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Fig. 2. A rotating fishtail in an inlet. Vorticity in two phases is visualized using di�erent colormaps. Top: Top view. Bo�om: Side view.

2024]). Equipped with an accurate, long-range �ow map established

across a time interval, impulse (covector) can be geometrically trans-

ported with this map along with its Jacobian. The combination of

impulse and �ow maps naturally preserves and develops complex

vortical structures and achieves impressive results regarding their

physical accuracy and visual complexity. However, most current

impulse-based schemes focus on solving incompressible �ow with-

out a free surface (i.e., smoke simulation in graphics), and none of

the existing methods can tackle multi-phase �uid.

Themain challenge of employing impulse to simulate a two-phase

system lies in tackling the jump conditions on the interface. Due

to the spatiotemporal nature of the gauge variable, the previously

geometry-dependent jump condition (e.g., surface tension due to

the local interfacial geometry) becomes history-dependent, which

needs to be converted into a path integral along the trajectory of

every virtual particle on the interface over the entire time inter-

val of its �ow map. Directly calculating this integral for each grid

sample is impractical with an implicit interface representation such

as a level set. Moreover, due to the dynamic nature of the prob-

lem, calculating such an integral requires performing additional

inside/outside checks for each quadrature along the path according

to the interface’s position at each time instant, which a�ects the

accuracy and robustness of the entire solver due to the accumulated

numerical errors across the interface.

To address these challenges, this paper develops a novel Eulerian

framework to simulate two-phase �ows under a �ow-map perspec-

tive. We mainly address the challenge of tackling the spatiotemporal

jump conditions across a dynamic implicit interface with �ow maps

by devising a novel framework named Impulse Ghost Fluid Method

(IGFM). To tackle the accumulated jump of the gauge variable across

a dynamic interface, we propose a novel scheme named Path Inte-

gral Projection. Leveraging spatiotemporal bu�ers and �ow maps,

we use a path integral to calculate the history part of the gauge

variable and solve for the emerging part with a varying-coe�cient

Poisson solver. The bidirectional �ow map evolved in the process

can also be employed to accurately track the level set. As a result,

our framework achieves state-of-the-art transport accuracy of both

vorticity and interface simultaneously under a single �ow map dis-

cretized on an Eulerian grid. We demonstrate the e�cacy of our

approach by simulating a variety of two-phase vortical �ow phe-

nomena, such as interfacial whirlpool, vortex ring re�ection, and

leapfrogging bubble rings, with our particular focus on capturing

the cross-interface vortical structures that have played an essential

role in many cross-interface �ow phenomena.

We summarize our main contributions as:

• A novel Impulse Ghost Fluid Method (IGFM) for simulating

two-phase �uid.

• A novel Path-Integral-Projection scheme to tackle the history-

dependent jump of gauge variable on an Eulerian grid.

• A novel Bidirectional-Marched-Flow-Map Level Set (BMFM-

LS) method to enhance volume preservation.

• A two-phase �ow solver to capture complex cross-interface

vortex �ow phenomena.

2 Related Work

Two-phase Flows. In the graphics community, a popular approach

for simulating two-phase �ows is the Ghost Fluid Method (GFM)

[Fedkiw et al. 1999]. This method employs a level set to track the

interface and sharply captures the discontinuous jump in �uid den-

sity at the liquid-air boundary. It enforces incompressibility for both

liquid and air through a pressure projection scheme. Hong and Kim

[2005] �rst adapted the method for graphics to simulate bubbles,

with a variety of work following. Mihalef et al. [2006] used Coupled

Level Set and Volume-Of-Fluid (CLSVOF) method [Sussman and

Puckett 2000] to address the volume loss of level set methods. A

volume control method was developed by Kim et al. [2007]. They

calculated a correction term according to volume error and applied it

to pressure projection. To capture small-scale droplets and bubbles,

Boyd and Bridson [2012] proposed MultiFLIP, combining GFM with

the Fluid Implicit Particle (FLIP) method [Brackbill and Ruppel 1986;

Zhu and Bridson 2005]. Besides these sharp-interface approaches,

Song et al. [2005] and Zheng et al. [2006] employed di�use-interface

models where the �uid density is smoothly changing near the liquid-

air interface. Researchers also explored ways to simulate bubbles

without simulating the air part, such as stream function solver [Ando

et al. 2015] and constraint-based model [Goldade et al. 2020]. In re-

cent years, many works were also devoted to simulating two-phase
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Fig. 3. A vortex ring obliquely approaches the liquid-air interface, creating a bump on the interface before reflecting back.

