
1
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Abstract—The increasing demand for data storage has
prompted the exploration of new techniques, with molecular
data storage being a promising alternative. In this work, we
develop coding schemes for a new storage paradigm that can be
represented as a collection of two-dimensional arrays. Motivated
by error patterns observed in recent prototype architectures, our
study focuses on correcting erasures in the last few symbols of
each row, and also correcting arbitrary deletions across rows. We
present code constructions and explicit encoders and decoders
that are shown to be nearly optimal in many scenarios. We show
that the new coding schemes are capable of effectively mitigating
these errors, making these emerging storage platforms potentially
promising solutions.

Index Terms—Coding theory, DNA data storage, deletions, tail-
erasure, RT-metric.

I. INTRODUCTION

THE DNA Data Storage market is rapidly growing and is
expected to approach $2 billion (USD) in valuation by

2028 [1]. This rapid growth is driven by several promising
technologies that depart from existing storage practices. Tra-
ditional approaches to DNA storage, including the pioneering
works of [2], [3], typically represent data using individual base
pairs of DNA (i.e., adenine (A) and thymine (T), cytosine (C)
and guanine (G)).

More recently, companies and researchers have moved away
from this paradigm, and in an effort to drive down the cost
of synthesis and overcome some of the practical limitations
of reading with traditional DNA sequencers, they have begun
to investigate using collections of DNA molecules, sometimes
referred to as cassettes, in order to encode logical ’0’s and
‘1’s, such as in the Iridia system [4]. These DNA cassettes
are sequentially chained together and stored within an atomic
unit, which is referred to as a nano-memory cell (NMC) within
a larger storage architecture.

In order to accommodate these new storage paradigms while
also keeping the broader (traditional) storage technology stack
intact, these memory cells are logically organized into larger
collections of cells analogous to sectors in a hard drive. This
organization is beneficial in several ways. First, it allows one
to parallelize the read/write process enabling faster access
times. In addition, this logical organization of NMCs can
leverage addressing schemes that are typically employed in
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Figure 1. Illustration of a collection of Iridia’s NMC [4, Fig. 72]

the context of traditional magnetic media storage thus reducing
the potential cost or impact for transition.

Such systems can be modeled as collections of two dimen-
sional binary arrays, which are referred to as a DNA storage
arrays, whereby each row of the array represents a particular
NMC and the sequence of bits in the row represents the logical
information contained within that NMC. An illustration of
such a system architecture is being shown in Figure 1 where
each cell consists of an individual strand of DNA and this data
can be partitioned into information pertaining to the address
of the NMC, the data itself, and additional data such as ECC.

One of the key challenges, and one which is essential
to making emerging DNA storage architectures practically
viable, is constructing error correcting coding schemes. The
design of such schemes not only further increases the already
exceptional durability of DNA storage, but it also enables
greater speeds and flexibility when it comes to reading in-
formation back from the underlying data storage medium. In
this way, the problem of reading information from a DNA
storage system is no longer equivalent to the challenges faced
by existing biological DNA sequencers today which is to
determine (exactly) the underlying sequence of nucleotides
that comprises a given strand of DNA.

Designing error correcting coding schemes for DNA data
storage systems is fundamentally different than the design of
coding schemes for traditional storage media [5]. Traditional
storage typically experiences errors in the form of substitutions
whereas data stored within DNA can experience insertion,
deletion, and substitution errors. Insertions can be the result
of the improper blocking of some bits whereas deletions can
be caused by a failure of the bit addition chemistry. On
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top of this, cells within the DNA storage array can be lost
either partially, which occurs when a defective bit prematurely
terminates the chain, or the data within a cell can be corrupted
completely. Initial experiments have reported error rates as
high as 10% [6]. Despite these high numbers, we are unaware
of any existing works that attempt to construct coding schemes
for systems that can be modeled as DNA storage arrays, and
this work represents the first effort towards the development
of such a system.

Although the observed error rates are high, there appear to
be certain commonly occurring error patterns, which may be
useful in the design of future coding schemes. In particular,
when a large number of errors occur, often only the tail end
of the strand is affected. For shorthand, we say that an e-tail-
erasure (TE for short) has occurred if we are unable to recover
the last e symbols of the strand stored in the cell.

In the realm of error correction, we envision coding schemes
that provide two levels of protection. The first level of pro-
tection corrects errors that may occur within each NMC, in-
cluding insertions, deletions, and substitutions in DNA strands
whereas the second level addresses more severe corruption.
We propose a new class of codes, which we refer to as tail
erasure codes (TE codes for short), for the second level of
our envisioned two-level scheme. Our interest in codes with
this structure is motivated by the fact that most of the errors
that we are interested in correcting take the form of deletions
and in particular as a burst of deletions. Since we know both
the number of deletions that have taken place along with the
location, we can treat the burst of deletions as a burst of
erasures, which in general is a much easier problem to tackle
than burst deletion correction.

The e-tail-erasure model that we study in this paper has also
applications to the slow-fading channel as suggested in [7]
and the reliable-to-unreliable channel as described in [8].
According to the reliable-to-unreliable channel model, data is
transmitted over n channels in a distributed way, and each
channel switches from reliable transmission into an unreliable
one. This switch happens during the transmission, and the
position where it occurs may be different in every channel. The
rest of the transmission, since the moment where it became
unreliable and until the end, is considered as an erasure.
Therefore, each of these channels can be modeled as a row in
a two dimensional array, where the last e bits of each row are
considered as erasures since the channel became unreliable,
and this results in a TE.

In this work, we initiate the study of TE codes. Our main
result, which appears in Section III, is the development of
novel error-correcting codes that we show in many cases
are nearly optimal. We also consider a generalization of our
problem to account for the setup where both deletions and TEs
may occur and derive codes and bounds for this setup as well.
This paper is organized as follows. In Section II we formally
introduce our problem statement and discuss related work. In
Section III we present a general construction for TE codes.
Sections IV and V extend our problem to include the scenario
where in addition to TEs, deletions are allowed to occur. In
Section VI, bounds are derived for both TE codes and codes
capable of correcting TEs and deletions. Finally, Section VII

concludes the paper.

II. NOTATIONS, DEFINITIONS, PROBLEMS STATEMENT,
AND RELATED WORK

Throughout this paper, let F2 be the field of size two, denote
[n] = {1, . . . , n} and additionally let Z≥0 = {m ∈ Z:m ≥ 0}.
Also, for any vector x = (x1, . . . , xn), denote the subsequence
of a vector x, as x[i:j] = (xi, . . . , xj). Moreover, denote
a binary array as X = (x1, . . . ,xn) ∈ F2

n×L, where
{xi}ni=1 are binary row vectors of length L, which means
xi = (xi,1, . . . , xi,L) ∈ FL

2 for any i ∈ [n]. Finally,
for x = (x1, . . . , xn) ∈ Zn

≥0, let ∥x∥1=
∑n

i=1 xi, and
∥x∥∞= max{x1, . . . , xn}. Next, we lay the goals of this
paper and the error models we study.

A. Definitions of the Error Models

If it is not possible to recover the last bits from a row in
the array, it is said that a tail-erasure has occurred in this row.
In this case, the row vector xi ∈ FL

2 , i ∈ [n], suffers from
an e-row-tail-erasure if the bits {xi,L−e+1, . . . , xi,L} are all
erased. This definition is generalized as follows.

Definition 1. Let X ∈ Fn×L
2 . It is said that X suffers from an

e-tail-erasure, for a positive integer e, if there exists a positive
integer t ≤ n, positive integers e1, . . . , et, such that e1+ · · ·+
et = e, and t distinct row indices i1, i2, . . . , it, such that for
j ∈ [t], the ij-th row in X suffers an ej-row-tail-erasure.

For shorthand, this paper will refer to an e-tail-erasure
simply as an e-TE. A code C ⊆ Fn×L

2 capable of correcting
any e-tail-erasure is referred as an e-TE code, or a TE code
when e is not specified.

Subsequently, our model yields a definition to a distance
function, which corresponds with the definition of the m-
metric, as presented first in [9] and then further studied
by [10]–[12]. Most of these papers focus on fields of large
cardinality, and when reduced to the binary field, their con-
structions work for a very small number of rows, n.

In our paper we study specifically binary codes for arbitrary
n, and present a new construction method, based on parity
check matrices designed for this metric. This yields a new
family of explicit codes, which in many cases is also better
than the previous constructions in terms of the number of
redundancy bits. This will be discussed more in detail in
Sections II-B, and III. The first goal of the paper is as follows.

Problem 1. Construct optimal TE codes.

The results for this problem are presented in Sections III
and VI-A and are summarized in Table I. Next, it is said that
an array X ∈ Fn×L

2 suffers from a (t, s)-deletion if at most
t ≤ n rows suffer at most s ≤ L arbitrary deletions each.
A code that can correct any (t, s)-deletion is referred to as a
(t, s)-DC or a DC code for short when t, s are unspecified.

The second goal of this paper is summarized in the next
problem.

Problem 2. Construct optimal DC codes.
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The results for this problem are presented in Sections IV
and VI-B. Finally, this paper studies the combined model of
TEs and deletions. More specifically, a (t, s, e)-tail-erasure-
deletion, abbreviated as a (t, s, e)-TED, is a combination of
an e-TE and a (t, s)-deletion. It can be shown that the order
of occurrence between the TEs and deletions in each row does
not matter, and thus for simplicity it is assumed that first the e-
TE has occurred, which is then followed by the (t, s)-deletion.

However, it is worth mentioning that since the output of this
channel is just an array with some truncated rows, we cannot
distinguish between the scenarios of a TE and an arbitrary
deletion in a given row, based on the received row’s length
alone. For instance, assume that in a (1, 1, 1)-TED model, one
receives an array with the first two rows each missing one bit.
Then, any one of the following may hold: (i) The first and
second rows each experience a single TE, (ii) The first row
experiences a TE and the second row does not, or (iii) The
second row experiences a TE and the first does not.

A code that can correct any (t, s, e)-TED is a (t, s, e)-TED
code, or a TED code when t, s, e are unspecified. The third
goal of the paper is described next.

Problem 3. Construct optimal TED codes.

The results for this problem are presented in Sections V
and VI-C.

B. Related Work
Several previous works have proposed models and coding

schemes for the emerging DNA storage system. In [13], the
authors modeled the DNA storage system as an ordered set
of sequences of a certain length where each sequence can
experience insertions, deletions, and substitutions. Other works
such as [14] and [15] considered the problem of developing
constrained codes that result in input sequences that are less
likely to experience errors that may result from the DNA
storage channel. Recently, [16] developed codes for DNA
storage that protect against errors but are also amenable to
a broad class of coding constraints.

The motivation for our work stems from its connection to
storage systems that fall under the DNA storage array where
DNA molecules are stored within nano-memory cells such
as [4] rather than as an unordered multiset. Under this setting,
when a particular cell is severely corrupted the errors manifest
themselves as erasures that occur typically at the very end of
the strand. As discussed in Section I, one can model each cell
as a row of a binary array, and therefore the entire system can
be modeled as an n× L binary array, where n is the number
of cells, and L is the length of the data in the strand that is
saved in each cell. Moreover, since the cells are ordered by
hardware design, there is no need to reserve bits to index the
strands as in other DNA systems.

This model, where it is assumed that the indices are given,
can also be applied to another common model of DNA storage
systems, where all the information strands are stored in one
container, which results a loss of ordering. Therefore, in this
unordered information model, one usually dedicates part of
the information for storing indices, as was suggested by [17]
and studied by [18]–[20] and more.

Since it can either be assumed that the indices are error-
free, or that there is a dedicated ECC for the indices, it can
be verified easily that the final resulted read of the strands in
the unordered model, after ordering and removing the indices,
is a binary array as in our model.

The work on TE codes is strongly related to many works on
codes over either the so-called m-metric (also called the RT-
metric in other papers), where m corresponds to the number
of rows in the array, which was introduced first in [9]. The
m-metric is found to be useful in the case of evaluating
codes that correct erasures in arrays, which occur at the end
of each column. Therefore, it is easy to verify, using array
transposition, that TE codes are equivalent to codes in the
m-metric. Another relevant metric is the so-called ρ-metric,
that was first studied in [10], where the metric corresponds to
erasures that occur at the beginning of each row.

Moreover, in Section III-A, we define our ρTE-metric for
evaluating TE codes. However, as will be discussed in this
section, the m-metric, the ρ-metric and the ρTE-metric are all
equivalent in terms of metric spaces isomorphism.

