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function. This method is highly parameter-sensitive and could pro-

duce non-physical results if the narrow band size and the blending

function are improperly chosen.

Why do the various classical solid-�uid coupling strategies (e.g.,

MPM [Jiang et al. 2016], IBM [Peskin 2002], variational [Batty et al.

2007], monolithic [Robinson-Mosher et al. 2008], etc.) not �t within

the �ow-map framework? We speculate three potential reasons: (1)

Flow-map coupling requires a uni�ed representation of both solid and

�uid. In other words, the solid representation and discretization

must be identical to their �uid counterparts, such as a �ow map

with the same initial and �nal time stamps de�ned on the same

Eulerian grid, which signi�cantly limits the scope of solid models

that can be chosen to accommodate complex solid-�uid interactions.

In particular, the signi�cance of devising a long-range �ow map

model for solid simulation remains unclear due to the less connected

nature between �ow advection and solid dynamics. (2) Flow-map

coupling requires exchangeable physical quantities between solid and

�uid. Though this was not a problem in conventional solid-�uid

interaction frameworks (e.g., exchanging velocity or momentum via

G2P or P2G operations in traditional MPM), modern �ow map meth-

ods typically evolve gauge variables (e.g., impulse [Cortez 1996],

vorticity [Cottet et al. 2000], and other gauges [Saye 2016, 2017]) in-

stead of �uid velocities, which cannot be directly operated with solid

velocities. For instance, we cannot naively conduct a P2G operation

across the solid-�uid interface with �uid particles carrying impulses

and solid particles carrying velocities. (3) Adding an external force to

a �ow-map model remains an open problem. Although simple forces

such as gravity can be incorporated into existing �ow-map models,

their physical accuracy is less grounded. Local forces, such as mo-

mentum exchange, remain unclear regarding how they should be

transferred from solid to �uid in a �ow-map system.

We propose a novel solid-�uid interaction framework based on

�ow map models by addressing the abovementioned challenges.

Our key idea is to model both solid and �uid as a uni�ed forward

�ow map on particles: each �uid particle represents a long �ow

map governed by impulse �uid dynamics, while each solid particle

represents a short �ow map governed by elastic solid dynamics.

Speci�cally, we restrict the solid �ow map to a single time step to

adapt an arbitrary conventional solid simulation model (e.g., MPM

or XPBD). The �uid and solid �ow maps are coupled based on two

key mechanisms: (1) we implement an impulse-to-velocity transfer

mechanism to unify the physical quantities exchanged between

solid and �uid particles; (2) we implement a particle path integral

mechanism to accurately accumulate both pressure and coupling

forces along each �ow-map trajectory. The combination of these

two mechanisms, in conjunction with the standard particle-grid op-

erations and incompressibility projections, synergistically enables

a versatile coupling framework to exchange information between

particle �ow maps with di�erent lengths and governing physics,

which further accommodates the adaptation of various traditional

coupling models into �ow map methods. In our implementation,

we demonstrate two examples of MPM and IBM coupling by inte-

grating both into a hybrid Eulerian-Lagrangian �uid simulator on

particle �ow maps. Thanks to the inherent advantage of preserving

vortical structures in our �owmap model, these �ow-map-enhanced

coupling systems produce vortex-solid interaction simulations that

outperform traditional methods in terms of both physical accuracy

and visual complexity. In our experiments, we implemented a di-

verse set of benchmark tests and simulation examples, ranging from

leaves falling and �sh swimming to complex vortex shedding behind

cloth, hair, and combustion processes, demonstrating our frame-

work’s versatility and e�cacy in tackling complex vortex-object

interaction simulations.

We summarize our main contributions as follows:

• A uni�ed particle �ow-map representation with di�erent

lengths and governing equations for �uid and solid;

• A reformulated impulse gauge �uid model to enable solid-

�uid momentum exchange on particles;

• A path integral approach on particle �ow maps to accumulate

coupling forces;

• A versatile framework to accommodate traditional solid-�uid

coupling mechanisms on �ow-map models.

2 Related Work

2.1 Flow Map & Impulse Fluid

Initially known as the method of characteristic mapping (MCM),

the concept of �ow maps was �rst introduced by Wiggert and Wylie

[1976]. By reducing the di�usion error caused by semi-Lagrangian

advection, various attempts in the graphics community were made

to adapt this method in �uid simulation [Hachisuka 2005; Qu et al.

