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Abstract—Fine-grained power estimation in multicore Systems
on Chips (SoCs) is crucial for efficient thermal management. BPI
(Blind Power Identification) is a recent approach that determines
the power consumption of different cores and the thermal model
of the chip using only thermal sensor measurements and total
power consumption. BPI relies on steady-state thermal data
along with a naive initialization in its Non-negative Matrix
Factorization (NMF) process, which negatively impacts the power
estimation accuracy of BPI. This paper proposes a two-fold
approach to reduce these impacts on BPI. First, this paper
introduces an innovative approach for NMF initializing, i.e.,
density-oriented spatial clustering to identify centroid data points
of active cores as initial values. This enhances BPI accuracy by
focusing on dense regions in the dataset and excluding outlier
data points. Second, it proposes the utilization of steady-state
temperature data points to enhance the power estimation accu-
racy by leveraging the physical relationship between temperature
and power consumption. Our extensive simulations of real-world
cases demonstrate that our approach enhances BPI accuracy
in estimating the power per core with no performance cost.
For instance, in a four-core processor, the proposed approach
reduces the error rate by 76% compared to BPI and by 24%
compared to the state of the art in the literature, namely, Blind
Power Identification Steady State (BPISS). The results underline
the potential of integrating advanced clustering techniques in
thermal model identification, paving the way for more accurate
and reliable thermal management in multicores and SoCs.

Index Terms—Power Estimation, Blind Power Identification,
Thermal Estimation

I. INTRODUCTION

As the pace of Moore’s law decelerates, designers have
sought alternative design methodologies, which led to the
development of heterogeneous multicore architectures and the
incorporation of specialized hardware units into a single chip,
also known as Systems on Chip (SoCs) [1], [2]. However,
this advancement has introduced challenges in thermal man-
agement, power consumption, and energy efficiency [1]. The
increased power density coupled with constrained cooling
options in SoCs has led to significant performance bottle-
necks [3], [4].

Accurately estimating the power consumption of each core
in a multicore processor is critical for effective thermal
management and performance optimization. Precise power
estimation improves the efficiency of dynamic voltage and
frequency scaling (DVFS) and thermal throttling, maintaining
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safe temperature limits and enhancing processor reliability
and lifespan. For instance, the Running Average Power Limit
(RAPL) interface allows applications to measure power con-
sumption [5]. However, these measurements are generally
coarse-grained, providing only the overall power consumption
of all cores, uncore units, and total package power. Inaccurate
estimations can cause thermal hotspots, suboptimal perfor-
mance, reduced lifespan, and increased cooling costs due to the
need for additional cooling mechanisms [6]-[8]. Therefore, it
is crucial to develop techniques and tools that enable fine-
grained profiling of existing SoCs and the software they
operate. This step is foundational for implementing effective
power and thermal management strategies and designing next
generation SoCs.

Blind Power Identification (BPI) techniques are used for
managing power consumption and thermal behavior in mul-
ticore SoCs in cases where detailed pre-silicon models are
not available [6], [7]. These methods use statistical or ma-
chine learning approaches to infer power usage and heat
generation from observable data like total power consumption
and thermal sensor readings. However, BPI performance is
highly dependent on the model initial conditions, leading
to significant accuracy and robustness variability [6], [7],
[9]. This sensitivity poses challenges in environments where
precise thermal management is vital, such as SoCs used in
mobile applications. The variability step from Non-negative
Matrix Factorization (NMF) [10], [11] used to decompose
aggregated sensor data into distinct thermal resistance and
power matrices, essential for managing thermal outputs in
multicore processors. However, NMF heavily relies on initial
values, with traditional initialization methods often being too
sensitive, resulting in inconsistent results and poor model
accuracy.

