
1

One Code Fits All: Strong stuck-at codes for
versatile memory encoding

Roni Con Ryan Gabrys Eitan Yaakobi

Abstract—In this work we consider a generalization of
the well-studied problem of coding for “stuck-at” errors,
which we refer to as “strong stuck-at” codes. In the
traditional framework of stuck-at codes, the task involves
encoding a message into a one-dimensional binary vector.
However, a certain number of the bits in this vector are
‘frozen’, meaning they are fixed at a predetermined value
and cannot be altered by the encoder. The decoder, aware of
the proportion of frozen bits but not their specific positions,
is responsible for deciphering the intended message. We
consider a more challenging version of this problem where
the decoder does not know also the fraction of frozen bits.
We construct explicit and efficient encoding and decoding
algorithms that get arbitrarily close to capacity in this
scenario. Furthermore, to the best of our knowledge, our
construction is the first, fully explicit construction of stuck-
at codes that approach capacity.

Index Terms—Stuck-at codes

I. INTRODUCTION

In this research, we initiate the development of strong
stuck-at codes, an advanced version of traditional codes
that have applications to stuck-at memories. Our ap-
proach considers a storage medium analogous to a one-
dimensional vector with a fixed length, containing a
certain proportion of ‘frozen’ components that cannot
be altered during encoding. The objective is to create a
coding system capable of encoding the greatest possible
amount of information while ensuring the frozen com-
ponents’ values and positions, known during encoding

Technion - Israel Institute of Technology, Haifa, Israel,
roni.con93@gmail.com

University of California San Diego, Naval Information Warfare
Center, CA, rgabrys@ucsd.edu

Technion - Israel Institute of Technology, Haifa, Israel,
yaakobi@cs.technion.ac.il

A preliminary version of this work was presented at the IEEE
International Symposium on Information Theory (ISIT) 2024.

The research was funded by the European Union (ERC, DNAStor-
age, 101045114). Views and opinions expressed are however those of
the authors only and do not necessarily reflect those of the European
Union or the European Research Council Executive Agency. Neither
the European Union nor the granting authority can be held responsible
for them. This work was also supported in part by NSF Grant
CCF2212437.

Part of this work was done while RC was visiting the Simons
Institute for the Theory of Computing.

but unknown during decoding, remain intact. Previous
studies typically assume knowledge of the maximum size
of the set of frozen components at the time of encoding
and decoding, whereas the set itself is known only to
the encoder. Our study addresses the more flexible (yet
challenging) scenario where the set and the maximum
size of the frozen components are known to the encoder
(as before) but both of them are unknown at the decoding
stage.

The problem of constructing codes for stuck-at mem-
ories has its roots in the early work of Kuznetsov and
Tsybakov [KT74]. Building on this, Tsybakov expanded
the scope by considering scenarios where, apart from the
frozen components, the memory might incur additional
errors post-encoding [Tsy75]. This led Heegard to in-
novate a new class of codes, termed partitioned linear
block codes [Hee83], which he demonstrated to meet
the Shannon capacity in specific conditions [Hee85].
However, these findings are not applicable to scenarios
involving binary alphabet codes, which is the primary
focus of our study. It’s noteworthy that this issue has
evolved with the advent of newer technologies like Flash
and Phase-Change Memory (PCM) and some new works
on this (and similar) settings include [LMJF10], [KK13],
[WZY15], [MV15].

A strongly related area of work is in the setting of
coding for “Write-Once-Memories” or WOM, which
was originally introduced by Rivest and Shamir in 1982
[RS82]. In this setting, memory cells are initialized to
each have value 0 and, at each round of the encoding,
one is allowed to change some fraction of the cells only
from 0 to 1. For the case of two-write WOM-codes, in
the first round the encoder is permitted to change any
fraction of the cells to 1. The decoding in the first round
is straightforward. In the second round, the encoder has
access to the state of the memory after the first round
so that it knows which cells were set to one in the first
round, but the decoder only has access to the state of the
memory after the second write and so it does not know
what bits were set to 1 in the first round. Thus, the second
round of encoding/decoding represents an instance of the
defective memory with stuck-at components.

Capacity-achieving two-write WOM-codes have been
known for some time starting with the seminal work by
Sphilka [Shp13] and later by Chee et al. [CKVY19].
In fact, using this connection between two-write WOM-
codes and coding for stuck at errors, it was noted in
[Shp13] that if the encoder is allowed to transmit a
small amount of side information directly to the decoder
that cannot be corrupted by stuck-at errors, then a slight
variation of the encoder/decoder for his two-write WOM
is equivalent to a stuck-at code. In the work by Chee
et al. [CKVY19], which leverages spreads in projective
geometry in order to guide the encoding function for the
second round write, the value of the cells matters so that
it is not clear how to make their approach account for
frozen or stuck-at cells that can have value 0 or 1.