�ows with kinetic solver [Li and Desbrun 2023; Li et al. 2021, 2022]

and mixture model [Yan and Ren 2023].

Gauge Methods. The concept of impulse was �rst introduced by

Buttke [1992]. It is de�ned by reformulating the incompressible

Navier-Stokes Equation with a gauge transformation [Buttke 1993;

Oseledets 1989; Roberts 1972]. After that, researchers in computa-

tional physics have explored various applications of impulse, such

as turbulence [Buttke and Chorin 1993], numeric stability [Weinan

and Liu 2003], and solid boundary treatment [Summers 2000]. In

the graphics community, Feng et al. [2023] developed an Eulerian

impulse-based gauge method for vortex �ow simulations. Sancho

et al. [2024] developed a hybrid impulse method, extending APIC

[Jiang et al. 2015] with gauge transformation. Nabizadeh et al. [2022]

and Deng et al. [2023] found that the combination of impulse and

�ow maps signi�cantly improves the preservation of vortical struc-

tures. While impulse demonstrates e�cacy in smoke simulations,

the di�culty of liquid-air boundary treatment hinders its applica-

tion in two-phase �ow simulations. The works of Saye [2016] and

Saye [2017] pioneered in this direction, but were limited to a simpli-

�ed velocity-impulse density formulation [Weinan and Liu 1997].

Recently, Li et al. [2024] proposed using path integral on particles

to deal with the Dirichlet boundary condition of gauge variable.

This motivates us to tackle the jump condition of gauge variable

in two-phase �ows by employing backward marched inverse �ow

maps to perform path integral on an Eulerian grid.

Flow-map Methods. Beginning with the pioneering work of Wig-

gert and Wylie [1976], �ow-map methods (also known as reference-

map methods or methods of characteristic mapping), have received

consistent attention. These methods reduce the frequency of inter-

polations by tracking �uid quantities with a long-range mapping,

thus diminishing numerical dissipation. Since Hachisuka [2005]

introduced the idea to graphics community, many studies have been

devoted to utilizing �ow maps to increase the accuracy of velocity

advection and preserve vortical �ow structures. Sato et al. [2017]

proposed backtracing a long-range �ow map using semi-lagrangian

and integrating pressure gradient along the path to correct velocity.

Qu et al. [2019] developed a bidirectional mapping to better prevent

dissipation. Based on this, Nabizadeh et al. [2022] combined the

concept of �ow map with the impulse �uid model [Cortez 1996]. In

Neural Flow Map (NFM) [Deng et al. 2023], the authors proposed

a neural bu�er to memory-e�ciently store intermediate velocity

�elds used for backtracing �ow maps with high precision. Besides

reducing numeric dissipation in velocity advection, recent work has

also explored using �ow maps for accurate interface tracking. Bel-

lotti and Theillard [2019] leveraged �owmaps to reduce volume loss

in two-phase �ow simulations, which is incurred by the numeric

error in the advection and reinitialization of the level set [Osher and

Sethian 1988]. Mercier et al. [2020] proposed combining �ow maps

with a gradient augmentation interpolation scheme. To reduce the

volume loss incurred by reinitialization, Narita and Ando [2022]

employed tiled characteristic maps to replace global reinitialization

with local reinitialization. Li et al. [2023] developed an accurate

quasi-Newton method for reinitialization and built up a high-order

framework based on �ow maps, which is named GARM-LS.

3 Physical Model

3.1 Two-Phase Flow

We take a sharp-interface model for two-phase �ows, where the

�uid density exhibits a discontinuous jump at the liquid-air interface.

Liquid region and air region can be represented by a signed distance

�eld, which is denoted as i :




i < 0, in the liquid region Ω!, with density d!,

i > 0, in the air region Ω�, with density d�,

i = 0, at the liquid-air interface mΩ.

(1)

The �ow dynamics are governed by the Euler equations for inviscid,

incompressible �uid �ow:




Du

DC
= −

1

d
∇? + g, (2)

∇ · u = 0, (3)

[?]= f^ on mΩ. (4)

Here f is the surface tension coe�cient, ^ is the mean curvature,

and g is the gravitational acceleration.