Lastly, we note that we prefer to define our new metric
although it is equivalent to the previous one, since it better
fits the error patterns studied in our paper, and will make the
reading easier.

Next, a discussion is given, regarding the current state of the
art results under the mentioned metrics. In [10], [11] the case
of erasures at the beginning of the row was considered, and
in [8], [9], [12] it was at the end of the columns. Moreover,
in [9]–[12] mostly the case of large fields was considered,
and several bounds were found, as will be described in Sec-
tion VI-A. Also, two results of [11] for q = 2 can be applied
to Problem 1, but the problem the authors solved is more
strict, in terms of linearity. Their model treats every row as a
symbol in FqL and requires linearity of the length-n codewords
over FqL . Therefore, under our model, our construction is less
restrictive, since linearity demands are only over Fq . Lastly,
in [8] a BCH code for the RT-metric is presented, and therefore
a construction for a binary TE code can be derived where
the length of each row is a power of two. However, their
construction has concrete results only for TE codes of size
3×4, and for the general case there is no explicit lower bound
on the cardinality of such codes. Therefore, one cannot derive
a proper comparison between their results and the results in
our paper.

Another related area of research involves the design of
Universally Decodable Matrices (UDM), which is originated
from the slow-fading channel problem, such as in [7], [11].
Specifically, in [11] a construction is given for the case where
the rows are seen as a symbol over FqL and q > n, which
does not generalize into the binary array model in this paper.
Moreover, it is proved in [7, Theorem 4] that a necessary
condition for the existence of {Ai}n−1

i=0 UDM over Fq is that
q > n, and therefore any construction based strictly on UDM,
cannot be used in the binary case.

We note that our problem bears resemblance to the problem
of coding for segmented edit channels [21], [22]. However,
unlike the segmented edit model, we assume that the location
of the tail-erasure is also known.
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Nevertheless, we also face the model of (t, s)-deletions,
that can be seen as a segmented edit channel, where at most
t segments are erroneous and the separation to segments is
given.

Our problem is also reminiscent of constructing unequal
error protection (UEP) codes [23], [24], [25]. UEP codes
are codes with the property that some information bits are
more protected against a greater number of errors than other
information symbols. Under the UEP model, each coordinate,
say i, in a codeword is pre-assigned a protection which is
referred to as fi. Under this setting, if f errors occur in the
underlying codeword, then we can determine the value of any
coordinate j in the original codeword if fj ≥ f regardless of
whether the original codeword can be determined. One of the
primary motivations for the development of UEP codes was
to ensure that when errors occur, the values of coordinates
with higher protection levels fi can still be recovered [23]. As
is the case across many existing storage solutions [26], our
interest will be in the development of codes that ensure that
so long as the number of errors that occur is below a certain
threshold, all errors are correctable.

As will be discussed in the next section, the distance metric
of interest for constructing TE codes is fundamentally different
in the sense that our schemes aim to recover the entire
codeword under the setting where the locations of the errors
are non-independent and satisfy certain spatial properties in
the underlying arrays.

III. TAIL-ERASURE CODES

In this section, constructions of TE codes, and also linear
TE codes, are presented. The main result of the section is
in Section III-C, where a construction of a linear e-TE code
when e ≤ L is presented. Moreover, several results for the
case where e > L can be found in Section III-D.

A. The TE Distance

The focus of this subsection is introducing a suitable dis-
tance function for TE codes, while also providing a definition
of a TE pattern. We begin with the definition of the ρTE
distance, as follows.

Definition 2. Let X=(x1,. . .,xn),Y =(y1,. . .,yn) ∈ Fn×L
q .

Then, for every j ∈ [n],

ρTE(xj ,yj) =

{
L−min{i:xj,i ̸= yj,i}+ 1 if xj ̸= yj

0 if xj = yj

.

And,

ρTE(X,Y ) =
n∑

j=1

ρTE(xj ,yj) .

This distance function is closely related to the ρ-metric,
which was introduced in [10], while noting that the difference
between the definitions is that ρ(xj ,yj) = max{i:xj,i ̸= yj,i}
if xj ̸= yj , and one can easily find the isomorphism between
these two distance definitions, by reversing the order of each
row. Moreover, it can be deduced that the ρTE-distance is a
metric and from now on we will refer to it as the ρTE-metric or

the TE-metric. The relation to the RT-metric is by transposing
the array, and therefore, in terms of code parameters, all of
the above mentioned metrics give equivalent codes and a
comparison between the codes that are derived in each metric
will be given at the end of Section III-C.

Next, a mathematical definition of a TE pattern is given.
This definition resembles with the ones in [7], [11], but is
more suitable for the notations of this paper.

Definition 3. For e, L, n, the TE-pattern set is defined to be

P (e, L, n) =
{
p ∈ Zn

≥0: ∥p∥1≤ e, ∥p∥∞≤ L
}

.

In other words, P (e, L, n) is the set of all length-n vectors
p, which are called TE patterns, where the sum of entries in
p is at most e and the value of each entry in p is at most L.
A pattern p ∈ P (e, L, n) will be used next as an indicator,
such that the i-th entry in p represents the number of erased
bits in the i-th row of the array. Following this, the concept
of a p-pattern-TE is introduced.

Definition 4. Let X ∈ Fn×L
2 and p ∈ P (e, L, n). Then, the

p-pattern-TE of X , denoted by X(p) ∈ (F2 ∪ {? })n×L, is
defined as follows:

x
(p)
i,j =

{
? if pi > 0 and j ≥ L− pi + 1

xi,j else.
.

Conceptually, X(p) represents the array that is obtained by
replacing the last pi symbols in the i-th row of X with the
erasure symbol ”?”. An example is given next.

Example 1. Let X =

[
1 0 1
0 0 1

]
, p = (2, 1). Then,

X(p) =

[
1 ? ?
0 0 ?

]
, is a p-pattern-TE of X .

Next, we provide a claim that connects Definitions 3 and 4
to the ρTE-metric definition.

Claim 1. Let X,Y ∈ Fn×L
2 . Then,

ρTE(X,Y ) = min
p∈P (nL,L,n)

{
∥p∥1:X(p) = Y (p)

}
.

Proof: By definition, for every row j ∈ [n], the distance
ρTE(xj ,yj) is exactly the minimal number of erasures required
in the end of both xj and yj so they appear the same. In other
words, this is the value of pj for some vector p = (p1, . . . , pn),
such that (X(p))j = (Y (p))j , where (X(p))j denotes the j-
th row of X(p) and (Y (p))j denotes the j-th row of Y (p).
Thus, a vector p that obtains the minimum ∥p∥1, for which
X(p) = Y (p) as in the left hand side, is constructed in a way
such that every entry pj , represents also the minimal number
of erasures required in the end of both xj and yj , such that
(X(p))j = (Y (p))j , or otherwise it results a contradiction to
the minimality, since one can choose a smaller value for the
j-th entry of p. Hence, for the above minimal p it holds that

∥p∥1=
n∑

i=1

pi =
n∑

j=1

ρTE(xj ,yj) = ρTE(X,Y ) ,

which completes the proof.
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A short example of computing the ρTE-metric by using a
TE pattern is given next.

Example 2. Let X,Y ∈ F2×3
2 be defined as follows,

X =

[
1 0 1
0 0 1

]
, Y =

[
1 0 0
0 1 1

]
.

It can be readily verified that ρTE(X,Y ) = 3 using p = (1, 2),
or using Definition 2.

Compared to the Hamming distance, note that under this
model, erasures do not independently contribute to the ρTE-
distance between two codewords. For example, consider the
case where X is as in Example 2. Then, the vectors

Y =

[
1 1 0
0 0 0

]
, Z =

[
1 1 1
0 0 0

]
,

are each at the same TE distance (of three) to X despite the
fact that the set of coordinates in which X and Z differ is a
subset of the set of coordinates where X and Y do not agree.

Finally, a definition of a minimum distance of a code under
the ρTE distance follows.

Definition 5. Let C ⊆ Fn×L
2 be a TE code. Then, the minimum

ρTE-distance of C is defined as follows

ρTE(C) = min
X,Y ∈C:X ̸=Y

ρTE(X,Y ) .

Next, denote by (n × L,M, e + 1)TE a code of cardinality
M , and minimum ρTE-distance of e+1 over binary arrays of
length n × L. Then, a basic theorem regarding the minimum
ρTE-distance of a code is given. This theorem illustrates one of
the similarities between the properties of classical codes under
the Hamming metric, and the TE codes in our paper, as we
show that an (n×L,M, e+1)TE code can correct e erasures.
Although this theorem is probably known, we present it here
for the sake of completeness.

Theorem 1. A code C ⊆ Fn×L
2 is an e-TE-correcting code if

and only if ρTE(C) ≥ e+ 1.

The proof of Theorem 1 is provided in the appendix. Fur-
thermore, Theorem 1 indicates that the constructions presented
later in the paper are applicable to any type of TE pattern.

B. Tail-Erasure Linear Codes

Next, linear TE codes are constructed. First, the notation of
a parity check matrix for linear codes over arrays under the
ρTE-distance is presented.

Definition 6. Let C ⊆ Fn×L
2 be a linear code. A TE parity

check matrix of C is a three-dimensional array H ∈ Fr×n×L
2 ,

H =

h1,1 . . . h1,L

...
. . .

...
hn,1 . . . hn,L

 ,hi,j ∈ Fr
2 ,

where it holds that

X = (xi,j)i∈[n],j∈[L] ∈ C ⇐⇒
n∑

i=1

L∑
j=1

xi,jhi,j = 0 .

Denote H∗ as the set of vectors, which are the entries of
H, i.e., {h1,1, . . . ,hn,L}. Then, dim(C) = nL − rank(H∗).
Moreover, refer to a linear TE code C ⊆ Fn×L

2 , as an [n ×
L, k, d]TE code, where k = dim(C) and d = ρTE(C).

Next, an expression of ρTE(C) for linear codes will be
developed, using several preliminary definitions. First, let

J (H,p) = {{hi,j ∈ Fr
2: pi > 0, and j ≥ L− pi + 1}} ,

where p ∈ P (e, L, n). This multiset of columns represents the
columns of H which are located in the matching entries of the
erasure pattern p. The reason for choosing the multiset over a
set, is the fact that there could be a repetition of columns in
H, and it clearly affects the linear dependency of the multiset.

Example 3. Let H = [h1, . . . ,h7] be a parity check matrix
of the [7, 4, 3] Hamming code. Let

H =



h2 h1

h3 h2

h4 h3

h5 h4

h6 h5

h7 h6

h1 h7


∈ F3×7×2

2 , p =



1
0
0
0
0
0
2


.

Then, J (H,p) = {{h1,h1,h7}}. Notice that there are
repetitions of columns and therefore this multiset is linearly
dependent. This is one of the cases where a TE pattern
cannot be corrected, and this observation will be generalized
in Claim 2.

In addition to the above, define the TE-weight of X as
wTE(X)=ρTE(X,0). It is possible to show that ρTE(X,Y )=
ρTE(X−Z,Y −Z) for any Z. Then, if Z=Y , ρTE(X,Y )=
wTE(X−Y ).

In [8] the authors indicated another similarity between the
Hamming distance and the ρTE-distance, which is,

ρTE(C) = min
X∈C\{0}

wTE(X) .

Lastly, a connection between the TE parity check matrix
and the minimum ρTE-distance of its code is presented.

Claim 2. Let H be a TE parity check matrix of a code C ⊆
Fn×L
2 . Then, ρTE(C) is the largest integer d, such that for

any p ∈ P (d − 1, L, n), the vectors in J (H,p) are linearly
independent.

Proof: Let X ∈ C with TE weight of t > 0. This implies
the existence of p ∈ P (t, e, n), ∥p∥1= t such that J (H,p) is
of cardinality t, and denote the column indices in J (H,p) as
J . From the definition of TE weight, any (i, j) /∈ J implies
xi,j = 0 and since X is a codeword,

n∑
i=1

e∑
j=1

hi,jxi,j =
∑

(i,j)∈J

hi,jxi,j = 0 ,

which implies J (H,p) is a linearly dependent multiset by
definition. Conversely, let J ′(H,p′) be a multiset of t′

linearly dependent columns of H, for some p′ ∈ P (t′, e, n),
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and denote the column indices in J ′(H,p′) as J ′, i.e.,∑
(i,j)∈J′ αi,jhi,j = 0, which implies the existence of a

codeword Y which is zero in every entry except the indices
in J ′, thus 0 < wTE(Y ) ≤ t′, and then d ≤ t′, so we can
conclude that there are no patterns p′ ∈ P (t′, L, n), for t′ < d,
such that the vectors in J (H,p′) are linearly dependent.