2019; Sato et al. 2018, 2017; Tessendorf 2015]. In Covector Fluid (CF)

[Nabizadeh et al. 2022], �owmaps were �rst introduced to aid the ad-

vection of the covector variable, achieving state-of-the-art vorticity

preservation e�ects. The impulse variable, a form of covector, was

�rst introduced by Buttke [1992]. By rewriting the incompressible

Navier-Stokes Equations through the use of a gauge variable and

gauge transformation [Buttke 1992, 1993; Oseledets 1989; Roberts

1972], it allows for the gauge freedom to be designed for speci�c

applications [Buttke 1993; Buttke and Chorin 1993; Cortez 1996;

Saye 2016, 2017; Summers 2000; Weinan and Liu 2003]. This concept

was revisited in computer graphics by Feng et al. [2022] and Yang

et al. [2021]. Neural Flow Map (NFM) [Deng et al. 2023] further

enhances the �ow-map accuracy with a neural bu�er. Recently,

Particle Flow Map (PFM) [Zhou et al. 2024] and Impulse PIC (IPIC)

[Sancho et al. 2024] used a hybrid method with particles, and [Li et al.

2024] extended the covector to pure Lagrangian representations.

In [Cortez 1996; Saye 2016, 2017; Summers 2000], attempts to

couple impulse with solids were made. However, these methods

were limited by the need to redesign the gauge variable for di�erent

solids [Saye 2016, 2017] and could not be adapted to the advection

scheme using �ow maps [Cortez 1996; Summers 2000]. Our method

aims to use PFM to design a general solid-�uid coupling scheme for

impulse �uids within the �ow map framework.

2.2 Full Eulerian Coupling

For full Eulerian methods, computation time bene�ts arise from

both solid and �uid being treated on a single �xed background

grid. Such methods include the deformation gradient-based method

[Liu and Walkington 2001] and initial point set (IPS) [Dunne 2006].

Recently, the reference map technique (RMT) [Kamrin and Nave

2009; Kamrin et al. 2012; Rycroft et al. 2020] has attracted wide
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attention and was later extended to couple rigid bodies with �uid

[Wang et al. 2022]. As for pure Eulerian treatment in graphics, Teng

et al. [2016] allows for larger time steps in pure Eulerian solid-�uid

coupling by setting up a semi-implicit coupling system. Concerning

�ow maps, by noting the correspondence between the �ow map and

the deformation gradient used in the elastic solid simulation, RMT

tries to incorporate them together on Eulerian mesh and bridge the

two with a Heaviside function but is limited by the requirement of

a narrowband blending scheme.

2.3 Full Lagrangian Coupling

Full Lagrangian methods use Lagrangian elements in both the �uid

and solid domains. Representatives of this method in computational

physics include particle FEMmethods [Becker et al. 2015; Cremonesi

et al. 2020; Idelsohn et al. 2008] and, later, the combination of MPM

and FEM [Lian et al. 2011a, 2012, 2011b, 2014]. As for research

in graphics, it was initially explored in [Keiser et al. 2005; Müller

et al. 2004]. Later, Klingner et al. [2006] proposed using a body-

confronting mesh for coupling. Subsequent works proposed a uni-

�ed framework representing both solid and �uid with Lagrangian

elements [Clausen et al. 2013]. Coupling SPH with deformable has

also been explored [Akinci et al. 2013; Solenthaler et al. 2007] but

is limited to relatively simple simulation settings. In [Akbay et al.

2018], authors proposed an extended partition method (XPM) and

demonstrate this using Lagrangian solid coupling with an Eulerian

�uid solver on the grid and a Lagrangian �uid solver like SPH.

2.4 Mixed Lagrangian-Eulerian Coupling

In mixed Lagrangian-Eulerian mesh methods, solids are represented

by Lagrangian markers coupled with �xed Eulerian background

meshes. Representatives of such methods include the immersed

boundary method (IBM) [Huang and Sung 2009; Mori and Peskin

2008; Peskin 1972, 2002]. Based on IBM, the immersed �nite element

method [Liu et al. 2007, 2006; Shimada et al. 2022], immersed inter-

face method [Zhao et al. 2008], and immersed continuum method

[Wang 2006, 2007] were proposed. Other improvements on IBM

methods have been made, such as monolithic projection methods

[Wang et al. 2020] and combining marker particles with �nite vol-

ume expression [Shimada et al. 2022]. See [Huang and Tian 2019] for

more details. In the graphics community, since the pioneering work

of Carlson et al. [2004], Génevaux et al. [2003], and Guendelman et al.