This paper presents an innovative approach for initializing
NMF, crucial for BPI in multicore SoCs. By employing
density-based spatial clustering of applications with noise
(known as the DBSCAN clustering technique) [12], [13], our
approach identifies cluster centroids from dense regions in
the initial thermal data to be used as starting points NMF.
This approach minimizes the impact of outliers and ensures
NMF is initialized with optimal points from the main dataset,
thereby enhancing robustness. Furthermore, leveraging steady-
state temperatures for initialization improves the accuracy of
power estimation by reflecting the true thermal behavior of
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the system. Our extensive simulations demonstrate that this
approach significantly improves the precision of estimated
power per core while maintaining computational efficiency.

The rest of this paper is organized as follows. Sections II
and III review related work and provide relevant background
on thermal and power modeling. Section IV introduces our
proposed approach. Section V discusses the results obtained
from our simulations, comparing the accuracy and efficiency
of our method against existing techniques. Finally, Section VI
concludes the paper.

II. RELATED WORK

Numerous studies have explored different techniques for
modeling SoCs thermal and power aspects [6], [7], [9], [14],
[15]. These approaches typically employ a standard approach,
aiming to discern the state space model connecting tempera-
ture and power according to Eqn. 1.

T,(k) = AT.(k — 1) + BP(k). (1)

In this model, T,.(k) and P(k) represent vectors denoting
the temperature and power levels of SoC units at time k,
respectively, the matrices A and B encapsulate the physical
relationship between power and temperature. While matrix A
is the thermal conductance matrix that illustrates the system’s
natural response in the absence of power input, matrix B
describes the system’s forced response as a function of thermal
capacitance and conductance. Both matrices A and B are
square, and their dimensions correspond to the number of
power sources.

The power sources align with the hardware units for
which thermal measurements are available. All the previous
studies [6], [7], [9], [14], [15] aim to determine the power
consumption of these units. Developing state space modeling
matrices allows for accurate estimation and prediction of
power consumption, mirroring the precision of the available
thermal measurements.

The state space model presented in Eq. 1 originates from the
heat diffusion equation [16]. This equation models the inter-
action between power and thermal properties by incorporating
factors such as thermal conductivity, material density, and
specific heat capacity. The formulation of the model in Eqn. 1
involves first performing a spatial discretization of the heat
diffusion equation, followed by temporal discretization [6], [7].

The difficulty in obtaining detailed power measurements has
resulted in only a limited number of studies that offer valuable
information about the power consumption and efficiency of
various SoC hardware units under the strain of different
software applications [6], [7], [9], [14], [15].

In this paper, we focus on a critical algorithm, BPI [6],
[7], [9], which identifies thermal models and fine-grain power
consumption of a chip using only data from thermal sensors
and overall power consumption measurements. The accuracy
of the algorithm estimations is aimed to be improved while
maintaining the runtime. Reda et al. [6] proposed the first
version of BPI, which utilized the fast Independent Component

Analysis (ICA) algorithm [17] to initialize NMF by providing
an initial guess of the factors that enhance convergence and
performance by ensuring better separation of the underlying
sources. Reda et al. [7] proposed an enhanced BPI version
with a different NMF initialization, utilizing the identity matrix
for the thermal resistance matrix, as both matrices have their
maximum values along the main diagonal. Said et al. [9]
introduced BPISS, an enhancement that initializes the thermal
resistance matrix with the average steady state temperatures:
non-diagonal elements for stressed cores and diagonal ele-
ments for cores with similar thermal characteristics. The core
steady state temperature is used if no similar cores are found.
The power matrix is initialized by dividing the total power
based on each core temperature ratio by the sum of all core
temperatures. This method better reflects the system physical
characteristics and reduces error compared to identity matrix
initialization.

III. BACKGROUND

A. Blind Power Identification Method

The goal of the blind estimation problem is to determine
the matrices A and B for a specific SoC, along with the
power profiles P(k) in Eq. 1. The BPI algorithm operates
in two distinct phases, the initial phase is offline learning,
where the system parameters A, B, and R are estimated using
steady state measurements, T, and the total power at each
interval, Pr_(k). This foundational phase sets the groundwork
for the subsequent phase. The second phase is online learning
that occurs during runtime using the runtime dataset, 7,.(k),
and Pr (k). At this stage, each core power consumption
is estimated dynamically, enabling real-time adjustments and
optimizations. The offline training step is required to be
performed just once for each SoC to establish the modeling
matrices.