3.2 Flow Map

Consider �uid moving according to a spatiotemporal velocity �eld

u (q, g) from time 0 to time C . We use ^ to denote the initial position

of a material point and use x to denote the position of the material

point at time C . The motion of the �uid in the time period can be

represented by forward �ow map 5, which is de�ned as:




m5 (^ , g)

mg
= u [5 (^ , g), g],

5 (^ , 0) = ^ ,

5 (^ , C) = x .

(5)
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Fig. 4. Colliding bubble rings. The two bubble rings have opposite vorticity

at the beginning and then approach and collide with each other.

The inverse �ow map 7 is de�ned as the inverse mapping of the

forward �ow map:




5 (7 (x, g), g) = x .

7 (x, 0) = x,

7 (x, C) = ^ .

(6)

The jacobians of 5 and 7 are represented by F and T, respec-

tively.

F (5, g) =
m5 (^ , g)

m^
, T (x, g) =

m7 (x, g)

mx
. (7)

As proven in [Gonzalez and Stuart 2008], the temporal evolution of

F and T is given by the following equations:

DF

DC
= ∇uF,

DT

DC
= −T∇u . (8)

We de�ne path integral operator L1
0 , which maps a spatiotemporal

�eld 5 to another spatiotemporal �eld L1
0 5 ,

(L1
0 5 ) (x, C) =

∫ 1

0
5 (5 (7 (x, C), g), g)dg . (9)

Consider a material point A which is located at x at time C . Its initial

position is 7 (x, C). From time 0 to time 1, A moves from 5 (7 (x, C), 0)

to 5 (7 (x, C), 1). (L1
0 5 ) (x, C) represents the integral of the 5 value

on the material point A over the time period.

3.3 Impulse Gauge Two-Phase Flow

For two-phase �ows, impulse �eld m is de�ned through a gauge

transformation

m = u +
1

d
∇U. (10)

Here U is chosen such that (1)m is initially equivalent to u, (2) the

material derivative of m equals to a stretching term[Cortez 1996],




m(x, 0) = u (x, 0),

�m

�C
= −(∇u))m.

(11)

Note that the evolution of u and m are deterministic, thus ∇U is

unique, making the feasible solutions of U only vary by a constant.

We derive that (in section A)

U (x, C) =

(
LC
0
(? −

1

2
d |u |2 + d�)

)
(x, C) (12)

makes m satisfy Equation (11). Here � denotes the gravitational

potential, which gives

g = −∇�. (13)

Fig. 5. Leapfrogging bubble rings. Initially, the two bubble rings have aligned

vorticity. Induced flow makes them pass through each other repeatedly.

Across the liquid-air interface, U has a history-dependent jump,

[U] = LC
0
(f^) + (d� − d!) · (L

C
0
� −

1

2
LC
0
|u |2) on mΩ. (14)

The jump of U at interface [U] is the di�erence between the

unilateral limit of U on the air region and the unilateral limit on the

liquid region. At time C , consider an interfacial point x� , an air point

x� , and a liquid point x! . x� and x! are in�nitely close to x� , and

[U] (x� , C) can be regarded as the di�erence between U (x�, C) and

U (x!, C),

[U] (x� , C) = U (x�, C) − U (x!, C) . (15)

Consider material points A � , A� , A! moving in the �ow �eld. At

time C , A � , A� , A! are located at x� , x� , x! respectively. Because C

is �nite, the distance between A� and A � , and the distance between

A! and A � are still in�nitely small in the time period from 0 to C .

Therefore, at each time point, the di�erence between a physical

quantity on A� and A! equals to the jump of the physical quantity

on A � . Furthermore, the di�erence between the temporal integral of

a physical quantity on A� and A! equals to the temporal integral of

the physical quantity’s jump on A � . Thus,

U (x�, C) − U (x!, C) =

(
LC
0
( [?] −

1

2
[d] |u |2 + [d]�)

)
(G � , C). (16)

And equation (14) can be obtained.

4 Impulse Ghost Fluid Method

A traditional velocity-based solver comprises two primary compo-

nents: advection and projection. In advection, the velocity �eld is

transported through a frozen background velocity �eld. In projec-

tion, the advected velocity �eld is made divergence-free by solving

a Poisson equation. Similarly, an impulse-based solver updates the

impulse to the current time, followed by projecting this impulse

onto a divergence-free velocity �eld. As the mathematical form of

the gauge transformation suggests, this projection is also equiva-

lent to solving a Poisson equation. To avoid the problem that the

distance between impulse and velocity keeps increasing and causes

numeric instability at some point, the impulse is periodically reset to

velocity, with the reset time selected as a new zero point (i.e. C = 0).

