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Abstract Ocean acidification due to anthropogenic CO, emission reduces ocean pH and carbonate
saturation, with the projection that marine calcifiers and associated ecosystems will be negatively affected in
the future. On longer time scale, however, recent studies of deep-sea carbonate sediments suggest significantly
increased carbonate production and burial in the open ocean during the warm Middle Miocene. Here, we
present new model simulations in comparison to published Miocene carbonate accumulation rates to show
that global biogenic carbonate production in the pelagic environment was approximately doubled relative to
present-day values when elevated atmospheric pCO, led to substantial global warming ~13-15 million years
ago. Our analysis also finds that although high carbonate production was associated with high dissolution in the
deep-sea, net pelagic carbonate burial was approximately 30%—45% higher than modern. At the steady state of
the long-term carbon cycle, this requires an equivalent increase in riverine carbonate alkalinity influx during
the Middle Miocene, attributable to enhanced chemical weathering under a warmer climate. Elevated biogenic
carbonate production resulted in a Miocene ocean that had carbon (dissolved inorganic carbon) and alkalinity
(total alkalinity) inventories similar to modern values but was poorly buffered and less saturated in both the
surface and the deep ocean relative to modern.

1. Introduction

Anthropogenic CO, emissions are anticipated to impact marine calcifiers in the near future (Feely et al., 2004)
due to increasing ocean temperatures (Bijma et al., 1990; Hoegh-Guldberg et al., 2007; Orr et al., 2005;
Reynaud et al., 2003) and decreasing carbonate supersaturation of seawater (Fabry et al., 2008; Hoegh-Guldberg
et al., 2007; Kleypas et al., 2005; Raven et al., 2005). In laboratory experiments with lower pH and lower [CO§‘],
decreases in calcification have been widely observed in both multicellular metazoans (Albright et al., 2018; Jokiel
et al., 2008) and single-celled eukaryotes, including zooplankton planktonic foraminifera and phytoplankton
coccolithophores (Bach et al., 2012; de Nooijer et al., 2009; Lombard et al., 2010; Meyer & Riebesell, 2015;
Riebesell et al., 2000).

Coccolithophores and planktonic foraminifera are two major contributors to marine carbon cycles. In the open
ocean, these micro-organisms consume ~50-130 Tmol of carbonate alkalinity in the surface ocean each year
during shell formation (Berelson et al., 2007; Jin et al., 2006; Lee, 2001) and together contribute to more than
50% of global carbonate production (Milliman, 1993). Upon death, sinking calcareous skeletons facilitate the
biological pump by increasing the export of organic carbon to the ocean's interior through ballasting (Ziveri
et al., 2007). In the deep sea, the burial of their calcareous remains over millions of years provides one of the ulti-
mate sinks for both carbon and alkalinity of Earth's surficial reservoir (In this study, we focus on the discussion
of carbonate alkalinity and assume carbonate alkalinity =~ TA).

Pelagic carbonate records also offer a unique opportunity to study the effects of past ocean acidification on
calcifying species (Honisch et al., 2012). In contrast to culturing observations, several recent studies suggest that
carbonate production seems to have been elevated during past warm climate when pCO, was also higher, particu-
larly via an increased contribution of calcifying primary producers (Bolton et al., 2016; Si & Rosenthal, 2019;
Suchéras-Marx & Henderiks, 2014). These new observations raise questions regarding the effects of pCO, on
marine phytoplankton (Bolton & Stoll, 2013) and potential long-term evolutionary adaptations of calcifying
species to high pCO, (Slater et al., 2022). Equally important, because pelagic carbonate production plays an
essential role in modulating seawater carbonate chemistry (Broecker, 2003; Ridgwell & Zeebe, 2005), an accurate
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Figure 1. Comparison of different scenarios of the long-term carbon cycling. (a) The Pleistocene is considered as the reference case, with Calcite Compensation
Depth (CCD) and saturation horizon located at ~4,500 and ~3,200m in the Pacific, respectively. (b) Assuming constant CaCO, production rate, a decrease in chemical
weathering flux will shoal the CCD and the saturation horizon. (c) Simultaneous increases in CaCO, production and chemical weathering flux shoal the saturation
horizon but maintain the CCD relatively constant. CaCO, burial rates at shallow water depth are higher in scenario (c) than in (a, b). Note that the y axis is exaggerated

for the purpose of illustration.

reading of the history of carbonate production and dissolution in the ocean is essential to understand the connec-
tion between the global carbon cycle and climatic variations in the past.

2. Late Neogene Paradox of Increased Carbonate Burial in a More Corrosive Ocean

An often-applied approach to studying past changes in marine carbonate cycle is to examine the variation of Calcite
Compensation Depth (CCD). The CCD is the depth in the ocean below which there is little to no carbonate burial
(a cut-off we use here is <20% CaCO,) and therefore is an indicator of seawater saturation at depth (Figure 1).
By assuming that biogenic carbonate production remains approximately constant in the surface ocean (Figures 1a
and 1b), a deeper CCD is typically interpreted as less carbonate dissolution due to a more saturated deep ocean.
During the Cenozoic (0-66 Ma), the CCD is known to be negatively correlated to the secular variations of pCO,.
Specifically, the long-term cooling from the greenhouse climate of the Eocene (>40 Ma) into the icehouse of
the Pleistocene (<3 Ma) is associated with a large decrease in pCO, (Honisch et al., 2012; Rae et al., 2021) as
well as the deepening of the Calcite Compensation Depth (CCD) (Pilike et al., 2012; Van Andel, 1975). This
co-evolution between pCO, and the CCD thus seems to suggest that the deep ocean was unfavorable to carbonate
preservation under higher pCO,, in line with modern observations of ocean acidification on carbonate preserva-
tion (Sulpis et al., 2018).

The acid-base equilibria viewpoint is, however, not consistent with the expectation from the mass balance of the
marine carbon and alkalinity budgets. The long-term steady state of the carbon cycle and thus Earth's climate is
arguably maintained by the silicate weathering feedback, which removes CO, degassed from the Earth's interior
through chemical weathering on land (Berner & Kothavala, 2001; Berner et al., 1983; Walker et al., 1981). The
weathering product is delivered to the ocean as carbonate alkalinity and ultimately preserved in sediments as
biogenic carbonate. Therefore, it is expected that higher pCO, and warmer climate should enhance chemical
weathering (both silicate and carbonate) and CaCO, burial. In other words, the steady state of the long-term
carbon cycle predicts that past global warming with high atmospheric pCO, concentration should correspond to
a more saturated deep ocean and deeper CCD, not vice versa.