C. Linear Tail Erasure Code Construction

In this subsection, we give a construction for linear codes
where e ≤ L. Note that if e ≤ L, then the first L − e bits
of a row cannot be erroneous. Thus, the subarray of size n×
(L − e) of any word of size n × L, taken as its first L − e
columns is error-free. Therefore, one can use the constructions
in this subsection for the last e columns, and then prepend
any first L − e columns subarray to it, without affecting the
bits of redundancy or the TE-correcting ability of the code.
Hence, unless stated otherwise, it is assumed throughout this
subsection L = e so that the size of our arrays are n×(L = e).
In Section III-D a discussion on codes where e > L is given,
and also a construction of a linear code for this case will be
given in Section III-D.

First, since one can take a parity check matrix and con-
struct a generator matrix from it, we can derive an efficient
(polynomial-time) encoding scheme. For decoding, since the
locations of the errors are known under this model, a system of
linear equations can be used to correct erasures, using the same
parity check matrix. Therefore, an efficient decoding scheme
is also implied. Following the above discussion, a construction
of an [n × (d − 1), k, d]TE code, C, is presented, using a TE
parity check matrix.

Construction 1. Let d be an odd positive integer and denote
t= d−1

2 . Also, let CB be a binary [nt, kB , d] error-correcting
code, referred as the base code, with a parity check matrix
HB = [h1 h2 · · ·hnt]. Then,

H =


h1 · · · ht h2t · · · ht+1

ht+1 · · · h2t h3t · · · h2t+1

...
. . .

...
...

. . .
...

h(n−1)t+1 · · · hnt ht · · · h1

 ,

is a TE parity check matrix of a TE-correcting code CTE.

Remark 1. For n = 2, this construction is degenerate, since
it requires a [2t, kB , 2t+ 1] base code.

For example, the code with the TE parity check matrix H in
Example 3 is a [7×2, 11, 3]TE code. The next claim emphasizes
an important property of Construction 1.

Claim 3. Let p ∈ P (e, 2t, n), where e ≤ 2t, and H as in
Construction 1. Then, the multiset J (H,p) does not contain
any column vector with multiplicity greater than 1.

Proof: Assume, for the sake of contradiction, that there
exists a column vector with multiplicity 2 in J (H,p) (accord-
ing to the construction it cannot have a greater multiplicity).
By definition, for an arbitrary k ∈ [nt], hk appears in H at
locations (i, j) and (i−1, 2t− j+1) (up to modulo n and 2t,

respectively). But this implies that hi,j and hi−1,2t−j+1 are
both in J (H,p), which is not possible since j+2t− j+1 =
2t+ 1 > e = ∥p∥1, and p ∈ P (e, 2t, n).

The following presents a proof of the correctness of Con-
struction 1, utilizing Claim 3.

Theorem 2. Let CB be the [nt, kB , d] base code, where
t = d−1

2 . Let C be the resulting TE-correcting code from
Construction 1. Then, C is an [n × 2t, kB + nt, d]TE code.
Furthermore, the redundancy of the code C is nt− kB .

Proof: One can verify that this construction yields a code
of length n × 2t and that dim(C) = 2nt − rank(H) =
2nt− (nt− kB) = kB + nt, since H is constructed from the
columns of HB , repeated two times, and therefore rank(H) =
rank(HB) = nt − kB . It is left to prove that ρTE(C) = d.
Based on Claim 2, to show that ρTE(C) ≥ d, it is required
to show that for any arbitrary p ∈ P (2t, 2t, n), the multiset
J (H,p), is linearly independent. Since every 2t = d − 1
columns in the base code are linearly independent, the fact
that ρTE(C) ≥ d, immediately follows from Claim 3. Lastly,
the fact that ρTE(C) = d can be easily verified, e.g. using the
vector p = (2t, 0, . . . , 0, 1), which results in J (H,p), which
is a linearly dependent multiset.

Construction 1 results in codes with odd minimum ρTE-
distance. The case of even minimum ρTE-distance is consid-
ered next. First, note that for minimum ρTE-distance 2, it is
straightforward to see that a single parity bit suffices. For even
minimum ρTE-distance greater than 2, denote again t = d−1

2 ,
where d is odd. Then, let CB be the [nt + 1, kb, d + 1] base
code, i.e., a code with even minimum (Hamming) distance
d+1 (w.l.o.g, based on the same base code from Construction
1, with odd minimum distance, after adding one parity bit, so
that d + 1 is even), where H∗

B = [h1 · · ·hnt+1] is a parity
check matrix of CB . Then,

H∗ =


h1 · · · ht hnt+1 h2t · · · ht+1

ht+1 · · · h2t hnt+1 h3t · · · h2t+1

...
...

...
...

...
h(n−1)t+1 · · · hnt hnt+1 ht · · · h1

 .

Similarly to Construction 1, it can be shown that H∗ is
a parity check matrix for a [n × (2t + 1), kb + n(t + 1) −
1, d + 1]TE code. Therefore, the redundancy of such a code
is nt − kb + 1. In order to analyze the redundancy result of
Construction 1, and its extension for the even minimum ρTE-
distance case, let R(n, d) be the minimum redundancy of any
length-n linear code with minimum (Hamming) distance d. It
is known that [27, p. 160-161],

R(n, d) ≤

{
d−1
2 ⌈log(n+ 1)⌉, d is odd

1 +
(
d
2 − 1

)
⌈log(n+ 1)⌉, d is even.

Next, for an [n × (d − 1), k, d]TE code that can be achieved
by Construction 1, let RTE(n, d) be the minimum number of
redundancy bits of the code. The next corollary considers the
redundancy of Construction 1 and provides an upper bound
on the redundancy of TE-codes.
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Corollary 1. It holds that

1) RTE(n, d) ≤ R
(

n(d−1)
2 , d

)
and thus, when d is odd,

RTE(n, d) ≤
d− 1

2
⌈log (n (d− 1) + 2)⌉ − d− 1

2
.

2) RTE(n, d) ≤ R
(

n(d−2)+2
2 , d

)
and thus, when d is even

and greater than 2,

RTE(n, d) ≤
(
d

2
− 1

)
⌈log(n (d− 2) + 4)⌉ − d− 4

2
.

Note that a trivial construction of TE codes can be achieved
by considering the array of size n × (d − 1) as a vector of
length n(d− 1), and then correcting d− 1 TEs using a linear
[n(d− 1), k, d] code. This was presented in [8] as the vector
construction. The minimal number of redundancy bits of the
vector construction will be denoted by R (n(d− 1), d). Then,
from the previous discussion along with Corollary 1,

R (n(d− 1), d) ≥ R

(
n(d− 1)

2
, d

)
≥ RTE(n, d) ,

for any n and odd d, and similarly for the even d case. More
explicitly, the savings in Construction 1 is roughly d/2 bits of
redundancy. Next, [n × (d − 1), k, d]TE codes are presented,
which imply some additional constructive upper bounds on the
redundancy of TE codes.

Claim 4. Let n be a positive integer and r = ⌈log2(n+ 1)⌉.
Then,

1) An [n×2, 2n− r, 3]TE code exists, and thus RTE(n, 3) ≤
⌈log2(n+ 1)⌉.

2) An [n × 3, 3n − r − 1, 4]TE code exists, and thus
RTE(n, 4) ≤ ⌈log2(n+ 1)⌉+ 1.

Proof: Let CB be an [n, n − r, 3] base code, which is
a shortening of a (2r − 1)-length Hamming code (where if
r = log2(n + 1) exactly, no shortening is required), and C∗B
be a [n + 1, n − r, 4] code, which is the extended version of
CB , which one gets by adding a parity bit. Therefore,

1) Using Theorem 2, there exists a [n×2, 2n−r, 3]TE code.
2) From the discussion on TE codes with even ρTE(C), there

exists a [n× 3, 3n− r − 1, 4]TE code.

By Claim 4 one derives an explicit upper bound on the
redundancy of codes which correct 2 or 3 TEs, based on
Construction 1. Next, another upper bound on the redundancy
of codes that correct 4 TEs is derived from linear cyclic
codes, using a specific construction which is different than
Construction 1.

Claim 5. Let n > 0 be an integer, m = ⌈log2(n + 5)⌉ and
r = 2m+ 1. Then, there exist a [n× 4, 4n− r, 5]TE code.

Proof: For this proof, a construction is given, similar
to Construction 1, but with different ordering of the entries.
Let CB be an [n + 4, n + 4 − r,≥ 6] base code, which is
a shortening (if needed) of the [2m − 1, 2m − 2m − 2,≥ 6]

cyclic code in [27, Example 8.10], with a parity check matrix
H = [h1 h2 · · ·hn+4]. Then,

H =


hn+4 hn+3 h2 + h3 h1

hn+4 hn+3 h3 + h4 h2

...
...

...
...

hn+4 hn+3 hn+1 + hn+2 hn

 ,

is a TE parity check matrix of C, an [n × 4, 4n − r, 5] TE-
correcting code. It is clear why the length is n × 4 and the
dimension is 4n− r, since the redundancy stays the same as
in the base code. What is left to prove is that ρTE(C) = 5, and
the method will be to show that for any p ∈ P (4, 4, n), the
vectors in J (H,p) are linearly independent. It can be verified
that every vector p that does not contain exactly two entries
of value 2 satisfies the condition of J (H,p) being linearly
independent, since it will be a sum of at most 5 distinct vectors
of H , which is a parity check matrix of a code with minimum
Hamming distance of at least 6.

Therefore, observe next on the case where there are two
entries of p, say pi,pj , where i < j, such that pi = pj =
2. If j − i ≤ 2, the sum of elements in J (H,p) is again
only at most 5 distinct vectors of H . So the last case one
needs to check is where j − i > 2, therefore J (H,p) can
be written as {{hi, hi+1 + hi+2, hj , hj+1 + hj+2}}. To verify
those vectors are independent, observe the equation, α1hi +
α2hi+1 + α3hi+2 + α4hj + α5hj+1 + α6hj+2 = 0, where
α1, . . . , α6 ∈ F2, and all the six elements are distinct.

It is assumed that either α1 = α2 = · · · = α6 = 0 or
α1 = α2 = · · · = α6 = 1, since there cannot be a linear
dependent set of five distinct vectors. If those are all zero,
the proof is done. So, assume, for sake of contradiction, that
hi+hi+1+hi+2+hj +hj+1+hj+2 = 0, which means there
is a codeword in CB of Hamming weight 6, with ones only
in the entries {i, i+ 1, i+ 2, j, j + 1, j + 2}, denoted as X1.
Since the code is cyclic, there exists a codeword with ones
only in the entries {i + 1, i + 2, i + 3, j + 1, j + 2, j + 3},
denoted as X2. But then, also the sum X = X1 + X2 is
another codeword, but the Hamming weight of X is at most
4, which is a contradiction.

One can verify that 2⌈log2(n+ 5)⌉+ 1 < 2⌈log2(2n+ 1)⌉
for n ≥ 4, if n /∈

⋃∞
i=3{2i − 4, 2i − 3, 2i − 2, 2i − 1}. This

implies that for most (but not all) values of n, the construction
in Claim 5 gives a tighter upper bound for d = 5 than
Construction 1 by one bit.

To conclude, the results are summarised in Table I, where
the upper bound is the constructive one from the above dis-
cussion and the lower bounds from Section VI-A. Moreover,
a comparison of the results presented in this section and some
previous results under the m-metric is given next.

In [9], a family of MDS codes is proved to exist, since
those achieve the Singleton bound in Claim 9. Similarly to
the classical MDS codes for length-n vectors, for the family
of array codes to fit large n (and arbitrary L), where n is the
number of rows in the array, it is required to use a large field
size, i.e., q ≥ n, where q is the size of the field. Nevertheless,
restricting to the binary case, one can construct a code for n =
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Table I
BOUNDS ON THE REDUNDANCY OF TE-CORRECTING CODES.