We denote this scheme as the reinitialization of impulse, which is

commonly used in impulse-based methods.

4.1 Pullback and Backward March

A merit of impulse lies in its purely geometric evolution, which

enables the reconstruction of impulse from the initial conditions

ACM Trans. Graph., Vol. 43, No. 6, Article 269. Publication date: December 2024.



An Impulse Ghost Fluid Method for Simulating Two-Phase Flows • 269:5

Fig. 6. Sink whirlpool with a hole on the bo�om.

and �ow maps with the pullback operator [Nabizadeh et al. 2022].

By utilizing (8) and (11), one can derive

m(x, C) = T
) u (7 (x, C), 0) . (17)

In the work of Nabizadeh et al. [2022], 7 is advected every time step

and T is obtained by taking the �nite di�erence of 7. Deng et al.

[2023] proposed using a velocity bu�er to backward march 7 and T

with a Joint-RK4 scheme, which signi�cantly improves the accuracy

and is adopted by us.

Here we explain how to numerically backward march 7. Consider

a material point that is located at grid point (8, 9, :) at time C= , and

we want to �nd its position at time 0. We have the previous velocity

�eld u0, u1, · · · , u=−1 in hand. We can consider the time reverses,

the material point starts at the grid point (8, 9, :), moves according

to the RK4 scheme in u=−1, · · · , u1, u0, and eventually marches to

its position at time 0.

4.2 Discretized Form for Impulse Projection

We generalize GFM [Fedkiw et al. 1999] from velocity projection to

impulse projection. In time step =, we need to project a divergent

impulse �eld m= to a new divergence-free velocity �eld u= ,

u= =m= −
1

d
∇U=, (18)

Taking the divergence of both sides will yield a Poisson equation:

∇ ·

(
1

d
∇U=

)
= ∇ ·m= . (19)

The Poisson equation (19) can be discretized on a MAC grid [Harlow

and Welch 1965]. To illustrate, take the 1-D case as an example. We

use x8 and x8+1 to denote the center of cell 8 and cell 8+1. Suppose x8
is in liquid and x8+1 is in air. The interface between the two points is

located at x8 +\ΔG . At the interface, the left limit of U= is U=
�
and the

right limit is U=
�
+ [U=] (x� ). We use a second-order �nite di�erence

method to discretize ∇ ·
(
1

d ∇U
=
)
on cell 8 . First, we discretize the

divergence operator,

1

ΔG
·

(
1

d
∇U=

)

8+1/2

−
1

ΔG
·

(
1

d
∇U=

)

8−1/2

. (20)

Fig. 7. A pair of vortex tubes crossing liquid-air interface. First row: results

of our method. The second row and third row demonstrate the comparisons.

Bo�om le�: our method, top le�: standard velocity-based GFM solver, Bot-

tom right: BiMocq2, Top right: MC+R.

The discretization for
(
1

d ∇U
=
)

8− 1

2

is straightforward,

1

d!

U=8 − U=8−1
ΔG

. (21)

At the liquid-air interface between x8 and x8+1, d and U are dis-

continuous, but 1

d ∇U
= is continuous. Following the logic of GFM,

1

d ∇U
= is assumed to be the same for liquid and air between x8 and

x8+1, which gives
(
1

d
∇U=

)

8+1/2

=

1

d!

U=
�
− U=8

\ΔG
=

1

d�

U=8+1 − U=
�
− [U=] (x� )

(1 − \ )ΔG
. (22)

It can be derived that
(
1

d
∇U=

)

8+1/2

=

1

d̂

U=8+1 − U=8 − [U=] (x� )

ΔG
(23)

where

d̂ = \d! + (1 − \ )d� . (24)

Then on cell 8 , equation (19) can be discretized as

1

d̂

U=8+1 − U=8

ΔG2
−

1

d!

U=8 − U=8−1

ΔG2
=

<=
8+1/2

−<=
8−1/2

ΔG
+

1

d̂

[U=] (x� )

ΔG2
.

