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Abstract—Modern multicore System-on-Chips (SoCs) include
hardware monitoring mechanisms to measure total power con-
sumption, but these aggregate measurements are insufficient
for fine-grained thermal and power management. This paper
introduces an improved Clustering Blind Power Identification
(ICBPI), an approach to improve the sensitivity and robustness
of the Blind Power Identification (BPI) approach, which identifies
the power consumption of different cores and the thermal model
of an SoC using only thermal sensor measurements and the total
power consumption. The proposed approach enhances BPI’s ini-
tialization step (specifically the non-negative matrix factorization,
which is crucial for BPI accuracy) by incorporating density-based
spatial clustering of of noise applications (DBSCAN). This is
done to maximize the physical relationship between the temper-
ature and power consumption, ensuring more accurate power
estimates. Our simulations demonstrate two tasks to validate
the proposed approach. The first evaluates the power accuracy
per core on four different multicores, including a heterogeneous
processor, showing that ICBPI significantly improves accuracy
without overheads. For example, in a four-core SoC, error rates
are reduced by 77.56% compared to vanilla BPI and by 68.44%
compared to the state-of-the-art approach called BPISS. The
second task focuses on enhancing the precision and robustness
of the detection and localization of malicious thermal sensor
attacks in the heterogeneous processor, demonstrating that ICBPI
is capable of enhancing security of multicore SoCs.

Index Terms—Blind Power Identification, Dynamic Thermal
Management, Hardware Security, Multicore SoCs.

I. INTRODUCTION

As the progress of Moore’s law slows down, designers have

turned to alternative design methodologies. This shift has led

to the development of heterogeneous multicore architectures

and the integration of specialized hardware units into a single

chip, known as System-on-Chips (SoCs) [1]. However, these

advances have brought about challenges related to thermal

management, power consumption, and energy efficiency [2],

e.g., increased power density and limited cooling options in

SoCs have resulted in significant performance bottlenecks [3].

Consequently, dynamic Thermal Management (DTM) tech-

niques have become essential in all mobile SoCs to reduce

and control high operating temperatures [4].

Accurate estimation of the power consumption of each

core in a multicore SoC is critical to effective thermal and
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power management [5], [6]. However, modern processors lack

fine-grained power sensors. For example, the running average

power limit (RAPL) interface allows applications to measure

power consumption [7]. However, these measurements are

generally coarse-grained, providing only the overall power

consumption of all cores, uncore units, and total package

power. Fine-grained power estimation improves the efficiency

of dynamic voltage and frequency scaling (DVFS) and thermal

throttling, maintaining safe temperature limits and enhancing

processor reliability, lifespan, and cooling costs [5], [8].

Blind Power Identification (BPI) is a recent approach [5]

that can simultaneously estimate the fine-grained power con-

sumption of each core in multicore SoCs and identify the

thermal model of the chip using only thermal sensor measure-

ments and total power consumption data. The effectiveness of

the BPI algorithm is highly sensitive to dataset dimensions,

values, and outliers due to its dependence on the nonnegative

matrix factorization (NMF) technique, which is particularly

susceptible to initialization [9]. This sensitivity poses chal-

lenges in environments where precise thermal management is

crucial, such as SoCs used in mobile applications. Traditional

NMF initialization approaches are often too sensitive to dataset

variations, leading to inconsistent results and poor accuracy

in estimating fine-grained power [10]. In addition, NMF

sensitivity to thermal outliers distorts factorization, resulting

in suboptimal matrix approximations and degraded feature

quality [11].

Advancements in digital systems have led many IC compa-

nies to adopt fabless production, outsourcing various stages to

reduce costs and time to market [12]. However, this increases

the risk of vulnerabilities, such as hardware Trojans (HTs)

that compromise thermal sensors in SoCs, which are critical

for DTM systems [13]. Techniques like BPI for fine-grained

power estimation can help mitigate these threats and are

essential for the future of SoC design.

This paper proposes Improved Clustering BPI (ICBPI), an

approach that automates NMF initialization using DBSCAN

to identify dense regions and initialize the NMF approach,

helping to avoid local minima and enhance robustness. Fur-

thermore, ICBPI addresses scenarios where a thermal sensor

is maliciously or benignly failing, which can result in per-

formance degradation or reduced chip lifespan due to exces-
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sive frequency throttling or accelerated aging. Our research

demonstrates that ICBPI, the proposed approach, significantly

improves power estimation accuracy across multicore SoCs,

including homogeneous and heterogeneous architectures. This

automated fine-grained power estimation ensures accuracy

regardless of variation in the temperature data, optimizes chip

performance, and improves its security against thermal attacks.