Array Length Minimum ρTE-distance Constructive Upper Bound Lower Bound Gap

n×1 2 1 1 0
n×2 3 ⌈log2(n+ 1)⌉ ⌈log2(n+ 1)⌉ 0
n×3 4 ⌈log2(n+ 1)⌉+ 1 ⌈log2(n+ 1)⌉ ≲ 1
n×4 5 min{2⌈log2(n+ 5)⌉+ 1, 2⌈log2(2n+ 1)⌉} 2⌈log2(n+ 1)⌉ − 1 ≲ 4
n×2t 2t+ 1 t⌈log2 (nt+ 1)⌉ t⌈log2(n)⌉ ≲ t log2(t)

n×(2t+ 2) 2t+ 2 t⌈log2 (nt+ 2)⌉+ 1 t⌈log2(n)⌉+ 1 ≲ t log2(t)

2, which is a [2×L, 2L−d+1, d]TE code, where d is arbitrary,
and which uses only d−1 bits of redundancy. The construction
in [9] also solves the case where e > L, still only for n = 2 in
the binary case, as will be discussed in Section III-D. Contrary
to that, the first construction in [11], while also be an MDS
code for n = 2, do come with a restriction of e ≤ L. However,
the authors give a more explicit construction of an MDS code
for the 2 × L binary array case. As mentioned in Remark 1,
Construction 1 is degenerated in the n = 2 case and therefore
one cannot compare between the two constructions.

Another important family of codes, introduced in [8], is
the construction of BCH codes for the m-metric. In this
paper, a construction of Reed-Solomon codes for the m-
metric is given, using Galois-Fourier transform and Hasse
derivatives, and then a BCH code is derived using alternant
code [27, Section 5.5]. However, there are no specific bounds
mentioned, and the authors only provide a specific construction
example for the case where n = 3 and L = 4. Therefore,
a comparison between their construction and this paper is
parameter-dependent. As for their construction for 3×4 binary
arrays [8, Table I], one can see that for d ≤ 5 (e ≤ L),
a comparison can be done using Claims 4 and 5. In our
construction, we use at most 1, 2, 3, 6 bits of redundancy
for d = 2, 3, 4, 5, respectively, while their optimal choice
of parameters yields at most 1, 3, 4, 6 bits of redundancy for
d = 2, 3, 4, 5, respectively, therefore our construction improves
some of their result, or achieves the same result for the other
cases. Other types of basic general construction ideas in [8]
are the vector construction, that we mentioned before, and the
Cartesian product construction, which will be both discussed
more in Section III-D, but in their paper the authors claim that
these two constructions are inferior compared to their BCH
codes. In [11], the authors gave mostly constructions for larger
fields, but two constructions are relevant for the binary case.
The first was mentioned before, as an MDS code for n = 2,
and the second will be discussed next in Section III-D.

D. e-TE Codes Where e > L

Claim 3 holds only when e ≤ L. As of the writing of this
paper, it is still an open problem whether Construction 1 can
be extended for the case where e > L, or not. The challenge
becomes perceptible when one just examines the scenario in
which e = L + 1. In this case, the multiset J (H,p) for p
such that ∥p∥1= L + 1, can have an entire row of H and
also one other entry from the last column. Since we cannot
know which entry it will be, every entry in the first column
should differ from any other entry in H, which results in an

immediate decrease in terms of the optimality of the code.
However, there exist other constructions, where the assumption
on e is not required, and those will be discussed next.

First, the vector construction, where the n × L array is
treated as an length-nL vector. Therefore, the classical theory
of erasure-correcting codes satisfies the model and no require-
ments such as e ≤ L exists, but the construction does not
use the special structure of the position of the erasures. Next,
we describe the Cartesian product construction as in [8]. The
main idea here is to use independent erasure-correcting codes
for every column. That is, the j-th column, j ∈ [L], is a
codeword in an (n,Mj , ⌈d/(L− j +1)⌉), where d represents
the merged code being a (d− 1)-TE code. Also in this code,
as in the vector construction, the correctness of the code does
not rely on the condition of e ≤ L. Moreover, the entire BCH
codes that were constructed in [8] can correct erasures without
restrictions on the number of erasures. Also, the construction
from [11, Section 3.5] can correct at most r erasures at the
end of every row, which is nr erasures in total, but with a
restriction on the number of erasures in each row. The other
condition for this code to exist, is L ≥ n ≥ r.

Next, we propose a construction of an e-TE code, in which
the restriction that e ≤ L is removed. The results we achieved
for L = 2, 3, 4 and e = 2, 3, 4, 5, using this construction are
summarized in Table II. The bold entries represent cases in
which Construction 2 is at least as good as the known state
of the art results, in terms of the number of redundancy bits.

This construction is inspired by ideas from [7], [8], and
is based on the Hasse derivative, as defined in [28] and is
presented next. For any non-negative integer i, the i-th Hasse
derivative of a polynomial f(x) =

∑d
k=0 akx

k ∈ Fq[x] is
f (i)(x) ≜

∑d
k=0

(
k
i

)
akx

k−i, where
(
k
i

)
= 0 for all k < i.

Moreover, a fundamental property of the Hasse derivative [7,
Lemma 6] is that for every non-zero polynomial f(x) ∈ Fq[x],
an element β ∈ F (where F is Fq or any extension field of
Fq), is a root of multiplicity ℓ if and only if f (s)(x) = 0 for
0 ≤ s < ℓ and f (ℓ)(x) ̸= 0. The following is a construction
which is based on the Hasse derivative.

Construction 2. Let n,L, e be arbitrary positive integers, and
let m be the smallest integer such that q = 2m > n, that is,
m = ⌈log2(n+1)⌉. Let α ∈ Fq be a primitive element. Then,
the TE parity check matrix of the code C follows,

H =


h1,1 · · · h1,j · · · h1,L

h2,1 · · · h2,j · · · h2,L

...
. . .

...
. . .

...
hn,1 · · · hn,j · · · hn,L

 ,
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where, for βi = αi, each entry is the vector

hi,j =


(

0
L−j

)
β0−L+j
i(

1
L−j

)
β1−L+j
i

...(
e−1
L−j

)
βe−1−L+j
i

 ∈ Fe
q , i ∈ [n], j ∈ [L] .

Remark 2. The key observation here is that for each vector
hi,j , it holds that for any vector f = (f0, f1, . . . , fe−1) ∈ Fe

q ,
which represents a polynomial f(x) =

∑e−1
ℓ=0 fℓx

ℓ ∈ Fq[x],
the inner product f ·hi,j is the (L− j)-th Hasse derivative of
f , evaluated at βi. Specifically, if there exists an index j, such
that f · hi,ℓ =0 for ℓ ∈ {L,L−1, . . . , j} and f · hi,j−1 ̸=0,
then βi is a root of multiplicity L−j+1 of f .

The following claim proves that Construction 2 is an e-TE
code. Although the proof follows from the same ideas as in [7]
we include it for completeness.

Claim 6. Let C be the resulting code from Construction 2.
Then, ρTE(C) = e+ 1.

Proof: By using Claim 2, it needs to be proved that any
multiset J (H,p) of cardinality e is a linearly independent
multiset, and therefore let J be an arbitrary multiset as such.
Next, let A ∈ Fe×e

q be the matrix that is obtained from placing
all the vectors in J as columns of A. We want to show that A
has full rank. Therefore, assume, for the sake of contradiction,
that there exists a nonzero vector f ∈ Fe

q such that f ·A = 0.
Then, using the observation in Remark 2, the polynomial f(x)
must have at least e roots (including multiplicities), but it is
of degree e− 1, which is a contradiction.

Remark 3. We note the similarity between our approach
and the Universally Decodable Matrices (UDM) construction
introduced by [7]. In both cases, the properties of the Hasse
derivative are applied to ensure the existence of a full-rank
matrix, as demonstrated in Claim 6. However, while [7]
applied this technique for encoding purposes and with different
parameters, we have adapted it for our specific context. To
maintain clarity and consistency within our paper, we pre-
sented Construction 2 using our established notation. Further-
more, as will be discussed in the rest of this subsection, we
derived interesting results on the redundancy of Construction 2
for certain cases, an aspect not addressed in [7].

In order to analyze the number of redundancy bits that Con-
struction 2 requires, one needs to expand the entries in every
hi,j into binary columns of length m, and then to compute the
rank of the binary expansion of H. This procedure is similar
to the one done in analysis of alternant codes. Therefore,
the actual number of redundancy bits depends on the specific
parameters.

However, we provide next an example of a proof technique,
for achieving a better upper bound for specific cases. The
technique includes modifying the construction slightly by
adding an additional row of parity. This will be demonstrated
on a 5-TE code of length n×2 that uses only 2(⌈log2(n)⌉+1)
redundancy bits. This is better than the vector construction (by

1 bit, as one can verify), which is the only construction that
fits those parameters.

Claim 7. Let n be a positive integer and q = 2m, where m
is the smallest integer such that 2m > n. Let α ∈ Fq be a
primitive element and βi = αi.

H =


h1,1 h1,2

h2,1 h2,2

...
...

hn,1 hn,2

 ,

where

hi,1 =


1
0
1
β2
i

 , hi,2 =


0
1
βi

β3
i

 .

Then, H is a TE parity check matrix of a 5-TE code.

Proof: First, let

H′ =


h′
1,1 h′

1,2

h′
2,1 h′

2,2
...

...
h′
n,1 h′

n,2

 ,

where

h′
i,1 =


1
0
1
0
β2
i

0

 , h′
i,2 =


0
1
βi

β2
i

β3
i

β4
i

 .

Notice that an entry is added in the beginning of each h′
i,j ,

although from Claim 6 one can verify that H′ is a 5-TE
code. The way to prove this, is by showing that the removed
rows (4-th and 6-th) in every h′

i,j can be recovered from the
retained rows. Let p be a pattern of erasures and J (H′,p)
be the respective multiset of columns from H′. Suppose that
I = {(i1, j1), (i2, j2), . . . , (i5, j5)} denotes the indices of
those columns in J (H′,p). Also, let I2 = {i: (i, 2) ∈ I},
that is all the indices that indicate erasures in the second (i.e.
last) column, and I1 = {i: (i, 1) ∈ I}, that is, the indices of
erasures in the first (i.e., penultimate) column.

Next, denote

Rℓ =
∑

(i,j)∈I

ci,j(h
′
i,j)ℓ =

∑
i∈I1

ci,1(h
′
i,1)ℓ +

∑
i∈I2

ci,2(h
′
i,2)ℓ ,

where ci,j ∈ F2, and notice that I1 and I2 are not disjoint,
which is desired.
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Next, we prove that R4 = (R3)
2 + R1, so that R4 can be

removed from the parity check matrix, using the characteristic
of Fq , which is 2, as follows,

R4 =
∑
i∈I1

ci,1(h
′
i,1)4 +

∑
i∈I2

ci,2(h
′
i,2)4

=
∑
i∈I2

ci,2β
2
i

=
∑
i∈I2

ci,2β
2
i +

∑
i∈I1

ci,1 · 1 +
∑
i∈I1

ci,1 · 1

=

(∑
i∈I2

ci,2βi +
∑
i∈I1

ci,1 · 1

)2

+
∑
i∈I1

ci,1 · 1

= (R3)
2 +R1 .

Noting that also R6 = (R4)
2 completes the proof, since by

removing R4, R6, the matrix H′ becomes the desired H.

The same ideas from the proof of the previous claim can
be applied to a few additional parameter regimes, which are
highlighted in Table II, that achieve the best known results.

Table II
UPPER BOUNDS ON THE REDUNDANCY BITS OF CONSTRUCTION 2.

L = 2 L = 3, 4

e = 2 log2(n) + 1 log2(n) + 1
e = 3 log2(n) + 2 log2(n) + 3

e = 4, 5 2 log2(n) + 2 2 log2(n) + 3

IV. (t, s)-DELETION-CORRECTING CODES

In the process of constructing optimal (t, s)-DC codes,
we first introduce a construction of a (t, 1)-DC code, and
an explicit encoder for this construction will be presented
afterwards. Then, a generalization for an encoder of a (t, s)-
DC code will conclude this Section. In Section VI-B, it is
shown that, in some cases, those constructions are optimal.

A. (t, 1)-DC Codes

In order to correct a single deletion in a length-n vector, the
Varshamov-Tenengolts (VT) codes [29] are the common solu-
tion and will also form the basis of the following construction.
For 0 ≤ a ≤ L, denote VTa(L), as defined in [29],

VTa(L) =

x ∈ {0, 1}L:
L∑

j=1

jxj ≡ a (mod L+ 1)

 .

Next, we construct a code based on the tensor product
code concept introduced in [30]. To facilitate this construction,
we will first define a variant of VT codes. Denote h =
⌈log2(L+ 1)⌉, such that F2h , the field of 2h elements, is the
smallest extension field of F2 that has at least L+1 elements.
For each row xi = (xi,1, . . . , xi,L), define the q-syndrome
to be sq(xi) ≡

∑L
j=1 jxi,j (mod q). Let ϕ : Z2h → F2h

be a bijection and denote ϕ(s2h(xi)) as σ(xi), which is the
syndrome of xi as an element of the field F2h .