[2005], various works in this direction have been explored. Batty

et al. [2007] and Ng et al. [2009] treated coupling as an energy min-

imization form, Robinson-Mosher et al. [2008], Robinson-Mosher

et al. [2009] and Robinson-Mosher et al. [2011] perform implicit cou-

pling and eables the free-slip boundary conditions. Zari� and Batty

[2017], Takahashi and Batty [2020] and Takahashi and Batty [2022]

use the cut-cell technique combined with a properly constrained

global system for further improvement. As for hybrid methods like

MPM [Stomakhin et al. 2013], it comes naturally with non-slip

boundary conditions for coupling, and further research extends it to

enable rigid body coupling [Hu et al. 2018] and the free-slip bound-

ary conditions [Fang et al. 2020]. Exploration of hybrid methods

in incorporating �ow maps was present in [Shimada et al. 2021].

Authors improved RMT to a hybrid method with marker particles to

Table 1. Summary of important notations used in the paper.

Notation Type De�nition

∗
5 vector/matrix �uid property

∗
B vector/matrix solid property

∗
= vector/matrix �uid properties near solid (only

used in MPM coupling)

∗C scalar/vector/matrix quantities evaluated at time C

x vector particle / mesh vertices location

F[2,0] matrix Forward Jacobian from 2 to 0

T[0,2 ] matrix Backward Jacobian from 0 to 2

C function constraint in XPBD simulation

u vector velocity

∇u matrix velocity gradient

m vector impulse

f vector force

? scalar pressure

� vector pressure correction bu�er

� vector external force bu�er

= scalar reinitialization steps

better track the solid interface. However, the main problem of such

a method is that �uid does not directly bene�t from the advection

using a �ow map and, therefore, cannot achieve simulation quality

as shown in impulse-based �uid methods.

2.5 Coupling with Thin Structures

Using the coupling techniques mentioned above, di�erent scales of

coupling phenomena have also been studied. In particular, coupling

with thin structures is of interest and examples include coupling

hair-�uid coupling [Fei et al. 2017], fabric-�uid coupling [Fei et al.

2018], coupling fabric with non-Newtonian �uid [Fei et al. 2019],

coupling parachute/cloth with �uid [Wang et al. 2020], insect �ying

and �sh swimming [Borazjani and Sotiropoulos 2010; Cui et al. 2018;

Tian et al. 2014], coupling uniform �ow with �ags [Uddin et al. 2013;

Wang and Tian 2019], coupling free-surface water with thin shells

[Robinson-Mosher et al. 2008] and also combustion between �re

and paper or cloth [Losasso et al. 2006]

3 Physical Model

Naming Convention. Wewill adhere to the naming conventions in

Table 1. Speci�cally, we will use superscripts for the type a quantity

belongs to. For example, ∗5 denotes �uid-related quantities, and

∗B denotes solids-related ones. We will use subscripts to indicate

the evaluation time of a quantity, such as ∗C for values evaluated at

time C . Similarly, ∗[0,2 ] represents a time interval from 0 to 2 and is

used in �ow map notations to indicate the duration over which the

mapping occurs, with 0 and 2 as starting and ending time.
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11 Conclustion, Limitation, and Future Work

In conclusion, we present a uni�ed representation of solid and �uid

dynamics using particle �ow maps, where a single-step �ow map is

applied for solid simulation to integrate existing elastic body simula-

tions and a longer �ow map for �uids to preserve vortex structures.

By coupling these two maps through an impulse-to-velocity transfer

mechanism and managing force accumulation via particle path inte-

grals, we have developed a robust coupling framework that adapts

traditional solid-�uid coupling techniques to �ow map models, as

demonstrated in our MPM and IBM examples.