Puzzled by the geological evidence of a shallower CCD (an apparently less saturated ocean) under a warmer
climate, Si and Rosenthal (2019) investigated pelagic carbonate burial in the world's oceans over the past 13 Myr
(the Middle Miocene to the present). They found that biogenic carbonate production and accumulation in the
open ocean were both higher when pCO,, global temperatures, and deep water corrosivity (we define “corro-
sive” as more CaCOj, dissolution due to undersaturation) were all much higher than today (Figure 1c, Herbert
et al., 2016; Rae et al., 2021; Si & Rosenthal, 2019; Sosdian, Rosenthal, & Toggweiler, 2018).

Higher pelagic carbonate production during the Miocene is also supported by micropaleontologic works based
on morphometric measurements of coccolith fossils, which reveals both trends of downsizing in coccolithophorid
species (Suchéras-Marx & Henderiks, 2014) and reduced calcification (Bolton et al., 2016) in the last 15 Myr
as pCO, decreased. The decreases in carbonate production not only occurred in the mid-latitude, where cyclic
glaciations can have large impacts on regional climate, but are also seen in the tropics (Si & Rosenthal, 2019),
where changes in temperatures and phytoplankton compositions (i.e., coccolithophores vs. diatoms) were small.

SIET AL.

20f 15

25u0dI'] suowwo)) aAnear) d[qeorjdde oyl Aq pauIdA0S a1k s3[O1IE YO ASN JO SI[NI 10§ AIRIQIT AUI[UQ AS[IA\ UO (SUOHIPUOI-PUEB-SULISY/ W0 KJ[1M " KIRIqI[aul[uo//:sdyy) suonipuo)) pue sud [, oy 39S ‘[£207/50/9z] uo Areiqiy aurjuQ A3[IM ‘[+SL009D220Z/6T01°01/10p/wod Kajim Kreiqiaurjuo sqndnSe//:sdjy woiy papeojumo(] ‘9 ‘€20z ‘bTz6vt61



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Global Biogeochemical Cycles 10.1029/2022GB007541

Si and Rosenthal (2019) proposed that the apparent paradox of more carbonate burial in a more corrosive deep
ocean during the Miocene arises from a much larger increase in pelagic carbonate production relative to a smaller
increase in continental chemical weathering. Higher chemical weathering fluxes require that the ocean as a
whole has more carbonate burial to balance the alkalinity throughput; meanwhile, increased carbonate production
allocates more carbonate burial to shallower parts of the ocean and thus requiring a more corrosive deep sea to
balance carbonate overproduction in the surface ocean (Figure 1c). A similar scenario has been argued to explain
the higher carbonate burial rates in the western equatorial Pacific during interglacial intervals of the mid-and late
Pleistocene (Sosdian, Rosenthal, & Toggweiler, 2018).

Si and Rosenthal (2019), however, did not provide any quantitative estimates on the changes in global pelagic
carbonate mass accumulation rates—a factor ultimately critical to the mass balance of weathering fluxes. They
also did not address how the saturation state of the surface ocean (Q = [Ca“] [CO3 1, /K, where K is solubility
product constant of calcium carbonate) might have changed in association with changes in pelagic carbonate
production. Previous studies have pointed out an important distinction between low pH and low Q (Honisch
et al., 2012). It is possible that past oceans had lower than present pH but a high Q in the surface ocean, such
as was the case in the Eocene and the Cretaceous (Honisch et al., 2012). Because it is the saturation state of
the surface ocean, rather than the pH, that matters to calcification, it is possible that higher CaCO, production
proposed by Si and Rosenthal (2019) was actually associated with a more saturated surface ocean during the
Miocene.

Here, we perform a model-data analysis on mid-Miocene carbonate production and mass accumulation rates.
The model we use is the Earth System model of intermediate complexity (cGENIE) (Ridgwell et al., 2021) and
the published Miocene carbonate accumulation (MARc) data for comparison are from Si and Rosenthal (2019).
Our goals are two-fold: (a) quantitatively estimate Miocene global pelagic carbonate production and continental
weathering flux by comparing model results with CCD and MARCc reconstructions from various water depths of
the ocean and (b) investigate the implications of elevated carbonate production on seawater carbonate chemistry,
focusing on the ocean's saturation state (€2), dissolved inorganic carbon (DIC), TA inventories and buffering
capacity.

3. The Steady State of Ocean's Carbonate Chemistry

Seawater carbonate chemistry has six variables (CO,, H,CO,, HCO;, CO;~, H* and OH") and four equilibrium
constants, leaving two degrees of freedom to fully constrain the system. From the aspect of the long-term carbon
cycle, these two degrees of freedom are ultimately controlled by two “external” processes, CO, degassing from
the Earth's interior and (continental) silicate weathering. Together they impose direct controls on atmospheric
pCO, and seawater carbonate ion concentrations ([COi‘]SW) through the chemical weathering feedback.

On short timescales, such as glacial-interglacial transitions, changes in ocean circulation control the partitioning
of carbon between the deep ocean and the atmosphere and therefore affect atmospheric pCO, (Toggweiler &
Sarmiento, 1985). On million-year timescales, the primary control on pCO, is the need for the mass balance
(Berner & Caldeira, 1997; Broecker & Sanyal, 1998). Atmospheric pCO, will respond to changes in CO,
degassing rates (Berner et al., 1983; Walker et al., 1981) and/or changes in silicate weatherability (Kump &
Arthur, 1997; Raymo et al., 1988) so that Earth's greenhouse effect adjusts the silicate weathering fluxes in an
attempt to match the total CO, coming out from the Earth's interior. In this regard, pCO, acts as a “policeman”
to regulate the carbon “traffic” so that the system can remain close to the steady state. The ocean will come in
equilibrium with the atmosphere pCO, on the tectonic timescale, not vice versa.

The pCO, level that is needed to guarantee the above-mentioned mass balance is referred to as the steady-state
pCO, hereafter. It is important to note that steady-state pCO, does not mean pCO, remains invariant over time.
Instead, it refers to the long-term mean at mass balance. For instance, in the Late Pleistocene, pCO, varied
between 180-280 p.p.m.v. in association with orbitally paced glacial-interglacial cycles; the long-term trend,
however, is no more than 22 p.p.m.v. over the past 600 kyr and the maximum imbalance between the supply and
uptake of CO, is estimated within 1%—2% (Zeebe & Caldeira, 2008).