A definition for a variation of the binary VT codes of length
L follows,

VT2h

a (L) =

x ∈ FL
2 :

L∑
j=1

jxj ≡ a (mod 2h)

 ,

where now it holds that 0 ≤ a ≤ 2h − 1. One can verify that
VT2h

a (L) can correct a single deletion using the same decoding
algorithm as the original VT codes [31]. The following is an
implicit construction of a (t, 1)-DC code.

Construction 3. Let C be a code of length n, that can correct
t erasures over F2h . Then,

CDC(n,L, t, C) := {X = (x1, . . . ,xn) ∈ Fn×L
2 :

(σ (x1) , . . . , σ(xn)) ∈ C} .

As discussed before, Construction 3 yields a tensor product
code that relies on the syndromes of the variant of the VT
code, such that the possible values of the syndrome can
be treated as field elements, and therefore the n syndromes
comprise the symbols from a codeword of the non-binary code
C over the same field.

Remark 4. Note that increasing the parameter h results in
codes with larger redundancy. One can choose to work with
the original VT code, and then construct the non-binary code
over the ring ZL+1, instead of a field, if there exists an optimal
code over this ring with the required parameters.

Next, we prove that Construction 3 is a (t, 1)-DC code.

Lemma 1. The code CDC(n,L, t, C) is a (t, 1)-DC code.

Proof: The proof is based on the idea that due to the
deletions, each erroneous row is shorter, and therefore the
location (index) of these rows is known. Assume that s ≤ t
rows suffer from one deletion each and denote its indices as
i1, . . . , is. Since n − s rows are error-free, their syndromes
can be computed and mapped into σ(xj), where j ∈ [n] \
{i1, . . . , is}. Now C can recover σ(xi1), . . . , σ(xis) such that
(σ (x1) , . . . , σ(xn)) can be used truthfully as syndromes for
each of the VT2h

σ(xi)
(L) codewords, which is the i-th row.

Therefore, the rows xi1 , . . . ,xis can be recovered.

Before we present an explicit encoder for Construction 3,
we give an upper bound on the minimal number of redundancy
bits that are required to construct a (t, 1)-DC code, based on
Construction 3.

Theorem 3. Let ROpt be the number of redundancy symbols
of COpt, a linear code of length n, that can corrects t erasures
over F2h . Then, there exists a code CDC(n,L, t, COpt) with a
redundancy of at most ROpt · h = ROpt · ⌈log2(L+ 1)⌉ bits.

Proof: Note that any coset of COpt is a distinct t-erasures-
correcting code, and there are qROpt cosets, where q = 2h.
Thus, there are qROpt distinct CDC(n,L, t, ·) codes, one for
each coset, and all those distinct CDC(n,L, t, ·) codes create a
partition of the space of all the 2nL binary arrays of size n×L.
Therefore, using the pigeonhole principle, there exists at least
one code with 2nL/qROpt = 2nL−ROpt·⌈log2(L+1)⌉ codewords.
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Note that it implies the existence of a (1, 1)-DC code with
only log2(L+1) bits of redundancy. Also, if COpt is an MDS
code, the upper bound on the redundancy is exactly t⌈log2(L+
1)⌉ bits, and by looking at the discussion after Theorem 6, one
can verify optimality, assuming the VT codes are optimal 1-
deletion-correcting codes.

Corollary 2. There exists a CDC(n,L, t, COpt) code with a
redundancy of at most t(log2(n) + ⌈log2(L+ 1)⌉) bits.

Proof: By using alternant code over F2h as in [27, Section
5.5], one has a code C with a redundancy of at most t · m
symbols, where m is an integer such that 2m ≥ (2h)n.

Therefore, an optimal choosing of m is ⌈log2h(n)⌉. Finally,
using the same proof as in Theorem 3, where R ≤ t ·
⌈log2h(n)⌉ and thus there exists a code with a redundancy
of at most

R · h ≤ t · ⌈log2h(n)⌉ · h = t ·
⌈
log2(n)

h

⌉
· h ≤ t(log2(n) + h) .

Remark 5. Note that if n = c · 2h for some positive integer
c, then the bound in Corollary 2 is t(log2(n)).

Finally, an explicit encoder of Construction 3 is presented.
In [32], a systematic encoder of VTa(L), where the redun-
dancy bits are in the {2i}h−1

i=0 coordinates was introduced.
Then, an encoder for VT2h

a (L), denoted as E(L,a)
VT , can be

obtained using the same idea, since one can verify that it
requires exactly the same entries, {2i}h−1

i=0 , for the encoding
process. E(L,a)

VT is defined as follows. First, it receives a binary
input vector d of length L− h, then outputs a codeword x of
length L, such that E(L,a)

VT (d) = x ∈ VT2h

a (L).

Encoder 1. Let E: (F2h)
n−R → (F2h)

n be a systematic
encoder of a linear code C of length n, that can correct t
erasures over F2h . Lastly, denote K=nL−Rh.

Input: D = (d1, . . . , dK) ∈ FK
2 .

Output: X = (x1, . . . ,xn) ∈ Fn×L
2 .

1) For i ∈ [n−R], j ∈ [L]:xi,j ← d(i−1)L+j .
2) Compute {σ(x1), . . . , σ(xn−R)}. Then compute

E (σ(x1), . . . , σ(xn−R)) and denote the output as
(σ(x1), . . . , σ(xn)).

3) Take the remaining R(L − h) bits of D and split them
into R vectors of L− h bits, denoted by {d1, . . . ,dR}.

4) For i ∈ [R]: an−R+i ← ϕ−1 (σ(xn−R+i)), that is re-
covering from σ(·) the expected syndrome value of the
(n−R+ i)-th row, which is denoted as an−R+i.

5) For i ∈ [R]:xn−R+i ← E(L,an−R+i)
VT (di), i.e., encode the

VT codeword xn−R+i from di as defined in step 3, based
on the given syndrome value an−R+i.

6) Return X .

The decoding steps are straightforward, using the decoders
of C and VT2h

a (L) in the same way as in the proof of Lemma 1,
which proves the correctness, since one can readily verify that
the output of Encoder 1 is a codeword of CDC(n,L, t) from
Construction 3. Moreover, as one can verify, Encoder 1 uses
exactly ROpt · ⌈log2(L+ 1)⌉ bits of redundancy, which is an
explicit construction for the existance proof in Theorem 3.

Figure 2. Example of an output of Encoder 1 for a (2, 1)-DC code over
binary arrays of length 7× 5. Illustration of Example 4.

Finally, we give an example of Encoder 1, for constructing a
(2, 1)-DC code over the space of 7× 5 binary arrays.

Example 4. In Figure 2, observe an example of an output
of Encoder 1. It receives 29 bits as an input, denoted as
D = (x1,1, . . . , x5,5, x6,3, x6,5, x7,3, x7,5) ∈ F29

2 and are
shown with the white background in the 7×5 array codeword.
The encoder computes the syndromes (σ(x1), . . . , σ(x5)) and
then, using an encoder of a [7, 5, 3] code over F23 , computes
also σ(x6) and σ(x7). The syndromes are presented with
dashed lines on the right side of the codeword. Lastly, using
the systematic encoder for the VT codes, it computes the
redundancy values in the last 2 rows, marked with gray
background. Therefore, it is an example of size (7×5) binary
array code with 6 bits of redundancy.

B. Construction of a (t, s)-DC Code

This section is based on [33]. First, denote by Cs the au-
thors’ s-deletion-correcting code over the vector space FL+r

2 ,
which is composed from all the codewords (c, g(c)), where
c ∈ FL

2 , and g(c)1 is used by the authors as an s-deletion-
correcting hash for c of size r=4s log2(L)+o(log2(L)). The
existence of such a code is proved in [33]. Finally, denote by
Γ(c) the mapping of g(c) to an element of F2r .

Construction 4. Let n, L, t and s be positive integers, and let
r be the constant described previously. Next, let C be a code
of length n, that can correct t erasures over F2r . Then,

Cs-DC(n,L, t, C) := {X = (x1, . . . ,xn) ∈ Fn×L
2 :

(Γ (x1) , . . . ,Γ (xn)) ∈ C} .

The next lemma follows a proof outline similar to that of
Lemma 1.

Lemma 2. The code Cs-DC(n,L, t, C) is a (t, s)-DC code.

Proof: As in Lemma 1, due to the deletions, each erro-
neous row is shorter, and therefore the index of these rows
is known. Assume that w ≤ t rows suffer from one deletion
each and denote its indices as i1, . . . , iw. Since n − w rows

1For shortening, we use g instead of the modular version in [33], which is
denoted by gc
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Table III
BOUNDS ON THE REDUNDANCY OF (t, s)-DC CODES, WHERE h = ⌈log2(L+ 1)⌉ AND c > 0 IS AN INTEGER.

Model Restriction Constructive Upper Bound Asymptotic Lower Bound

(t, 1) n ≤ 2h + 1 th t⌈log2(L)⌉
(t, 1) n = c · 2h t log2(n) max{th, ⌊t/2⌋ log2(n)}
(t, 1) - t(log2(n) + h) max{th, ⌊t/2⌋ log2(n)}
(t, s) - t(log2(n) + 4s log2(L) + o(log2(L)) ⌊t/2⌋(log2(n) + ⌊s/2⌋ log2(L))

are error-free, the value of their g function can be computed
and mapped into Γ(xj), where j ∈ [n] \ {i1, . . . , iw}. Now C
can recover Γ(xi1), . . . ,Γ(xis) such that (Γ (x1) , . . . ,Γ(xn))
can be mapped back to valid values of (g (x1) , . . . , g(xn)),
and then the rows xi1 , . . . ,xiw can be recovered using the
decoder from [33], since each of these rows suffers at most
s deletions, and therefore the set of words {(xij , g(xij ))}wj=1

also, which is the input to the decoder in [33].

Moreover, the next theorem is also using similar techniques
as in Theorem 3.

Theorem 4. Let ROpt be the number of redundancy symbols
of COpt, a linear code of length n, that can corrects t erasures
over F2r . Then, there exists a code Cs-DC(n,L, t, C) with a
redundancy of at most ROpt · r ≈ ROpt · 4s log2(L) bits.

Proof: Note that any coset of COpt is a distinct t-erasures-
correcting code, and there are qROpt cosets, where q = 2r.
Thus, there are qROpt distinct Cs-DC(n,L, t, ·) codes, one for
each coset, and all those distinct Cs-DC(n,L, t, ·) codes create
a partition of the space of all the 2nL binary arrays of size
n× L. Therefore, using the pigeonhole principle, there exists
at least one code with 2nL/qROpt = 2nL−ROpt·r codewords.

Remark 6. We note that Construction 4 and Theorem 4
provide only an existential proof of (t, s)-DC codes. Since
one cannot ensure that Γ is surjective, an explicit encoder of
Construction 4 remains a more complex task, which is left
future research.

V. (t, 1, e)-TED-CORRECTING CODE

In this section we present a method of constructing (t, 1, e)-
TED-correcting code. This construction and its encoder use a
non-binary code that is based upon the following two pieces
of information: (i) The VT syndrome for each row, (ii) The
value of the last e bits of each row.

As in Section IV-A, let h = ⌈log2(L+1)⌉, and for any array
X = (x1, . . . ,xn) ∈ Fn×L

2 denote by si the 2h-syndrome
of the i-th row of X as in Section IV-A, which is to say
that si =

∑L
j=1 jxi,j (mod 2h). Moreover, denote the last

e bits of the i-th row of X by x
(:e)
i ≜ (xi)[L−e+1:L]. Next,

for each row of X , define the tuple
(
si,x

(:e)
i

)
. Finally, let

q = 2h · 2e = 2h+e and denote by θxi the mapping of the
tuple

(
si,x

(:e)
i

)
to an element of Fq .

Construction 5. Let C be an [n, k, t+e+1] code over Fq .
Then,

CTED(n,L, t, e) := {X ∈ Fn×L
2 : (θx1

, . . . , θxn
) ∈ C} .

Next, is a proof for the correctness of Construction 5.

Lemma 3. The code CTED(n,L, t, e) is a (t, 1, e)-TED code.