Perhaps the closest existing work to the problem of
designing strong-stuck-at codes is the work Gabizon and
Shaltiel [GS12], who designed capacity-achieving stuck-
at codes for the case where the maximum number of
frozen components is known ahead of time. Although
their constructions provided the first explicit scheme
with asymptotically optimal rate, their model permitted
a randomized encoding function which was allowed to
succeed with randomized polynomial time (with respect
to the block length of the memory).

In this work, we develop almost capacity-achieving
strong-stuck-at codes where the number of frozen com-
ponents is not known beforehand. Although our primary
goal is the design of explicit and efficient codes for this
generalized model, our codes also have several properties
for the classical stuck-at model. Unlike the work of Gabi-
zon and Shaltiel, our encoding procedure is completely
deterministic (see Theorem I.5). Furthermore, we show
that in the randomized version of our algorithm which is
presented in Section III, we are able to construct codes
using fewer random bits than in previous constructions.

The rest of this paper is organized as follows. In the
remainder of this section, we formally introduce our
problem setup and highlight our results. In Section 2,
we present an existential result showing that, perhaps
surprisingly, it is possible to encode at virtually the same
rate as a conventional stuck-at code even when the size
(or a bound on the size) of the set of frozen components
is not available to the decoder. Section 3 presents a
simplified version of our construction where we assume
the encoder is provided a side channel to convey a
small amount of information to the decoder in a manner
analogous to the setting originally studied in [Shp13].
Finally Section 4 presents our main construction.

A. Problem setup

Denote P(i)([N]) := {F ⊆ [N] | |F| = i}, i.e., all the
subsets of [N] of size i. Formally, our goal is to design

1) A sequence of pairs E :=
(E1,M1), (E2,M2), . . . , (EN ,MN) where
the Mi’s are sets of messages and

Ei : {0, 1}N × P(i)([N])×Mi → {0, 1}N

are encoding maps that get as input a cover vector
v ∈ {0, 1}N , a set of frozen indices of size i, and
a message to encode.

2) A decoder

D : {0, 1}N →
N⋃
i=1

Mi

that maps vectors to messages.
A strong-stuck-at-code of length N is a pair (E,D)

such that for every i ∈ [N], v ∈ {0, 1}N , F ∈ Pi([N]),
and m ∈ Mi, the following two conditions hold:

1) Consistency:

(Ei(v,F ,m))j = vj , ∀j ∈ F .

Namely, the encoders are allowed to change only
coordinates of v whose indices are outside of F .

2) Unique-decodability:

D(Ei(v,F ,m)) = m .

Definition I.1. The rate of a strong-stuck-at-code at ρ-
fraction defect is defined as

log
(∣∣M⌈ρN⌉

∣∣)
N

.

Naturally, given that ⌈ρN⌉ of the bits are frozen, we
can encode up to 1− ρ fraction of information bits. Our
goal in this paper is to design codes that approach this
bound. This goal motivates the following code definition.

Definition I.2. Let ε > 0. An ε-gapped strong-stuck-at-
code of length N is a strong stuck-at code such that for
every defect fraction ρ ∈ (0, 1− ε), the rate of the code
is at least 1− ρ− ε.

B. Our results

In the following theorem, we show that there are ε-
gapped strong-stuck-at-code.

Theorem I.3. For every ε > 0, there exists an N(ε)
such that for every N > N(ε), there exists an ε-gapped
strong-stuck-at-code of length N .

Our next theorem presents a randomized construction
of ε-gapped strong-stuck-at-code.

2

Theorem I.4. For every ε > 0, there exists an N(ε)
such that for every N > N(ε), there exists a randomized
ε-gapped strong-stuck-at-code of length N such that

1) The encoder and the decoder run in
O (N · poly(logN) · poly(1/ε)).

2) The number of random bits that are used by the
encoder is O

(
1
ε logN

)
and the encoder succeeds

with probability 1− o(1).

Our next theorem is a version of Theorem I.4 that is
fully deterministic. We note that the cost of making the
encoder deterministic results in much higher encoding
complexity.

Theorem I.5. For every ε > 0, there exists an N(ε)
such that for every N > N(ε), there exists an explicit
ε-gapped strong-stuck-at-code of length N such that the
encoder runs in time NO(1/ε) and the decoder runs in
time O (N · poly(logN) · poly(1/ε)).

C. Comparison with [GS12]

The work of Gabizon and Shaltiel [GS12] studied
stuck-at-codes where the fraction of frozen bits is known
both to the encoder and the decoder. They extended the
work of Shpilka [Shp13] and showed that stuck-at-codes
are equivalent to zero-error seedless dispersers for bit-
fixing sources. Their work constructs efficiently invertible
zero-error seedless dispersers for bit-fixing sources and
as a result get stuck-at-codes. More formally, their stuck-
at-code are given in the following theorem

Theorem I.6. [GS12] For every constant p ∈ (0, 1),
there exists a stuck-at-code of length N such that

1) The rate of the code is 1− p− o(1).
2) The encoder is randomized and runs in expected

time poly(N).
3) The decoder is determinstic and runs in time

poly(N).

