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However, despite the elegance of the physics picture, devising

a �rst-principle method to simulate ink di�usion remains a chal-

lenging problem in computational physics and computer graphics.

Pioneering e�orts to simulate ink di�usion studied the vorticity-

viscosity interaction and produced simulation results of one layer

of branching with vortex particles in the early 1990s [Nitsche and

Batchelor 1997], which, to the best of our knowledge, is the �rst

work simulating ink di�usion from the perspective of particle-laden

�ow. This work motivated future works in the area (e.g., [Bosse et al.

2005; Machu et al. 2001; Walther and Koumoutsakos 2001]). In com-

puter graphics, researchers have repurposed the standard grid-based

smoke simulator with vorticity con�nement [Fedkiw et al. 2001]

to a particle-laden �ow setting for ink di�usion, which reproduced

impressive ink branching phenomena [Sagong et al. 2015]. In the

recent work of [Padilla et al. 2019], the authors simulated ink chan-

deliers as vortex �laments with varying thicknesses and achieved

notable multi-layer chandelier structures. Despite these inspiring

successes, a versatile simulation framework that can naturally han-

dle the vortical development and structural evolution by directly

solving particle-laden �ow in an arbitrary incompressible �ow en-

vironment remains to be developed. In particular, the challenge of

directly simulating vorticity-viscosity interaction to spontaneously

emerge the ink blobs, �laments, branches, and structures by directly

solving the Navier-Stokes (NS) equations with sediment particles

remains an essential problem to be addressed.

To this end, we propose a novel and versatile framework to simu-

late ink as a particle-laden �ow. Our method is based on the recent

line of works on solving incompressible �ow with �ow maps (e.g.,

[Deng et al. 2023; Li et al. 2023, 2024; Nabizadeh et al. 2022; Zhou

et al. 2024]). Though these �ow-map schemes have demonstrated

their extraordinary capabilities in preserving accurate vortical struc-

tures — which would be particularly bene�cial for ink di�usion —

they inherently su�er from limitations in tackling dissipative forces

such as viscosity and drag. To date, no �ow-map paradigms can

accurately solve for viscosity, let alone its interaction with vorticity.

Mathematically, this is due to the lack of a mathematical foundation

for calculating viscosity (or any forces other than pressure) along

each particle’s trajectory.

To complete this missing piece, which will further unleash the

�ow-map method’s notable vorticity-preserving ability in a broader

scope of scenarios, in particular, scenarios where vorticity-viscosity

interaction plays an important role, we propose a novel particle �ow-

map simulation method to solve the full Navier-Stokes equations

with laden-particle interactions. The key technical novelties we

delivered include two parts: On the one hand, we have devised two

particle systems, one for physical, sediment particles (with mass and

momentum) to track mass transport, and the other for the virtual,

�ow map particles (massless) to evolve vortical structures. Sediment

particles and �ow-map particles can exchange information via a

background grid during the Poisson solve for incompressibility. On

the other hand, we devised a novel path integral formula and a

�exible �ow map adaption strategy to incorporate viscosity and

drag forces into the previously purely geometric mapping process.

This Euler-to-NS enhancement, in conjunction with its particle-

laden coupling, will enable the state-of-the-art simulation of ink

di�usion by accurately capturing the �ow details during the entire

development of ink di�usion, including the vortex bulb, viscous

tails, fractal branching, and hierarchical structures.

The main contributions of our approach include:

• A novel path integral form for the Navier-Stokes equations

with accurate viscosity and drag treatments;

• A novel mechanism to couple long-range �ow maps, short-

range forces, and a short-range projection with variable-

coe�cient Poisson equations;

• A uni�ed Eulerian-Lagrangian particle-laden �ow solver that

can facilitate the state-of-the-art ink di�usion simulations

exhibiting complex vorticity-viscosity interaction.

