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Abstract—Fine-grained power estimation in multicore Systems
on Chips (SoCs) is crucial for efficient thermal management. BPI
(Blind Power Identification) is a recent approach that determines
the power consumption of different cores and the thermal model
of the chip using only thermal sensor measurements and total
power consumption. BPI relies on steady-state thermal data
along with a naive initialization in its Non-negative Matrix
Factorization (NMF) process, which negatively impacts the power
estimation accuracy of BPI. This paper proposes a two-fold
approach to reduce these impacts on BPI. First, this paper
introduces an innovative approach for NMF initializing, i.e.,
density-oriented spatial clustering to identify centroid data points
of active cores as initial values. This enhances BPI accuracy by
focusing on dense regions in the dataset and excluding outlier
data points. Second, it proposes the utilization of steady-state
temperature data points to enhance the power estimation accu-
racy by leveraging the physical relationship between temperature
and power consumption. Our extensive simulations of real-world
cases demonstrate that our approach enhances BPI accuracy
in estimating the power per core with no performance cost.
For instance, in a four-core processor, the proposed approach
reduces the error rate by 76% compared to BPI and by 24%

compared to the state of the art in the literature, namely, Blind
Power Identification Steady State (BPISS). The results underline
the potential of integrating advanced clustering techniques in
thermal model identification, paving the way for more accurate
and reliable thermal management in multicores and SoCs.

Index Terms—Power Estimation, Blind Power Identification,
Thermal Estimation

I. INTRODUCTION

As the pace of Moore’s law decelerates, designers have

sought alternative design methodologies, which led to the

development of heterogeneous multicore architectures and the

incorporation of specialized hardware units into a single chip,

also known as Systems on Chip (SoCs) [1], [2]. However,

this advancement has introduced challenges in thermal man-

agement, power consumption, and energy efficiency [1]. The

increased power density coupled with constrained cooling

options in SoCs has led to significant performance bottle-

necks [3], [4].

Accurately estimating the power consumption of each core

in a multicore processor is critical for effective thermal

management and performance optimization. Precise power

estimation improves the efficiency of dynamic voltage and

frequency scaling (DVFS) and thermal throttling, maintaining
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safe temperature limits and enhancing processor reliability

and lifespan. For instance, the Running Average Power Limit

(RAPL) interface allows applications to measure power con-

sumption [5]. However, these measurements are generally

coarse-grained, providing only the overall power consumption

of all cores, uncore units, and total package power. Inaccurate

estimations can cause thermal hotspots, suboptimal perfor-

mance, reduced lifespan, and increased cooling costs due to the

need for additional cooling mechanisms [6]–[8]. Therefore, it

is crucial to develop techniques and tools that enable fine-

grained profiling of existing SoCs and the software they

operate. This step is foundational for implementing effective

power and thermal management strategies and designing next

generation SoCs.

Blind Power Identification (BPI) techniques are used for

managing power consumption and thermal behavior in mul-

ticore SoCs in cases where detailed pre-silicon models are

not available [6], [7]. These methods use statistical or ma-

chine learning approaches to infer power usage and heat

generation from observable data like total power consumption

and thermal sensor readings. However, BPI performance is

highly dependent on the model initial conditions, leading

to significant accuracy and robustness variability [6], [7],

[9]. This sensitivity poses challenges in environments where

precise thermal management is vital, such as SoCs used in

mobile applications. The variability step from Non-negative

Matrix Factorization (NMF) [10], [11] used to decompose

aggregated sensor data into distinct thermal resistance and

power matrices, essential for managing thermal outputs in

multicore processors. However, NMF heavily relies on initial

values, with traditional initialization methods often being too

sensitive, resulting in inconsistent results and poor model

accuracy.

This paper presents an innovative approach for initializing

NMF, crucial for BPI in multicore SoCs. By employing

density-based spatial clustering of applications with noise

(known as the DBSCAN clustering technique) [12], [13], our

approach identifies cluster centroids from dense regions in

the initial thermal data to be used as starting points NMF.

