

)
0

∣∣∣∣
≤

(
∥W∥2 + ℓ∥Θ∥2 + C∥(uII + s)xx∥0∥(W ± ℓΘ)x∥C0(I)

)
∥Ẇ∥0

≤ C
(
∥W∥2 + ∥Θ∥2

)
∥Ẇ∥0

≤ C
(
∥Ẇ∥20 + ∥W∥22 + ∥Θ∥22

)
.

From (17), we obtain the existence of C > 0 such that

|
(
L(wI ± ℓθI)− L(wII ± ℓθII), Ẇ

)
2
| ≤ C

(
∥Ẇ∥20 + ∥W∥22 + ∥Θ∥22

)
.

Thanks to the boundedness of the function ξ0(x), see (5), and the previous estimates,
we obtain∣∣∣∣ ∫ t

0

(
[f(wI , θI)− f(wII , θII)]x, Ẇ

)
0

∣∣∣∣ ≤ C

∫ t

0

(
∥Ẇ∥20 + ∥W∥22 + ∥Θ∥22

)
.

Similarly, we find∣∣∣∣ ∫ t

0

(
[f(wI , θI)− f(wII , θII)]x, Θ̇

)
0

∣∣∣∣ ≤ C

∫ t

0

(
∥Θ̇∥20 + ∥W∥22 + ∥Θ∥22

)
.

We bound the last nonlinear term as follows

S

∣∣∣∣ ∫ t

0

(
∥wI∥21Wxx + [∥wI∥21 − ∥wII∥21]wII

xx , Ẇ
)
0

∣∣∣∣ ≤ C

∫ t

0

(
∥Ẇ∥20 + ∥W∥22

)
.

As in (24), we apply the Hölder and Young inequalities to∣∣∣∣ ∫ t

0

(
βΥΘ̇ + ηΘ, Ẇ

)
0

∣∣∣∣ ≤ βℓ+ |η|
2

∫ t

0

(∥Θ̇∥20 + ∥Θ∥20 + 2∥Ẇ∥20);

collecting these inequalities, we obtain a constant C > 0 such that

∥Ẇ (t)∥20 + ∥W (t)∥22 + ∥Θ̇(t)∥20 + ∥Θ(t)∥22

≤ C

∫ t

0

(
∥Ẇ (s)∥20 + ∥W (s)∥22 + ∥Θ̇(s)∥20 + ∥Θ(s)∥22

)
ds.

Hence, the Gronwall inequality guarantees (W,Θ) ≡ (0, 0).
• Strong solution. We assume the improved regularity of the data: w0, θ0 ∈ D

and w1, θ1 ∈ (H2 ∩H1
0 )(I). Then we formally differentiate (21) with respect to t,
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we take as test functions v = ẅn and φ = θ̈n and summing the equations, we obtain

1

2

d

dt

(
∥ẅn∥20 + ∥ẇn∥22 +

ℓ2

3
∥θ̈n∥20 + ϵ∥θ̇n∥22 + κ∥θ̇n∥21 − P∥ẇn∥21 +

S

2
∥ẇn∥41

)
+

µ∥ẅn∥20 + ζ∥θ̈n∥20 = −
(
[f(wn, θn)]xt, ẅn

)
0
−
(
[f(wn, θn)]xt, θ̈n

)
0
+

−
(
βΥθ̈n + ηθ̇n, ẅn

)
0
.

(33)

We omit the dependence on t for brevity. To handle the right hand side terms, we
compute the derivative

d

dt

[
(wn ± ℓθn + s)xx
Ξ(wn ± ℓθn)3

]
=

(wn ± ℓθn)xxtΞ(wn ± ℓθn)
2 − 3(wn ± ℓθn + s)xx(wn ± ℓθn + s)x(wn ± ℓθn)xt

Ξ(wn ± ℓθn)5

so that∣∣∣∣([ (wn ± ℓθn + s)xx
Ξ(wn ± ℓθn)3

]
t

, ẅn

)
0

∣∣∣∣ ≤C(∥(wn ± ℓθn)xxt∥0 + ∥(wn ± ℓθn)xt∥0
)
∥ẅn∥0

≤C
(
∥ẇn∥2 + ∥θ̇n∥2 + ∥ẇn∥1 + ∥θ̇n∥1

)
∥ẅn∥0

≤C
(
∥ẅn∥20 + ∥ẇn∥22 + ∥θ̇n∥22

)
,

where in the last inequality we apply (3), being ẇn, θ̇n ∈ (H2∩H1
0 )(I), and Young’s

inequality. We also compute

|
[
L(wn ± ℓθn)

]
t
| =

∣∣∣∣ ∫
I

(wn ± ℓθn + s)x(wn ± ℓθn)xt
Ξ(wn ± ℓθn)

∣∣∣∣ ≤ C∥(wn ± ℓθn)xt∥0

so that∣∣∣∣[L(wn ± ℓθn)
]
t

(
(wn ± ℓθn + s)xx
Ξ(wn ± ℓθn)3

, ẅn

)
0

∣∣∣∣ ≤C∥(wn ± ℓθn)xt∥0∥ẅn∥0

≤C
(
∥ẅn∥20 + ∥ẇn∥22 + ∥θ̇n∥22

)
.

Therefore, looking at (6), we infer

|
(
[f(wn, θn)]xt, ẅn

)
0
+
(
[f(wn, θn)]xt, θ̈n

)
0
| ≤ C

(
∥ẅn∥20 + ∥ẇn∥22 + ∥θ̈n∥20 + ∥θ̇n∥22

)
.

Applying estimates as (25) to the last right hand side term of (33), integrating
over (0, t) and repeating similar passages as in (26), we get C, c > 0 such that

∥ẅn(t)∥20 + ∥ẇn(t)∥22 + ∥θ̈n(t)∥20 + ∥θ̇n(t)∥22
≤ C

(
∥ẅn(0)∥20 + ∥ẇn(0)∥22 + ∥θ̈n(0)∥20 + ∥θ̇n(0)∥22 + ∥ẇn(0)∥42 + 1

)
+ c

∫ t

0

(
∥ẅn(s)∥20 + ∥ẇn(s)∥22 + ∥θ̈n(s)∥20 + ∥θ̇n(s)∥22

)
ds.

