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Abstract—Modern multicore System-on-Chips (SoCs) include
hardware monitoring mechanisms to measure total power con-
sumption, but these aggregate measurements are insufficient
for fine-grained thermal and power management. This paper
introduces an improved Clustering Blind Power Identification
(ICBPI), an approach to improve the sensitivity and robustness
of the Blind Power Identification (BPI) approach, which identifies
the power consumption of different cores and the thermal model
of an SoC using only thermal sensor measurements and the total
power consumption. The proposed approach enhances BPI’s ini-
tialization step (specifically the non-negative matrix factorization,
which is crucial for BPI accuracy) by incorporating density-based
spatial clustering of of noise applications (DBSCAN). This is
done to maximize the physical relationship between the temper-
ature and power consumption, ensuring more accurate power
estimates. Our simulations demonstrate two tasks to validate
the proposed approach. The first evaluates the power accuracy
per core on four different multicores, including a heterogeneous
processor, showing that ICBPI significantly improves accuracy
without overheads. For example, in a four-core SoC, error rates
are reduced by 77.56% compared to vanilla BPI and by 68.44%
compared to the state-of-the-art approach called BPISS. The
second task focuses on enhancing the precision and robustness
of the detection and localization of malicious thermal sensor
attacks in the heterogeneous processor, demonstrating that ICBPI
is capable of enhancing security of multicore SoCs.

Index Terms—Blind Power Identification, Dynamic Thermal
Management, Hardware Security, Multicore SoCs.

I. INTRODUCTION

As the progress of Moore’s law slows down, designers have
turned to alternative design methodologies. This shift has led
to the development of heterogeneous multicore architectures
and the integration of specialized hardware units into a single
chip, known as System-on-Chips (SoCs) [1]. However, these
advances have brought about challenges related to thermal
management, power consumption, and energy efficiency [2],
e.g., increased power density and limited cooling options in
SoCs have resulted in significant performance bottlenecks [3].
Consequently, dynamic Thermal Management (DTM) tech-
niques have become essential in all mobile SoCs to reduce
and control high operating temperatures [4].

Accurate estimation of the power consumption of each
core in a multicore SoC is critical to effective thermal and

The authors would like to thank the following funding agencies; NSF grants
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power management [5], [6]. However, modern processors lack
fine-grained power sensors. For example, the running average
power limit (RAPL) interface allows applications to measure
power consumption [7]. However, these measurements are
generally coarse-grained, providing only the overall power
consumption of all cores, uncore units, and total package
power. Fine-grained power estimation improves the efficiency
of dynamic voltage and frequency scaling (DVFS) and thermal
throttling, maintaining safe temperature limits and enhancing
processor reliability, lifespan, and cooling costs [5], [8].

Blind Power Identification (BPI) is a recent approach [5]
that can simultaneously estimate the fine-grained power con-
sumption of each core in multicore SoCs and identify the
thermal model of the chip using only thermal sensor measure-
ments and total power consumption data. The effectiveness of
the BPI algorithm is highly sensitive to dataset dimensions,
values, and outliers due to its dependence on the nonnegative
matrix factorization (NMF) technique, which is particularly
susceptible to initialization [9]. This sensitivity poses chal-
lenges in environments where precise thermal management is
crucial, such as SoCs used in mobile applications. Traditional
NMF initialization approaches are often too sensitive to dataset
variations, leading to inconsistent results and poor accuracy
in estimating fine-grained power [10]. In addition, NMF
sensitivity to thermal outliers distorts factorization, resulting
in suboptimal matrix approximations and degraded feature
quality [11].

Advancements in digital systems have led many IC compa-
nies to adopt fabless production, outsourcing various stages to
reduce costs and time to market [12]. However, this increases
the risk of vulnerabilities, such as hardware Trojans (HTs)
that compromise thermal sensors in SoCs, which are critical
for DTM systems [13]. Techniques like BPI for fine-grained
power estimation can help mitigate these threats and are
essential for the future of SoC design.