This approach minimizes the impact of outliers and ensures

NMF is initialized with optimal points from the main dataset,

thereby enhancing robustness. Furthermore, leveraging steady-

state temperatures for initialization improves the accuracy of

power estimation by reflecting the true thermal behavior of
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the system. Our extensive simulations demonstrate that this

approach significantly improves the precision of estimated

power per core while maintaining computational efficiency.

The rest of this paper is organized as follows. Sections II

and III review related work and provide relevant background

on thermal and power modeling. Section IV introduces our

proposed approach. Section V discusses the results obtained

from our simulations, comparing the accuracy and efficiency

of our method against existing techniques. Finally, Section VI

concludes the paper.

II. RELATED WORK

Numerous studies have explored different techniques for

modeling SoCs thermal and power aspects [6], [7], [9], [14],

[15]. These approaches typically employ a standard approach,

aiming to discern the state space model connecting tempera-

ture and power according to Eqn. 1.

Tr(k) = ATr(k − 1) +BP (k). (1)

In this model, Tr(k) and P (k) represent vectors denoting

the temperature and power levels of SoC units at time k,

respectively, the matrices A and B encapsulate the physical

relationship between power and temperature. While matrix A

is the thermal conductance matrix that illustrates the system’s

natural response in the absence of power input, matrix B

describes the system’s forced response as a function of thermal

capacitance and conductance. Both matrices A and B are

square, and their dimensions correspond to the number of

power sources.

The power sources align with the hardware units for

which thermal measurements are available. All the previous

studies [6], [7], [9], [14], [15] aim to determine the power

consumption of these units. Developing state space modeling

matrices allows for accurate estimation and prediction of

power consumption, mirroring the precision of the available

thermal measurements.

The state space model presented in Eq. 1 originates from the

heat diffusion equation [16]. This equation models the inter-

action between power and thermal properties by incorporating

factors such as thermal conductivity, material density, and

specific heat capacity. The formulation of the model in Eqn. 1

involves first performing a spatial discretization of the heat

diffusion equation, followed by temporal discretization [6], [7].

The difficulty in obtaining detailed power measurements has

resulted in only a limited number of studies that offer valuable

information about the power consumption and efficiency of

various SoC hardware units under the strain of different

software applications [6], [7], [9], [14], [15].

In this paper, we focus on a critical algorithm, BPI [6],

[7], [9], which identifies thermal models and fine-grain power

consumption of a chip using only data from thermal sensors

and overall power consumption measurements. The accuracy

of the algorithm estimations is aimed to be improved while

maintaining the runtime. Reda et al. [6] proposed the first

version of BPI, which utilized the fast Independent Component

Analysis (ICA) algorithm [17] to initialize NMF by providing

an initial guess of the factors that enhance convergence and

performance by ensuring better separation of the underlying

sources. Reda et al. [7] proposed an enhanced BPI version

with a different NMF initialization, utilizing the identity matrix

for the thermal resistance matrix, as both matrices have their

maximum values along the main diagonal. Said et al. [9]

introduced BPISS, an enhancement that initializes the thermal

resistance matrix with the average steady state temperatures:

non-diagonal elements for stressed cores and diagonal ele-

ments for cores with similar thermal characteristics. The core

steady state temperature is used if no similar cores are found.

The power matrix is initialized by dividing the total power

based on each core temperature ratio by the sum of all core

temperatures. This method better reflects the system physical

characteristics and reduces error compared to identity matrix

initialization.

III. BACKGROUND

A. Blind Power Identification Method

The goal of the blind estimation problem is to determine

the matrices A and B for a specific SoC, along with the

power profiles P (k) in Eq. 1. The BPI algorithm operates

in two distinct phases, the initial phase is offline learning,

where the system parameters A, B, and R are estimated using

steady state measurements, Ts, and the total power at each

interval, PTs
(k). This foundational phase sets the groundwork

for the subsequent phase. The second phase is online learning

that occurs during runtime using the runtime dataset, Tr(k),
and PTr

(k). At this stage, each core power consumption

is estimated dynamically, enabling real-time adjustments and

optimizations. The offline training step is required to be

performed just once for each SoC to establish the modeling

matrices.