Proof: A codeword X ∈ CTED(n,L, t, e) is received with
at most t+ e deletions, some of which are arbitrary deletions
and some are tail-erasures. Therefore, there are at most t +

e rows for which one cannot compute the tuple
(
si,x

(:e)
i

)
,

and since C can correct t + e erasures, the entire codeword
(θx1 , . . . , θxn) ∈ C can be recovered. Next, one can recover
the codeword X row by row. For each row, if it is of length
L, it does not suffer from any deletion. If it is of length L−1,
it can be recovered using the VT syndrome, regardless of the
source of the deletion (arbitrary or TE). Finally, if it is of
length L − k for some 1 < k ≤ e + 1, then it suffered from
at most 1 arbitrary deletion, and the rest are k − 1 TEs, or
just k TEs. Thus, one can recover the last k − 1 bits, as it is
saved in the tuple

(
si,x

(:e)
i

)
, and treat the last deleted bit as

an arbitrary deletion, regardless of the source.

Similarly to Remark 4, one can choose to work with the
original VT codes, and then q = 2e · (L + 1) is not a prime
power, and afterwards construct the non-binary code over the
ring Zq , instead of a field. Moreover, as a proof of existence
of codes that are built according to Construction 5, an explicit
encoder is provided next.

Encoder 2. Let E: (Fq)
n−R → (Fq)

n be a systematic encoder
of an optimal linear code C of length n, that can correct t+ e

erasures over Fq . Also, let E(L,a)
VT be a systematic VT code

encoder, as defined in Section IV. Lastly, denote KTED = nL−
R(e+ h).
Input: DTED = (d1, . . . , dKTED) ∈ FKTED

2 .
Output: X = (x1, . . . ,xn) ∈ Fn×L

2 .
1) For i ∈ [n − R], j ∈ [L]:xi,j ← d(i−1)L+j , and denote

x
(:e)
i = (xi,L−e+1, . . . , xi,L).

2) Compute {s1, . . . , sn−R}, and then {θx1 , . . . , θxn−R
}.

3) Compute E
(
θx1

, . . . , θxn−R

)
and denote the output as

(θx1 , . . . , θxn).
4) Take the remaining R(L − e − h) bits of D and split

them into R vectors of length L − e − h, denoted by
{d1, . . . ,dR}.

5) For i ∈ {n−R+1, . . . , n}, extract the tuple
(
si,x

(:e)
i

)
,

computed as θxi
in Step 3.
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6) Let d̃i be the appending of x(:e)
i to the end of di.

7) Compute xi = E(L,si)
VT (d̃i), i.e. encode the VT codeword

xi from d̃i, such that the last e bits of xi are x
(:e)
i and

the syndrome value of xi is si.
8) Return X .

Note that Encoder 2 requires that e < (L + 1) − 2h−1.
Also, it can be verified that Encoder 2 outputs a codeword of
CTED(n,L, t, e) from Construction 5.

Corollary 3. The following are results regarding the redun-
dancy of CTED(n,L, t, e), denoted as RTED.

1) The redundancy of the code CTED(n,L, t, e), using En-
coder 2 is nL−KTED = R(e+ h).

2) Using an alternant code as C in Encoder 2 implies

RTED ≤ (e+ h)

(
t+ e

2

)
log2(n) .

3) If n ≤ 2h+e, using an MDS code code as C in Encoder 2
implies

RTED ≤ (e+ ⌈log2(L+ 1)⌉) (t+ e) .

4) If n ≤ 2h+1, using an MDS code code as C in Encoder 2
implies a (1, 1, 1)-TED code with 2 + ⌈2 log2(L + 1)⌉
bits of redundancy.

Note that the forth result in Corollary 3 is asymptotically
optimal, when compared to the result in Theorem 10. Finally,
note that one can use a (t + e)-deletion-correcting code over
vectors of length nL as in [33], with a redundancy of

4(t+ e)(log2(nL)) + o(log(nL)) ,

which in cases where n > 2h+e, can achieve better results in
terms of redundancy than Encoder 2.

VI. UPPER BOUNDS ON THE CODE CARDINALITIES

In this section we consider upper bounds on the maximal
cardinality of TE codes, (t, s)-DC codes, and (1, 1, 1)-TED
codes. These bounds are then compared against the construc-
tions presented in previous sections.

A. Upper Bounds on the Size of Tail-Erasure Codes

Let ATE(n, d) denote the maximal cardinality of a (d −
1)-TE code over the set of n × (d − 1) binary arrays. Let
A(n, d) denote the maximal cardinality of a binary vector code
of length n with minimum Hamming distance d. The next
observation follows, by noting that if the first n− 1 columns
of two codewords in a (d − 1)-TE code are correspondingly
equal, their last column must have Hamming distance at least
d.

Claim 8. ATE(n, d) ≤ A(n, d) · 2n(d−2).

Proof: To prove the result, suppose CTE ⊆ Fn×(d−1)
2 is

an (d − 1)-TE code of maximal size. Next, decompose the
codewords in CTE into two parts. Let X ⊆ Fn×(d−2)

2 be equal
to the set of arrays that result by removing the last column
from each of the codeword arrays from CTE . For any Y ∈ X ,
let SY =

{
v ∈ Fn

2 :
[
Y vT

]
∈ CTE

}
. In other words, SY is

the set of vectors that can be appended to Y as the last column
to generate a codeword. Since CTE can correct d−1 TEs, that
can all occur in the last column, it follows that the minimum
Hamming distance of the set of vectors in SY is at least d,
which implies that for any Y ∈ X , we have |SY| ≤ A(n, d).
One can verify that |X |≤ 2n(d−2), and it follows that,

|CTE | =
∑
Y∈X
|SY|≤

∑
Y∈X

A(n, d) ≤ A(n, d) · 2n(d−2),

which completes the proof.

Using the notations of Section III-C, the above claim
provides a simple lower bound on RTE(n, d), which is

RTE(n, d) ≥ R(n, d) ≥
⌈
d− 1

2

⌉
log2(n),

where the second inequality is derived from the sphere packing
bound for vector codes of length n.

Next, a sphere packing bound is presented, which is tighter,
but it is also harder to compute for larger values of minimum
ρTE-distance of a TE code.

Lemma 4. The volume of a ball of radius r in Fn×L
2 , under

the ρTE-metric, denoted as VTE(r), is given by

VTE(r) =

r∑
k=0

∑
t1+2t2+...
+k′tk′=k

((
n

t0, t1, t2, . . . , tk′

)
·

k∏
i=1

2(i−1)ti

)
,

where k′ = min{k, L}.

Lemma 4 is the binary version of the one in [9, Proposition
1] and in [12, Lemma 3], and since it was proved there, we
omit the proof. A simplified expression for the case where
e ≤ L is given next.

Lemma 5. The volume of a ball of radius r in Fn×L
2 , where

r ≤ L is,

VTE(r) = 1 +
r∑

k=1

k∑
i=1

(
n

i

)(
k − 1

i− 1

)
2k−i .

And VTE(0) is defined to be equal to 1.

Proof: Let X ∈ Fn×L
2 and k ≤ n be the number of TEs

that occurred in X . Moreover, let i ≤ k be the number of
rows that suffer from TEs in X . Thus, there are

(
n
i

)
possible

combinations of rows that suffer from those k TEs, and for
each such possible combination of rows, there are

(
k−1
i−1

)
ways

to distribute k erasures into i rows. Also, for each erroneous
row, the first (leftmost) erased bit is known (must differ from
X), but the other bits afterwards and until the end of the
row, can be either 1 or 0. To conclude, for each k and i,
there are

(
n
i

)(
k−1
i−1

)
2k−i possible distinct Y ∈ Fn×L

2 such that
ρTE(X,Y ) = k and there are exactly i distinct rows between
X and Y . Then, we complete the proof, using the fact that
the number of arrays Y ∈ Fn×L

2 such that ρTE(X,Y ) = k is

k∑
i=1

(
n

i

)(
k − 1

i− 1

)
2k−i .
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Equipped with the previous lemma, we can obtain the
following sphere packing bound.

Theorem 5. Let C be a (n× L,M, d)TE code. Then,

M · VTE (⌊(d− 1)/2⌋) ≤ 2n·L .

Next are some examples for the size of the above volume.

Example 5. The size of VTE(r), for r = 1, 2, 3:

VTE(1) = 1 + n,

VTE(2) = 1 +
n2 + 5n

2
,

VTE(3) = 1 +
n3 + 12n2 + 29n

6
.

The results above are used to derive the bound from Theorem 5
for d = 3, 5, 7, and the authors achieve a tighter bound than
the one in Claim 8, as can be verified easily.

In Table I, one can find a summary of Corollary 1, Claims 4
and 5, Claim 8 and Theorem 5.

Finally, we note for completeness that in [9], a version of
the Singleton bound was derived for the m-metric, although
it is mostly relevant to cases of larger alphabets. The result is
as follows.

Claim 9. Let C be a (n× L,M, d)TE code. Then,

d ≤ nL− ⌈log2(M)⌉+ 1 .

B. Upper Bounds on the Cardinality of (t, s)-DC Codes

In the following subsection, three upper bounds on the
cardinality of (t, s)-DC codes are derived. First, we give
an overview of the results, in the order it will be proved
afterwards through this section. Moreover, a summary of the
bounds for (t, s)-DC codes is in Table III. This includes both
the constructive upper bounds from Section IV and the lower
bounds that are derived next.

Let ADC(t, s) be the largest cardinality of a (t, s)-DC code
of dimension n×L. Furthermore, denote the largest cardinality
of an s-deletion-correcting code of vectors of length L over
F2 by Ms(L).

Theorem 6. The following are bounds on ADC(t, s).
1) For any positive integers s, t,

ADC(t, s) ≤ (Ms(L))
t · 2L(n−t) .

2) For integers t, s ≥ 2,

ADC(t, s) ≤
2nL(

n
⌊t/2⌋ ·

(
L

⌊s/2⌋

)⌊s/2⌋)⌊t/2⌋ .

3) For an integer t ≥ 2,

ADC(t, 1) ≤
2nL + 1(
n

⌊t/2⌋

)⌊t/2⌋ .

The bounds in Theorem 6 imply lower bounds on the
number of redundancy bits, as summarized next.

Corollary 4. The asymptotic lower bounds on the redundancy
of a (t, s)-DC code are as follows.

1) t(L− log2(Ms(L)).
2) ⌊t/2⌋(log2(n) + ⌊s/2⌋ log2(L)) +Os,t(1).
3) ⌊t/2⌋ log2(n) +Os,t(1), for s = 1.

Note that by observing the case of s = 1, and comparing
to the results in Section IV-A, one can verify the following.
First, in [34] a bound is presented, such that M1(L) ≤ 2L−2

L−1 ,
and therefore a lower bound on the redundancy of a (t, 1)-DC
code is at least t log2(L−1) bits, which is attained (up to one
bit) in Construction 3, using an MDS code, when n ≤ 2h+1.
Secondly, when n = c · 2h for some positive integer c, the
constructive bound from Construction 3 is t log2(n), which,
compared to the third lower bound in Corollary 4, differ only
by a factor of 2.

Next, proofs for all the three bounds will be given, starting
with the first one. However, before the proofs, we give the
definition of the Fixed Length Levenshtein (FLL) distance, as
defined in [35], and repeated next. The FLL distance between
two binary words of length n, denoted as dℓ, is s, if a word
x ∈ Fn

2 can be obtained from a word y ∈ Fn
2 using s deletions

and s insertions (where s is minimal).
Proof of Theorem 6, Part 1: We want to show that

ADC(t, s) ≤ (Ms(L))
t · 2L(n−t). Let A′

DC(t, s) denote the
largest cardinality of a (t, s)-DC code, where the deletions can
only occur in the first t rows. Since every (t, s)-DC code can
also, in particular, correct (t, s)-DC errors when they occur
specifically in the first t rows, ADC(t, s) ≤ A′

DC(t, s), and
thus providing an upper bound for A′

DC(t, s) is also an upper
bound for ADC(t, s).