ICBPI’s contributions pave the way for future power and

thermal management advancements and security measures for

SoCs.

The remainder of this paper is structured as follows. Sec-

tions II and III cover related work and background infor-

mation. Section IV presents the proposed ICBPI approach.

Section V discusses the results and compares our approach

with existing techniques. Section VI concludes the paper.

II. RELATED WORK

Numerous studies have explored thermal and power model-

ing to detect and mitigate hardware Trojan attacks on multicore

SoCs [14], [15]. This paper focuses on blind power identifi-

cation [5], [8], [10].

Reda et al. [5] propose the first version of the BPI approach,

which used the fast Independent Component Analysis (ICA)

algorithm [16] to initialize NMF. This approach provides an

initial estimate of the factors that enhance convergence and

performance by ensuring better separation of the underlying

sources. Also, Reda et al. [8] proposed an improved BPI

version with a new NMF initialization using the identity matrix

for the thermal resistance matrix. This method initializes the

power matrix, P , by equally distributing the total power among

the cores, respecting the self-coupling of the thermal resistance

matrix, and achieves a higher precision of fine-grained power

estimation compared to the previous ICA approach.

Said et al. [10] proposed BPISS, an enhancement that ini-

tializes the thermal resistance matrix by setting non-diagonal

elements to the average steady-state temperatures of stressed

cores and diagonal elements to cores with similar thermal

characteristics. The power matrix is initialized by dividing

the total power based on each core’s temperature ratio. This

approach better reflects the system’s physical characteristics

and reduces error compared to identity matrix initialization.

However, previous methods do not guarantee the avoidance

of local minima or account for outliers in the dataset, leading

to suboptimal solutions. To address these issues, this paper

proposes the ICBPI approach.

Recent advances have focused on detecting and mitigating

hardware Trojans and malicious attacks on thermal sensors.

Zhang et al. [17] developed DETRUST, a technique that

uses stealthy, implicitly triggered hardware Trojans to by-

pass trust verification mechanisms. Sebt et al. [18] identified

vulnerabilities at the gate level, exposing circuit enclaves to

hardware Trojan insertions. In mobile SoCs, Abdelrehim et

al. [15] introduced a blind identification countermeasure (BIC)

to detect and mitigate malicious thermal sensor attacks, with

high accuracy and minimal performance impact. Since BIC

relies on BPI for accurate SoC matrix estimation, this paper

Fig. 1. Interactions and data-flow of the Blind Power Identification Algorithm

proposes ICBPI to improve these estimations and strengthen

BIC’s effectiveness against thermal sensor attacks.

III. BACKGROUND

This section provides a background on the BPI and BIC

approaches, which will be improved in this paper using the

proposed ICBPI approach.

A. BPI Approach

The fine-grained power estimation is based mainly on

the BPI approach, which, in turn, is based on the standard

methodology for thermal and power modeling of multicores,

known as the state-space model [19] as noted in Eq. 1

Tr(k) = ATr(k − 1) +BP (k). (1)

where, Tr(k) and P (k) represent matrices denoting the tem-

perature and power levels of SoC units at time k, respectively,

the matrices A and B encapsulate the physical relationship

between power and temperature. While matrix A is the thermal

conductance matrix that illustrates the natural response of the

system in the absence of power input, matrix B describes

the forced response of the system as a function of thermal

capacitance and conductance.

The BPI approach operates in two phases, as shown in

Fig. 1. The first phase is offline learning, where the matrices

A, B, and R are estimated using steady-state measurements,

Ts, and the total power, PTs
(k). The second phase is online

learning, which dynamically estimates core power consump-

tion during runtime using Tr(k) and PTr
(k), enabling real-

time adjustments [8].To compute the matrix B in the first

phase, it is necessary to determine the matrix R ∈ R
N×N (the

thermal resistance matrix) in the steady state (SS) scenario [8],

where Tr(k) = Tr(k − 1). Therefore, the following equation

can be derived from Eq. 1:

Ts ≈ RPs. (2)

Although TS is known, only the total power, PS , is

accessible due to the high cost and limited number of power

sensors. BPI estimates both R and PS using NMF. The

proposed ICBPI approach improves the initialization of the

NMF, thus improving the power estimation accuracy per unit.