To compute the B matrix in the first phase, determining

the R matrix (the thermal resistance matrix) in the steady-

state scenario is required [7]. In this scenario, the steady-state

implies that Tr(k) = Tr(k − 1). Thus, from the equations

provided:

Ts ≈ ATs +BPs, (2)

(I −A)Ts ≈ BPs, (3)

Ts ≈ (I −A)−1BPs, (4)

Ts ≈ RPs. (5)

These equations collectively demonstrate how Ts (steady-

state temperature) is estimated as a function of power source

inputs Ps using matrices A, B, and R. To derive the R

matrix, NMF is utilized to extract R and Ps from steady-state

measurements Ts and PTs
(k). Our proposed algorithm aims

to determine the optimal initialization for NMF to achieve

accurate power estimation for each core, P (k).
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Fig. 1. A thermal map for a 2× 2 chip (in Kelvin), where the bottom right
unit is activated.

IV. THE PROPOSED APPROACH

A. BPI Sensitivity to Initialization and Outliers

NMF, central to BPI, is highly sensitive to initialization and

thermal outlier data. NMF’s sensitivity arises from solving a

non-convex optimization problem with multiple local minima,

where initial values for R and Ps significantly influence the

convergence point, affecting factorization quality and inter-

pretability. Random initialization of these matrices often leads

to varying results, necessitating an appropriate initialization

method tailored to this specific problem [11], [18].

NMF is also sensitive to thermal outliers because outliers

distort factorization, leading to poor matrix approximation and

degraded feature quality. Outliers increase reconstruction error

by fitting anomalous data, reducing factorization accuracy.

They slow NMF convergence, requiring more iterations or

causing premature convergence to sub-optimal solutions. Ad-

ditionally, outliers imbalance weight distribution in factorized

matrices, resulting in skewed representations of the data’s

underlying structure [19]. The NMF initialization is performed

once during the offline phase of BPI to determine the SoC

matrices A and B.

B. The Proposed Initialization Approach

The thermal resistance matrix, R, shows how the heat

generated in one core affects the temperature of the same and

other cores. As illustrated in Figure 1, a 2× 2 core chip will

have a 4 × 4 R matrix, with the element rij showing the

thermal relationship between cores i and j. When a core is

activated, the highest temperature points cluster around it. Our

method involves clustering thermal regions and initializing the

R matrix with their centroids, which are the most influential

points. From Eqn. 5, Ts = RPs, where R directly relates to

Ts, indicating that any changes in P will alter Ts. However,

in a steady state, where Ts is fixed, any variation in R will

correspondingly adjust the Ps matrix and vice versa.

Given R’s significant relationship with temperature, ini-

tializing the R matrix with the optimal point from the T

dataset can lead to more accurate convergence of the NMF

algorithm towards the true values. Additionally, every point in

the original dataset impacts the elements of the R matrix. To

effectively manage this, we will employ a robust clustering

algorithm, DBSCAN, to categorize the original data into clus-

ters containing the densest points and automatically eliminate

outliers. This preprocessing step will aid in the initialization

of the R matrix. We will also set the initial state of P to match

the original steady-state temperature matrix T , allowing R to

adjust P either upwards or downwards from this baseline to

achieve optimal values.

DBSCAN is highly efficient in identifying clusters of vari-

ous shapes and sizes within a dataset, as illustrated in Fig. 2. It

typically uses the Euclidean distance to measure the distance

between points:

d(p, q) =

√

√

√

√

n
∑

i=1

(pi − qi)2 (6)

where p and q are two points in an n-dimensional space. A

core point is a point p with at least MinPts points within a

distance ϵ from it (including p):

|Nϵ(p)| ≥ MinPts (7)

where Nϵ(p) is the set of points within ϵ distance from p. A

point q is directly density-reachable from a point p if p is a

core point and q is within the distance ϵ from p:

q ∈ Nϵ(p) (8)

A point q is density-reachable from p if there is a chain of

points p1, p2, . . . , pn where p1 = p and pn = q, and each point

in the chain is directly density reachable from the previous

point.