This paper proposes Improved Clustering BPI (ICBPI), an
approach that automates NMF initialization using DBSCAN
to identify dense regions and initialize the NMF approach,
helping to avoid local minima and enhance robustness. Fur-
thermore, ICBPI addresses scenarios where a thermal sensor
is maliciously or benignly failing, which can result in per-
formance degradation or reduced chip lifespan due to exces-
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sive frequency throttling or accelerated aging. Our research
demonstrates that ICBPI, the proposed approach, significantly
improves power estimation accuracy across multicore SoCs,
including homogeneous and heterogeneous architectures. This
automated fine-grained power estimation ensures accuracy
regardless of variation in the temperature data, optimizes chip
performance, and improves its security against thermal attacks.
ICBPI’s contributions pave the way for future power and
thermal management advancements and security measures for
SoCs.

The remainder of this paper is structured as follows. Sec-
tions I and IIl cover related work and background infor-
mation. Section IV presents the proposed ICBPI approach.
Section V discusses the results and compares our approach
with existing techniques. Section VI concludes the paper.

II. RELATED WORK

Numerous studies have explored thermal and power model-
ing to detect and mitigate hardware Trojan attacks on multicore
SoCs [14], [15]. This paper focuses on blind power identifi-
cation [5], [8], [10].

Reda et al. [5] propose the first version of the BPI approach,
which used the fast Independent Component Analysis (ICA)
algorithm [16] to initialize NMF. This approach provides an
initial estimate of the factors that enhance convergence and
performance by ensuring better separation of the underlying
sources. Also, Reda et al. [8] proposed an improved BPI
version with a new NMF initialization using the identity matrix
for the thermal resistance matrix. This method initializes the
power matrix, P, by equally distributing the total power among
the cores, respecting the self-coupling of the thermal resistance
matrix, and achieves a higher precision of fine-grained power
estimation compared to the previous ICA approach.

Said et al. [10] proposed BPISS, an enhancement that ini-
tializes the thermal resistance matrix by setting non-diagonal
elements to the average steady-state temperatures of stressed
cores and diagonal elements to cores with similar thermal
characteristics. The power matrix is initialized by dividing
the total power based on each core’s temperature ratio. This
approach better reflects the system’s physical characteristics
and reduces error compared to identity matrix initialization.
However, previous methods do not guarantee the avoidance
of local minima or account for outliers in the dataset, leading
to suboptimal solutions. To address these issues, this paper
proposes the ICBPI approach.

Recent advances have focused on detecting and mitigating
hardware Trojans and malicious attacks on thermal sensors.
Zhang et al. [17] developed DETRUST, a technique that
uses stealthy, implicitly triggered hardware Trojans to by-
pass trust verification mechanisms. Sebt et al. [18] identified
vulnerabilities at the gate level, exposing circuit enclaves to
hardware Trojan insertions. In mobile SoCs, Abdelrehim et
al. [15] introduced a blind identification countermeasure (BIC)
to detect and mitigate malicious thermal sensor attacks, with
high accuracy and minimal performance impact. Since BIC
relies on BPI for accurate SoC matrix estimation, this paper
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Fig. 1. Interactions and data-flow of the Blind Power Identification Algorithm

proposes ICBPI to improve these estimations and strengthen
BIC’s effectiveness against thermal sensor attacks.

III. BACKGROUND

This section provides a background on the BPI and BIC
approaches, which will be improved in this paper using the
proposed ICBPI approach.

A. BPI Approach

The fine-grained power estimation is based mainly on
the BPI approach, which, in turn, is based on the standard
methodology for thermal and power modeling of multicores,
known as the state-space model [19] as noted in Eq. 1

T, (k) = AT,(k — 1) + BP(k). (1)

where, T).(k) and P(k) represent matrices denoting the tem-
perature and power levels of SoC units at time &, respectively,
the matrices A and B encapsulate the physical relationship
between power and temperature. While matrix A is the thermal
conductance matrix that illustrates the natural response of the
system in the absence of power input, matrix B describes
the forced response of the system as a function of thermal
capacitance and conductance.