(25)

4.3 Path Integral Projection

Before solving equation (25), the jump term [U=] has to be calcu-

lated. A straightforward method involves maintaining a velocity

bu�er and a level set bu�er and using backward marched inverse

�ow to obtain path integral of f^, |u |2 and � . However, this direct

approach is impractical. For accurate calculations, 7 must be on the

exact interface during backward marching. In theory, every inter-

facial point should consistently reside on the interface. However,

numerical errors can cause 7 to deviate from the interface. Making

things worse, curvature varies rapidly as the evaluation point devi-

ates, resulting in low accuracy in evaluating the accumulation of

surface tension.
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Fig. 8. A rising bubble ring hi�ing the liquid-air interface. Top: Visualization of vorticity in two phases using di�erent colormaps. Bo�om: Interface.

To address this challenge, we propose a two-step approach named

Path Integral Projection. Note that U= can be separated into two

parts,

U= = LC=

C=−1
? +

(
LC=−1

0
? −

1

2
dLC=

0
|u |2 + dLC=

0
�

)
. (26)

LC=

C=−1
? can be discretized as ?=ΔC , which corresponds to what is

projected out in a traditional velocity-based solver in time step =.

And if wemaintain a pressure bu�er,
(
LC=−1

0
? − 1

2
dLC=

0
|u |2 + dLC=

0
�
)

can be obtained from historical information and can be calculated

with our Path Integral scheme (Algorithm 1). Therefore, we can �rst

calculate

u∗ =m= −
1

d
∇

(
LC=−1

0
? −

1

2
dLC=

0
|u |2 + dLC=

0
�

)
, (27)

then perform a velocity projection for u∗. u∗ corresponds to the

advected velocity in a traditional advection-projection velocity-

based solver. In this way, we convert the history-dependent jump

term into a geometry-dependent jump term. The projection from

u∗ to u= is expressed as




u= = u∗ − ΔC
1

d
∇?= . (28)

ΔC∇ ·

(
1

d
∇?=

)
= ∇ · u∗ . (29)

In the 1D-example above, the equation (29) can be discretized on

cell 8 as

ΔC

d̂

?=8+1 − ?=8

ΔG2
−

ΔC

d!

?=8 − ?=8−1

ΔG2
=

D∗
8+1/2

− D∗
8−1/2

ΔG
+

ΔC

d̂

f^

ΔG2
. (30)

If the distance between a cell and the interface is less than n ,

we designate the cell as a narrow-band cell. Faces of such cells

are marked as narrow-band faces. On these narrow-band faces,

instead of calculating u∗ from m= , we opt to advect u=−1 to obtain

u∗. This modi�cation is crucial for two reasons. First, it avoids

the large velocity gradients near the liquid-air interface, which

can lead to numerical instability when computing m= . Second, the

path integral used to calculate LC=−1

0
? necessitates the interpolation

of ? . Interpolation near the interface may inadvertently involve

both liquid and air points, leading to invalid results due to the

discontinuous nature of ? across the liquid-air interface.

5 Bidirectional-Marched-Flow-Map Level Set

The material derivative of the signed distance �eld i is 0. Therefore,

we can use 7 to pull back i :

i (x, C) = i (7 (x, C), 0) . (31)

Previous works have explored the evolution of i using an in-

verse �ow map [Li et al. 2023] and a bidirectional �ow map [Qu

et al. 2019]. These methods advect 7 every time step. In contrast to

these approaches, our method utilizes a velocity bu�er to backward

march 7. Our experiments (Fig. 11, 12) demonstrate that backward
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Fig. 14. Rising bubbles in a vortical velocity field. Bubbles are randomly

generated in the green region.

Here we demonstrate the memory breakdown of our method for

this experiment, where the total memory cost is 11.22GB. To pull-

back impulse and level set, we need to store the forward/inverse

�ow maps on mac grid centers and faces as well as their gradients.

Also, we need to allocate a bu�er for the history of velocities, which

leads to extra memory overhead.

Colliding Bubble Rings. Fig. 4 shows the collision between two

coaxial bubble rings. The two bubble rings initially possess oppo-

site vorticities. Consequently, the induced �ows lead to the rings

approaching and eventually colliding with each other. Following

the collision and subsequent breakup of the rings, small spherical

bubbles form as a result of surface tension.

Swinging Fishtail. Fig. 2 illustrates a swinging �shtail in an in-

coming �ow, where half of the �shtail is immersed in air, and the

other half is in liquid. The tangential velocity di�erence on the solid

boundary generates rich vortex �laments in both air and liquid.