Hence, by the Gronwall inequality, we obtain

∥ẅn(t)∥02 + ∥ẇn(t)∥22 + ∥θ̈n(t)∥20 + ∥θ̇n(t)∥22
≤ C

(
∥ẅn(0)∥20 + ∥ẇn(0)∥22 + ∥θ̈n(0)∥20 + ∥θ̇n(0)∥22 + ∥ẇn(0)∥42 + 1

)
ecT ;

since w1, θ1 ∈ (H2 ∩H1
0 )(I), the uniform boundedness of ∥ẇn(0)∥2 and ∥θ̇n(0)∥2 is

obtained for all t ∈ [0, T ]. Let us consider (22) in t = 0; since

|
(
f(wn(0), θn(0)), e

′
k

)
0
| ≤ C

(
∥wn(0)∥1 + ∥θn(0)∥1

)
≤ C

(
∥w0∥1 + ∥θ0∥1

)
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and, similarly |
(
f(wn(0), θn(0)), e

′
k

)
0
|, we infer that also ∥ẅn(0)∥0 and ∥θ̈n(0)∥0 are

uniformly bounded for all t ∈ [0, T ]. This implies that

∥ẅn(t)∥0, ∥θ̈n(t)∥0 ∥ẇn(t)∥2, ∥θ̇n(t)∥2 are uniformly bounded for all t ∈ [0, T ].

Then by the equations
(wn)xxxx = −(wn)tt − µ(wn)t − [P − S∥wn∥21](wn)xx − [f(wn, θn)]x+

g − βΥ(θn)t − ηθn

(θn)xxxx = −1

ϵ

(
ℓ2

3
(θn)tt + ζ(θn)t − κ(θn)xx + [f(wn, θn)]x

)
,

we infer that (wn)xxxx and (θn)xxxx are uniformly bounded in L2(I) for all t ∈ [0, T ]
and then, that wn, θn are uniformly bounded in H4(I) for all t ∈ [0, T ]. The final
regularity of the strong solution, as stated in the theorem, can be obtained arguing
as in the proof of existence of weak solution. Recovery of the second order boundary
conditions from the weak form (8) is standard.

• Energy identity. From (8) and the uniqueness of a weak solution, we obtain
that (w, θ) is the limit of the sequence (wn, θn) built in the first step. Thanks to
the strong convergence in (29), we can take the limit in (23) for each of the linear
terms. To the nonlinearity Π(wn ± ℓθn) we apply (18), so that it holds

|Π(wn ± ℓθn)−Π(w ± ℓθ)| ≤ C
(
∥wn(t)− w(t)∥1 + ∥θn(t)− θ(t)∥1

)
≤ C

(
∥wn − w∥C0([0,T ];H1(I)) + ∥θn − θ∥C0([0,T ];H1(I))

)
→ 0 as n→ ∞,

thanks to (29); applying (31), we observe the strong convergence of the Woinowsky-
Krieger nonlinearity capturing the stretching of the deck. Therefore, it is possible
to pass the limit in all the terms of (23), getting

E(t) + µ

∫ t

0

∥wt(τ)∥20dτ + ζ

∫ t

0

∥θt(τ)∥20dτ =

E(0)− βΥ

∫ t

0

(
θt(τ), wt(τ)

)
0
dτ − η

∫ t

0

(
θ(τ), wt(τ)

)
0
dτ.

The thesis follows considering s instead of 0 as the lower bound of integration in
the previous equality, and repeating the arguments similarly.

5.3. Construction of an absorbing ball: proof of Proposition 3.1. We in-
troduce a Lyapunov-type function depending on ν, µ, ζ > 0

Vν,µ,ζ(St(y)) :=E(t) + ν
(
wt(t), w(t)

)
0
+
νµ

2
∥w(t)∥20 + ν

(
θt(t), θ(t)

)
0
+

νζ

2
∥θ(t)∥20 + βΥ

(
θt(t), w(t)

)
0
+ η

(
θ(t), w(t)

)
0
,

(34)

where St(y) =
(
w(t), wt(t), θ(t), θt(t)

)
is as before for t ≥ 0, and with ν to be

specified later. First of all we prove that the Lyapunov function is bounded by the
positive portion of the energy.

Lemma 5.4. There exists ν(µ, ζ) > 0 such that if ν ∈ (0, ν), there are c0(µ, ζ),
c1(µ, ζ) and
c2(µ, ζ, P, S, β,Υ, η, ∥g∥0) > 0 so that

c0E+(t)− c2 ≤ Vν,µ,ζ(St(y)) ≤ c1E+(t) + c2. (35)
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Proof. We claim there exists M(ν, P, S, ∥g∥0) > 0 such that

(1− ν)E+ −M ≤ E ≤ (1 + ν)E+ +M ∀ν ∈ (0, 1). (36)

Since E = E+ − P

2
∥w∥21 −

(
g, w

)
0
we apply the Hölder and Young inequalities

P

2
∥w∥21 ≤ νS

∥w∥41
4

+
P 2

4Sν

(
g, w

)
0
≤ ν∥w∥20 +

1

4ν
∥g∥20 ≤ ν∥w∥22 +

1

4ν
∥g∥20,

inferring (36) withM = P 2

4Sν +
∥g∥2

0

4ν . Looking at Vν,µ,ζ in (34), we need the following
bounds for some γi > 0

ν
(
wt, w

)
0
≤ γ1

∥wt∥20
2

+
ν2

γ1

∥w∥20
2

, ν
(
θt, θ

)
0
≤ γ2

∥θt∥20
2

+
ν2

γ2

∥θ∥20
2

,

βΥ
(
θt, w

)
0
≤ γ2

∥θt∥20
2

+
β2Υ2

γ2

∥w∥20
2

≤ γ2
∥θt∥20
2

+
Sν

2

∥w∥41
4

+
β4Υ4

2Sνγ22
,

η
(
θ, w

)
0
≤ γ3

∥θ∥20
2

+
η2

γ3

∥w∥20
2

≤ γ3
∥θ∥21
2

+
Sν

2

∥w∥41
4

+
η4

2Sνγ23
.