The BPI approach operates in two phases, as shown in
Fig. 1. The first phase is offline learning, where the matrices
A, B, and R are estimated using steady-state measurements,
T, and the total power, Pr, (k). The second phase is online
learning, which dynamically estimates core power consump-
tion during runtime using 7,.(k) and Pr (k), enabling real-
time adjustments [8].To compute the matrix B in the first
phase, it is necessary to determine the matrix R € RY*¥ (the
thermal resistance matrix) in the steady state (SS) scenario [8],
where T,.(k) = T,.(k — 1). Therefore, the following equation
can be derived from Eq. 1:

T, ~ RP,. )

Although Tg is known, only the total power, Pg, is
accessible due to the high cost and limited number of power
sensors. BPI estimates both R and Pg using NMF. The
proposed ICBPI approach improves the initialization of the
NMEF, thus improving the power estimation accuracy per unit.

B. BIC Approach

The BIC approach fundamentally depends on the BPI
approach, which uses the traditional identity matrix initial-
ization for NMF [8]. It is also influenced by the matrix
R, determined by the layout geometry, materials, and the
properties of the cooling system [15]. Mobile SoCs typically
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use passive phase change material cooling [20], ensuring that
it remains consistent once R is determined. This principle
forms the foundation of the BIC, which consists of four major
phases. In Phase I, Rgoden 1S established by off-line tests with
calibrated sensors. During Phase II, Rgynime 1S recomputed
at runtime and compared to Rgojgens With deviations beyond
a specified tolerance ¢ being checked. In Phase III, the
malicious sensor is identified by comparing the submatrices
of RRuntime and RGoiden- Finally, in Phase IV, the temperature
of the compromised sensor is estimated to maintain effective
thermal management.

An accurate estimation of the matrix R is essential for
effective attack detection in BIC and is highly dependent on
the initialization of the NMF. The proposed ICBPI approach
improves this process, enhancing detection and identification.
This paper follows the same threat model as the original
study [15].

IV. THE PROPOSED APPROACH

This section describes the proposed ICBPI approach to
accurately estimate thermal modeling matrices and per-unit
power in multicore processors. The natural response matrix
A is estimated by setting P(k) = 0 in Eq. 1, which leads
to equation T,.(k) = AT, (k — 1). By collecting K thermal
traces to construct matrices T1 = [T,.(1)---T,.(K — 1)] and
T2 = [T,(2) - - - T,-(K)], the quadratic programming problem
is solved as min | T2 — AT1||%, subject to A > 0. Here,
all entries in A are nonnegative. The R and B matrices are
then estimated from 75 using NMF. The ICBPI approach is
applied at this step to obtain the most accurate R. Finally, the
run-time power consumption is estimated by solving another
quadratic programming problem.

min  [|[BP(k) — (T, (k) — AT, (k = 1))I[3
subject to  P(k) >0 3)
||P(k)||1 = total measured power.

The proposed ICBPI approach utilizes the DBSCAN algo-
rithm to initialize the input matrix of the NMF R, improving
the precision of the per-core power estimation. The thermal
resistance matrix R represents the impact of heat generated
in one core on the temperature of other cores. For example,
on a chip with a 2 x 2 core, the 4 x 4 matrix R includes
elements such as 712, which indicates the thermal influence of
core one on core two. The proposed ICBPI approach uses
DBSCAN clustering to identify hotspot areas in the SoC
dataset, pinpointing regions of the highest power dissipation.
The centroids of these areas are used to initialize the rows of
the R matrix, improving its representation of thermal impact.
In Eq. 2, R is directly related to T, which means that changes
in P affect T}, and in a steady state, variations in R adjust P.
Initializing R with the optimal points in the 7' dataset leads to
a more accurate NMF convergence. To clarify the initialization
of the matrix R with centroids of the hotspot area, consider
an example of a 4-core SoC and activate the fourth core that
allows the proposed ICBPI to detect the hotspot areas on the
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Fig. 2. Illustration of the DBSCAN Clustering Algorithm [24]

chip using DBSCAN clustering. Assuming there is one hotspot
area, the centroid of this area is denoted as [r11,712, 713, 714]
because it is a four-core processor.