Rising Bubble Ring. Fig. 8 displays a toroidal bubble ring colliding

with the liquid-air interface. As the bubble ring rises and approaches

the interface, its major radius grows. Due to surface tension, the

bubble ring disintegrates into smaller bubbles that �oat towards the

interface. Upon impact with the interface, the vortex ring generates

circular ripples, and the secondary vortex �laments induce a pattern

of bumps and dips on the interface.

Heaving Board. Fig. 15 shows a heaving board in an incoming

�ow. Controlled by a sinuous signal, the board heaves up and down

periodically. The interaction between the �ow and the board’s move-

ment generates surface waves, and vortex shedding can be observed

at the trailing edge of the board. As an ablation study, we simulate

the process using IGFM with varying reinitialization intervals. The

result shows that the simulation with a longer reinitialization in-

terval has less dissipation and preserves vortical structures better.

8 Discussions and future work

In conclusion, we propose a novel impulse ghost �uid method to

simulate two-phase �ows, capturing complex interactions between

Fig. 15. A heaving board in an inlet. Top row: reinitialize every time step.

Middle row: reinitialize every 5 steps. Bo�om row: reinitialize every 10 steps.

vorticity and interfaces. We devise a path integral scheme employ-

ing spatiotemporal bu�ers to tackle the history-dependent jump

condition in impulse projection. In addition, we devised a bidirec-

tional �ow map scheme to preserve small volumes of the level set

interface during its evolution.

Our method stems from the GFM, which features a division of

density in pressure projection. Besides GFM, researchers have also

explored enforcing the incompressibility for air without solving

for the air part. For example, Ando et al. [2015] adopts a stream

function formulation. While the projected velocity �eld may have

a small divergence due to numerical tolerance, the stream func-

tion solver guarantees that the resulting velocity �eld is completely

divergence-free. Also, the stream function solver avoids the division

of density in pressure projection. Previous works using GFM (e.g.,

MultiFLIP [Boyd and Bridson 2012]) have demonstrated examples

with a density ratio of 1000: 1. However, a large density ratio leads

to a large spectral condition number of the matrix in pressure pro-

jection, slowing down the convergence of the Conjugate Gradient

method. We adopt an AMGPCG solver with Galerkin coarsening

and multi-color Gauss-Seidel smoother to accelerate the conver-

gence. Using a constant interpolation between di�erent levels, the

solver can be implemented in an e�cient matrix-free style.

Our approach has several limitations. First, viscosity was not

included in our current framework. Although gauge transformation

can be de�ned in a viscous setting, an extra term is introduced to

the evolution of impulse, hindering reconstruction of impulse with

�ow maps and initial condition. Moreover, viscosity will add extra

complexities to the jump conditions with gauge variables (e.g., see

[Saye 2016]), which requires further investigation on devising e�ec-

tive ghost �uid schemes to handle viscosity on the interface. Second,

solid boundaries were treated in a simple way in our simulator. It

would be necessary to incorporate more advanced treatments such

as the high-order cutting-cell method [Ng et al. 2009] to handle

solid boundaries in our ghost �uid framework. Last, our current

implementation is not memory e�cient. In memory-limited cases,

one may adopt the neural representation proposed by Deng et al.
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[2023] for compression, at the cost of extra training time. How to

maintain the bu�er in an economical way in terms of its spatial and

temporal cost is worth investigating. In our future work, we will

further explore in these directions to enhance the current two-phase

ghost �uid solver and tackle more challenging interface-vorticity in-

teraction phenomena. We are particularly motivated by simulating

complex solid-vortex-interface interaction processes such as �sh

cross-interface swimming.
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A Evolution of Impulse

Here we prove equation (12) makes m satisfy equation (11). By the

de�nition of L and U ,

DU

DC
= ? −

1

2
d |u |2 + d�.

Expand the material derivative of ∇U as

D(∇U)

DC
= ∇

(
DU

DC

)
− (∇u))∇U

= ∇? − d (∇u)) u − dg − (∇u))∇U.

By substituting equation (10) into the LHS of equation (11)

Dm

DC
=

Du

DC
+

1

d

D(∇U)

DC

= −
1

d
∇? + g +

1

d
∇? − g − (∇u)) u −

1

d
(∇u))∇U

= −(∇u)) (u +
1

d
∇U) = −(∇u))m.
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