Given the steady state pCO,, chemical weathering on land consumes CO, at a rate equal to the volcanic CO,
outgassing fluxes and delivers weathered products to the ocean mainly in the form of carbonate alkalinity, driv-
ing changes in [COé‘]SW so that carbonate burial rates in the deep-sea can balance riverine alkalinity inputs.
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Table 1 Changes in carbonate production rates in the surface ocean can also modu-
Miocene Scenarios Examined in This Study, Including Two pCO, (600 late [CO%’]SW by changing the depth distribution of carbonate accumulation.
and 1,120 p.p.m.v., We Use “+” to Indicate 1,120 p.p.m.v. Scenario), Two Higher pelagic carbonate production and/or shelf carbonate accumulation,
Carbonate Production (1x and 2x) and Three Weathering Flux Levels (1x, for instance, will deposit more carbonate to relatively shallow depths (i.e.,

1.3x, and 1.45x)

above the carbonate lysocline), driving a decrease in [CO%‘]SW so that more

Miocene 600 p.p.m.v. (1,120 p.p.m.v.)

dissolution can occur at deeper depths to keep the ocean's alkalinity budget

in balance (Broecker, 2003; Si & Rosenthal, 2019).

2.0x carbonate

1.0x weathering flux
1.3x weathering flux

1.45x weathering flux

1.0x weathering fluxes and 1.0x carbonate production

Control experiment

Pre-industrial (288 p.p.m.v.)

1.0x carbonate production production In short, the ocean's carbonate chemistry at steady state is a function of
Ma (Ma+) Mc (Mc+) steady-state pCO, and weathering alkalinity inputs. Changes in pelagic

Mb (Mb+) Md (Md+) carbonate production also play a role due to its capability to shift the locus

_____ Me (Me+) of carbonate burial and therefore modify [CO%‘]SW, In this work, we perform

a set of carbon cycle model simulations using a range of atmospheric pCO,
(600 and 1,120 p.p.m.v.), weathering alkalinity inputs (1x, 1.3x, and 1.45x
of modern), and pelagic carbonate production rates (1x and 2x of modern)
(Table 1) are tested, followed by evaluation based on reconstructed CCD,

MARCc, and seawater chemistry from published studies (Pilike et al., 2012; Si

& Rosenthal, 2019; Sosdian, Greenop, et al., 2018; Zeebe & Tyrrell, 2019).
MARCc above the carbonate saturation horizon will provide first-order estimates on the carbonate production rate
in the surface ocean; the changes in MARc over water depth then put constraints on the relative contribution
of production versus dissolution. Combined with reconstructions of the CCD, we will be able to estimate net
carbonate burial over the water column and thus infer the alkalinity weathering input.

4. Modeling Overproduction of Pelagic Carbonate

In the modern ocean, global rivers deliver ~33 Tmol of alkalinity to the ocean per year (Cai et al., 2008).
Pelagic calcifiers, however, consume ~50-130 Tmol of alkalinity through calcification (Berelson et al., 2007;
Jin et al., 2006; Lee, 2001; Milliman, 1993). Because of this overproduction, the deep ocean is necessarily
undersaturated in order to remove excessive biogenic carbonate through dissolution (Broecker, 1971; Ridgwell
& Zeebe, 2005; Zeebe & Westbroek, 2003). As Si and Rosenthal (2019) pointed out, the key to understanding
the late Neogene carbonate paradox is the ecologically driven change in the overproduction of pelagic carbonate
relative to the changes in weathering alkalinity flux.

Box models are often used for long-term carbon cycle analysis. In simplified box models, carbonate production,
however, is often treated as a function of ocean saturation in the past relative to the modern (Boudreau et al., 2019;
Krissansen-Totton & Catling, 2017; Rugenstein et al., 2019). This simplification consists of two crucial assump-
tions. First, carbonate production is proportional to carbonate saturation €. Second, carbonate production is
always equal to carbonate burial and weathering alkalinity input because the dissolution of carbonate produced
in excess of mass balance is not explicitly considered in these types of box models. Given these simplifications,
a deepening of the CCD throughout the Neogene, which indicates increasing saturation over time, leads these
models to infer that deep-sea carbonate burial has increased over time, apparently implying less than present-day
chemical weathering fluxes during the Miocene.

Because the magnitude of carbonate overproduction may have changed independently of (or even opposed to) the
saturation state of the ocean (Si & Rosenthal, 2019), models that explicitly parameterize both the overproduction
of biogenic carbonates in the surface ocean (relative to weathering alkalinity input) and the dissolution in the deep
sea (Ridgwell & Hargreaves, 2007; Zeebe, 2012) are therefore necessary to study the long-term carbon cycle.
Here we use cGENIE because it has a 3D ocean (36 X 36 equal area grid with 16 non-equally spaced vertical
levels in this study) that can simulate spatial variations in carbonate production and preservation that box models
cannot (Ridgwell et al., 2021). Major carbonate provinces such as the equatorial Pacific owe their existence to
high primary productivity in association with active upwelling and high preservation due to the topographic high
of mid-ocean ridges beneath the upwelling zone. This coupling between ocean circulation, productivity, and
seafloor hypsometry can be reasonably represented in cGENIE.

As an open-sourced model, cGENIE (“muffin” release) also allows for developing new experiments based on
published studies. Here we use the recent Miocene simulations developed by Crichton et al. (2021) as the basic

SIET AL.

4of 15

25u0dI'] suowwo)) aAnear) d[qeorjdde oyl Aq pauIdA0S a1k s3[O1IE YO ASN JO SI[NI 10§ AIRIQIT AUI[UQ AS[IA\ UO (SUOHIPUOI-PUEB-SULISY/ W0 KJ[1M " KIRIqI[aul[uo//:sdyy) suonipuo)) pue sud [, oy 39S ‘[£207/50/9z] uo Areiqiy aurjuQ A3[IM ‘[+SL009D220Z/6T01°01/10p/wod Kajim Kreiqiaurjuo sqndnSe//:sdjy woiy papeojumo(] ‘9 ‘€20z ‘bTz6vt61



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Global Biogeochemical Cycles 10.1029/2022GB007541

configuration of our work. This particular implementation of the cGENIE model comprises mid-Miocene conti-
nental and surface boundary conditions derived from fully coupled GCM experiments. Salinity flux adjustment is
then used to find the circulation pattern that best reproduces the Miocene carbon isotope records (please refer to
Section 2.2 of Crichton et al. (2021) for details of model configurations). In this work, we keep all parameters the
same as in the original study except for modifications on pCO, levels, global pelagic carbonate production rates,
and weathering alkalinity flux. A combination of ten mid-Miocene scenarios, with one additional pre-industrial
run as a control experiment, are examined (Table 1). Details on weathering flux, carbonate production, and burial
rates are provided in Table S1 in Supporting Information S1.