B. BIC Approach

The BIC approach fundamentally depends on the BPI

approach, which uses the traditional identity matrix initial-

ization for NMF [8]. It is also influenced by the matrix

R, determined by the layout geometry, materials, and the

properties of the cooling system [15]. Mobile SoCs typically
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use passive phase change material cooling [20], ensuring that

it remains consistent once R is determined. This principle

forms the foundation of the BIC, which consists of four major

phases. In Phase I, RGolden is established by off-line tests with

calibrated sensors. During Phase II, RRuntime is recomputed

at runtime and compared to RGolden, with deviations beyond

a specified tolerance À being checked. In Phase III, the

malicious sensor is identified by comparing the submatrices

of RRuntime and RGolden. Finally, in Phase IV, the temperature

of the compromised sensor is estimated to maintain effective

thermal management.

An accurate estimation of the matrix R is essential for

effective attack detection in BIC and is highly dependent on

the initialization of the NMF. The proposed ICBPI approach

improves this process, enhancing detection and identification.

This paper follows the same threat model as the original

study [15].

IV. THE PROPOSED APPROACH

This section describes the proposed ICBPI approach to

accurately estimate thermal modeling matrices and per-unit

power in multicore processors. The natural response matrix

A is estimated by setting P (k) = 0 in Eq. 1, which leads

to equation Tr(k) = ATr(k − 1). By collecting K thermal

traces to construct matrices T1 = [Tr(1) · · ·Tr(K − 1)] and

T2 = [Tr(2) · · ·Tr(K)], the quadratic programming problem

is solved as min ∥T2 − AT1∥2
F

, subject to A g 0. Here,

all entries in A are nonnegative. The R and B matrices are

then estimated from Ts using NMF. The ICBPI approach is

applied at this step to obtain the most accurate R. Finally, the

run-time power consumption is estimated by solving another

quadratic programming problem.

min ||BP (k)− (Tr(k)−ATr(k − 1))||22

subject to P (k) g 0

||P (k)||1 = total measured power.

(3)

The proposed ICBPI approach utilizes the DBSCAN algo-

rithm to initialize the input matrix of the NMF R, improving

the precision of the per-core power estimation. The thermal

resistance matrix R represents the impact of heat generated

in one core on the temperature of other cores. For example,

on a chip with a 2 × 2 core, the 4 × 4 matrix R includes

elements such as r12, which indicates the thermal influence of

core one on core two. The proposed ICBPI approach uses

DBSCAN clustering to identify hotspot areas in the SoC

dataset, pinpointing regions of the highest power dissipation.

The centroids of these areas are used to initialize the rows of

the R matrix, improving its representation of thermal impact.

In Eq. 2, R is directly related to Ts, which means that changes

in P affect Ts, and in a steady state, variations in R adjust Ps.

Initializing R with the optimal points in the T dataset leads to

a more accurate NMF convergence. To clarify the initialization

of the matrix R with centroids of the hotspot area, consider

an example of a 4-core SoC and activate the fourth core that

allows the proposed ICBPI to detect the hotspot areas on the

Fig. 2. Illustration of the DBSCAN Clustering Algorithm [24]

chip using DBSCAN clustering. Assuming there is one hotspot

area, the centroid of this area is denoted as [r11, r12, r13, r14]
because it is a four-core processor.

DBSCAN is highly efficient at identifying clusters of var-

ious shapes and sizes within a dataset, making it particularly

effective for detecting active cores compared to other clus-

tering techniques. As shown in Fig. 2, DBSCAN typically

uses the Euclidean distance to measure the distance between

points [21]–[23], d(p, q) =
√

∑n

i=1
(pi − qi)2. Here, p and

q are two points in a n dimensional space. A core point is

a point p that has at least MinPts points distanced ϵ from

it (including p), that is, |Nϵ(p)| g MinPts and Nϵ(p) is the

set of points within ϵ distance from p. A point q is directly

density accessible from a point p if p is a core point and q

is within the distance ϵ from p, that is, q ∈ Nϵ(p). A point

q is density-reachable from p if there is a chain of points

p1, p2, . . . , pn, with p1 = p and pn = q, where each point is

directly density-reachable from the previous one. A core point

has at least MinPts neighbors within a radius ϵ, while a border

point has fewer neighbors but is near a core point. Noise points

are neither core nor border points and are considered outliers.

DBSCAN clusters data based on the density of points within

ϵ, starting from a core point and expanding recursively to all

density reachable points. It handles noise well and can identify

clusters with arbitrary shapes, but its precision depends on

selecting the appropriate ϵ and MinPts.