To compute the B matrix in the first phase, determining
the R matrix (the thermal resistance matrix) in the steady-
state scenario is required [7]. In this scenario, the steady-state
implies that 7,.(k) = T,.(k — 1). Thus, from the equations
provided:

T, ~ AT, + BP,, (2)
(I — AT, ~ BP;, (3)
T,~ (I —A)~'BP,, (4)
T. ~ RP,. (5)

These equations collectively demonstrate how T (steady-
state temperature) is estimated as a function of power source
inputs P, using matrices A, B, and R. To derive the R
matrix, NMF is utilized to extract R and P from steady-state
measurements 7 and Pr, (k). Our proposed algorithm aims
to determine the optimal initialization for NMF to achieve
accurate power estimation for each core, P(k).
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Thermal Map in Kelvin for a 2x2 Unit Chip
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Fig. 1. A thermal map for a 2 X 2 chip (in Kelvin), where the bottom right
unit is activated.

IV. THE PROPOSED APPROACH
A. BPI Sensitivity to Initialization and Outliers

NMF, central to BPI, is highly sensitive to initialization and
thermal outlier data. NMF’s sensitivity arises from solving a
non-convex optimization problem with multiple local minima,
where initial values for R and P; significantly influence the
convergence point, affecting factorization quality and inter-
pretability. Random initialization of these matrices often leads
to varying results, necessitating an appropriate initialization
method tailored to this specific problem [11], [18].

NMF is also sensitive to thermal outliers because outliers
distort factorization, leading to poor matrix approximation and
degraded feature quality. Outliers increase reconstruction error
by fitting anomalous data, reducing factorization accuracy.
They slow NMF convergence, requiring more iterations or
causing premature convergence to sub-optimal solutions. Ad-
ditionally, outliers imbalance weight distribution in factorized
matrices, resulting in skewed representations of the data’s
underlying structure [19]. The NMF initialization is performed
once during the offline phase of BPI to determine the SoC
matrices A and B.

B. The Proposed Initialization Approach

The thermal resistance matrix, R, shows how the heat
generated in one core affects the temperature of the same and
other cores. As illustrated in Figure 1, a 2 X 2 core chip will
have a 4 x 4 R matrix, with the element r;; showing the
thermal relationship between cores ¢ and j. When a core is
activated, the highest temperature points cluster around it. Our
method involves clustering thermal regions and initializing the
R matrix with their centroids, which are the most influential
points. From Eqn. 5, Ty = RP,, where R directly relates to
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T, indicating that any changes in P will alter Ts. However,
in a steady state, where T is fixed, any variation in R will
correspondingly adjust the P matrix and vice versa.

Given R’s significant relationship with temperature, ini-
tializing the R matrix with the optimal point from the T
dataset can lead to more accurate convergence of the NMF
algorithm towards the true values. Additionally, every point in
the original dataset impacts the elements of the R matrix. To
effectively manage this, we will employ a robust clustering
algorithm, DBSCAN, to categorize the original data into clus-
ters containing the densest points and automatically eliminate
outliers. This preprocessing step will aid in the initialization
of the R matrix. We will also set the initial state of P to match
the original steady-state temperature matrix 7', allowing R to
adjust P either upwards or downwards from this baseline to
achieve optimal values.

DBSCAN is highly efficient in identifying clusters of vari-
ous shapes and sizes within a dataset, as illustrated in Fig. 2. It
typically uses the Euclidean distance to measure the distance
between points:

(6)

where p and ¢ are two points in an n-dimensional space. A
core point is a point p with at least MinPts points within a
distance ¢ from it (including p):

IN.(p)| > MinPts )

where N, (p) is the set of points within e distance from p. A
point g is directly density-reachable from a point p if p is a
core point and ¢ is within the distance € from p:

q € Ne(p) ®)

A point ¢q is density-reachable from p if there is a chain of
points p1, pa, ..., p, wWhere p; = p and p,, = ¢, and each point
in the chain is directly density reachable from the previous
point.