Modifications on pCO, forcing and weathering alkalinity flux follow the standard practice in cGENIE modeling
(Ridgwell et al., 2021). In order to force changes in pelagic carbonate production, we manipulate PIC:POC ratio
in each scenario so that organic productivity can remain the same as Crichton et al. (2021). The distribution
of 8'3C of benthic foraminifera is a function of the organic biological pump and ocean circulation. By holding
organic productivity the same as the original model and modifying the PIC:POC ratio only, our new simulations
do not change simulated 8'3C patterns in the original model, which has been shown to be largely consistent
with the §'3C distribution of benthic foraminifera (Crichton et al., 2021). All configuration files are available in
Supporting Information S1. For each simulation, we perform a spin-up run for 500 kyr following Ridgwell and
Hargreaves (2007) and then run with no acceleration for 80 kyr. Only the last 10 kyr are saved. The steady-state
carbonate burial flux is available in Table S1 in Supporting Information S1. All simulations are completed using
the Oscar cluster at the Center for Computation and Visualization, Brown University.

5. Results

Figure 2 shows MARc and CaCO,(%) from the Pacific Ocean (65°N-50°S, 125°E-80°W) in 11 cGENIE simu-
lations (gray color) in comparison to downcore MARc from Si and Rosenthal (2019) (Blue circles: Pleistocene
0-2.7 Ma; Red circles: Middle Miocene 11.5-13.5 Ma). We choose the Pacific Ocean because its size, and
therefore its carbonate chemistry, is most representative of the global ocean. The red vertical line indicates 20%
carbonate percentage, which is often used to indicate the CCD. Black arrows indicate the average depth of Pleis-
tocene CCD (Farrell & Prell, 1991), which is used here to approximate the steady state CCD of the last 2 Myr.

In theory, a strict model-data comparison should retrieve model results from where proxy data are available so
that model and data discrepancies can be directly calculated for statistical evaluation. However, this is not possi-
ble because Si and Rosenthal (2019) have targeted MARc estimates from closely spaced sites along depth tran-
sects (e.g., Ontong Java Plateau) in order to resolve the effects of production versus dissolution, while cGENIE
has a relatively low spatial resolution (36 X 36 equal area grid). As a result, we compare the data and modeled
MARCc as a regional (Pacific) composite in Figure 2.

Scenario “P” (Figure 2, panel 1) represents the pre-industrial experiment with 280 p.p.m.v., carbonate produc-
tion (1x = 41.6 Tmol/yr) in the range of modern estimate (Berelson et al., 2007; Jin et al., 2006; Lee, 2001;
Milliman, 1993), and modern weathering alkalinity flux (1x = 33 Tmol/yr) (Cai et al., 2008). Because we focus
on simulating the steady state, we use the average Pleistocene MARc reported by Si and Rosenthal (2019) for
comparison. Here, cGENIE produces carbonate burial rates consistent with sediment core records. The model
does seem to slightly overestimate CaCO,(%) below 4,000 m and therefore leads to a CCD slightly deeper than
the Pleistocene average (black arrows). We also compare vertical profiles of seawater carbonate chemistry in
cGENIE versus in GLODAP database (Lauvset et al., 2021) (Figure S1 in Supporting Information S1). There is
an overall good agreement between the model and observations.

Scenarios Ma (Ma+) are forced with present-day weathering flux (1x) and carbonate production (1x) but differ-
ent pCO, (Ma = 600 and Ma+ = 1,120 p.p.m.v., respectively). Model results show that when carbonate produc-
tion and weathering alkalinity remain the same as today, MARc and CaCO,(%) also stay unchanged (Figure 2,
panel 2), despite higher than present-day pCO,. Noticeably, mid-Miocene MARc from downcore measurements
are significantly higher than model results, particularly at shallow depths. Also noteworthy is that although the
different pCO, levels do not affect carbonate burial, they do change seawater carbonate chemistry (DIC, TA, and
pH), which will be addressed later (Section 6.2).

Scenarios Mb (Mb+) are forced with present-day carbonate production (1x), 30% higher chemical weathering
flux (1.3x), and pCO, of 600 and 1,120 p.p.m.v., respectively. Evidently, the increase in the alkalinity input has
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Figure 2. Model-data comparison of Pacific published Miocene carbonate accumulation (MARc) and CaCO;(%). Semi-transparent black circles (MARc) and gray
histograms (%CaCO,) are cGENIE model results; Blue and Red circles are MARc in the Pleistocene (0-2.7 Ma) and the Middle Miocene (11.5-13.5 Ma), respectively.
Black arrows indicate average Pleistocene Calcite Compensation Depth (Farrell & Prell, 1991; Pilike et al., 2012). P: pre-industrial control run; Ma: 1.0x CaCO,
production, 1.0x weathering flux; Mb: 1.0x production, 1.3x weathering flux; Mc: 2.0x production, 1.0x weathering flux; Md: 2.0x production, 1.3x weathering

flux; Me: 2.0x production, 1.45x weathering flux; Simulations Ma-Me have pCO, = 600 p.p.m.v., symbol + indicates additional experiments with pCO, elevated to

1,120 p.p.m.v.

little effect on modeled MARCc at shallow water depth. Instead, it deepens the CCD significantly in the model
(Figure 2, panel 3), which is in contradiction to the observation of a slightly shallower or stable CCD during the
Miocene (Pilike et al., 2012; Van Andel, 1975). It is important to note that the CCD is highly variable through
time and space. Change in local productivity, ocean circulations and dynamic topography can all complicate
the reconstruction of regional CCD (Campbell et al., 2018; Dutkiewicz & Miiller, 2021; Lyle, 2003). However,
a large model-implied deepening of the CCD to ~6,000 m (not shown) with 50% CaCOj, at 5,000 m (Figure 2,
panel 3) strongly suggests that scenario Mb (Mb+) increases data-model discrepancy rather than narrows it.