A core point has at least a minimum specified number of

neighboring points (MinPts) within a given radius (ϵ), central

to a cluster. A border point has fewer neighbors than MinPts

within ϵ but is near a core point, typically on the cluster’s

periphery. Noise points do not qualify as either core or

border points and are generally considered outliers. DBSCAN

segments data based on point density within a specified radius,

starting with a random core point and recursively exploring all

density-reachable points to expand the cluster. This process

continues until all potential clusters are identified. DBSCAN

excels in handling noise and discovering clusters with arbi-

trary shapes, which many clustering algorithms struggle with.

However, its effectiveness largely depends on the parameters

ϵ and MinPts, making proper selection of these parameters

crucial for accurate clustering outcomes.

To estimate the optimal ϵ for DBSCAN, the k-distance graph

is used, which plots the distance to the k-th nearest neighbor

for each data point in descending order. The ”elbow point”
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Fig. 2. DBSCAN Clustering Algorithm Illustration

Fig. 3. K-distance graph to determine the value of ϵ

on this graph, where there is a significant change in slope,

indicates the optimal ϵ, as shown in Fig. 3. This point signifies

a natural threshold between dense clusters and isolated points.

The detailed structure of the proposed approach is provided in

Algorithm algorithm 1.

Algorithm 1 Proposed Approach: Initialization with DB-

SCAN Clustering

1: Input: Steady-state temperature data Ts, Number of cores

n, Total power at each interval PTs
(k)

2: Determine the optimal ϵ using the k-distance graph.

3: Set MinPts to at least D + 1, where D is the number of

features.

4: Apply DBSCAN to Ts to identify clusters and remove

outliers.

5: Initialize R with the centroids of the clusters.

6: Initialize Ps using Ts after outlier removal.

7: Perform NMF with the proposed initialization.

8: Output: System matrices A, B, and R.

Fig. 4. The verification and testing flow of the proposed approach

Fig. 5. The layout of the big.LITTLE+GPU SoC, utilized for testing the
proposed approach [22]

V. EXPERIMENTS AND RESULTS

A. Experimental setup

The effectiveness of the proposed approach is validated us-

ing the HotSpot thermal simulator [20], [21] for four different

floor plans described in Table I.

TABLE I
THE FLOORPLANS WITH UNIT COUNTS, ARCHITECTURE TYPES, AND

POWER BUDGETS

Floorplans Units Architecture Power Budget

2× 2 mesh (FP1) 4 Homogeneous 60 W

2× 4 mesh (FP2) 8 Homogeneous 60 W

4× 4 mesh (FP3) 16 Homogeneous 60 W

Big LITTLE+GPU (FP4) 6 Heterogeneous 10 W

As depicted in Fig. 4, the HotSpot simulator receives per-

unit power traces from a given design layout and generates the

corresponding per-unit temperature traces. These temperature

outputs are then utilized as inputs by the proposed approach

alongside total power data to calculate the estimated per-

unit power. Finally, the accuracy of the proposed approach

is determined by comparing the initial per-unit power traces,

which were inputs to the HotSpot simulator, with the power

estimates generated by the proposed approach.

The proposed approach is compared with the original BPI

approach, which was the first to introduce BPI for fine-grain

power estimation. BPI relies on NMF to identify the B matrix.

However, the accuracy of the NMF output is sensitive to the
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initialization step, which in this case was performed based on

the identity matrix as an initial R matrix. Therefore, it is also

compared against another version of BPI [9] that improved the

initialization step by utilizing steady-state temperatures, which

is referred to as BPISS. Furthermore, the proposed approach is

validated on a heterogeneous architecture to demonstrate that

the proposed approach is robust in terms of both accuracy and

computation time when transitioning from a homogeneous to

a heterogeneous architecture that was depicted in Fig. 5.