(37)

Therefore, we have

ν
(
wt,w

)
0
+
νµ

2
∥w∥20 + ν

(
θt, θ

)
0
+
νζ

2
∥θ∥20 + βΥ

(
θt, w

)
0
+ η

(
θ, w

)
0

≥− γ1
∥wt∥20

2
− 2γ2

∥θt∥20
2

− γ3
∥θ∥21
2

+

(
νµ− ν2

γ1

)
∥w∥20
2

+

(
νζ − ν2

γ2

)
∥θ∥20
2

− Sν
∥w∥41
4

− β4Υ4

2Sνγ22
− η4

2Sνγ23
,

hence, taking γ1 = ν/µ, γ2 = ν/ζ and γ3 = νκ, we find from (36)

Vν,µ,ζ ≥
[
1− ν

(
µ+ 1

µ

)]
∥wt∥20

2
+

[
1− ν

(
ζ + 2

ζ

)]
∥θt∥20
2

+ (1− 2ν)κ
∥θ∥21
2

+

(1− 2ν)S
∥w∥41
4

−M − β4Υ4ζ2

2Sν3
− η4

2Sν3κ2
≥ c0E+ − c2,

for all 0 < ν < min

{
1

2
,

µ

µ+ 1
,

ζ

ζ + 2

}
:= ν. Next, with the same choices of the

parameters ν, γi and (37) we obtain

ν
(
wt, w

)
0
+
νµ

2
∥w∥20 + ν

(
θt, θ

)
0
+
νζ

2
∥θ∥20 + βΥ

(
θt, w

)
0
+ η

(
θ, w

)
0

≤ν
µ

∥wt∥20
2

+ 2
ν

ζ

∥θt∥20
2

+ νκ
∥θ∥21
2

+ 2νµ
∥w∥20
2

+ 2νζ
∥θ∥20
2

+ Sν
∥w∥41
4

+

β4Υ4ζ2

2Sν3
+

η4

2Sν3κ2

and, in turn, the thesis (35).

We want a bound on the derivative of the Lyapunov function introduced in (34).
To do this we need a preliminary bound on the L2(I) norm of the nonlinear terms
related to the cables and a lemma providing control of lower frequencies in the w
dynamics.

The following lemma is easily adapted from [9, 22], where the proof is provided;
also see [21].
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Lemma 5.5. [9, Lemma 4.8] For any s ∈ (0, 2] and γ > 0 there exists Cγ,s > 0
such that

∥w∥22−s ≤ γ
(
∥w∥22 + ∥w∥41

)
+ Cγ,s ∀w ∈ H2 ∩H1

0 (I).

We are ready now to prove a bound on the derivative of Vν,µ,ζ(St(y)) introduced
in (34).

Lemma 5.6. Let Vν,µ,ζ be as in (34). For all µ, ζ > 0 there exist ν(µ, ζ), ϵ(ν, β, ℓ) >
0 such that if ν ∈ (0, ν) and ϵ ∈ (0, ϵ), then there are c3(µ, ζ, ν, κ, ϵ, P, S, β,Υ, η, ℓ, cc),
c4(ν, ℓ, ∥g∥0, Cc, Cc, cc) > 0 so that

d

dt
Vν,µ,ζ(St(y)) ≤ −c3E+(t) + c4. (38)

Proof. We suppose that y(t) =
(
w(t), wt(t), θ(t), θt(t)

)
is a smooth solution of (1)

(we can extend by density to weak solutions as the final step). Then we compute
the time derivative of Vν,µ,ζ , i.e.

d

dt
Vν,µ,ζ =

d

dt
E + ν(wtt, w)0 + ν∥wt∥20 + νµ(w,wt)0 + ν(θtt, θ)0 + ν∥θt∥20+

νζ(θ, θt)0 + βΥ
d

dt

(
θt, w

)
0
+ η

d

dt

(
θ, w

)
0
.

From (9) we infer

d

dt
E = −µ∥wt∥20 − ζ∥θt∥20 − βΥ(θt, wt)0 − η(θ, wt)0,

while testing the equations in (8) respectively by w and θ we find

d

dt
Vν,µ,ζ = (ν − µ)∥wt∥20 + (ν − ζ)∥θt∥20 + Pν∥w∥21 − ν∥w∥22 − νϵ∥θ∥22 − νκ∥θ∥21+

− βΥ(θt, wt)0 − η(θ, wt)0 − βΥν(θt, w)0 − νη(θ, w)0 + ν(g, w)0

− Sν∥w∥41 + ν(f(w, θ), wx)0 + ν(f(w, θ), θx)0 + βΥ
d

dt

(
θt, w

)
0
+ η

d

dt

(
θ, w

)
0
.

We rewrite the following terms using the product rule in time as

(θ, wt)0 =
d

dt

(
θ, w

)
0
−
(
θt, w

)
0

(θt, wt)0 =
d

dt

(
θt, w

)
0
−
(
θtt, w

)
0

=
d

dt

(
θt, w

)
0
+

3ζ

ℓ2
(
θt, w

)
0
+

3ϵ

ℓ2
(
θ, w

)
2
+

3κ

ℓ2
(
θ, w)1 −

3

ℓ2
(
f(w, θ), wx

)
0
,

where we used (1)2. Hence, we obtain

d

dt
Vν,µ,ζ = (ν − µ)∥wt∥20 + (ν − ζ)∥θt∥20 + Pν∥w∥21 − ν∥w∥22 − νϵ∥θ∥22 − νκ∥θ∥21

− Sν∥w∥41 + (η − βΥζ 3
ℓ2 − βΥν)

(
θt, w

)
0
− βΥϵ 3

ℓ2

(
θ, w

)
2
− βΥκ 3

ℓ2

(
θ, w)1+

− νη(θ, w)0 + ν(g, w)0 + ν(f(w, θ), wx)0 + ν(f(w, θ), θx)0 + βΥ 3
ℓ2

(
f(w, θ), wx

)
0
.

(39)
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Next we bound the right hand side of (39). First of all we apply the Hölder and
Young inequalities (ε1, ε > 0)

|(η − βΥζ − βΥν)
(
θt, w

)
0
| ≤ ζ

∥θt∥20
2

+ (η − βΥζ − βΥν)2
∥w∥20
2ζ

|βΥϵ 3
ℓ2

(
θ, w

)
2
| ≤ ε1

∥θ∥22
2

+
9β2Υ2ϵ2

ε1ℓ4
∥w∥22
2

|βΥκ 3
ℓ2

(
θ, w)1| ≤ ε

∥θ∥21
2

+
9β2Υ2κ2

εℓ4
∥w∥21
2

|νη(θ, w)0| ≤ ε
∥θ∥20
2

+
ν2η2

ε

∥w∥20
2

|ν(g, w)0| ≤ ε
∥w∥20
2

+
ν2

ε

∥g∥20
2

.

|βΥ 3
ℓ2 (f(w, θ), wx)0| =|βΥ 3

ℓ (h(w + ℓθ)− h(w − ℓθ), wx)0|

≤ε
2
∥h(w + ℓθ)− h(w − ℓθ)∥20 + β2Υ2 9

ℓ2
∥w∥21
2ε

≤ccε
(
∥wx + ℓθx∥2L1(I) + ∥wx − ℓθx∥2L1(I)

)
+β2Υ2 9

ℓ2
∥w∥21
2ε

+ C

≤4πccε
(
∥w∥21 + ℓ2∥θ∥21

)
+ β2Υ2 9

ℓ2
∥w∥21
2ε

+ C,

where we apply (20). The remaining cable nonlinear terms can be combined, re-
calling (6); through (19) we find