Scenarios Mc (Mc+) are forced with present-day weathering alkalinity fluxes (1x), doubled carbonate produc-
tion (2x) in the surface ocean and pCO, of 600 and 1,120 p.p.m.v. respectively. As a result of higher carbonate
productivity, modeled MARc begins to match the observations in the shallow part of the ocean. However, holding
weathering alkalinity input at modern value leads to large shoaling of the CCD to above 3,725 m (Figure 2, panel
4). This, again, is not supported by the CCD reconstructions and the fact that carbonate-rich Miocene sediments
are available from the deep Pacific at ~3,700 m water depth (e.g., ODP Site 804 and U1307, U1308) (Pilike
et al., 2012; Si & Rosenthal, 2019).

In scenarios Md (Md+) and Me (Me+), both carbonate production (2x) and weathering alkalinity flux (1.3x in Md/
Md+ and 1.45x in Me/Me+) are higher than modern values. This results in a simultaneously improved agreement
between modeled MARc, CaCO,(%) and paleo-records. The CCD is ~4,250 m in Md (Md+) scenario (Figure 2,
panel 5) and ~4,500-4,600 m in scenarios Me (Me+) (Figure 2, panel 6). Both are within the uncertainties of
paleo-CCD estimates, which suggests that the Miocene CCD was at most ~500 m shallower than the Pleistocene
average (~4,800 m) (Pilike et al., 2012; Van Andel, 1975).
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6. Discussion
6.1. Changes in Weathering Alkalinity Influx

Over the last 15 million years, Earth's climate has experienced long-term cooling from the mid-Miocene Climatic
Optimum to the Pleistocene glaciations of the last 3 Myr. Global ocean temperatures, in both the surface and the
deep sea, have dropped by more than 6°C-9°C (Herbert et al., 2016, 2022; Meckler et al., 2022; Super et al., 2020).
The causes of this cooling have been contentiously debated (Herbert et al., 2022; Kump & Arthur, 1997; Molnar
& Cronin, 2015; Park et al., 2020; Raymo et al., 1988; Rugenstein et al., 2019). Different hypotheses, crucially,
predict changes in weathering alkalinity flux in opposite signs.

The often-cited uplift hypothesis suggests that increased chemical weathering in response to active orogeny of the
Himalayas drew down atmospheric CO, and therefore cooled off the planet (Li et al., 2021; Raymo et al., 1988).
This scenario predicts progressive increases in chemical weathering flux over the Neogene and therefore requires
increased carbonate burial in the deep sea from the Miocene toward the present.

Alternatively, it has been suggested that the rise of the Himalayas and/or the maritime continent may have
increased the weatherability of the Earth (Kump & Arthur, 1997; Molnar & Cronin, 2015; Park et al., 2020;
Rugenstein et al., 2019). In this case, global temperature and atmospheric pCO, decrease because stronger weath-
ering feedback lowers the steady-state pCO, that is needed to maintain the mass balance with CO, degassing
rates, assuming the source function has been constant.

A deepening of the CCD from the Miocene toward the present indicates that larger seafloor areas became available
for carbonate deposition over time. With the (implicit) assumption that carbonate production is constant over time
or proportional to the saturation state of the ocean, most previous studies thus conclude that total carbonate burial on
the seafloor increased over the last 15 Myr, implying that weathering alkalinity flux has also increased as the global
cooling proceeded (Raymo et al., 1988). This interpretation, however, was questioned by Si and Rosenthal (2019),
who pointed out that the CCD alone cannot be used as an indicator of past carbonate burial flux because carbonate
production at the surface ocean has also changed in inverse correlation to the saturation state of the ocean.

The comparison between 10 Miocene simulations with reconstructed MARc and CaCO,(%) (Figure 2) suggests
that scenarios Md (Md+) and Me (Me+) provide a reasonable agreement between the model and data. We thus
conclude that from the Middle Miocene to the present, carbonate burial flux at the seafloor and corresponding
weathering alkalinity influxes have decreased by ~30%—45% despite the tendency of the CCD to gently deepen
toward the present. This estimate is drastically different from several recent studies, which suggest almost a
doubling of pelagic carbonate burial since 15 Ma based on simplified interpretation on the CCD (Dutkiewicz
et al., 2019; Miiller et al., 2022).

Higher chemical weathering flux in the warm Middle Miocene could come from either higher carbonate weath-
ering or silicate weathering fluxes or both. Based on measurements of dissolved loads from the world's rivers,
carbonate weathering likely accounts for ~50% of modern global chemical weathering fluxes, with the rest mainly
from silicate weathering (Gaillardet et al., 1999; Meybeck, 1987). If we assume that the long-term Neogene cool-
ing and pCO, decrease result primarily from an increase in the silicate weatherability (Kump & Arthur, 1997,
Park et al., 2020; Rugenstein et al., 2019), then CO, input from volcanism and corresponding silicate weathering
fluxes should all have remained unchanged. Higher weathering alkalinity input (~30%—45%) in the Miocene will
then be attributed to higher carbonate weathering (~60%—-90%) than that of today.

Alternatively, if we assume that the ratio of silicate versus carbonate weathering has remained unchanged over
time, our model-data analysis would suggest a 30%—45% decrease in both silicate and carbonate weathering since
the Middle Miocene, with the implication of a proportionate decrease in CO, degassing. At the first glance, this
scenario seems to be inconsistent with the long-held view that seafloor spreading rates have not significantly
changed over the course of the Cenozoic. A recent study based on an improved history of seafloor spreading,
however, challenges this idea, suggesting that global seafloor spreading rates have decreased by 30%—38% over
the last 18 Myr, with a median of 34% (Dalton et al., 2022; Herbert et al., 2022). These new studies thus strongly
suggest that long-term diminishments in CO, degassing rate have contributed to decreases in chemical weather-
ing fluxes.

In addition to pelagic carbonates, biogenic carbonate production in shelf environments can also affect the global
alkalinity budget. One might argue, for instance, that reduced shelf carbonate burial due to lower sea levels since
the Miocene can also drive a deepening of the CCD toward the present (illustrated in Figures 1b and 1a). However,
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change the CCD, it cannot account for higher Miocene MARc at shallow
water depths (above the lysocline) where bottom water has always remained
oMb+ oversaturated. Without changes in carbonate production in the surface ocean,

a more corrosive deep ocean would indicate a shallower saturation horizon
(Figure 1b) and therefore less carbonate burial at relatively shallow depths.
The MARCc depth profile, however, indicates the opposite (Figure 2). We
thus rule out the basin-shelf hypothesis as first order control of the observed

carbonate burial patterns.