B. HotSpot Simulation Results

Figure 6 presents a comparative analysis of power estima-

tion errors associated with two different approaches mentioned

in the related work: BPI and BPISS, and the proposed ap-

proach. The analysis is carried out on four different bench-

marks, detailed in Table I.

Prediction Accuracy: The proposed method consistently

outperforms both BPI and BPISS in terms of power estimation

accuracy across all tested benchmarks. In the case of FP1,

the proposed approach brings the error down to around 1.2%,

whereas BPI and BPISS exhibit higher errors of about 5%
and 3.8%, respectively. For FP2, the error is reduced to

approximately 3.5% with the proposed approach, which is

notably better than the 11.5% error for BPI and 9% for

BPISS. Similarly, for FP3, the error drops to around 0.9%, in

contrast to the 7.5% and 6% errors seen with BPI and BPISS,

respectively. Lastly, for FP4, our proposed method records an

error of roughly 1%, outperforming BPI’s (5.3%) and BPISS’s

(4.1%).

The improvement is particularly noticeable as the size of

the benchmark increases, indicating the scalability of the

proposed approach. The algorithm maintains a higher accu-

racy estimation rate when transitioning from homogeneous

to heterogeneous processors, demonstrating its robustness and

reliability in handling complex and larger architectures.

Figure 7 presents a comparative analysis of the runtime for

the three algorithms: BPI, BPISS, and the proposed approach

across the four benchmarks.

Runtime Analysis: The proposed approach generally shows

a lower runtime compared to BPISS and is comparable to BPI

in most benchmarks and helps reduce the overall computa-

tional complexity.

Improvement over Traditional Methods: Traditional BPI

methods exhibit slightly lower run times but suffer from

higher estimation errors, indicating a trade-off between speed

and accuracy. BPISS shows the highest runtime, increasing

computational overhead.

Scalability and Performance: Our proposed approach

scales well with increasing benchmark sizes, maintaining

efficient runtimes while handling larger and more complex

architectures. This scalability ensures that the algorithm can be

applied to more complex systems without a significant increase

in computational resources or time.

C. Comparison of Actual Power with Estimated Power

As depicted in Figure 8(a), illustrates the thermal mea-

surements for each of the cores over time for heterogeneous
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Fig. 6. Comparison of Power Estimation Errors Across Different Algorithms
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processors (FP4). The temperatures fluctuate as the cores

experience varying states of stress and periods of idleness.

These temperature variations are crucial for understanding

the thermal dynamics and behavior of the processors under

different operational conditions.

Figures 8 provide a detailed comparison between the power

estimates derived from our proposed approach and the actual

power inputed to each core as simulated by HotSpot. This

comparison is essential to validate the accuracy and reliability

of the proposed approach in estimating power consumption.

The results demonstrate that the proposed approach closely

matches the estimated and actual power values. This close

correlation underscores the effectiveness of our approach in

providing accurate power estimates, which is vital for optimiz-

ing power management and improving the overall efficiency

of the SoCs.

VI. CONCLUSIONS

Our approach markedly improves the accuracy and robust-

ness of the Blind Power Identification (BPI) technique by

employing DBSCAN for the optimal initialization of Non-

negative Matrix Factorization (NMF), thereby mitigating its

sensitivity to variations in datasets and outliers. Our compre-

hensive simulations have shown that the proposed approach

provides superior accuracy in fine-grain power estimation

across different multicore processor floorplans, including both

homogeneous and heterogeneous architectures. Specifically,

error rates in a four core processor were reduced by 67%
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Fig. 8. The proposed BPI algorithm was validated using the HotSpot simulator
based on the heterogeneous floorplan

compared to conventional BPI techniques and by 24% com-

pared to the BPISS method. Future work could focus on

integrating the proposed approach with thermal management

and power control techniques, such as dynamic voltage and

frequency scaling (DVFS) and thermal throttling, to create

a comprehensive solution for managing power and thermal

behavior in SoCs. Additionally, our approach can be combined

with security techniques to identify malicious attacks based on

thermal behavior.
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