(f(w, θ), wx)0 + (f(w, θ), θx)0 =
(
h(w + ℓθ), wx + ℓθx

)
0
+
(
h(w − ℓθ), wx − ℓθx

)
0

≤−Π(w + ℓθ)−Π(w − ℓθ) + Cc∥wx + ℓθx∥L1(I) + Cc∥wx − ℓθx∥L1(I) + 2Cc

≤−Π(w + ℓθ)−Π(w − ℓθ) + ε
∥w∥21
2ν

+ ε
∥θ∥21
2ν

+ C,

so that (39) becomes

d

dt
Vν,µ,ζ ≤ (ν − µ)∥wt∥20 + (2ν − ζ)

∥θt∥20
2

− Sν∥w∥41

+

(
(η − βΥζ − βΥν)2

ζ
+
ν2η2

ε
+ ε

)
∥w∥20
2

+

(
2Pν +

9β2Υ2κ2

εℓ4
+

9β2Υ2

εℓ2

)
∥w∥21
2

+

(
9β2Υ2ϵ2

ε1ℓ4
− 2ν

)
∥w∥22
2

+ ε
∥θ∥20
2

+ (ε− 2νκ)
∥θ∥21
2

+ (ε1 − 2νϵ)
∥θ∥22
2

+
ν2

ε

∥g∥20
2

− νΠ(w + ℓθ)− νΠ(w − ℓθ) + ε
∥w∥21
2

+ ε
∥θ∥21
2

+ 4πccε
(
∥w∥21 + ℓ2∥θ∥21

)
+ β2Υ2 9

ℓ2
∥w∥21
2ε

+ C.

Using (3) and collecting the terms we find

d

dt
Vν,µ,ζ ≤ (ν − µ)∥wt∥20 + (2ν − ζ)

∥θt∥2
0

2 +
(
ε(3 + 8πccℓ

2)− 2νκ
)∥θ∥2

1

2 +

(ε1 − 2νϵ)
∥θ∥2

2

2 − νΠ(w + ℓθ)− νΠ(w − ℓθ)− Sν∥w∥41 +
(
9β2Υ2ϵ2

ε1ℓ4
− 2ν

)∥w∥2
2

2

+
(
2ε+ 8πccε+ 2Pν + (η−βΥζ−βΥν)2

ζ + ν2η2

ε + 9β2Υ2κ2

εℓ4 + 9β2Υ2

εℓ2

)∥w∥2
1

2 + C.

(40)



30 ALESSIO FALOCCHI AND JUSTIN WEBSTER

To guarantee the negativity of the terms on the first and second lines of right hand
side of (40) we choose ε1 = 3

2νϵ and

0 < ν < min{µ, ζ/2} := ν, 0 < ε <
2νκ

3 + 8πccℓ2
0 < ϵ <

ν2ℓ2

3β2
:= ϵ. (41)

From Lemma 5.5 we infer the existence of γ > 0 and Cγ > 0 such that

∥w∥21 ≤ γ
(
∥w∥22 + ∥w∥41

)
+ Cγ ∀w ∈ H2 ∩H1

0 (I),

yielding to

d

dt
Vν,µ,ν,ζ ≤ (ν − µ)∥wt∥20 + (2ν − ζ)

∥θt∥2
0

2 − νΠ(w + ℓθ)− νΠ(w − ℓθ)

+
[(
2ε+ 8πccε+ 2Pν + (η−βΥζ−βΥν)2

ζ + ν2η2

ε + 9β2Υ2κ2

εℓ4 + 9β2Υ2

εℓ2

)
γ − 2Sν

]∥w∥4
1

2

+
[(
2ε+ 8πccε+ 2Pν + (η−βΥζ−βΥν)2

ζ + ν2η2

ε + 9β2Υ2κ2

εℓ4 + 9β2Υ2

εℓ2

)
γ

− 2
(
ν − 3β2Υ2ϵ

νℓ4

)]∥w∥2
2

2 +
(
ε(3 + 8πccℓ

2)− 2νκ
)∥θ∥2

1

2 − νϵ
2

∥θ∥2
2

2 + c4.

Then we take the parameters in (41) and

γ <

2min

{
Sν , ν − 3β2Υ2ϵ

νℓ4

}
2ε+ 8πccε+ 2Pν +

(η − βΥζ − βΥν)2

ζ
+
ν2η2

ε
+

9β2Υ2κ2

εℓ4
+

9β2Υ2

εℓ2

,

implying (38).

We are now in position to complete the proof of the Proposition 3.1. From
Lemma 5.4 and Lemma 5.6 we have for some Λ(ν) > 0 and C > 0 that

d

dt
Vν,µ,ζ(St(y)) + ΛVν,µ,ζ(St(y)) ≤ C, t > 0;

integrating, this implies

Vν,µ,ζ(St(y)) ≤ Vν,µ,ζ(y)e
−Λt +

C

Λ
(1− e−Λt).

Therefore, the set

B :=
{
z ∈ Y : Vν,µ,ζ(z) ≤ 1 +

C

Λ

}
is a bounded, forward-invariant absorbing set, implying that (St, Y ) is ultimately
dissipative (in the sense of Section 6.1).

5.4. Quasi-stability and attractors: proof of Theorem 3.3. We construct
here the global compact attractor for the dynamical system (1) using quasi-stability
theory, e.g. see [12]. A quasi-stable dynamical system is one where the difference of
two trajectories can be decomposed into uniformly stable and compact parts; in this
way it is also possible to obtain, almost immediately, that the attractor is smooth,
with finite fractal dimension and that there exists a generalized fractal exponential
attractor. We follow the program outlined in [22], based on [13] and, later [12].
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Let g(w) :=
(
P − S

∫
I
w2

x

)
wxx and f, f the usual cable nonlinearity in (6). We

consider the difference of two strong solutions (wi, θi), i = I, II to (1), satisfying

Wtt+µWt+Wxxxx+g(wI)−g(wII)+
[
f(wI,θI)−f(wII,θII)

]
x

= −βΥΘt − ηΘ in IT
ℓ2

3 Θtt + ζ Θt + ϵΘxxxx − κΘxx +
(
f(wI , θI)− f(wII , θII)

)
x
= 0 in IT

W =Wxx = Θ = Θxx = 0 on {0, π} × (0, T )
W (x, 0) = wI

0 (x)− wII
0 (x), Θ(x, 0) = θI0 (x)− θII0 (x) on I

Wt(x, 0) = wI
1 (x)− wII

1 (x), Θt(x, 0) = θI1 (x)− θII1 (x) on I
(42)

where W = wI −wII and Θ = θI − θII ; we recall that, on any bounded, forward-
invariant ball BR(Y ) (R > 0 is the radius), we have

∥wI
t (t)∥0 + ∥wI(t)∥2 + ∥θIt (t)∥0 + ∥θI(t)∥2 + ∥wII

t (t)∥0 + ∥wII(t)∥2+
∥θIIt (t)∥0 + ∥θII(t)∥2 ≤ C(R), t > 0.