To estimate the optimal ϵ for DBSCAN, the k distance graph

is used, plotting the distance to the k-th nearest neighbor in

descending order. The ”elbow point” on the graph, where the

slope changes significantly, indicates the optimal ϵ, as shown

in Fig. 3.A general rule of thumb is to set MinPts at least D+1,

where D is the number of dimensions in the dataset, ensuring

sufficient data for cluster formation. The detailed approach is

described in Algorithm 1.

V. EXPERIMENTS AND RESULTS

A. Experimental setup

The effectiveness of the ICBPI approach is validated us-

ing the HotSpot thermal simulator v7 [25] in four different

floorplans, as detailed in Table I. Custom datasets were gen-

erated for each floorplan, and the power trace, along with the

floorplan structure and the HotSpot configuration files, were

fed into the simulator to obtain the thermal trace as shown in
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Fig. 3. K-distance graph to determine the value of ϵ

Algorithm 1 ICBPI

1: ICBPI Offline Phase:

2: Input: Steady-state thermal traces Ts, and corresponding

total power at each time interval PTs
(k).

3: Assume T1 = [Tr(1) · · ·Tr(K − 1)] and T2 =
[Tr(2) · · ·Tr(K)].

4: Calculate The quadratic programming problem:

min ∥T2−AT1∥2
F

subject to A g 0.

5: Determine the optiumum value of ϵ using k-distance

graph.

6: Adjust MinPts to be at least D + 1, where D is the number

of dimensions (features) in your dataset.

7: Apply the DBSCAN to Ts to identify clusters based on

the dense regions in Ts and remove outliers.

8: Initialize R with the centroids of the DBSCAN clusters.

9: Initialize Ps with Ts.

10: Apply the NMF with the proposed initialization.

11: Output: System matrices A, B, and R

12: BPI Online Phase

Fig. 4. The ambient temperature was set at 298.15K, with a

sampling interval of 100 milliseconds, selected to match the

steady-state temperature behavior of the processor.

The proposed approach will be evaluated using two tasks.

The first task applies the generated dataset to both the

proposed approach and the state-of-the-art methods from the

literature. The accuracy is assessed by calculating the average

absolute error percentage between the estimated per unit of

power and the actual per unit power traces provided to the

HotSpot simulator, as shown in Eq. 4.

TABLE I
FLOORPLANS WITH UNIT COUNTS AND POWER BUDGETS (AREA: 1 CM2)

Floorplans Units Power Budget

2× 2 mesh 4 80W

2× 4 mesh 8 80W

4× 4 mesh 16 80W

big.LITTLE+GPU [26] 6 15W

Fig. 4. ICBPI Custom Dataset Generation and Validation Workflow.

Fig. 5. The simulation models a 4-core processor where thermal sensor ‘1‘
is made malicious by introducing an error to its reading, t1.

av. abs. error (%) =
1

N

N
∑

n=1

|estimated power − actual power|

actual power

(4)

where N is the number of cores.

The second task uses the ICBPI approach to enhance the

BIC algorithm for detecting and localizing thermal attacks.

The setup involves a custom dataset for the heterogeneous

floorplan, where power traces and layout information are fed

into the HotSpot 7.0 simulator to generate thermal traces. BIC

is tested by considering one core’s thermal sensor as malicious.

The malicious sensor is modeled by altering the HotSpot

temperature with ∆terror. The value of ∆terror is iteratively

changed within the ranges of (−15 : −1) and (1 : 15), with a

1°C step. Additionally, À is varied for the heterogeneous layout

from (0.01 : 0.1), with a 0.01 step.

For each tuple (À,∆t), the simulator tracks the number of

failures, where failure is defined as the BIC that does not detect

the attack or identify the attacker. The maximum number of

failures for any tuple is the number of cores, N . An instance

where Core 1 harbors the malicious sensor is illustrated in

Fig. 5. The generated dataset will be applied to both the

proposed ICBPI approach and the state-of-the-art BIC, and

the results will be compared.
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TABLE II
THE POWER ESTIMATION ERROR OF THE ICBPI COMPARED TO BPI AND

BPISS USING FOUR FLOORPLAN BENCHMARKS.

Benchmarks BPI [8] BPISS [10] ICBPI

2x2 mesh 4.50 3.20 1.01

2x4 mesh 11.10 6.98 3.24

4x4 mesh 3.80 2.80 0.51

big.LITTLE+GPU 5.04 3.90 0.71

TABLE III
THE RUNTIME IN SECONDS OF ICBPI COMPARED TO BPI AND BPISS

ACROSS FOUR DIFFERENT FLOORPLANS.

