

[Start](#) | [Grid View](#) | [Author Index](#) | [View Uploaded Presentations](#) | [Meeting Information](#)

GSA Connects 2024 Meeting in Anaheim, California

Paper No. 17-8

Presentation Time: 10:20 AM

PALEOBIOGEOGRAPHY OF EARLY PALEOZOIC ECHINODERMS

SHEFFIELD, Sarah L., Earth Sciences, Binghamton University, 4400 Vestal Parkway E, Science 1, Binghamton, NY 13902, LAM, Adriane R., Binghamton University, Binghamton, NY 13902, DELINE, Bradley, Department of Natural Sciences, University of West Georgia, 1601 Maple St, Carrollton, NY 30118, NARDIN, Elise, Geosciences Environnement Toulouse, Toulouse, Occitania 31400, France, NOHEJLOVÁ, Martina, Czech Geological Survey, Prague, Bohemia 118 00, Czech Republic and SMITH, Nicholas, Department of Math, Sciences, and Technology, University of West Georgia, 1601 Maple St, Carrollton, GA 30118

The Cambrian is a critical time in Earth's history for understanding the development of animal phyla and how that development affected the evolutionary trajectories each have taken through the Phanerozoic. Many of the taxonomic classes within Echinodermata, a morphologically disparate clade, first appeared in the fossil record during the Cambrian. Historically, Cambrian-age articulated echinoderms are not commonly preserved, which has limited paleobiologists' ability to quantify diversity and evolutionary patterns. Over the past few decades, more Cambrian echinoderms have been found and described from a few dozen localities globally, opening new avenues of research. This study leverages specimens from these new localities to focus on quantifying diversity and evolutionary patterns of eocrinoids, an extinct grouping of blastozoan echinoderms that are linked by their single pore respiratory structures, polyplated thecal bodies, a stem or stalk, and erect, biserial brachiole feeding appendages. We inferred phylogenetic hypotheses of Cambrian eocrinoids to reconstruct ancestral biogeographic histories and dispersal pathways in the Cambrian to determine potential drivers of evolution and dispersal. We use a fully bifurcating time-stratified phylogenetic tree and the R package BioGeoBEARS to estimate ancestral ranges within this phylogenetic hypothesis to identify speciation events and types. The number and type of dispersal events was estimated using Biogeographic Stochastic Mapping (BSM) within BioGeoBEARS. This study fills an important information gap by identifying the evolutionary relationships and speciation pathways of eocrinoids, a grouping that is hypothesized to be ancestral to many post- Cambrian blastozoan echinoderms. This study also adds to a growing body of research of phylogenetically-informed biogeographic studies focused on Paleozoic echinoderms; herein, we compare the results of this study using eocrinoids to the speciation and dispersal patterns that have been uncovered in other taxonomic groups across the Paleozoic.

[Recorded Presentation](#)

Session No. 17

[T129. Phylogenetic and Computational Approaches in Paleobiology I](#)

Sunday, 22 September 2024: 8:00 AM-12:00 PM

204A (Anaheim Convention Center)

Geological Society of America *Abstracts with Programs*. Vol. 56, No. 5
doi: 10.1130/abs/2024AM-403649

© Copyright 2024 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.

[Back to: T129. Phylogenetic and Computational Approaches in Paleobiology I](#)

[<< Previous Abstract](#) | [Next Abstract >>](#)