We introduce

G(W ) := g(wI)− g(wII)

F(W,Θ) := f(wI , θI)− f(wII , θII) F(W,Θ) := f(wI , θI)− f(wII , θII)

and the “difference” energy

EW,Θ(t) :=
∥Wt∥20

2
+

∥W∥22
2

+ ℓ2
∥Θt∥20

6
+ ϵ

∥Θ∥22
2

+ κ
∥Θ∥21
2

.

We associate to (42) the following energy identity

EW,Θ(t) + µ

∫ t

s

∥Wt∥20 + ζ

∫ t

s

∥Θt∥20 = EW,Θ(0)− βΥ

∫ t

s

(
Θt,Wt

)
0
+

− η

∫ t

s

(
Θ,Wt

)
0
−
∫ t

s

(
G(W ),Wt

)
0
+

∫ t

s
−1⟨F(W,Θ),Wxt⟩1+

∫ t

s
−1⟨F(W,Θ),Θxt⟩1

(43)

The following lemma is a special case of [13, Lemma 8.3.1], using (43) and stan-
dard “wave-type” multipliers. It also uses the fact that g, f, f ∈ Liploc(H

2 ∩
H1

0 (I), L
2(I)).

Lemma 5.7. Let wi, θi ∈ C0(0, T ; (H2∩H1
0 )(I))∩C1(0, T ;L2(I)) solve (1) for i =

I, II. Additionally assume (wi(t), wi
t(t)), (θ

i(t), θit(t)) ∈ BR(Y ) for all t ∈ [0, T ]
with T > 0. Then, for any η ∈ (0, 2] it holds

TEW,Θ(T ) +

∫ T

0

EW,Θ(τ)dτ ≤ a0EW,Θ(0)+C(R, T, η) sup
τ∈[0,T ]

(
∥W∥22−η+∥Θ∥22−η

)
+

− a1

∫ T

0

∫ T

s

(
G(W ),Wt

)
0
dτds− a2

∫ T

0

(
G(W ),Wt

)
0
ds

+ a3

∫ T

0

∫ T

s
−1⟨F(W,Θ),Wxt⟩1dτds+ a4

∫ T

0
−1⟨F(W,Θ),Wxt⟩1ds

+ a5

∫ T

0

∫ T

s
−1⟨F(W,Θ),Θxt⟩1dτds+ a6

∫ T

0
−1⟨F(W,Θ),Θxt⟩1ds,

(44)

with ai > 0 not dependent on T and R.
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Now we bound the nonlinear differences term in (44). Concerning the deck
nonlinearity, g(w), we may estimate in the standard way for Krieger-Woinowsky
(or Berger-type) nonlinearities. In [22] it is established that there exist ε > 0 and
C(ε,R, T ) > 0 such that∣∣∣∣ ∫ t

s

(
G(W ),Wt

)
0
dτ

∣∣∣∣ ≤ ε

∫ t

s

EW,Θ(τ)dτ + C(ε,R, T ) sup
τ∈[s,t]

∥W (τ)∥22−η, (45)

for all η ∈ (0, 12 ), provided wi ∈ BR(H
2 ∩ H1

0 (I)) for all τ ∈ [s, t]. We do not
replicate that proof here, however, we need to produce a similar inequality for the
cable nonlinearity. We do so in the next lemma; the proof relies on two highly non-
trivial computational lemma—based on a novel decomposition of the cable-hanger
nonlinearity—given in the Appendix 6.2.

Lemma 5.8. Let W = wI − wII , Θ = θI − θII , let f(w, θ) and f(w, θ) the
cable nonlinearity be as in (6). Also assume wi, θi ∈ C0([s, t], (H2 ∩ H1

0 )(I)) ∩
C1([s, t], L2(I)) for i = I, II. Then there exist ε > 0 and C(ε,R, T ) > 0 such that∣∣∣∣ ∫ t

s
−1⟨F(W,Θ),Wxt⟩1dτ +

∫ t

s
−1⟨F(W,Θ),Θxt⟩1dτ

∣∣∣∣
≤ ε

∫ t

s

EW,Θ(τ)dτ + C(ε,R, T ) sup
τ∈[s,t]

(∥W (τ)∥22−η + ∥Θ(τ)∥22−η),

(46)

for all η ∈ (0, 12 ), provided that wi, θi ∈ BR(H
2 ∩H1

0 (I)) for all τ ∈ [s, t].

Proof. Recalling the definition of the nonlinearity in (6) and applying Lemma 6.8
in Appendix 6.2 we have∣∣∣∣ ∫ t

s
−1⟨f(wI , θI)− f(wII , θII),Wxt⟩1dτ+∫ t

s
−1⟨f(wI , θI)− f(wII , θII),Θxt⟩1dτ

∣∣∣∣
=

∣∣∣∣∫ t

s
−1⟨h(wI + ℓθI)− h(wII + ℓθII),Wxt + ℓΘxt⟩1+

−1⟨h(wI − ℓθI)− h(wII − ℓθII),Wxt − ℓΘxt⟩1dτ
∣∣∣∣

≤ ε

∫ t

s

[∥Wt+ℓΘt∥2
0

2 +
∥Wt−ℓΘt∥2

0

2 +
∥W+ℓΘ∥2

1

2 +
∥W−ℓΘ∥2

1

2 +
∥W+ℓΘ∥2

2

2 +
∥W−ℓΘ∥2

2

2

]
dτ

+ C(ε,R, T ) sup
τ∈[s,t]

(
∥W + ℓΘ∥22−η + ∥W − ℓΘ∥22−η

)
.

Up to modify the constants ε, C(ε,R, T ) > 0 and using Young inequality, we
infer (46). In particular, this bound holds on the invariant, absorbing ball B from
Proposition 3.1.

We prove the quasi-stability estimate on any bounded, forward-invariant set.