A core point has at least a minimum specified number of
neighboring points (MinPts) within a given radius (e), central
to a cluster. A border point has fewer neighbors than MinPts
within € but is near a core point, typically on the cluster’s
periphery. Noise points do not qualify as either core or
border points and are generally considered outliers. DBSCAN
segments data based on point density within a specified radius,
starting with a random core point and recursively exploring all
density-reachable points to expand the cluster. This process
continues until all potential clusters are identified. DBSCAN
excels in handling noise and discovering clusters with arbi-
trary shapes, which many clustering algorithms struggle with.
However, its effectiveness largely depends on the parameters
e and MinPts, making proper selection of these parameters
crucial for accurate clustering outcomes.

To estimate the optimal e for DBSCAN, the k-distance graph
is used, which plots the distance to the k-th nearest neighbor
for each data point in descending order. The “elbow point”
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on this graph, where there is a significant change in slope,
indicates the optimal €, as shown in Fig. 3. This point signifies
a natural threshold between dense clusters and isolated points.
The detailed structure of the proposed approach is provided in
Algorithm algorithm 1.

Algorithm 1 Proposed Approach: Initialization with DB-
SCAN Clustering
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Fig. 4. The verification and testing flow of the proposed approach
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Fig. 5. The layout of the big.LITTLE+GPU SoC, utilized for testing the
proposed approach [22]

V. EXPERIMENTS AND RESULTS
A. Experimental setup

The effectiveness of the proposed approach is validated us-
ing the HotSpot thermal simulator [20], [21] for four different
floor plans described in Table I.

TABLE 1
THE FLOORPLANS WITH UNIT COUNTS, ARCHITECTURE TYPES, AND
POWER BUDGETS

Floorplans Units | Architecture Power Budget
2 X 2 mesh (FP1) 4 Homogeneous 60 W
2 X 4 mesh (FP2) 8 Homogeneous 60 W
4 x 4 mesh (FP3) 16 Homogeneous 60 W
Big LITTLE+GPU (FP4) 6 Heterogeneous 10 W

1:

Input: Steady-state temperature data T, Number of cores
n, Total power at each interval Pr_ (k)

Determine the optimal € using the k-distance graph.

Set MinPts to at least D + 1, where D is the number of
features.

Apply DBSCAN to T, to identify clusters and remove
outliers.

Initialize R with the centroids of the clusters.

Initialize P; using T after outlier removal.

Perform NMF with the proposed initialization.

Output: System matrices A, B, and R.

As depicted in Fig. 4, the HotSpot simulator receives per-
unit power traces from a given design layout and generates the
corresponding per-unit temperature traces. These temperature
outputs are then utilized as inputs by the proposed approach
alongside total power data to calculate the estimated per-
unit power. Finally, the accuracy of the proposed approach
is determined by comparing the initial per-unit power traces,
which were inputs to the HotSpot simulator, with the power
estimates generated by the proposed approach.

The proposed approach is compared with the original BPI
approach, which was the first to introduce BPI for fine-grain
power estimation. BPI relies on NMF to identify the B matrix.
However, the accuracy of the NMF output is sensitive to the
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initialization step, which in this case was performed based on
the identity matrix as an initial R matrix. Therefore, it is also
compared against another version of BPI [9] that improved the
initialization step by utilizing steady-state temperatures, which
is referred to as BPISS. Furthermore, the proposed approach is
validated on a heterogeneous architecture to demonstrate that
the proposed approach is robust in terms of both accuracy and
computation time when transitioning from a homogeneous to
a heterogeneous architecture that was depicted in Fig. 5.

B. HotSpot Simulation Results

Figure 6 presents a comparative analysis of power estima-
tion errors associated with two different approaches mentioned
in the related work: BPI and BPISS, and the proposed ap-
proach. The analysis is carried out on four different bench-
marks, detailed in Table I.