Moreover, assuming that carbonate burial on the shelves was higher during
the Middle Miocene as a result of higher sea levels, then global decreases in
marine carbonate burial rates should be larger than our estimates based on the
pelagic records alone, with the further implication that our current estimate

Figure 3. Carbonate chemistry of the Pacific surface ocean (also see Table 2).
Blue-dash, green-dot, and red-solid lines indicate total alkalinity (pmol/kg),
pH, and pCO, (p.p.m.v.), respectively. Dissolved inorganic carbon (x axis)

2000 2500
DIC (pmol/kg)

3000 3500 of a 30%—45% reduction in global weathering fluxes is conservative.

Another complication to our interpretation involves the cycling of organic
materials (C,) in the ocean, which can potentially decouple the CCD from
the saturation horizon as well as global marine carbonate burial rates (Greene

and [Cog-]SW (Y axis) of 10 Miocene scenarios (Ma—Me) and one pre-industry et al., 2019; Pilike et al., 2012). A recent study using the §'3C of planktonic
run (P) are averages of the Pacific Ocean in the cGENIE model (65°N-50°S, foraminifera species suggests that a larger fraction of C,,, was recycled within
125°E~-80°W). Orange and brown circles are proxy-based reconstructions from  (pe upper ocean during the Miocene relative to today (Boscolo-Galazzo

Sosdian, Greenop et al. (2018) and Zeebe and Tyrrell (2019).

etal., 2021). An increased fraction of labile Corg in the Miocene will increase
dissolution within the water column and help explain the increased fragmen-
tation of foraminiferal shells in shallow sites (Si & Rosenthal, 2019). It again
cannot account for the observation of higher coccolith carbonate burial at
shallow depths (Figure 2).

In conclusion, all proxies of chemical weathering have limitations. Carbonate mass accumulation records alone
clearly are not sufficient to differentiate carbonate weathering versus silicate weathering and therefore provide
no definitive answer to test hypotheses of changes in tectonic degassing versus changes in the weatherability as
long-term drivers of atmospheric CO, and global climate. Full consideration of the Miocene carbonate cycle
might also benefit from simulating the effects of higher shelf carbonate burial or enhanced water column disso-

lution due to changes in C_, cycling. Our analysis, however, does point out the primary role of pelagic carbonate

org
production in driving the vertical distribution of MARc and its importance in understanding and constraining the

long-term carbon cycle.

6.2. Relatively Constant Seawater DIC and TA Over the Neogene

Changes in carbonate production not only influence our interpretation of the CCD but also strongly affect seawa-
ter carbonate chemistry at steady state, which, as we discuss below, has important implications for long-term
changes in DIC, TA, and Q over the course of the Neogene.

Because atmosphere pCO, and the surface ocean are approximately in equilibrium, higher pCO, should correspond
to elevated DIC and TA, assuming a relatively constant carbonate saturation state (Zeebe & Wolf-Gladrow, 2001).
In the Miocene case, this is equivalent to scenario P versus Ma/Ma+. We illustrate this in Figure 3, which averages
the carbonate chemistry of the Pacific Ocean in the cGENIE model over the region of 65°N-50°S, 125°E-80°W
(Table 2). When the chemical weathering flux remains the same as today (relatively constant saturation), surface
ocean DIC (x-axis) and TA (blue dash line) must be significantly higher when pCO, is also higher. In scenario
Ma (600 p.p.m.v.), for instance, DIC and TA are 2,723 and 3,068 pmol/kg, respectively, much higher than modern
seawaters. If the Miocene pCO, was 1,120 p.p.m.v. (scenario Ma+), DIC and TA would be even higher (Figure 3,
Table 2). Furthermore, if we increase weathering alkalinity input by ~30%, the ocean's saturation state, DIC and
TA at the steady state will all increase. This is illustrated as the differences between Mb and Ma in Figure 3 (or
Mb+ vs. Ma+). Also note that at the steady state, deep sea carbonate burial also increased in case of Mb (Mb+)
relative to Ma (Ma+) through a deepening of the CCD (Figure 2).
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Table 2
Carbonate Chemistry of the Pacific Ocean in the cGENIE Model, Averaged Over the Area Between 65°N-50°S and
125°E-80°W

P Ma (Ma+) Mb (Mb+) Mc (Mc+) Md (Md+) Me (Me+)

DIC
TA—surface
[CO?]

1945 2,723 (3,419) 2,848(3,607) 1709(2,264) 1834 (2,379) 1886 (2,460)
2,289 3,068 (3,728) 3,219 (3,947) 1871(2,408) 2,015(2,538) 2,076 (2,629)
241 272 (267) 295 (294) 115 (122) 132 (135) 139 (143)

5.8 8.5(8.3) 9.1(9.1) 3.57 (3.8) 4 (4.1) 4.3 (4.4)
DIC 2,333 3,122 (3,800) 3,249 (3,993) 2,185 (2,707) 2,305 (2,822) 2,356 (2,901)
TA jeep 2,448 3,190 (3,827) 3,324 (4,028) 2,240 (2,721) 2,363 (2,840) 2,415 (2,921)
[CO%‘]deep 87 80.7 (77.8) 87 (85) 55 (50) 59 (54) 60 (56)

Q 0.93 1.1 (1.1) 1.2 (1.2) 0.75 (0.76) 0.82 (0.76) 0.83 (0.79)

_surface

surface

'_surface

_deep

'_deep

Note. Unit for DIC, TA, and [CO%‘] is pmol/kg. Results of the surface ocean are plotted in Figure 3. For the deep Pacific,
is calculate at a depth of 4,000 m.

In contrast, reconstructions of DIC and TA using proxy data (Sosdian, Greenop, et al., 2018; Zeebe & Tyrrell, 2019)
yield relatively stable or even lower Miocene DIC and TA relative to today (Figure 3, orange and brown circles).
What processes have helped maintain relatively invariant DIC and TA pools despite both atmospheric pCO, and
weathering alkalinity influxes potentially decreasing over the Neogene?

One known process involves secular variations in the calcium concentration of seawater ([Cal,,) (Hain
et al., 2015). Over the last 100 Myrs, [Cap']SW has dropped from ~50 in the Cretaceous to 10 mmol/kg today
(Hardie, 1996; Horita et al., 2002). Assuming chemical weathering fluxes only fluctuated on the order of +30%,
five-fold higher [Ca2+]SW would require proportionately lower [CO%*]SW to maintain a relatively stable saturation
state of the ocean so that CaCO, burial can balance the weathering fluxes. Given the steady state pCO,, a lower
[CO%*]SW would require lower DIC and TA (Hain et al., 2015). To understand this, one can pick an iso-pCO, line
in Figure 3, for example, 1,500 p.p.m.v. Sliding along the iso-pCO, line toward lower [CO%’]SW would require
simultaneous decreases in DIC and TA.