Lemma 5.9. Under the assumptions of Proposition 3.1, the dynamical system
(St, Y ) corresponding to generalized solutions to (1) is quasi-stable on any bounded,
forward-invariant set. In particular, (St, Y ) is quasi-stable on the absorbing ball B
given in Section 5.3.
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Proof. From (44), (45) and (46), taking T sufficiently large, we infer that

EW,Θ(T ) ≤ cEW,Θ(0) + C(R, T, η) sup
τ∈[0,T ]

(∥W (τ)∥22−η + ∥Θ(τ)∥22−η)

with c < 1 for all η ∈ (0, 1/2). By iteration, via the semigroup property, we obtain
that there exists σ > 0 such that

∥(W (t),Wt(t); Θ(t),Θt(t))∥2Y ≤ C(σ,R)e−σt∥(W (0),Wt(0);Θ(0),Θt(0))∥2Y
+ C(R, T, η) sup

τ∈[0,t]

(∥W (τ)∥22−η + ∥Θ(τ)∥22−η).

This implies that (St, Y ) is quasi-stable on BR(Y ), as defined in Section 6.1.

To conclude the proof of Theorem 3.3, we first apply Corollary 6.6 from Appen-
dix 6.1. This provides the first two bullet points; to obtain the existence of the
exponential attractor, we estimate W (t, s) = w(t) − w(s), Θ(t, s) = θ(t) − θ(s) in

Ỹ , using the existence of the absorbing ball B and the reasoning exactly as in [22,
Section 5.4] and in [9, Section 5].

5.5. Proof of Proposition 4.3. From (13)2 we obtain (16)2, hence, given θj(t) it
is possible to compute wj(t). Under the assumptions on µ we find

wj(t) = e−
µ
2 t

[
cj1 sin

(
ωj

2
t

)
+ cj2 cos

(
ωj

2
t

)]
+ g

L4
√
2L(1− (−1)j)

j5π5
+ wp

j (t),

cj1, c
j
2 ∈ R, j ∈ N+,, where wp

j (t) is a particular solution similar to θj(t). The
condition causing resonance is {

ζ = ℓ2

3 µ

ωj =
3
ℓ2 γj ,

not occurring from the assumptions. Therefore we get wp
j (t) = e−

3ζ

2ℓ2
t
[
Aj sin

(
3

2ℓ2 γjt
)
+

Bj cos
(

3
2ℓ2 γjt

)]
with

Aj =
2ℓ2

3γj [(4π4j4ℓ4/L4 − 9γ2
j − 6ℓ2ζµ+ 9ζ2)2 + 36γ2

j (ℓ
2µ− 3ζ)2]{ [

4π4j4ℓ4/L4 − 9γ2
j − 6ℓ2ζµ+ 9ζ2

] [
9θ0j (γ

2
j + ζ2)βΥ+ 6ℓ2θ1j ζβΥ− 2ℓ2·

(3ζθ0j + 2ℓ2θ1j )η
]
+ 18γ2

j

(
3ζ − ℓ2µ

) [
(3ζθ0j + 2ℓ2θ1j )βΥ− 3θ0j ζβΥ+ 2ℓ2θ0jη

] }
Bj =

2ℓ2

(4π4j4ℓ4/L4 − 9γ2
j − 6ℓ2ζµ+ 9ζ2)2 + 36γ2

j (ℓ
2µ− 3ζ)2{ [

4π4j4ℓ4/L4 − 9γ2
j − 6ℓ2ζµ+ 9ζ2

] [
−(2ℓ2θ1j + 3ζθ0j )βΥ+ 3θ0j ζβΥ− 2ℓ2θ0jη

]
+

(
3ζ − ℓ2µ

) [
18θ0j (γ

2
j + ζ2)βΥ+ 12ℓ2θ1j ζβΥ− 4ℓ2(3ζθ0j + 2ℓ2θ1j )η

] }

(47)

Through the initial conditions on w we find{
cj1 = 1

ωjℓ2

(
2w1

j ℓ
2 + w0

jµℓ
2 − 3Ajγj +Bj(3ζ−µℓ2)− gL4

√
2L(1−(−1)j)
j5π5 µℓ2

)
cj2 = w0

j −Bj − gL4
√
2L(1−(−1)j)
j5π5 .

(48)
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We show that the series (15)2 converges uniformly in I for all t ≥ 0. We have∣∣∣∣ ∞∑
j=1

θj(t) sin

(
jπx

L

)∣∣∣∣ ≤ ∞∑
j=1

[
2ℓ2

3

∣∣∣∣θ1jγj
∣∣∣∣+ ζ

∣∣∣∣θ0jγj
∣∣∣∣+ |θ0j |

]

≤2ℓ2

3

[ ∞∑
j=1

(θ1j )
2

] 1
2
[ ∞∑

j=1

1

γ2j

] 1
2

+
∞∑
j=1

[
ζ

∣∣∣∣θ0jγj
∣∣∣∣+ |θ0j |

]
<∞,

due to the regularity of the initial data. We argue similarly for the series related to
w.
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ported by the MUR (Italy) grant Dipartimento di Eccellenza 2023-2027, Diparti-
mento di Matematica, Politecnico di Milano.

J.T. Webster’s research was partially funded by NSF-DMS 2307538. He wishes
to thank UMBC for granting him a productive sabbatical, resulting in this research,
in the Spring of 2024. Additionally, he wishes to thank Politecnico di Milano for
hosting him during that time.

6. Appendices.

6.1. Dissipative dynamical systems. In this section we closely follow the nota-
tion and conventions from [12, 13].

Let (St, H) be a dynamical system on a complete metric space H. We say that
(St, H) is ultimately dissipative iff it possesses a bounded absorbing set B, which is
to say, for any bounded set B, there is a time tB so that StB (B) ⊂ B. A dynamical
system is asymptotically compact if there exists a compact set K which is uniformly
attracting, i.e., for any bounded set D ⊂ H we have that

lim
t→+∞

dH{StD|K} = 0

in the sense of the Hausdorff semidistance. We say that (St, H) is asymptotically
smooth if for any bounded, forward invariant (t > 0) set D there exists a compact
set K ⊂ D which is uniformly attracting (as above). A global attractor A ⊂ H
is a closed, bounded set in H which is invariant (i.e. StA = A for all t ∈ R) and
uniformly attracting (as previously defined).

The following if and only if characterization of global attractors is well-known
[5, 13]

Theorem 6.1. Let (St, H) be an ultimately dissipative dynamical system in a com-
plete metric space A. Then (St, H) possesses a compact global attractor A if and
only if (St, H) is asymptotically smooth.

For non-gradient systems—such as the one in this paper—the above theorem is
often used to obtain the existence of a compact global attractor.