Prediction Accuracy: The proposed method consistently
outperforms both BPI and BPISS in terms of power estimation
accuracy across all tested benchmarks. In the case of FPI,
the proposed approach brings the error down to around 1.2%,
whereas BPI and BPISS exhibit higher errors of about 5%
and 3.8%, respectively. For FP2, the error is reduced to
approximately 3.5% with the proposed approach, which is
notably better than the 11.5% error for BPI and 9% for
BPISS. Similarly, for FP3, the error drops to around 0.9%, in
contrast to the 7.5% and 6% errors seen with BPI and BPISS,
respectively. Lastly, for FP4, our proposed method records an
error of roughly 1%, outperforming BPI’s (5.3%) and BPISS’s
(4.1%).

The improvement is particularly noticeable as the size of
the benchmark increases, indicating the scalability of the
proposed approach. The algorithm maintains a higher accu-
racy estimation rate when transitioning from homogeneous
to heterogeneous processors, demonstrating its robustness and
reliability in handling complex and larger architectures.

Figure 7 presents a comparative analysis of the runtime for
the three algorithms: BPI, BPISS, and the proposed approach
across the four benchmarks.

Runtime Analysis: The proposed approach generally shows
a lower runtime compared to BPISS and is comparable to BPI
in most benchmarks and helps reduce the overall computa-
tional complexity.

Improvement over Traditional Methods: Traditional BPI
methods exhibit slightly lower run times but suffer from
higher estimation errors, indicating a trade-off between speed
and accuracy. BPISS shows the highest runtime, increasing
computational overhead.

Scalability and Performance: Our proposed approach
scales well with increasing benchmark sizes, maintaining
efficient runtimes while handling larger and more complex
architectures. This scalability ensures that the algorithm can be
applied to more complex systems without a significant increase
in computational resources or time.

C. Comparison of Actual Power with Estimated Power

As depicted in Figure 8(a), illustrates the thermal mea-
surements for each of the cores over time for heterogeneous

@
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Fig. 6. Comparison of Power Estimation Errors Across Different Algorithms
and Benchmarks
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Fig. 7. Runtime Comparison of Different Algorithms Across Various Bench-
marks

processors (FP4). The temperatures fluctuate as the cores
experience varying states of stress and periods of idleness.
These temperature variations are crucial for understanding
the thermal dynamics and behavior of the processors under
different operational conditions.

Figures 8 provide a detailed comparison between the power
estimates derived from our proposed approach and the actual
power inputed to each core as simulated by HotSpot. This
comparison is essential to validate the accuracy and reliability
of the proposed approach in estimating power consumption.
The results demonstrate that the proposed approach closely
matches the estimated and actual power values. This close
correlation underscores the effectiveness of our approach in
providing accurate power estimates, which is vital for optimiz-
ing power management and improving the overall efficiency
of the SoCs.

VI. CONCLUSIONS

Our approach markedly improves the accuracy and robust-
ness of the Blind Power Identification (BPI) technique by
employing DBSCAN for the optimal initialization of Non-
negative Matrix Factorization (NMF), thereby mitigating its
sensitivity to variations in datasets and outliers. Our compre-
hensive simulations have shown that the proposed approach
provides superior accuracy in fine-grain power estimation
across different multicore processor floorplans, including both
homogeneous and heterogeneous architectures. Specifically,
error rates in a four core processor were reduced by 67%
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8. The proposed BPI algorithm was validated using the HotSpot simulator

based on the heterogeneous floorplan

compared to conventional BPI techniques and by 24% com-
pared to the BPISS method. Future work could focus on
integrating the proposed approach with thermal management
and power control techniques, such as dynamic voltage and
frequency scaling (DVES) and thermal throttling, to create

a C

omprehensive solution for managing power and thermal

behavior in SoCs. Additionally, our approach can be combined
with security techniques to identify malicious attacks based on
thermal behavior.
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