DBSCAN is highly efficient at identifying clusters of var-
ious shapes and sizes within a dataset, making it particularly
effective for detecting active cores compared to other clus-
tering techniques. As shown in Fig. 2, DBSCAN typically
uses the Euclidean distance to measure the distance between
points [21]-[23], d(p,q) = /> i1 (pi — ¢;)?>. Here, p and
q are two points in a n dimensional space. A core point is
a point p that has at least MinPts points distanced e from
it (including p), that is, |N¢(p)| > MinPts and N,(p) is the
set of points within e distance from p. A point q is directly
density accessible from a point p if p is a core point and ¢
is within the distance € from p, that is, ¢ € N(p). A point
q is density-reachable from p if there is a chain of points
D1,D2, - - -, Pn, With p; = p and p,, = ¢, where each point is
directly density-reachable from the previous one. A core point
has at least MinPts neighbors within a radius €, while a border
point has fewer neighbors but is near a core point. Noise points
are neither core nor border points and are considered outliers.
DBSCAN clusters data based on the density of points within
€, starting from a core point and expanding recursively to all
density reachable points. It handles noise well and can identify
clusters with arbitrary shapes, but its precision depends on
selecting the appropriate ¢ and MinPts.

To estimate the optimal € for DBSCAN, the k distance graph
is used, plotting the distance to the k-th nearest neighbor in
descending order. The “elbow point” on the graph, where the
slope changes significantly, indicates the optimal €, as shown
in Fig. 3.A general rule of thumb is to set MinPts at least D+1,
where D is the number of dimensions in the dataset, ensuring
sufficient data for cluster formation. The detailed approach is
described in Algorithm 1.

V. EXPERIMENTS AND RESULTS
A. Experimental setup

The effectiveness of the ICBPI approach is validated us-
ing the HotSpot thermal simulator v7 [25] in four different
floorplans, as detailed in Table I. Custom datasets were gen-
erated for each floorplan, and the power trace, along with the
floorplan structure and the HotSpot configuration files, were
fed into the simulator to obtain the thermal trace as shown in
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Fig. 3. K-distance graph to determine the value of €

Algorithm 1 ICBPI
1: ICBPI Offline Phase:
2: Input: Steady-state thermal traces T, and corresponding
total power at each time interval Pr, (k).
3: Assume T1 = [T.(1)---T.(K — 1)] and T2 =
4: Calculate The quadratic programming
min || T2 — AT1|% subject to A > 0.
5: Determine the optiumum value of € using k-distance
graph.
6: Adjust MinPts to be at least D + 1, where D is the number
of dimensions (features) in your dataset.
7: Apply the DBSCAN to T to identify clusters based on
the dense regions in 7 and remove outliers.
8: Initialize R with the centroids of the DBSCAN clusters.
9: Initialize P, with T%.
10: Apply the NMF with the proposed initialization.
11: Output: System matrices A, B, and R
12: BPI Online Phase

problem:

Fig. 4. The ambient temperature was set at 298.15K, with a
sampling interval of 100 milliseconds, selected to match the
steady-state temperature behavior of the processor.

The proposed approach will be evaluated using two tasks.
The first task applies the generated dataset to both the
proposed approach and the state-of-the-art methods from the
literature. The accuracy is assessed by calculating the average
absolute error percentage between the estimated per unit of
power and the actual per unit power traces provided to the
HotSpot simulator, as shown in Eq. 4.