A generalized fractal exponential attractor for the dynamics (St, H) is a forward
invariant, compact set Aexp ⊂ H in the phase space, with finite fractal dimension
(possibly in a weaker topology), attracting bounded sets with uniform exponential
rate. When we refer to Aexp as a fractal exponential attractor, we are meaning that
Aexp ⊂ H has fractal dimension in H, rather than in some weaker space.
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Here we define quasi-stability as our primary tool in the long-time behavior anal-
ysis. In a quasi-stable dynamical system the difference of two trajectories can be
decomposed into a uniformly stable part and a compact part, with controlled scal-
ing of powers. The theory of quasi-stable dynamical systems has been developed
rather thoroughly in recent years [12, 13]. More general definitions of quasi-stable
dynamical systems are included in [12]. For ease of exposition and application in
our analysis we focus on a narrower definition.

Informally, we note that:

• Obtaining the quasi-stability estimate on the global attractor A implies addi-
tional smoothness and finite dimensionality A. This follows from the so called
squeezing property and one of Ladyzhenskaya’s theorems, see [13, Theorems
7.3.2 and 7.3.3].

• Obtaining the quasi-stability estimate on an absorbing ball implies the exis-
tence of a global attactor, as well as an exponentially attracting set; uniform
in time Hölder continuity (in some topology) yields finite dimensionality of
this exponentially attracting set (in said topology).

Let us proceed with a formal discussion of quasi-stability.

Assumption 6.2. Consider second order (in time) dynamics yielding the dynami-
cal system (St, H), where H = X × Z with X,Z Banach spaces, and X compactly
embeds into Z. Further, suppose y ∈ H with Sty = (x(t), xt(t)) where the function
x ∈ C(R+, X) ∩ C1(R+, Z).

Assuming 6.2, we focus on the second order, hyperbolic-like evolution problems.

Definition 6.3. With Assumption 6.2 in force, denote by Z∗ a Banach space so
that X ⊆ Z∗ ⊂ Z and the last embedding is compact. Suppose that the dynamics
(St, H) admit the following estimate for yi = (xi, zi) ∈ B ⊂ H:

||Sty1−Sty2||2H ≤ e−γt||y1−y2||2H+Cq sup
τ∈[0,t]

||x1−x2||2Z∗
, for some γ,Cq > 0, (49)

Then we say that (St, H) is quasi-stable on B.

We now run through a handful of consequences of the type of quasi-stability
described by Definition 6.3 for dynamical systems (St, H) satisfying Assumption
6.2. [13, Proposition 7.9.4]

Theorem 6.4 (Asymptotic smoothness). If a dynamical system (St, H), satisfying
Assumption 6.2, is quasi-stable on every bounded, forward invariant set B ⊂ H,
then (St, H) is asymptotically smooth. Thus, if in addition, (St, H) is ultimately
dissipative, then there exists a compact global attractor A ⊂ H.

In [13, Theorem 7.9.6 and 7.9.8] the authors provide the following result con-
cerning improved properties of the attractor A, when the quasi-stability estimate is
shown on the attractor A.

Theorem 6.5 (Dimensionality and smoothness). If a dynamical system (St, H),
satisfying Assumption 6.2, has a compact global attractor A ⊂ H, and is quasi-stable
on A, then A has finite fractal dimension in H, i.e., dimH

f A < +∞. Moreover, any
full trajectory {(x(t), xt(t)) : t ∈ R} ⊂ A has the property that

xt ∈ L∞(R;X) ∩ C(R;Z); xtt ∈ L∞(R;Z),
with

||xt(t)||2X + ||xtt(t)||2Z ≤ C,
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where the constant C above depends on the “compactness constant” Cq in (49).

We may thus combine Theorems 6.4 and 6.5, to obtain the following corollary:

Corollary 6.6 (Quasi-stability on absorbing ball). If a dynamical system (St, H),
satisfying Assumption 6.2, is quasi-stable on a bounded absorbing set B ⊂ H, then
(St, H) has a compact global attractor A ⊂ H, and A has finite fractal dimension in

H, i.e., dimH
f A < +∞. Moreover, any full trajectory {(x(t), xt(t)) : t ∈ R} ⊂ A

has the property that

xt ∈ L∞(R;X) ∩ C(R;Z); xtt ∈ L∞(R;Z),

with bound

||xt(t)||2X + ||xtt(t)||2Z ≤ C,

where the constant C above depends on the “compactness constant” Cq in (49).

The following theorem relates generalized fractal exponential attractors to the
quasi-stability estimate [13, p. 388, Theorem 7.9.9]

Theorem 6.7. Let Assumption 6.2 be in force. Assume that the dynamical system
generated by solutions (St, H) is ultimately dissipative and quasi-stable on a bounded

absorbing set B. We also assume there exists a space H̃ ⊃ H so that t 7→ Sty is

Hölder continuous in H̃ for every y ∈ B; this is to say there exists 0 < α ≤ 1 and
CB,T>0 so that

||Sty − Ssy||H̃ ≤ CB,T |t− s|α, t, s ∈ [0, T ], y ∈ B.

Then the dynamical system (St, H) has a generalized fractal exponential attractor

Aexp whose dimension is finite in the space H̃, i.e., dimH̃
f Aexp < +∞.

6.2. Nonlinear difference calculations. We provide a central lemma which is
instrumental in decomposing the nonlinear trajectories, as required in the proof of
quasi-stability in Section 5.4. The computations are quite lengthy, but the lemma
is necessary to the main result.

Lemma 6.8. Let z = uI − uII , let h(u) the cable nonlinearity be as in (5)3. Also
assume ui ∈ C0([s, t], (H2 ∩ H1

0 )(I)) ∩ C1([s, t], L2(Ω)) for i = I, II. Then there
exist ε > 0 and C(ε, T ) > 0 such that∣∣∣∣ ∫ t

s
−1⟨h(uI)− h(uII), zxt⟩1dτ

∣∣∣∣ ≤ ε

∫ t

s

Ez(τ)dτ + C sup
τ∈[s,t]

∥z(τ)∥22−η, (50)

for all η ∈ (0, 12 ), where

Ez(t) :=
∥zt∥20
2

+
∥z∥21
2

+
∥z∥22
2

and s, t ∈ [0, T ].