Next, let CDC be a (t, s)-DC code, where the deletions can
only occur in the first t rows, and of cardinality A′

DC(t, s).
We partition CDC into at most 2L(n−t) subcodes, such that any
two codewords arrays, X,Y ∈ CDC, that belong to the same
subcode, have their last n− t rows identical. But, since X,Y
belong to a code that corrects (t, s)-DC pattern in the first t
rows, X[1:t] and Y[1:t], the subarrays of X and Y that are
obtained only from their first t rows, belong to a (t, s)-DC
code over Ft×L

2 . Thus, the cardinality of each subcode is at
most D(t, s, L), where D(t, s, L) is the largest cardinality of
a (t, s)-DC code over Ft×L

2 , and there are 2L(n−t) subcodes,
which imply ADC(t, s) ≤ A′

DC(t, s) ≤ D(t, s, L) · 2L(n−t),
and we wish to prove that D(t, s, L) ≤ (Ms(L))

t.
We provide a proof by induction on t. First, for t = 1,

the code is over vectors of length L, and therefore the
inequality D(1, s, L) ≤ Ms(L) is given by definition. Next,
we prove that if D(i, s, L) ≤ (Ms(L))

i, then D(i+1, s, L) ≤
(Ms(L))

i+1. Let C be an (i + 1, s)-DC code over F(i+1)×L
2

of cardinality D(i + 1, s, L), and let X1 denote the set of
all possible rows of the first row of any codeword array in
C. If |X1|≤ Ms(L), then for every x1 ∈ X1, denote by
C(x1) ⊂ C, the subcode of C, in which the first row of every
codeword array in C(x1) is x1. Note that C(x1) can correct
s deletions in each of its i + 1 rows, as a subcode of C, and
since for every codeword in C(x1), its first row remains the
same, it is necessary that the last i rows of every codeword in
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C(x1) be an (i, s)-DC correcting code, or else there exists a
pattern of deletions that one cannot recover from.

Therefore, |C(x1)|≤ D(i, s, L), which by the induction
step, yields |C(x1)|≤ (Ms(L))

i, and since |X1|≤ Ms(L),
we get that D(i+ 1, s, L) = |C|≤ (Ms(L))

i+1.
Next, if |X1|> Ms(L), we will construct, in a greedy

manner, another (i + 1, s)-DC code, denoted as C, where
|C|= |C|, and its set of all possible rows of the first row
of any codeword array in the code C, denoted X

1
, is of

cardinality at most Ms(L), which then will finish the proof.
First, arbitrarily choose any y1 ∈ X

1
, and define the set

Yy1 =
{
y ∈X

1
: dℓ(y,y1) ≤ s

}
, i.e., all the row vectors in

X
1
, that can be reached from y1 after at most s deletions

and insertions. Note that the set Yy1 contains y1. Next, we
select any vector y2 ∈ X

1 \ Yy1
, and we define the set

Yy2 =
{
y ∈X

1 \ Yy1 : dℓ(y,y2) ≤ s
}

.
We keep repeating this procedure until we have ν sets Yy1 ,

Yy2 , . . . , Yyν (which are disjoint by design) and where Yy1 ∪
· · ·∪Yyν

= X
1
. By design, {yi}νi=1 is an s-deletion-correcting

code and so ν ≤Ms(L).
Let C({y1,y2, . . . ,yk}) be the subcode of C where

the first row of every codeword array in the subcode
C({y1,y2, . . . ,yk}) belongs to the set {y1,y2, . . . ,yk}. Then,
let C be defined in the following way. For every i ∈ [ν], we
take all the codewords in C(Yyi

), add those to C, and set their
first row as yi.

We claim that |C|= |C| and that C is an (i+1, s)-DC code.

1) Assume, for the sake of contradiction, that C is not an
(i + 1, s)-DC code. Then, there exists X,Y ∈ C such
that these arrays are confusable after a pattern of (i +
1, s) deletions. Specifically, it means that their first rows,
x1,y1 are confusable after s deletions, and thus x1 = y1

as we chose the first row vectors from an s-deletion-
correcting code. Hence, in C, there exist X,Y such that
X and X coincide on the last i rows, and the same is
true for Y and Y .
However, since x1 = y1, the first row of X and the first
row of Y belong to the same set Yi, which implies that
x1,y1 are confusable after s deletions, and since C is an
(i+1, s)-DC code, the last i rows of X and Y cannot be
confusable after a pattern of (i, s) deletions, which also
implies that X and Y cannot be confusable, as they have
the same last i rows. In turn, this means that X and Y
are not confusable after (i+1, s) deletions, and therefore
a contradiction.

2) We show that |C|= |C|. Since every codeword of C was
constructed from a unique codeword in C, it implies a
surjective function from C to C and thus |C|≤ |C|. Next,
suppose, for the sake of contradiction, that |C|< |C|, i.e.,
the function is not injective.
Then, we will have two codewords in C that differ only in
their first row (which was the only row that was changed),
where one is u ∈ Yi and the other is v ∈ Yi. In this
case, a pattern of s-deletions in the first row results two
confusable arrays, a contradiction to C being an (i+1, s)-
DC code.

To conclude, we constructed C, an (i+1, s)-DC code, where
|C|= |C|, and its set of possible first rows is of cardinality at
most Ms(L). Thus, |X1|≤Ms(L) and D(i+1, s, L) = |C|≤
(Ms(L))

i+1.

Next, a proof for the second bound is given. Since the
second bound uses a sphere packing argument, a definition
of a distance function is defined first. To do that, we will use
the FLL distance.

Definition 7. Let X,Y ∈ Fn×L
2 and s ≥ 0 is an integer.

Then,

ds-DC(X,Y ) =

{
∞ if ∃i∈ [n]: dℓ(xi,yi)>s,

|{i:xi ̸= yi}| otherwise.

Remark 7. If s = 0, then for any X,Y ∈ Fn×L
2 ,

d0-DC(X,Y ) =

{
∞ if X ̸= Y ,

0 otherwise.

The following theorem states the important connection
between Definition 7 and (t, s)-DC codes.

Theorem 7. A code Cs-DC ⊆ Fn×L
2 is a (t, s)-DC code if and

only if every X,Y ∈ Cs-DC satisfy ds-DC(X,Y ) > t.

Proof: First, let X,Y ∈ Cs-DC and assume for the sake
of contradiction that ds-DC(X,Y ) ≤ t. This implies that there
are only w ≤ t indices of rows, denoted as I = {i1, . . . , iw},
such that xij ̸= yij for every ij ∈ I, and xk = yk for every
k /∈ I. Moreover, it also implies that 1 ≤ dℓ(xij ,yij ) ≤ s for
every ij ∈ I. Thus, for every row index ij ∈ I, one can delete
s bits in xij and s bits in yij such that the resulted (L− s)-
length rows are indistinguishable, as was stated in [35]. Since
|I|≤ t, there exists a pattern of (t, s) deletions (i.e., choosing
t rows and then choose s bits to delete in each of them) on
X and another pattern of (t, s) deletions (over the same row
indices) on Y , such that the resulted erroneous (punctured)
arrays are indistinguishable, which is a contradiction for X,Y
being both codewords of Cs-DC.

Conversely, let Cs-DC be a code where every X,Y ∈ Cs-DC
satisfy ds-DC(X,Y ) > t, and we will show that it is a (t, s)-
DC code. Assume, for the sake of contradiction, that there
exist two patterns of (t, s) deletions, P1 and P2, such that X
suffers from deletions according to P1 and Y suffers from
deletions according to P2, but the resulted erroneous arrays
are indistinguishable. Then, both P1 and P2 caused deletions
in the same w ≤ t rows, so we denote the indices of those
rows as I = {i1, . . . , iw}. First, note that xij = yij for every
ij /∈ I. Also, since every ij-th row, where ij ∈ I, suffer
at most s deletions, it implies dℓ(xij ,yij ) ≤ s, otherwise the
resulted erroneous arrays cannot be indistinguishable. But, this
means that ∀i ∈ [n]: dℓ(xi,yi) ≤ s (either the rows are the
same, or they differ by at most s deletions), and there are at
most t rows such that dℓ(xi,yi) ≥ s, which is a contradiction,
since ds-DC(X,Y ) > t.

Following is the definition for the volume of a ball, using
the distance function ds-DC.
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Definition 8. Let X ∈ Fn×L
2 . Then, the volume of an (τ, σ)-

ball, centered at X , using the distance function ds-DC, is as
follows,

VDC(τ, σ,X) = {Y ∈ Fn×L
2 : dσ-DC(X,Y ) ≤ τ} .

A sphere packing argument follows immediately.

Theorem 8. Let Cs-DC = {Xi}Mi=1 be a (t, s)-DC code of
cardinality M . Then,

M∑
i=1

|VDC(⌊t/2⌋, ⌊s/2⌋,Xi)| ≤ 2nL .

Proof: It is sufficient to prove that the (⌊t/2⌋, ⌊s/2⌋)-
balls around each codeword, do not intersect. Assume, for
the sake of contradiction, that there exists Y ∈ Fn×L

2 , such
that Y ∈ VDC(⌊t/2⌋, ⌊s/2⌋,Xi) ∩ VDC(⌊t/2⌋, ⌊s/2⌋,Xj).
Since d⌊s/2⌋-DC(Y ,Xi) <∞, there are at most ⌊t/2⌋ distinct
rows between Y and Xi, and their FLL distance is at most
⌊s/2⌋. Also, since ds-DC(Y ,Xj) <∞, there are at most ⌊t/2⌋
distinct rows between Y and Xj , and their FLL distance is
at most ⌊s/2⌋.

Combining those two observations, there are at most
2⌊t/2⌋ ≤ t distinct rows between Xi and Xj , and their
FLL distance is at most 2⌊s/2⌋ ≤ s. But this means that
ds-DC(Xi,Xj) ≤ t, which is a contradiction to Theorem 7.

Since VDC(r1, r2,X)=
⋃̇r1

i=0{Y : dr2-DC(X,Y )= i}, the next
claim will be a step towards estimating the volume of a ball.

Claim 10. Let X ∈ Fn×L
2 . Then, for any positive integer s,

|{Y : ds-DC(X,Y ) = t}|≥
(
n
t

)(
L
s

)t
.

Proof: First, each Y such that ds-DC(X,Y ) = t is com-
posed of t row indices I = {i1, . . . , it} where dℓ(xi,yi) ≤ s
and all the other row indices, j ∈ [n] \ I, satisfy xi = yi.
Therefore, one can divide those binary arrays Y into

(
n
t

)
distinct sets, that differ by their indices set I. Next, let I
be one of these sets of indices. Then, the cardinality of
BI(X) = {Y | ∀i ∈ I: dℓ(xi,yi) ≤ s, and ∀i /∈ I:xi = yi}
is
∏

i∈I |Ls(xi)|, where Ls(xi) = {yi: dℓ(xi,yi) ≤ s}. Us-
ing [35, Corollary 3], |Ls(xi)|≥

(
L
s

)
and thus

∏
i∈I |Ls(xi)|≥(

L
s

)t
. Since there are

(
n
t

)
distinct sets, we conclude the proof.

Remark 8. It is clear from Remark 7 that for any positive inte-
ger t, |{Y : d0-DC(X,Y ) = t}|= 0, and thus |VDC(r, 0,X)|=
1 for any integer r.

Next, a lemma is given, to conclude a lower bound for the
volume of a ball.

Lemma 6. Let X ∈ Fn×L
2 . Then, for any integer s ≥ 2.

|VDC(⌊t/2⌋, ⌊s/2⌋,X)|≥
⌊t/2⌋∑
i=0

(
n

i

)(
L

⌊s/2⌋

)i

.

Proof: Using Definition 8 and Claim 10,

|VDC(⌊t/2⌋, ⌊s/2⌋,X)|=
⌊t/2⌋∑
i=0

|{Y :d(⌊s/2⌋)-DC(X,Y )= i}|

≥
r∑

i=0

(
n

i

)(
L

⌊s/2⌋

)i

.

Next, follows the proof of the second bound.
Proof of Theorem 6, Part 2: We show that if Cs-DC is a

(t, s)-DC code, |Cs-DC|= M , s ≥ 2, then,

M ·

(
n

⌊t/2⌋
·
(

L

⌊s/2⌋

)⌊s/2⌋
)⌊t/2⌋

≤ 2nL .

Using Theorem 8,

2nL ≥
M∑
i=1

∣∣∣∣Vs-DC

(⌊
t

2

⌋
,Xi

)∣∣∣∣ .

Then, from Lemma 6,

M∑
i=1

∣∣∣∣Vs-DC

(⌊
t

2

⌋
,Xi

)∣∣∣∣ ≥M ·
⌊t/2⌋∑
i=0

(
n

i

)(
L

⌊s/2⌋

)i

.

Then,

M ·
⌊t/2⌋∑
i=0

(
n

i

)(
L⌊
s
2

⌋)i

≥M

(
n⌊
t
2

⌋)( L⌊
s
2

⌋)⌊ t
2⌋

.

And to conclude,

M

(
n⌊
t
2

⌋)( L⌊
s
2

⌋)⌊ t
2⌋
≥M

 n⌊
t
2

⌋ ·( L⌊
s
2

⌋)⌊ s
2⌋
⌊

t
2⌋

.

Finally, the third bound is derived. It is needed, in addition
to the previous bound, since, as one can observe, the previous
bound is not useful for the (t, 1)-DC case. Firstly, a definition
of a simple distance function between vectors is given.