Benchmarks BPI [8] BPISS [10] ICBPI

2x2 mesh 14.19 16.75 13.24

2x4 mesh 20.27 23.50 19.19

4x4 mesh 27.19 30.23 27.04

big.LITTLE+GPU 27.10 29.10 27.87

B. Task 1: Evaluation of the proposed approach using the

generated dataset

The comparison results, summarized in Table II and Ta-

ble III, show the improvements of the ICBPI approach over

the state-of-the-art methods. ICBPI was validated on a het-

erogeneous architecture (big.LITTLE+GPU), demonstrating

its robustness in both accuracy and computation time when

transitioning from homogeneous to heterogeneous systems. It

achieved higher accuracy, particularly with larger benchmarks,

indicating scalability. Although traditional approaches have

slightly lower runtime, they suffer from higher estimation

errors, whereas BPISS shows the highest runtime. ICBPI bal-

ances runtime and accuracy, significantly reducing estimation

errors.

To clarify the power estimation capabilities of the ICBPI al-

gorithm, a comparative analysis between estimated and actual

power consumption for each core in the 2x2 mesh floorplan

is presented. Fig. 6 shows the thermal measurements over

time in sub-figure (a), highlighting fluctuations due to the

varying core stress levels. The remaining subfigures compare

the power estimates of ICBPI with the actual power input,

demonstrating a close match. This strong correlation validates

ICBPI’s effectiveness in providing accurate power estimates,

which is essential for optimizing power management and

improving processor efficiency.

C. Task 2: Enhancement of Thermal Attack Detection and

Localization

Fig. 7 shows the results of the standard BIC approach,

while Fig. 8 presents the results after integrating ICBPI with

BIC. The comparison highlights the significant performance

improvement with ICBPI, which maintains high accuracy in

detecting sensor attacks for small À and reduces failures in

various scenarios. This demonstrates the robustness and relia-

bility of the ICBPI approach, marking a notable improvement

over the conventional BIC technique.

A comparison between standard BIC and BIC with ICBPI,

as shown in Table IV, reveals significant improvements in

detection and identification failure rates. The standard BIC

Fig. 6. Validation of the Proposed Approach ICBPI

TABLE IV
COMPARISON OF DETECTION AND IDENTIFICATION FAILURE RATES

∆terror
Heterogeneous - BIC Heterogeneous - ICBPI

Detection Failure Ident. Failure Detection Failure Ident. Failure

-6:-15 0% 0% 0% 0%

-5 0% 0% 0% 0%

-4 0% 0% 0% 0%

-3 3.72% 0% 0% 0%

-2 13.04% 0% 0% 0%

-1 25.467% 20% 0% 16.18%

1 27.27% 27.25% 0% 30.4%

2 19.25% 7.27% 0% 9.09%

3 8.69% 10.9% 0% 9.09%

4 1.24% 16.36% 0% 9.09%

5 0% 18.18% 0% 9.09%

6:15 0% 0% 0% 0%

shows detection failures, reaching 27.27% for ∆terror values

of −1, 1, 2 and 3. In contrast, BIC with ICBPI consistently

has 0% detection failures for all ∆terror values, with only some

identification failures, such as 16.18% at ∆terror = −1 and

30.4% at ∆terror = 1. This demonstrates ICBPI’s effectiveness

in significantly reducing detection and identification failures

compared to standard BIC.

VI. CONCLUSION

The proposed ICBPI approach significantly improves the

accuracy and robustness of the Blind Power Identification

(BPI) approach by utilizing DBSCAN for optimal initialization

of NMF, addressing its sensitivity to dataset variations and out-

liers. Our extensive simulations have demonstrated that ICBPI

achieves higher accuracy in fine-grained power estimation

across various multicore SoC configurations, including both
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Fig. 7. Relationship between failure counts and (∆terror, À) using standard
BIC approach

Fig. 8. Relationship between failure counts and (∆terror, À) using the
proposed ICBPI approach.

homogeneous and heterogeneous architectures. In particular,

error rates in a 4-core processor were reduced by 77.56%
compared to traditional BPI approaches and by 68.44% com-

pared to the state-of-the-art BPISS approach. Using the ICBPI

approach within the BIC security approach, superior perfor-

mance has been demonstrated in the detection and localization

of malicious thermal sensor attacks. This method maintains

high accuracy and reduces failure rates in various scenarios,

outperforming the original BIC approach. However, the main

limitation lies in the detection of simultaneous attacks in the

SoC.