Proof. We introduce preliminary the following function and its derivatives

A(q) := q√
1+q2

A(1)(q) = 1
(1+q2)3/2

A(2)(q) = − 3q
(1+q2)5/2

A(3)(q) = 3 4q2−1
(1+q2)7/2

,

observing that |A(q)|, |A(1)(q)|, |A(2)(q)| ≤ 1 and |A(3)(q)| ≤ 3 for all q ∈ R. By
Lagrange mean value theorem on [a, b] with a, b ∈ R, we have√

1 + a2 −
√
1 + b2 = A(p)(a− b) ∀p ∈ (a, b);
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hence, by taking a = uIx + sx, b = uIIx + sx we have

L(uI)− L(uII) =
∫
I

A(p)zx ∀p ∈ (uIx + sx , u
II
x + sx), (51)

see the definition of L(·) in (5); since p is between two first derivative functions,
we prefer to put p = qx to avoid confusion in the next derivations. Therefore (51)
reads

L(uI)− L(uII) =
∫
I

A(qx)zx ∀qx ∈ (uIx + sx , u
II
x + sx)

and, similarly,

A(uIx + sx)−A(uIIx + sx) = A(1)(qx)zx ∀qx ∈ (uIx + sx , u
II
x + sx).

In this way we write h(uI)− h(uII) as[
b
(
L0 − L(uI)

)
− cξ0

] uI
x+sx√

1+[uI
x+sx]2

−
[
b
(
L0 − L(uII)

)
− cξ0

] uII
x +sx√

1+[uII
x +sx]2

=
[
b
(
L0 − L(uI)

)
− c ξ0

]
A(1)(qx)zx − b

(∫
I

A(qx)zx

)
uII
x +sx√

1+[uII
x +sx]2

,

obtaining

−1⟨h(uI)− h(uII), zxt⟩1 =−1⟨
[
b
(
L0 − L(uI)

)
− c ξ0

]
A(1)(qx)zx, zxt

〉
1
+

− b

(∫
I

A(qx)zx

)
−1⟨A(uIIx + sx), zxt⟩1,

(52)

for all qx ∈ (uIx + sx , u
II
x + sx).

Let us write the term in first line of (52) as

−1⟨
[
b
(
L0 − L(uI)

)
− c ξ0

]
A(1)(qx)zx , zxt⟩1 =

1

2

d

dt

([
b
(
L0 − L(uI)

)
− c ξ0

]
A(1)(qx)zx , zx

)
0
+

−1

2
−1⟨

[
b
(
L0 − L(uI)

)
− c ξ0

]
A(2)(qx)z

2
x , qxt

〉
1

+
1

2

(∫
I

A(uIx + sx)u
I
xt

)(
A(1)(qx) , z

2
x

)
0

∀qx ∈ (uIx + sx , u
II
x + sx),

(53)

where we used the time derivative rule. We integrate by parts in space the third
line term in (53)

− −1⟨
[
b
(
L0 − L(uI)

)
− c ξ0

]
A(2)(qx)z

2
x , qxt

〉
1
=

− c
(
ξ0xA

(2)(qx)z
2
x , qt

)
0
+

([
b
(
L0 − L(uI)

)
− c ξ0

]
A(3)(qx)qxxz

2
x , qt

)
0
+([

b
(
L0 − L(uI)

)
− c ξ0

]
A(2)(qx)2zxzxx , qt

)
0
,

for all q ∈ (uI + s , uII + s). Therefore, we obtain the bound on the third line term
in (53) ∣∣−1⟨

[
b
(
L0 − L(uI)

)
− c ξ0

]
A(2)(qx)z

2
x , qxt⟩1

∣∣
≤c∥ξ0x∥L∞(I)∥A(2)∥L∞(I)∥zx∥L∞(I)∥zx∥0∥qt∥0+(
b∥uIx∥L1(I) + c∥ξ0∥L∞(I)

)
∥A(3)∥L∞(I)∥zx∥2L∞(I)∥qxx∥0∥qt∥0+

2
(
b∥uIx∥L1(I) + c∥ξ0∥L∞(I)

)
∥A(2)∥L∞(I)∥zx∥L∞(I)∥zxx∥0∥qt∥0

≤ε∥z∥
2
2

2
+
C

2

(
1

ε
+ 1

)
∥z∥22−η η ∈ (0, 1/2), ε > 0,

(54)
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for all q ∈ (uI + s , uII + s), having the same regularity of uI , uII .
We integrate by parts in space the first integral in the fourth line term in (53)

and bounding we get∣∣∣∣( ∫
I

A(uIx + sx)u
I
xt

)(
A(1)(qx) , z

2
x

)
0

∣∣∣∣
≤
(∫

I

|uIxx + sxx||uIt |
)
∥A(1)∥2L∞(I)∥zx∥0∥zx∥0 ≤ ε

∥z∥21
2

+
C

2ε
∥z∥21 (ε > 0).

(55)

It remains to consider the last term in (52); integrating by parts in space as before,
we find the bound (ε > 0)∣∣∣∣− b

(∫
I

A(qx)zx

)
−1⟨A(uIIx + sx), zxt⟩1

∣∣∣∣
≤∥A∥L∞(I)

(∫
I

|zx|
)
∥A(1)∥L∞(I)∥uIIxx + sxx∥0∥zt∥0 ≤ ε

∥zt∥20
2

+
C

2ε
∥z∥21.

(56)

Finally, from (52) and (53) we have∣∣∣∣ ∫ t

s
−1⟨h(uI)− h(uII), zxt

〉
1
dτ

∣∣∣∣ ≤ 1

2

∣∣∣∣[([b(L0 − L(uI)
)
− c ξ0

]
A(1)(qx)zx , zx

)
0

]t
s

∣∣∣∣
+

1

2

∫ t

s

∣∣∣−1⟨
[
b
(
L0 − L(uI)

)
− c ξ0

]
A(2)(qx)z

2
x , qxt⟩1

∣∣∣dτ
+

1

2

∫ t

s

∣∣∣( ∫
I

A(uIx + sx)u
I
xt

)(
A(1)(qx) , z

2
x

)
0

∣∣∣dτ
+ b

∫ t

s

∣∣∣∣( ∫
I

A(qx)zx

)
−1⟨A(uIIx + sx), zxt⟩1

∣∣∣∣dτ.
Since ∣∣∣∣[([b(L0 − L(uI)

)
− c ξ0

]
A(1)(qx)zx , zx

)
0

]t
s

∣∣∣∣ ≤ C sup
τ∈[s,t]

∥z(τ)∥21,

collecting the inequalities (54), (55) and (56) we obtain for all η ∈ (0, 1/2) and ε > 0∣∣∣∣ ∫ t

s
−1⟨h(uI)− h(uII), zxt⟩1dτ

∣∣∣∣ ≤ε∫ t

s

(
∥zt(τ)∥20

2
+

∥z(τ)∥21
2

+
∥z(τ)∥22

2

)
dτ+

C(ε, T ) sup
τ∈[s,t]

∥z(τ)∥22−η,

i.e., we have obtained the inequality (50).
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