TABLE I
FLOORPLANS WITH UNIT COUNTS AND POWER BUDGETS (AREA: 1 CM2)
Floorplans Units Power Budget
2 X 2 mesh 4 SOW
2 X 4 mesh 8 SOW
4 x 4 mesh 16 SOW
big. LITTLE+GPU [26] 6 15W

Custom Dataset Generation 1CBPI

Configuration
Files

Preparing
Data for
ICBPI

Thermal traces

Floorplan File

i

Per-unit Power
traces

‘Total Power

Estimated Power
Per Core

HotSpot Simulutr
V7.0

Accuracy
Validation

Per C

Fig. 4. ICBPI Custom Dataset Generation and Validation Workflow.
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Fig. 5. The simulation models a 4-core processor where thermal sensor ‘1°
is made malicious by introducing an error to its reading, ¢1.

av. abs. error (%) — 1 EN: |estimated power — actual power|
N~ actual power
“)
where N is the number of cores.

The second task uses the ICBPI approach to enhance the
BIC algorithm for detecting and localizing thermal attacks.
The setup involves a custom dataset for the heterogeneous
floorplan, where power traces and layout information are fed
into the HotSpot 7.0 simulator to generate thermal traces. BIC
is tested by considering one core’s thermal sensor as malicious.
The malicious sensor is modeled by altering the HotSpot
temperature with Ateyo;. The value of Aty is iteratively
changed within the ranges of (—15: —1) and (1 : 15), with a
1°C step. Additionally, ¢ is varied for the heterogeneous layout
from (0.01:0.1), with a 0.01 step.

For each tuple (£, At), the simulator tracks the number of
failures, where failure is defined as the BIC that does not detect
the attack or identify the attacker. The maximum number of
failures for any tuple is the number of cores, N. An instance
where Core 1 harbors the malicious sensor is illustrated in
Fig. 5. The generated dataset will be applied to both the
proposed ICBPI approach and the state-of-the-art BIC, and
the results will be compared.
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TABLE II
THE POWER ESTIMATION ERROR OF THE ICBPI COMPARED TO BPI AND
BPISS USING FOUR FLOORPLAN BENCHMARKS.

Benchmarks BPI [8] BPISS [10]| ICBPI

2x2 mesh 4.50 3.20 1.01

2x4 mesh 11.10 6.98 3.24

4x4 mesh 3.80 2.80 0.51

big. LITTLE+GPU 5.04 3.90 0.71
TABLE III

THE RUNTIME IN SECONDS OF ICBPI COMPARED TO BPI AND BPISS
ACROSS FOUR DIFFERENT FLOORPLANS.
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B. Task 1: Evaluation of the proposed approach using the
generated dataset

The comparison results, summarized in Table II and Ta-
ble III, show the improvements of the ICBPI approach over
the state-of-the-art methods. ICBPI was validated on a het-
erogeneous architecture (big.LITTLE+GPU), demonstrating
its robustness in both accuracy and computation time when
transitioning from homogeneous to heterogeneous systems. It
achieved higher accuracy, particularly with larger benchmarks,
indicating scalability. Although traditional approaches have
slightly lower runtime, they suffer from higher estimation
errors, whereas BPISS shows the highest runtime. ICBPI bal-
ances runtime and accuracy, significantly reducing estimation
errors.

To clarify the power estimation capabilities of the ICBPI al-
gorithm, a comparative analysis between estimated and actual
power consumption for each core in the 2x2 mesh floorplan
is presented. Fig. 6 shows the thermal measurements over
time in sub-figure (a), highlighting fluctuations due to the
varying core stress levels. The remaining subfigures compare
the power estimates of ICBPI with the actual power input,
demonstrating a close match. This strong correlation validates
ICBPI’s effectiveness in providing accurate power estimates,
which is essential for optimizing power management and
improving processor efficiency.