Definition 9. Let x,y ∈ FL
2 . Then,

d1(x,y) =


∞ if ∃j ∈ {2, . . . , L}:xj ̸= yj ,

1 if x1 ̸= y1 and ∀j∈{2, . . . , L}:xj = yj ,

0 otherwise .

Then, based on the above distance function, a definition of
a distance function for arrays is given.

Definition 10. Let X,Y ∈ Fn×L
2 . Then,

d1DC(X,Y ) =

{
∞ if ∃i ∈ [n]: d1(xi,yi) = ∞ ,

|{i: d1(xi,yi) = 1}| otherwise .

The next theorem demonstrates the relationship between the
distance function d1DC and (t, 1)-DC codes.

Theorem 9. Let CDC ⊆ Fn×L
2 be a (t, 1)-DC code. Then,

every X,Y ∈ CDC satisfy d1DC(X,Y ) > t.

Proof: Assume, for the sake of contradiction, that there
exists X,Y ∈ CDC such that d1DC(X,Y ) ≤ t. Then, since
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the distance is finite, ∀i ∈ [n]: d1(xi,yi) ≤ 1. But since
d1DC(X,Y ) ≤ t, there are w ≤ t row indices, denoted as
I, in which d1(xi,yi) = 1 for all i ∈ I. Moreover, all
∀j /∈ I:xj = yj . Thus, a deletion in the first bit of all the
w rows, whose indices are in I, which is a valid pattern of
a (t, 1)-DC error, will yield the same punctured arrays from
X and Y , which is a contradiction for CDC being a (t, 1)-DC
code.

Following, as in the previous bound, is a sphere packing
argument, starting with a definition of a ball.

Definition 11. Let X ∈ Fn×L
2 . Then, the volume of a ball of

radius r, centered at X , using the distance function d1DC, is
V1

DC(r,X) = {Y : d1DC(X,Y ) ≤ r}.

Next, we prove the connection between balls in the Ham-
ming distance and balls in the d1DC distance.

Claim 11. Let X ∈ Fn×L
2 . Then, using V2(r, n) as defined

in [27, Section 4.2]

|V1
DC(r,X)|= V2(r, n) =

∆
r∑

i=0

(
n

i

)
.

Proof: Since any two arrays X,Y ∈ Fn×L
2 for which

their d1DC distance is finite, can differ only by bits in the first
column, and then their d1DC is equal to the Hamming distance
of their first column, there is a clear bijection between the
volume of balls in the Hamming distance, V2(r, n), and the
volume of balls in the d1DC distance function, |V1

DC(r,X)|.

Finally, the proof for the third bound follows.
Proof of Theorem 6, Part 3: We show that if CDC is a

(t, 1)-DC code of cardinality M , then,

M · V2(⌊t/2⌋, n) ≤ 2nL .

Again, it is sufficient to prove that the balls V1
DC(⌊t/2⌋, ·)

around codewords of CDC do not intersect. Assume, for
the sake of contradiction, that there exist an array Y ∈
V1

DC(⌊t/2⌋,X1) ∩ V1
DC(⌊t/2⌋,X2), where X1,X2 ∈ CDC.

Thus, d1DC(X1,Y ) < ∞ and d1DC(X1,Y ) < ∞, which
implies that there are at most ⌊t/2⌋ indices of rows where
X1 and Y differ only in the first bit of the row, and the same
is true for X1 and Y . Therefore, there are at most t rows in
which X1 and X2 differ in their first bit, and all the other
bits in those arrays are the same. So d1DC(X1,X1) < t, thus
a contradiction to Theorem 9.

C. Upper Bounds on the Size of (1, 1, 1)-TED Codes

In order to investigate whether a code is optimal in terms
of redundancy, a few notations are introduced.

Definition 12. Let X ∈ Fn×L
2 and denote D↓↑

i (X) ⊂ Fn×L
2

as the set of all possible arrays that can be received after
deleting any bit from the i-th row of X , and then inserting an
arbitrary bit at the end of the same row of the resulting array.

Let BDel(xi) ⊂ FL−1
2 be the 1-deletion error ball of the i-th

row of X , i.e., the set of vectors that are obtained by removing

one bit from xi. Moreover, let (xi)
′ ∈ BDel(xi) be the vector

that is obtained by one TE, i.e., (xi)
′ = (xi,1, . . . , xi,L−1).

Therefore, for every Z ∈ D↓↑
i (X), from the way Z is defined,

(zi)
′ ∈ BDel(xi). That is, Z ∈ D↓↑

i (X) with the last element
in the i-th row deleted, is a possible outcome of X after being
transmitted through the (1, 1, 1)-TED channel.

Example 6. Let

X =


0 1 1

1 1 0

0 0 1

 , Y =


1 1 0

0 1 1

0 0 1

 .

Then,

D↑↓
1 (X)=


0 1 1

1 1 0

0 0 1

,
0 1 0

1 1 0

0 0 1

,
1 1 0

1 1 0

0 0 1

,
1 1 1

1 1 0

0 0 1




D↑↓
2 (Y )=


1 1 0

0 1 1

0 0 1

,
1 1 0

0 1 0

0 0 1

,
1 1 0

1 1 0

0 0 1

,
1 1 0

1 1 1

0 0 1


 .

We want to show that X and Y cannot belong to the same
(1, 1, 1)-TED code. Indeed, assume, for sake of contradiction,
that they do. Let

Z =


1 1 0

1 1 0

0 0 1

 ∈ D↑↓
1 (X) ∩D↑↓

2 (Y ) .

Therefore, let the array

Z̃ =


1 1 •
1 1 •
0 0 1

 ,

be an output of the (1, 1, 1)-TED channel, i.e., Z with the
first two rows suffer from a TE. Then, one cannot distinguish
between the cases of a deletion in the first row of X and a TE
in the second, and a TE in the first row of Y and a deletion
in the second. Thus, X and Y cannot belong to the same
(1, 1, 1)-TED code.

Next, let D↑↓(X) =
⋃n

i=1 D
↑↓
i (X) and the next claim

follows, which generalize the previous example.

Claim 12. Let C ⊆ Fn×L
2 be a (1, 1, 1)-TED code. Then, for

any distinct X,Y ∈ C,

D↑↓(X) ∩ D↑↓(Y ) = ∅ .

Proof: We need to show that for any distinct X,Y ∈
C, we have D↑↓

i1
(X) ∩ D↑↓

i2
(Y ) = ∅, for any arbitrary row

indices i1, i2. Assume, for sake of contradiction, that there
exists an array Z ∈ D↑↓

i1
(X) ∩ D↑↓

i2
(Y ). If i1 = i2, then

it implies that for any other row than the i1-th row, X and
Y coincide, and that BDel(xi) ∩ BDel(yi) ̸= ∅, and therefore
there is a deletion in the i1-th row that cannot be recovered,
while any deletion in the other rows cannot be recovered, and
therefore the contradiction. Next, assume i1 ̸= i2. This implies
again that X and Y coincide on any row other than i1, i2.
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Moreover, zi1 = yi1 and zi2 = xi2 . Also, (zi1)
′ ∈ BDel(xi1)

and (zi2)
′ ∈ BDel(yi2). Thus, the array

Z̃ =



z1,1 z1,2 · · · z1,L−1 z1,L
...

...
. . .

...
...

zi1,1 zi1,2 · · · zi1,L−1 •
...

...
. . .

...
...

zi2,1 zi2,2 · · · zi2,L−1 •
...

...
. . .

...
...

zn,1 zn,2 · · · zn,L−1 zn,L


is indeed a valid output of the transmission of either X or

Y through the (1, 1, 1)-TED channel, while X suffers from
an arbitrary deletion in the i1-th row and a TE in the i2-th
row, or Y suffers from a TE in the i1-th row and an arbitrary
deletion in the i2-th row. Thus, a contradiction to the fact that
both X and Y are codewords in C.

Next, we use Claim 12, to prove the following upper bound
on the cardinality of (1, 1, 1)-TED codes.

Theorem 10. Let ATED(n × L) be the cardinality of the
maximal size (1, 1, 1)-TED code of n×L binary arrays. Then,

ATED(n× L) ≲
2nL

nL
, i.e., lim

n→∞

ATED(n× L)
2nL

nL

≤ 1 .

Proof: First, following the definition in [35] of a run in
a vector, denoted as r(xi), xi ∈ FL

2 , a generalization is pre-
sented next. Let X = (x1, . . . ,xn) ∈ Fn×L

2 , then the sum of
runs is defined as R(X) =

∑n
i=1 r(xi). It is possible to show

that |D↑↓
i (X)|= 2r(xi), and then

∣∣D↑↓(X)
∣∣ = 2R(X). Next,

assume that C is a (1, 1, 1)-TED code of size ATED(n × L),
and then define the following,

C0 =

{
X ∈ C:R(X) ≥ nL

2
−
√
nL ln(nL)

}
And C1 = C \ C0. From Claim 12, every distinct codeword
array X ∈ C results a distinct D(X), thus

2nL ≥
∑
X∈C

|D↑↓(X)|

=
∑

X∈C0

|D↑↓(X)|+
∑

X∈C1

|D↑↓(X)|

≥
∑

X∈C0

2R(X)

≥ |C0|·
(
nL− 2

√
nL ln(nL)

)
,

and therefore,

|C0| ≤
2nL

nL− 2
√
nL ln(nL)

≈ 2nL

nL
.

Where the last step above is due to the fact that

2nL

nL− 2
√
nL ln(nL)

/
2nL

nL

n→∞−−−−→= 1 .

Denoting N = nL and g(N) = N
2 −

√
N ln(N), we say

|C1| ≤
g(N)−1∑
r=n

|{X ∈ {0, 1}n×L:R(X) = r}|

≤
g(N)−1∑
r=1

|{X ∈ {0, 1}N : r(X) = r}|

=

g(N)−1∑
r=1

2

(
N − 1

r − 1

)
.

Where r(X) is the number of runs in the vectorized array X ,
that is appending every row to the end of its previous row.
Moreover, the second inequality is due to the fact that any
vectorized array can either have the same number of runs (if
every row ends with the same bit as the next row starts with),
or have an larger number of runs. Therefore, any array that is
in one of the sets on the l.h.s (of the second inequality), has to
be in one of the sets on the r.h.s. Now, using the lemma in [31],
|C1|= o

(
2N

N2

)
. To conclude, |C1|

2nL

nL

n→∞−−−−→ 0 and therefore,

|C0|+|C1|≲
2nL

nL
.

That means that the redundancy of an n × L binary array
code capable of correcting at most a single deletion and a
single TE is asymptotically at least log2(n) + log2(L) bits.

VII. CONCLUSIONS AND FUTURE WORK

Our research has shown promising results. For TE and DC
codes we provided some optimal constructions, using some
interesting techniques. The new coding schemes developed in
this work show that it is possible to correct many frequently
occurring error patterns by manipulating the parity check
matrices of existing linear codes, and using ideas based on
tensor product codes. With the ever-increasing demand for
data storage, our findings contribute to the growing body of
research into alternative data storage solutions, offering a new
and innovative approach. Further research is necessary to fully
assess the potential of this technique, but our results are a step
towards a future where DNA storage is a reality.
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APPENDIX

Theorem 1. A code C ⊆ Fn×L
2 is an e-TE-correcting code if

and only if ρTE(C) ≥ e+ 1.

Proof: Let X ∈ C. If C is an e-TE code, it means that
there is no other Y ∈ C such that X(p) = Y (p) for any
p ∈ P (e, L, n), where ∥p∥1= t, and t ≤ e. Assume, for the
sake of contradiction, that such p exists. It means that if X
suffers from a TE pattern p where ∥p∥1= t, and t ≤ e, it
cannot be distinguished from Y that suffers from the same
TE pattern p. Therefore, this TE cannot be corrected, which
yields a contradiction to C being a e-TE code. So, conclude
that ρTE(C) > e. Conversely, if ρTE(C) ≥ e+1, let X ∈ C and
assume an e-TE occurred in X , and we want to show that the
code can correct it. Assume, for the sake of contradiction, that
there exists a Y ∈ C and p ∈ P (e, n, L) such that X(p) =
Y (p) and ∥p∥1≤ e, and therefore the code cannot correct this
e-TE, since it cannot distinguish between X and Y . But then
ρTE(X,Y ) ≤ e and this contradicts the minimum ρTE-distance
of the code. We conclude that after at most e-TE occurred, X
is the only codeword that could be the result of those e-TEs,
and conclude that C can correct up to e-TEs.
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