2 Related Work

Eulerian-LagrangianMethods. Hybrid methods in �uid simulation

merge the strengths of both Lagrangian and Eulerian approaches, re-

sulting in more versatile and robust systems. Since the pivotal work

on PIC [Harlow 1962] and FLIP [Brackbill and Ruppel 1986] was

introduced to the graphics community by Zhu and Bridson [2005],

hybrid Eulerian-Lagrangian representations have become prevalent

in �uid simulations [Deng et al. 2022; Raveendran et al. 2011; Zhu

et al. 2010]. The Material Point Method (MPM), which extends the

concepts of PIC/FLIP, has been employed to simulate a range of

continuum behaviors, such as collision and fracture [Stomakhin

et al. 2013], viscoplasticity [Yue et al. 2015], magnetization [Sun

et al. 2021], solid-�uid interaction [Fang et al. 2020], and sedimenta-

tion [Gao et al. 2018]. Ongoing research has improved the accuracy

of transfers between particles and grids, addressing issues such as

unconserved vorticity [Fu et al. 2017; Jiang et al. 2015], displacement

discontinuity [Hu et al. 2018], and volume conservation [Qu et al.

2022].

Particle-Laden Flow. Particle-laden �ow refers to the movement

of a �uid that contains suspended particles, such as dust in the air

[Xiu et al. 2020], sediment in water [Gao et al. 2018], or droplets

in a gas [Xu et al. 2023]. The accurate representation of such �ows

involves modeling the interactions between particles and �uids,

including drag [Sagong et al. 2015], dispersion [Xu et al. 2011], and

phase transition [Vignesh et al. 2022]. While the particles are typi-

cally treated as Lagrangian when coupling with the �uid [Xu and

Yu 1997], they can behave like a secondary �uid and be modeled

through a two-phase �ow solver [Kartushinsky et al. 2016] or a

multiscale continuous approach [Idelsohn et al. 2022]. Inks made of

�ne-scale pigment particles can interact with �uids and exhibit com-

plex di�usion patterns, such as bulging and breakup [Machu et al.

2001], branching [Thomson and Newall 1886], and other topological

transitions. Numerous experiments have been conducted to explore

these processes through high-speed photography [Thoroddsen et al.

2008] and particle image velocimetry [Zhou et al. 2022], captur-

ing particle speed and size [Wijsho� 2018], viscosity [Krainer et al.

2019], and temperature [Lee et al. 2004]. Ink simulations include

vorticity con�nement [Sagong et al. 2015], vortex particles [Walther

and Koumoutsakos 2001], and vortex �laments [Padilla et al. 2019].

Flow Map Methods. Flow map, a geometric representation of spa-

tial time slice, was widely used to reduce di�usion errors presented

in interpolations and advections. Such a method was �rst introduced

ACM Trans. Graph., Vol. 43, No. 6, Article 266. Publication date: December 2024.







Particle-Laden Fluid on Flow Maps • 266:5

Fig. 6. Nine Ink Drops Passing Porous Obstacle. Nine ink drops drip down from the gaps between cylinders, turning into many small falling drops.

Fig. 7. One Ink Drop Passing Sphere Obstacle. One ink drop drops on a sphere, some parts form small drops flowing along the surface while some parts form

a gathered drop at the sphere’s bo�om.

where ΓB→A (x) is de�ned as

ΓB→A (x) =

∫ A

B
F)
B→gΨA→B (x)

(

W −
1

d 5
∇_

)

(ΦB→g (ΨA→B (x)), g)3g,

(11)

where _ = ? − 1
2
d 5 |u|2 is the Lagrangian pressure with density d 5 .

Note that the integral ΓB→A can be reformulated into a path inte-

gral form along a Lagrangian trajectory. For a �uid particle @ with

position G@ (C) at time C , the force path integral term in Equation 10

is the path integral of F)
B→C

(

W − 1

d 5 ∇_
)

along its trajectory from

time B to A , which is denoted as

ΓB→A,@ =

∫ A

B
F)
B→g,@

(

W −
1

d 5
∇_

)

(x@ (g), g)3g, (12)

whereF)
B→g,@ = F)

B→g (x@ (B)) represents the Jacobian of the forward

�ow map from B to g along the particle trajectory, which could be

carried on particles. Then Equation 10 can be reformulated as the

path integral form as

uA,@ = TA→B,@
) uB,@

︸        ︷︷        ︸

Mapping

+ T)
A→B,@ΓB→A,@

︸          ︷︷          ︸

Force Path Integral

. (13)

4.4 Mapped Velocity Conversion

To address the second and third challenges, we adopt a similar idea

of Long-Range Mapping Classical Projection (LMCP) proposed in

[Li et al. 2024]. We design a method based on Equation 13 to convert

long-range mapped velocity u"B→A into advected velocity u�B′→A ,

where u�B′→A is the classical advected velocity advected by �u
�C = 0

one time step from B′. B′ is one time step before A . u�B′→A is used

to interact with sediment particle and interaction is accumulated

to long range by updating the path integrator, which allows us

to address the second challenge. Simultaneously, by performing

projection on u�B′→A , we resolve the third challenge.
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Fig. 8. Chopstick Stirring Ink. The stirred ink forms many layers and pulls out many fine threads, gradually spreading throughout the entire domain.