The main limitation of our method is that the current framework

relies on a weak coupling mechanism that depends on explicit force

exchange between solid and �uid, rather than utilizing more sophis-

ticated implicit momentum-conserving coupling schemes, such as

the variational form [Batty et al. 2007] and monolithic projection

[Robinson-Mosher et al. 2008]. These methods require a large sys-

tem that implicitly includes the force exchange when formulating

the system matrix. Integrating our method with these approaches

would necessitate reformulating the two integrals in Eq. 10 into an

implicit system over the �ow map process to accommodate mono-

lithic coupling. This system reformulation presents an intriguing

avenue for future work, particularly for enabling the coupling be-

tween complex vortical structures and sti� systems such as rigid

bodies and articulated bodies within �ow map methods. Speci�-

cally, we are motivated to further adapt our �ow-map framework to

projection-based immersed boundary methods (e.g., see [Guermond

et al. 2006; Taira and Colonius 2007; Wang and Eldredge 2015; Wang

et al. 2020]) to address the interactions between �ow maps and

solids with hard constraints.

Another limitation of our method is that our pipeline is con�ned

to the framework of particle-based �ow-map representation for

the �uid component, which requires maintaining a large set of

�ow-map particles to bu�er the coupling forces and transfer �ow-

map information between particles and the background grid for

the Poisson solve. Reducing the cost of maintaining these particles

could potentially decrease the computational costs for long-range

�ow maps.

On another front, it would be interesting to explore purely Euler-

ian solid-�uid coupling methods based on �ow maps (e.g., by ex-

tending the Eulerian solid-�uid interaction work [Teng et al. 2016]

to a �ow map framework), given the progress made with their La-

grangian counterparts. Additionally, our current system is focused

on non-slip boundary conditions. It is unclear how to enforce other

solid-�uid boundary conditions, such as non-penetration conditions,

within a �ow-map perspective. Motivated by progress in neighbor-

ing areas such as MPM ([Fang et al. 2020]), it would be valuable

to explore di�erent types of boundary conditions for solid-�uid

coupling systems using �ow maps.

Furthermore, our current approach does not support free-boundary

�ow. It would be intriguing to develop solid-�uid interaction frame-

works that can simulate large-scale open-water phenomena (e.g.,

[Huang et al. 2021; Wretborn et al. 2022; Xiong et al. 2022]) with the

�ow-map-created vortical details around solid boundaries. The main

challenge for the current approach is the di�culty of solving the

impulse stretching terms for particles near the free surface (e.g., as

pointed out by [Sancho et al. 2024]). This issue remains a signi�cant

gap for �ow-map methods due to the di�culty of handling impulse

stretching near a free surface.

Overall, our future work aims to tackle these problems by facili-

tating an implicit formulation for two-way coupling between solids

and free surfaces, and multi-phase �ow map �uids with di�erent

types of boundary conditions.
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A Implementation Details

A.1 Implementation detail for MPM

We explain our implementation for MPM solid substeps and remov-

ing �uid particles in solid regions. Solid substeps need to be coupled

with �uid, and �uid particles in solid regions must be removed dur-

ing reinitialization for �ow maps and �uid particles. Therefore, we
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Algorithm 4 Coupling with MPM

1: for : in total steps do

2: Do reinit if needed based on Alg. 7

3: Compute ΔC with u8 and the CFL number;

4: Compute ΔCB with solid parameter and the sound CFL;

5: Decide the number of substeps for solid

6: Estimate umid with Alg. 5

7: March x
5
2 , T

5

[0,2 ]
F

5

[2,0]
with umid and ΔC ;

8: March the other half MPM substep with Alg. 6

9: G2P uBD1 to get uB2

10: Get m
5
2 and m=

2 using Eq. 15

11: Compute u
5 ∗
2 using �

5

1
, �

5

1
, umid, m

5
2 with Eq. 15.

12: Compute u=∗2 using �=
1
, �=

1
, umid, m

=
2 with Eq. 15.

13: Compute ∇u
5
2 ∇u

=
2 using umid

14: Compute u8 by P2G using x
5
2 , x

=
2 , x

B
2 , u

5
2 , u

=
2 , u

B
2 , ∇u

5
2 , ∇u

=
2 ,

F B

15: Add gravity on u8 if needed

16: Add viscosity on u8 if needed

17: P2G density carried by �uid and solid particles

18: Solve Poisson

19: Update �
5
2 , �

=
2 by adding external force to bu�er following

Eq. 15.

20: Update �
5
2 , �

=
2 by adding pressure correction to bu�er fol-

lowing Eq. 15.