C. Task 2: Enhancement of Thermal Attack Detection and
Localization

Fig. 7 shows the results of the standard BIC approach,
while Fig. 8 presents the results after integrating ICBPI with
BIC. The comparison highlights the significant performance
improvement with ICBPI, which maintains high accuracy in
detecting sensor attacks for small ¢ and reduces failures in
various scenarios. This demonstrates the robustness and relia-
bility of the ICBPI approach, marking a notable improvement
over the conventional BIC technique.

A comparison between standard BIC and BIC with ICBPI,
as shown in Table IV, reveals significant improvements in
detection and identification failure rates. The standard BIC

Benchmarks BPI [8] BPISS [10]| ICBPI

2x2 mesh 14.19 16.75 13.24

7x4 mesh 2027 23.50 19.19 (c) Predicted vs. Measured Power Consumption of Core 2

4x4 mesh 27.19 30.23 27.04 =30F — Estimated R
big. LITTLE+GPU 27.10 29.10 27.87 0} = =l 1

o
0
(d) Predicted vs. Measured Power Consumption of Core 3

m— E stimated b
== =Actual

500 1000 1500
(e) Predicted vs. Measured Power Consumption of Core 4

Time (s)

Fig. 6. Validation of the Proposed Approach ICBPI

TABLE IV
COMPARISON OF DETECTION AND IDENTIFICATION FAILURE RATES

Atrror Heterogeneous - BIC Heterogeneous - ICBPI
Detection Failure | Ident. Failure | Detection Failure | Ident. Failure

-6:-15 0% 0% 0% 0%
-5 0% 0% 0% 0%
-4 0% 0% 0% 0%
-3 3.72% 0% 0% 0%
-2 13.04% 0% 0% 0%

-1 25.467% 20% 0% 16.18%

1 27.27% 27.25% 0% 30.4%

2 19.25% 7.27% 0% 9.09%

3 8.69% 10.9% 0% 9.09%

4 1.24% 16.36% 0% 9.09%

5 0% 18.18% 0% 9.09%
6:15 0% 0% 0% 0%

shows detection failures, reaching 27.27% for Ateyor values
of —1, 1, 2 and 3. In contrast, BIC with ICBPI consistently
has 0% detection failures for all Atey,, values, with only some
identification failures, such as 16.18% at Ateyor = —1 and
30.4% at Ateqor = 1. This demonstrates ICBPI’s effectiveness
in significantly reducing detection and identification failures
compared to standard BIC.

VI. CONCLUSION

The proposed ICBPI approach significantly improves the
accuracy and robustness of the Blind Power Identification
(BPI) approach by utilizing DBSCAN for optimal initialization
of NMF, addressing its sensitivity to dataset variations and out-
liers. Our extensive simulations have demonstrated that ICBPI
achieves higher accuracy in fine-grained power estimation
across various multicore SoC configurations, including both

Authorized licensed use limited to: North Carolina A T State University. Downloaded on July 16,2025 at 13:56:05 UTC from IEEE Xplore. Restrictions apply.



2024 IEEE International Performance, Computing, and Communications Conference (IPCCC)

Total Failure

Fig. 7. Relationship between failure counts and (Aterror, &) using standard
BIC approach

Total Failure

Fig. 8. Relationship between failure counts and (Aterror,&) using the
proposed ICBPI approach.

homogeneous and heterogeneous architectures. In particular,
error rates in a 4-core processor were reduced by 77.56%
compared to traditional BPI approaches and by 68.44% com-
pared to the state-of-the-art BPISS approach. Using the ICBPI
approach within the BIC security approach, superior perfor-
mance has been demonstrated in the detection and localization
of malicious thermal sensor attacks. This method maintains
high accuracy and reduces failure rates in various scenarios,
outperforming the original BIC approach. However, the main
limitation lies in the detection of simultaneous attacks in the
SoC.
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