To present the formula for converting u"B→A,@ to u�B′→A,@ , �rst,

decompose T)
A→BΓB→A,@ as

T)
A→BΓB→A,@ =T)

A→BΓB→B′,@

+ T)
A→B

∫ A

B′
F)
B→g,@

(

W −
1

d 5
∇_

)

(x@ (g), g)3g .
(14)

Here, the second part T)
A→B

∫ A

B′
F)
B→g,@

(

W − 1

d 5 ∇_
)

(x@ (g), g)3g on

the right-hand side of the above equation is equal to
(

W − 1

d 5 ∇? +

1
2
∇|uB′ |

2
)

(x@ (A ))ΔC when using the Euler scheme to compute with

the identityT)
A→BF

)
B→A = � . Utilizing the relationship uA,@ = u"B→A,@+

T)
A→B,@ΓB→A,@ = u�B′→A,@ +

(

WΔC − 1

d 5 ∇?
)

(x@ (A )), we can derive the

formula for converting u"B′→A,@ to u�B′→A,@ as

u�B′→A,@ = u"B→A,@ + T)
A→BΓB→B′,@ +

1

2
(∇|uB′ |

2) (x@ (A ))ΔC . (15)

In the following discussion, we use u�B′→A to represent the �eld

indicated by u�B′→A,@ on all particles.

4.5 Force E�ect

After converting u"B→A,@ to u�B′→A , we can incorporate forces W and

pressure ? in the �uid into u�B′→A in a conventional manner. Once W

is computed, it is applied to u�B′→A yielding u
∗
= u�B′→A +WΔC . As u

∗

is derived from the classical advected velocity u�B′→A , the pressure ?

can be directly obtained from the variable coe�cient Poisson equa-

tion Equation 18 derived from Equation 3. The projected velocity

uA is then computed as uA = u∗ − 1
d5

∇? . Through this process, we

address the third challenge.

Subsequently, it is necessary to accumulate the force W and pres-

sure− 1
d5

∇? into the path integrator ΓB→A,@ .WithΔΓ =

(

W − 1

d 5 ∇?
)

,

ΓB→A,@ is updated by its de�nition Equation 11 as

ΓB→A,@ = ΓB→B′,@ + F)
B→A@

(

ΔΓ@ +
1

2
(∇|uB′ |

2) (G@ (A ))

)

ΔC . (16)

The updated ΓB→A,@ is used in the conversion between the mapped

velocity and the advected velocity in the next step.

To be speci�c, we will substitute W with speci�c force and delve

into detailed discussions regarding the drag force 1

d 5 n 5
f
5

drag
, vis-

cous force
`

d 5 Δu
�
B′→A , and gravity g appearing in Equation 2. In

the complete computation of laden �ow, the e�ects of these three

forces will be considered simultaneously according to the following

discussion and summed up.

Drag Force. First, let’s consider when W is the drag force. The

drag force originates from the interaction between sediment parti-

cles and �uid, and since both the advected velocity u�B′→B and v@
are short-range, they can interact with each other. Utilizing the

formula in Equation 5, we compute the drag force fdrag,? acting

on sediment particles. Then, employing fdrag,? and Equation 6, we

calculate f
5

drag
, and accumulate it onto u�B′→B to obtain u∗. After

projection of u∗, f
5

drag
needs to be accumulated onto long-range

using ΔΓ =

(

1

d 5 n 5
f
5

drag
− 1

d 5 ∇?
)

and Equation 16. Through this

process, we address the second challenge. The numerical computa-

tion process for fdrag,? and f
5

drag
is detailed in subsection 5.2.

Viscous Force and Gravity. When W is the viscous force, we only

need to compute ΔuB′→A . Then, we accumulate
`

d 5 ΔuB′→A onto

u�B′→A to obtain u∗. After projection, we can accumulate
`

d 5 ΔuB′→A

onto ΓB→A,@ using Equation 16. Gravity, on the other hand, can be

directly accumulated onto u�B′→A to obtain u∗ and subsequently

accumulated into ΓB→A,@ after projection.