21: end for

Algorithm 5Midpoint MPM

1: March half MPM substep with Alg. 6

2: March x 5 with u8 and 0.5ΔC and get u 5 , ∇u 5

3: G2P uBD1 to u= and uB and compute ∇u=

4: P2G using x 5 , x= , xB , u 5 , u= , uB , ∇u 5 , ∇u= , F B

5: P2G density carried by �uid and solid particles

6: Solve Poisson and get umid

Algorithm 6MPM substep

1: uBD1 ← u

2: for substeps do

3: march x= , xB , T= , F= , T B , F B with uBD1
4: G2P DBD1 to u= and uB and compute ∇u=

5: P2G using x= , xB , u= , uB , ∇u= , F B

6: end for

A.2 Implementation detail for IBM

A.2.1 Marching solid by XPBD. Except for the 2D validation tests,

where we used a mass-spring system for our solid model, we employ

XPBD to simulate solids for better visual e�ects. We applied the

edge length and bending constraints as outlined in [Bender et al.

2014]. We used an iteration count of 50 for solving XPBD constraints

in all our simulations, with solid ΔCsolid set to 0.0005 for stability.

Algorithm 7 Reinit for coupling MPM

1: 9 ← : (mod =!);

2: ℎ ← : (mod =( );

3: if 9 = 0 then

4: Uniformly distribute particles;

5: Mask out particles in solid

6: Reinitialize m5 for all �uid particles x 5 ;

7: Reinitialize T 5 , F 5 to identity

8: ;

9: Empty stored pressure correction bu�er �5

10: Empty stored external force bu�er �5

11: end if

12: if ℎ = 0 then

13: Resample near solid particles using solid normal

14: Reinitialize m= for all near solid �uid particles x= ;

15: Reinitialize T= , F= to identity

16: ;

17: Empty stored pressure correction bu�er �=

18: Empty stored external force bu�er �=

19: end if

One caveat to note is that we use substeps for solid calculations.

Therefore, the force that is spread to the grid velocity is calculated

in an explicit fashion, as follows:

f = d
u2 − u1

ΔC
(31)

Algorithm 8 Reinit for coupling IBM

1: 9 ← : (mod =!);

2: if 9 = 0 then

3: Uniformly distribute particles;

4: Reinitialize mB for all �uid particles x 5 ;

5: Reinitialize T 5 , F 5 to identity

6: ;

7: Empty stored pressure correction bu�er �5

8: Empty stored external force bu�er �5

9: end if

A.2.2 Pseudo Code for Coupling with IBM. Below we show the full

pseudo-code for coupling covector/impulse �uid with IBM under the

general pipeline we proposed in Algorithm 1. The only modi�cation

required is to use XPBD to solve for solid behaviors.
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Algorithm 9 Coupling with IBM

1: for : in total steps do

2: Do reinitialization if needed based on Alg. 8

3: Compute ΔC with u8 and the CFL number;

4: Determine ΔCB ;

5: Decide the number of substeps for solid

6: Estimate umid with Alg. 10

7: March x 5 , T
5

[0,2 ]
F

5

[2,0]
with umid and ΔC ;

8: March the other half IBM substep with Alg. 11

9: Get m2 using Eq. 15

10: Compute u
5 ∗
2 using �1 , �1 , umid, m2 with Eq. 15.

11: Compute ∇u
5
2 using umid

12: Compute u8 by P2G using x
5
2 , u

5
2 , ∇u

5
2

13: Add gravity on u8 if needed

14: Add viscosity on u8 if needed

15: Compute force fB with Update d
(uB

2−u
B
1
)

ΔC
16: Spread fB with IBM kernel to u8
17: Solve Poisson

18: Get f 5 on �uid particles using G2P

19: Update �2 by adding external force to bu�er as Eq. 15.

20: Update �2 by adding pressure correction to bu�er as Eq. 15.

21: end for

Algorithm 10Midpoint IBM

1: Get solid velocity using IBM kernel and u8
2: March xB with Alg. 11

3: Compute force fB with Update d
(u1+0.5ΔC−u1 )

ΔC
4: Get u∗

mid
with RK4 semi-Lagragian update.

5: Spread force with IBM kernel to u∗
mid

6: Solve Poisson to get umid

Algorithm 11 IBM Solid substep

1: for substeps do

2: if With XPBD then

3: Update U based on ΔC for each C

4: Predict solid location xB with forward Euler

5: Solve with XPBD iterations and get updated xB

6: Update uB

7: else

8: Explicit Euler solving spring-mass system to update xB

9: end if

10: end for
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