ACKNOWLEDGMENTS

The authors thank Dr. Moustafa Abdelrahim for providing

codes from his BIC paper (ISQED’2022). Also, the authors

would like to thank the anonymous reviewers.

This work has been partially funded by NSF grants 2219679

and 2219680.

REFERENCES

[1] R. Buchty et al. A survey on hardware-aware and heterogeneous
computing on multicore processors and accelerators. Conc. & Comp.:

Prac. and Exp., 24(7):663–675, 2012.
[2] J. Chen et al. Scheduling energy consumption-constrained workflows

in heterogeneous multi-processor embedded systems. J. of Sys. Arch.,
142:102938, 2023.

[3] R. Srikanth et al. A review of recent developments in “on-chip” em-
bedded cooling technologies for heterogeneous integrated applications.
Engng., 2023.

[4] A. Prakash et al. Improving mobile gaming performance through
cooperative cpu-gpu thermal management. In DAC, 2016.

[5] S. Reda and A. Belouchrani. Blind identification of power sources in
processors. In DATE, 2017.

[6] M. Sagi et al. Fine-grained power modeling of multicore processors
using ffnns. In A. Orailoglu et al., editors, Emb. Comp. Sys.: Arch.,

Model., & Sim., pages 186–199, Cham, 2020. Springer International
Publishing.

[7] H. David et al. Rapl: Memory power estimation and capping. In
ISLPED, 2010.

[8] S. Reda, K. Dev, and A. Belouchrani. Blind identification of thermal
models and power sources from thermal measurements. IEEE Sensors

J., 2018.
[9] Y. Wang and Y. Zhang. Nonnegative matrix factorization: A compre-

hensive review. TKDE, 2013.
[10] M. Said et al. Understanding the sources of power consumption in

mobile socs. In IGSC, 2018.
[11] S. F. Hafshejani and Z. Moaberfard. Initialization for non-negative

matrix factorization: a comprehensive review. Int. J. Data Sci. & Anal.,
2023.

[12] T. Huffmire et al. Managing security in fpga-based embedded systems.
Desgin & Test, 2008.

[13] S. Bhunia et al. Hardware trojan attacks: Threat analysis and counter-
measures. Proc. of IEEE, 2014.

[14] K. Dev et al. Power mapping and modeling of multicore processors. In
ISLPED, 2013.

[15] M. Abdelrehim et al. Bic: Blind identification countermeasure for
malicious thermal sensor attacks in mobile socs. In ISQED, 2022.

[16] S. Shahshahani and H. Mahdiani. Fica: A fixed-point custom architecture
fastica for real-time and latency-sensitive applications. IEEE TNSRE,
2022.

[17] J. Zhang et al. Detrust: Defeating hardware trust verification with
stealthy implicitly-triggered hardware trojans. In CCS, CCS’14, 2014.

[18] Seyed Mohammad Sebt, Ahmad Patooghy, Hakem Beitollahi, and
Michel Kinsy. Circuit enclaves susceptible to hardware trojans insertion
at gate-level designs. IET Computers & Digital Techniques, 12(6):251–
257, 2018.

[19] A. Bartolini et al. A distributed and self-calibrating model-predictive
controller for energy and thermal management of high-performance
multicores. In DATE, 2011.

[20] A. Kurhade et al. Computational study of pcm cooling for electronic
circuit of smartphone. Materials Today, 47:3171–3176, 2021.

[21] M. Ester et al. A density-based algorithm for discovering clusters in
large spatial databases with noise. In KDD. AAAI Press, 1996.

[22] S. Raschka et al. Machine Learning with PyTorch and scikit-learn. Packt
Publishing Ltd., 3rd edition edition, 2022.

[23] S. Nalawade et al. Hybrid density- grid based clustering algorithms: A
review. In ICCUBEA, 2023.

[24] S. Raschka et al. Machine Learning with PyTorch and Scikit-Learn.
Packt Pub., 2022.

[25] K. Skadron et al. Hotspot: A temperature modeling tool for ics. https:
//github.com/uvahotspot/HotSpot. Accessed: 2024-07-22.

[26] Y. Gong et al. Thermal modeling and validation of a real-world mobile
app. IEEE D&T, 2018.

2024 IEEE International Performance, Computing, and Communications Conference (IPCCC)

Authorized licensed use limited to: North Carolina A T State University. Downloaded on July 16,2025 at 13:56:05 UTC from IEEE Xplore.  Restrictions apply. 