4.6 Conclusion of Algorithm

Based on Equation 15 and subsection 4.5, we obtain our time-split

scheme as:
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Fig. 9. Ink dropping onto an armadillo: once collides the ink splinters into

numerous drops and coats the armadillo; descending drop tails bulge and

break up into many small suspension drops.

Fig. 10. Ink dropping onto a hollow cat: the ink interacts with the hollow

cat and forms complex pa�erns as the ink passes through the hollow cat,

illustrating the robustness of our method.

(1) (Long-Range Mapping) Calculate the long-range mapped

velocity as: u"B→A,@ = TA→B,@
) uB,@ ;

(2) (u"B→A,@ to u�B′→A,@ ) Calculate
1
2
(∇|uB′ |

2) (x@ (A )) and convert

u"B→A,@ to u�B′→A,@ based on Equation 15;

(3) (Exert Force) Update sediment particle dynamics and calcu-

late force like viscous force
`

d 5 Δu
�
B′→A and drag force

1

d 5 n 5
f
5

drag

on the grid, as discussion in subsection 4.5. Then calculate u∗

as

u∗ = u�B′→A +

(

g +
`

d 5
Δu�B′→A +

1

d 5 n 5
f
5

drag

)

ΔC ; (17)

(4) (Classical Projection) Solve a variable coe�cient Poisson

equation derived from Equation 3 [Gao et al. 2018]:

−
ΔC

d 5
∇ · (n 5 ∇?) = −∇ · (nBv) − ∇ · (n 5 u∗); (18)

(5) (Update) Project u∗ by uA = u∗ − 1

d 5 ∇? and update ΓB→A,@

as Equation 16.

In the above scheme, detailed calculations regarding TB→A,@ , FB→A,@ ,

n 5 , 1
2
(∇|uB′ |

2) (x@ (A )), etc. are discussed in section 5.

5 Numerical Implementation

5.1 Fluid Calculation

We employ the hybrid grid-particle method to perform numerical

computations for the time-split scheme detailed in subsection 4.6.

Particles are used to track �ow maps and compute the mapped ve-

locity, and the grid is used to perform gradient and other di�erential

operations. We use subscripts @ and 8 to distinguish between quanti-

ties on particles and quantities on the grid, respectively. Each �uid

particle carries particle initial velocity uB,@ , Jacobian of backward

�ow map TB→A , Jacobian of forward �ow map FB→A and the force

path integral ΓB→A,@ . x8 and x@ denote positions of grid and particles

respectively and in the processes of Particle-to-Grid Transfer and

Grid-to-Particle Transfer, we use the quadratic kernel F (·) from

[Jiang et al. 2016] with denotingF8@ =F (x@ − x8 ).

(1) Advection of Flow Maps. In [Deng et al. 2023], xA,@ , TA→B,@ and

FB→A,@ are advected using the Runge-Kutta 4th order method to

solve
�xA,@
�C = u and Equation 7. The velocity used to evolve xA,@ ,

TA→B,@ and FB→A,@ can either be the velocity uB′,8 from the previous

step or the midpoint time velocity umid
A calculated according to

Algorithm 2 in [Deng et al. 2023]. Following [Deng et al. 2023], we

use the midpoint time velocity to evolve xA,@ , TA→B,@ and FB→A,@ .

(2) Calculation of 1
2
(∇|uB′ |

2) (x@ (A )). The conversion from long-

range mapped velocity to advected velocity occurs on the particles.

However, the particles do not carry the quantity 1
2
(∇|uB′ |

2) (x@ (A ))

in Equation 15. Therefore, it is necessary to compute the gradient
1
2
(∇|uB′ |

2) (x@ (A )) at the particle positions through interpolation,

using the �nal velocity uB′ from the previous step on the grid.

1

2
(∇|uB′ |

2) (x@ (A )) =
∑

8

1

2
|uB′,8 |

2∇F8@ . (19)

(3) Particle-to-Grid Transfer. After calculating themapped velocity

on particles u"B→A,@ = T)
A→B,@uB,@ , the mapped velocity is converted

to short-range advected velocity on particles based on Equation 15.