Changes in [Ca”]SW alone, however, cannot account for relatively stable DIC and TA in the Neogene (Figure 3)
because a [Ca”]SW of 12.7 pmol/kg (Zhou et al., 2021) has already been parameterized in our Miocene simu-
lations. Alternatively, we obtain consistent results from scenarios when carbonate production is doubled in the
Miocene. Relative to scenario Ma/Ma+, a doubling of carbonate production (Mc/Mc+), all else equal, leads
to significantly reduced DIC and TA (Figure 3, Table 2). For our favored scenario Md (Md+) or Me (Me+),
increases in weathering alkalinity inputs relative to Mc (Mc+) only add minor changes to TA and DIC. Thus,
higher carbonate production appears to be the key factor that maintains relatively constant TA and DIC over time.

How can pelagic carbonate production have such large effects on seawater TA and DIC? The answer lies in the
mechanism of carbonate compensation. Increases in carbonate productivities lead to higher carbonate burial at
shallow water depths (1,000-3,000 m) (Figure 2). To maintain the alkalinity budget in balance, an equivalent
increase in dissolution must occur at depth. This requires a more corrosive deep sea with lower [CO%‘]SW and Q.
Relative to scenario Mb, doubling carbonate production (scenario Md) results in a decrease in [CO%‘]SW from
~87 to ~59 pmol/kg and a decrease in € from 1.2 to 0.82 (Table 2). Given the steady state pCO, of the Middle
Miocene (moving alone a red iso-pCO, line in Figure 3), a lower mean ocean [CO%‘]bw (moving down y axis) will
correspond to lower carbon and alkalinity inventory of the ocean.

Notice that a low [CO%’]SW in the deep sea is also associated with low [CO%’]SW in the surface ocean (132 pmol/
kg in Md), together giving rise to a smaller Miocene vertical [CO%’]SW gradient relative to the pre-industrial
experiment (Figure S2 in Supporting Information S1). The lower [CO%’]SW and thus lower Q in the surface ocean
is interesting (Figure 3, Table 2). It suggests that high CaCO, production during the Miocene was associated with
a less saturated surface ocean, with the implication that biogenic carbonate production (specifically, coccolith
production) is highly biologically controlled and not affected simply by the saturation state of the ocean. Instead,
Figure 3 and Table 2 point out that  (both surface and deep) is a function of biogenic CaCO, production rates,
with higher CaCOj, production driving lower Q.
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o 0O o i Our modeled DIC and TA (Md and Me, 600 p.p.m.v.) are in close agree-
1.00 1 ment with proxy-based reconstructions for the middle Miocene (Figure 3).

Figure 4. Sensitivity of pH and pCO, for per unit change in total alkalinity
and dissolved inorganic carbon, respectively. Scenarios to the right have
doubled carbonate production. On the x axis, different scenarios also

P Ma Ma+ Mb Mb+ Mc Mc+ Md Md+ Me Me+

However, discrepancies do exist. This primarily reflects the fact that some
proxy-based pCO, reconstructions suggest mid-Miocene pCO, on average
~400 p.p.m.v (Sosdian, Greenop, et al., 2018; Zeebe & Tyrrell, 2019), lower
than the 600 and 1,120 p.p.m.v. we used in cGENIE simulation. When the

correspond to different [CO%‘]Sw and thus different saturation state (€2) (also models are forced with higher pCO, (Md+ and Me+, 1,120 p.p.m.v.), DIC

see Table 2).

and TA become higher. Thus, our choice of Miocene pCO, does affect the
model-data comparison.

Estimating Miocene pCO, has been a matter of debate. On one hand, multiple proxies, including Alkenone-SST,
TEX86, and clumped isotopes of benthic foraminifera, indicate more than 8°C of warming in the ocean, with
the implication of global warming on the magnitude of 12°C (Herbert et al., 2016, 2022; Meckler et al., 2022;
Modestou et al., 2020). This requires pCO, significantly higher than 400 pmm, given a reasonable guess on Earth
System Sensitivity (3°C—6°C warming per doubling of pCO,) (Knutti et al., 2017; Royer et al., 2007). Recon-
structed pCO,, on the other hand, exhibits large variability ranging from ~200 to above 1,000 p.p.m.v. based
on both boron isotope and §'3C of alkenone biomarkers (Rae et al., 2021; Sosdian, Greenop, et al., 2018; Stoll
et al., 2019; Super et al., 2018; Tanner et al., 2020).

One possible argument is that the ice albedo that comes into play in the last 3 Myr tends to enhance effective
climate sensitivity at low pCO,. As a result, a small increase in pCO, from 280 p.p.m.v might have a large effect
on equilibrium climate if the Earth becomes ice-free (Ring et al., 2022). However, available Miocene simula-
tions with less than 600 p.p.m.v cannot produce the magnitude of mid-Miocene warming (Burls et al., 2021).
We thus consider that 400 p.p.m.v. pCO, is unlikely and choose 600 p.p.m.v. as the low end of our simulations,
which is also more consistent with recently updated pCO, estimates (Rae et al., 2021; Stoll et al., 2019; Tanner
et al., 2020). On the other hand, Crichton et al. (2021) suggested that a pCO, value of 1,120 p.p.m.v. is necessary
to simulate the observed Miocene warming in cGENIE. A recent revision on the alkenone-based pCO, calibration
also suggests that Miocene pCO, of >1,000 p.p.m.v. is within the uncertainty of the proxy calibration (Tanner
et al., 2020). If this is true, we may have underestimated Miocene carbonate production in cGENIE simulations
by omitting potential changes in shelf carbonate deposits (see discussion in Section 6.1). Also note that higher
neritic carbonate production and burial during the Miocene highstand would require lower DIC and TA than
inferred in Figure 3.

6.4. Reduced Buffering Capacity of the Ocean

Another consequence of enhanced carbonate production is a large decrease in the ocean's buffering capacity.
Seawater is a relatively well-buffered solution that is capable of resisting changes in acidity. Several indices have
been used to quantify seawater buffering capacity (Middelburg et al., 2020). Here we compare the sensitivity of
pH to per unit change in TA (dpH/dTA) and the sensitivity of pCO, to per unit change in DIC (dCO,/dDIC) (also
known as inverse buffer factor, Figure 4).