Then, the short-range advected velocity will be interpolated to the

grid by APIC, similar to [Sancho et al. 2024] as

u�B′→A,8 =

∑

@

F8@ (u
�
B→A,@ +�@ (x8 − x@))/

(
∑

@

F8@

)

, (20)
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Table 2. The catalog of all our simulation examples. #Fluid is the number of fluid particles per cell and #Sediment is the total number of sediment particle

clusters

Name Figure Resolution #Fluid #Sediment Time (sec

/substep)

Memory

Cost (GB)

Kármán Vortex Shedding Figure 12 512 × 256 16 N/A 0.91 0.43

Ink Torus Breakup Figure 4 128 × 256 × 128 8 1.0 × 106 1.84 11.49

Ink Torus Breakup(Under Di�erent Re) Figure 5 128 × 256 × 128 8 1.0 × 106 1.84 11.49

Pass-Through of Two Drops (Vertically Aligned) Figure 11(left) 128 × 256 × 128 8 1.0 × 106 1.83 11.49

Pass-Through of Two Drops (Horizontally O�set) Figure 11(right) 128 × 256 × 128 8 1.0 × 106 1.81 11.49

Two Ink Drops Oblique Collision Comparison Figure 15(above) 128 × 256 × 128 8 1.0 × 106 1.85 11.49

Three Ink Drops Oblique Collision Comparison Figure 15(below) 128 × 256 × 128 8 1.5 × 106 1.83 11.52

Ink Torus Breakup Comparison Figure 16 128 × 256 × 128 8 1.0 × 106 1.84 11.49

Two Drop Interaction Figure 13 128 × 256 × 128 8 1.0 × 106 1.81 11.49

Dripping Figure 3 128 × 256 × 128 8 2.0 × 106 1.85 11.55

RT Instability Figure 14 128 × 256 × 128 8 4.0 × 106 1.94 11.66

One Ink Drop Passing Sphere Obstacle Figure 7 128 × 256 × 128 8 1.0 × 106 1.99 11.49

Chopstick Stirring Ink Figure 8 128 × 256 × 128 8 1.0 × 106 2.06 11.49

Nine Ink Drops Passing Porous Obstacle Figure 6 128 × 256 × 128 8 3.0 × 106 2.32 11.49

Ink Dropping onto an Armadillo Figure 9 128 × 256 × 128 8 4.0 × 106 2.21 11.66

Ink Dropping onto a Hollow Cat Figure 10 128 × 256 × 128 8 2.0 × 106 2.06 11.55

Examples. In our experiment, the �uid part is calculated using a

128 × 128 × 256 grid, with each grid cell containing 8 �uid particles.

For the sediment part, we use 1,000,000 to 4,000,000 particle clusters.

��! = 0.5 is used for calculate the ΔC . We use Taichi [Hu et al. 2019]

for our implementation, and experiments are run on Tesla A100

GPUs and each substep takes approximately 2.0 seconds. The details

of memory cost and runtime are presented in Table 1. (1) Two

Drop Interaction. In Fig. 13, at '4 = 30, two horizontally o�set

drops interact as they fall, forming a complex pattern composed

of ink rings and �laments. (2) Rayleigh-Taylor (RT) Instability.

Fig. 14 shows a thin layer of ink turns unstable by gravity and forms

small ink drops, leading to the classic �gure shape of RT instability.

(3) Chopstick Stirring Ink. As shown in Fig. 8, under the action

of stirring, the ink initially dropped into the water tank gradually

becomes thin and forms many layers, pulling out many �ne threads.

As the stirring time increases, the ink gradually spreads throughout

the entire water tank. (4) One Ink Drop Passing Sphere Obstacle.

In Fig.7, as an ink drop descends past a spherical obstacle, it �ows

over the surface of the sphere, and part of the ink coalesces into

small drops near the bottom of the ink and then separates, while the

remaining ink continues to �ow along the surface of the sphere and

gathers at the bottom. Under the in�uence of gravity, these gathered

ink drops then fall downward. During falling, the aggregated ink

continuously forms torus shapes and disintegrates into smaller blobs.

(5) Nine Ink Drops Passing Porous Obstacle. As shown in Fig.6,

when 9 drops of ink fall through a porous obstacle composed of

several cylindrical structures, the ink drips down from the gaps

between cylinders, forming many falling drops. These falling drops

interact, creating a complex pattern. (6) Dripping. At the top of the

water tank, we intermittently drip ink into the tank. As shown in

Fig. 3 the ink gradually falls and impacts at the bottom of the tank.

During the ink falling, a long tail forms between it and the dropper.

This tail will bulge and break up, forming many small suspension

drops, which is consistent with the real photographs in Figure 6 of

[Machu et al. 2001]. As the small suspension drops continue to fall,

they develop into tori, which is consistent with Figure 9. in [Rogers

1858]. (7) Ink Dripping onto an Obstacle. In Fig 9 and Fig. 10, we

dripped ink onto complex solids to demonstrate the phenomena of

ink and complex solid interaction, proving our method’s robustness.

Discussion. Our particle-laden �ow map model extends the simu-

lation scope of traditional impulse/covector methods (e.g., [Deng

et al. 2023; Feng et al. 2022; Nabizadeh et al. 2022] to the realm of

viscosity-driven and particle-laden �uid phenomena. This scope

extension is due to our method’s new capability of tackling forces

such as �uid viscosity and laden particle drag, which play an im-

portant role in producing physically-based vortical �ow structures.

Traditional impulse/covector methods such as [Deng et al. 2023;

Nabizadeh et al. 2022] solve the Euler equation for inviscid incom-

pressible �ow that does not consider viscosity. Moreover, the force

that sediment particles exert on the �uid cannot be incorporated into

the traditional impulse/covector �uid models, limiting their model-

ing of interactions between sediment particles and their surrounding

�uid. Last, the �uid portion of particle-laden �uid �ow requires solv-

ing a variable-coe�cient Poisson equation, which makes it di�cult

for solvers relying on solving a constant-coe�cient Poisson system

(e.g., the advection-re�ection method [Zehnder et al. 2018]) to apply.
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Fig. 15. Ink Drops Oblique Collision Comparison. When two Ink Drops collide obliquely (above), the tori formed by the two drops exhibits ring reconnection

similar to vortex ring collisions. Compared to APIC, Semi-Lagrangian, Bimocq and basic flow-map methods, our method be�er maintains the vortex results,

achieving ink ring reconnection uniquely. When three Ink Drops collide obliquely (below), only our method achieves ink ring reconnection compared to APIC,

Semi-Lagrangian, Bimocq and basic flow-map methods, forming a new small ink ring at the center.
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�����

Fig. 16. Ink Torus Breakup Comparison. At '4 = 15, when two vertically aligned drops fall, a�er they undergo the process of pass-through, mixing and

forming a torus, the torus forming by two drops disintegrates into more rings as they continue to fall. Due to our method’s lower numerical dissipation, the

formed torus disintegrates into more rings more e�ectively.

8 Limitations and Future Work

In summary, we have enhanced the �ow map method to accommo-

date forces beyond pressure and introduced a novel framework for

simulating ink as a particle-laden �ow using particle �ow maps. The

most signi�cant limitation of our framework is that it only considers

the interaction forces between the �uid and sediment, neglecting

interactions between sediment particles. This limitation prevents

the handling of phenomena such as sediment accumulation. We

plan to incorporate interactions between sediment particles into

our framework to enable the simulation of a broader range of laden

�ow phenomena. We also consider implementing adaptive particles

to achieve larger-scale laden �ow e�ects such as sand storms.
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A Derivation of Eq.10

Similar to [Nabizadeh et al. 2022], we reformulated Equation 9 as
mu
mC + (u · ∇)u + ∇u) · u = W − 1

d 5 ∇
(

? + 1
2
d 5 |u|2

)

and expressed it

in covector form using the Lie derivative
(

m

mC
+ !u

)

u♭ = W♭ − 3_ (30)

By integrating this equation of Lie derivative form, we obtain

u♭A = Ψ
∗
A→Bu

♭
B +

∫ C

B
(ΦB→g ◦ ΨA→B )

∗ (W♭g − 3_g )3g

= Ψ
∗
A→Bu

♭
B + Φ

∗
B→g

∫ C

B
Ψ
∗
A→B (W

♭
g − 3_g )3g

(31)

where Ψ∗
A→B and Φ

∗
B→g are the pullbacks of the covector induced by

ΨA→B and ΦB→g , respectively. Convert the above expression back

to vector form, and note that Ψ∗
A→Bv

♭ and Φ
∗
B→gv

♭ corresponds to

∇Ψ)A→Bv and ∇Φ)B→gv respectively for arbitrary vector �eld v.
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