For simulations with the same weathering flux and carbonate production but different pCO, values, pCO, is
more sensitive to change in DIC when background pCO, is higher (e.g., Ma vs. Ma+). On the other hand,
increases in chemical weathering flux show minor effects on either dpH/dTA or dCO,/dDIC (Ma vs. Mb).
Large decreases in the buffering capacity, however, are observed in simulations with doubled (2X) carbonate
production.
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As discussed above, enhanced carbonate production requires lower [CO%‘]SW in order to maintain the alkalinity
budget in balance, namely, weathering alkalinity input being equal to carbonate burial flux. Comparing scenar-
ios Ma versus Mc, modeled deep Pacific [CO%‘]SW is ~81 and 55 pmol/kg, respectively (Table 2, Figure S2 in
Supporting Information S1). At steady state, this implies smaller DIC (3,122 vs. 2,185 pmol/kg) and TA (3,190
vs. 2,240 pmol/kg) of the ocean (Table 2). Qualitatively, the buffering capacity of seawater in relation to the
reservoir size can be illustrated in Figure 3. On the right-hand side of the figure, iso-pCO, lines pCO, = 800
and pCO, = 1,500 are widely separated, while they are more closely spaced on the left-hand side of the figure.
As aresult, given a perturbation in the DIC, pCO, will change more when the DIC is relatively small. A similar
argument can be applied to dpH/dTA (green dotted line and blue dash line). The implication would be that for
timescales <1 Myr, a reduced buffering capacity would allow for more short-term changes in pCO, forced by a
variety of processes.

6.5. A Possible Cause of the Neogene Decrease in Carbonate Production

The higher carbonate production during the mid-Miocene is entirely driven by coccolithophorid paleoecol-
ogy (Si & Rosenthal, 2019; Suchéras-Marx & Henderiks, 2014). Unlike foraminifera, coccolithophores calcify
inside the cell (Bolton & Stoll, 2013 and references therein). Similar to other marine phytoplankton (Hopkinson
etal., 2011; Reinfelder, 2011), recent studies suggest that due to the strong demand for carbon for photosynthesis,
dissolved carbon supplies from extracellular seawater to intracellular loci of photosynthesis are likely limited by
the concentration of dissolved [COZ]“q in the seawater (Bolton & Stoll, 2013; Hermoso et al., 2015; McClelland
etal., 2016). When pCO, is low, dissolved [COZ]aq in seawater may have become a limiting nutrient for the growth
of coccolithophores rather than simply a stressor. These inferences are partially supported by the study of Bolton
et al. (2016), who suggested reduced calcification in the last 15 Myr as pCO, decreased.

On the other hand, measurements of the degree of calcification cannot directly be translated to global pelagic
carbonate productivity. In the modern ocean, smaller coccolithophores tend to be more numerically abundant,
contributing more to carbonate fluxes than their larger counterparts (e.g., Iglesias-Rodriguez et al., 2008).
Bigger coccolithophore cells with higher PIC/POC ratios (Bolton et al., 2016) thus do not necessarily indi-
cate higher MARc. Other factors such as the evolutionary adaptions of coccolithophorid species in the last few
million years (Aubry, 2007) as well as long-term changes in nutrient recycling of the ocean (Boscolo-Galazzo
et al., 2021) may have all played a role in driving global coccolith productivity.

Although our studies on deep-time records reveal a calcification pattern that is apparently contradictory to many
laboratory-based studies, there actually exist hints in the literature that reported increased calcification under
elevated pCO, (and lower Q) in modern species (Benner et al., 2013; Iglesias-Rodriguez et al., 2008; Krumhardt
etal., 2016; McClelland et al., 2016; Rivero-Calle et al., 2015; Smith et al., 2012). By exposing Emiliania huxleyi
under prolonged pCO, forcing, for instance, Lohbeck et al. found that relative to those kept at ambient conditions,
adapted strains after 500 asexual generations exhibited higher growth rates when tested under ocean acidification
conditions (Lohbeck et al., 2012). The short generation time and diverse phenotypes ranging from completely
non-calcifying to heavily calcified strains in some coccolithophorid species may allow for their rapid adaption to
environmental changes.

Studies based on paleo-records and culturing experiments both have their own limitations. The goal of this
discussion is not to rule out one hypothesis or another but instead to emphasize the complex relationship of cocco-
lithophorid calcification to climate changes. Beyond the Middle Miocene examined here, geological records also
provide other instances of coccolithophorid responses to elevated pCO, and extreme greenhouse climate, includ-
ing robustly calcified coccoliths during the Eocene (Claxton et al., 2022) and the massive pelagic chalk deposits
during the Cretaceous (creta = chalk). Future studies on these paleo-archives may provide further insights into
the evolutionary adaptions of coccolithophores to past extreme warm climate.

7. Conclusion

In this study, we present a model-data comparison to demonstrate that global pelagic carbonate production
was approximately doubled in the Middle Miocene when pCO, and temperature were both higher. Given
the constraints of the CCD and MARc, we infer that global pelagic carbonate burial and chemical weather-
ing flux were ~30%-45% higher than pre-industrial levels. We also show that the relatively constant or lower
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than pre-industrial carbon (DIC) and alkalinity (TA) inventory of the ocean in the Miocene, as demonstrated in
8'!B-based reconstructions, are likely the results of both higher seawater [CaZJ“]SW and higher calcium carbonate
production which result in lower [CO%‘]SW and counteract the increase due to higher alkalinity weathering flux
and elevated atmospheric pCO,. In contrast to previous studies, which suggest a relatively constant saturation
state of the ocean over geological time, higher carbonate production in the Miocene reduced €2 in both the surface
and the deep ocean. Higher carbonate production also significantly reduced the buffering capacity of the Miocene
Ocean (sensitivity of pH, pCO, to perturbation in TA, DIC). This positive correlation between the biologically
driven calcification in the ocean and pCO, on long timescale may have acted as positive feedback to augment the
decrease in atmospheric pCO, in increasing ocean's buffering capacity from the Miocene to the present.
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Base configuration of our Miocene simulation is available in the supporting materials of Crichton et al. (2021).
Modified configuration files used for this study are available as online supplementary materials. Mass Accu-
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repository https://www.ncei.noaa.gov/pub/data/paleo/ or by contacting the authors.
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