We note that their construction is “closer” to capacity
than ours. Namely, their gap to capacity is o(1) (specif-
ically, it is logO(1) N) and ours is a constant. Moreover,
they present also a construction that allows a small
number of errors. Formally, they provide a construction
with the same properties as in Theorem I.6 that can also
correct o(

√
N) bit flips.

As discussed in the introduction, in this work we focus
on a generalized model in which the decoder does not
know the number of frozen bits. The generalization of
Theorem I.6 to this case seems challenging and we do
not see an easy way to derive our results from Theo-
rem I.6. Their decoding procedure is done via an object
from the theory of psuedorandomness called invertible

zero-error disperser D : {0, 1}N → {0, 1}m for bit
fixing sources with entropy threshold (1−ρ)N . In short,
given any distribution X ∈ {0, 1}N such that (1− ρ)N
of its bits are fixed, it holds that |Supp(D(X))| ≥ 2m.
Then, the encoding works as follows. Given a message
to be encoded m ∈ {0, 1}m, F ⊆ [N] with |F| = ρN ,
and v ∈ {0, 1}N , we let X to be the bit fixing source
that fixes the bits indexed by F to the bits vF . By
the property of D, there is u ∈ Supp(X) such that
D(u) = m. The encoder output u. To generalize their
approach, it seems that we would need a zero-error
disperser for bit fixing sources with multiple entropy
thresholds. In particular, the disperser needs to work for
any bit fixing source X with entropy threshold (1−ρ)N
for every ρ ∈ (0, 1− ε). We do not see a trivial way to
achieve such a disperser.

In this paper, we took a different approach which gives
a construction that is more elementary and except from
the concept of almost k-wise independence, we do not
use any pseudo-random objects as primitive components
in our construction.

Another advantage of our construction is its explicit-
ness and running time. Observe that the encoder running
time of Theorem I.6 is expected poly time. It is not clear
to us if it can be derandomized as we did in Theorem I.5.
Moreover, note that the encoder of our randomized con-
struction, Theorem I.4, runs in near linear time whereas
the encoder in Theorem I.6 runs in expected poly time.

As a final remark, since our construction is also a
stuck-at-code construction, by the equivalence shown in
[GS12, Theorem 1.8], for every p ∈ (0, 1) and ε, we
get an explicit zero-error disperser D : {0, 1}N →
{0, 1}(1−p−ε)N for bit-fixing sources with entropy
threshold (1 − p)N . Our disperser is invertible in time
O
(
N1/ε

)
and is fully deterministic.

D. Preliminaries
For an integer k, we denote [k] := {1, 2, . . . , k}. We

shall denote vectors by boldface letters such as u and
sets by calligraphic letters such as F . Note that we
denote an interval of positive integers by [a, b] and a
vector restricted to a set of coordinates will be denoted
by vF . In particular, a subvector of v starting from index
a up to an index b will be denoted as v[a,b]. We shall
denote a concatenation of two vectors, u and v by u◦v.
Throughout this paper, log x will refer to the base-2
logarithm.

We note here that in many places we drop all floors
and ceilings in order to ease notation and the analysis
of the codes. However, the loss in the rate due to
these roundings is negligible and does not affect the
asymptotic results.

3

A concept that will be useful in our construction is
that of almost k-wise independent random variables.

Definition I.7. A random variable X =
(X1, X2, . . . , Xr) ∈ {0, 1}r is said to be µ-almost
k-wise independent if for all sets of k distinct indices
{i1, . . . , ik} ⊆ [r] and for all (x1, x2, . . . , xk) ∈ {0, 1}k,
we have∣∣Pr[Xi1 = x1, . . . , Xik = xk]− 2−k

∣∣ ≤ µ .

The following well-known result gives an efficient
construction of a collection of µ-almost k-wise indepen-
dent random variables which can be generated from a
small number of random bits.

Lemma I.8 ([AGHP92]). For every two positive in-
tegers r, k and every µ > 0, there exists a function
g : {0, 1}t → {0, 1}r with t = O

(
log

(
k log r

µ

))
, such

that g(Ut) is a µ-almost k-wise independent variable
over {0, 1}r, where Ut denotes the uniform distribution
over {0, 1}t. Moreover, g(u) can be computed in time
poly(r, 1/µ).

Remark I.9. We shall use Lemma I.8 with r =
O (N logN), k = O (logN), and µ = N−O(1). In this
case, we have that t = O (logN). Furthermore, it can
be verified that in this case, the running time of g on an
input u ∈ {0, 1}t is O (N · poly(logN)). The details
are given in the appendix.

We have the following simple claim whose proof is
deferred to the appendix.

Claim I.10. Let m < n be positive integers and

A =


A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
...

. . .
...

Am,1 Am,2 · · · Am,n


where (Ai,j)1≤i≤m,1≤j≤n is a µ-almost n-wise indepen-
dent variable. Then, the probability that A does not have
full rank is at most 2m−n + µ2m.

II. EXISTENTIAL RESULT

In this section, we prove Theorem I.3 which is restated
for convenience

Theorem I.3. For every ε > 0, there exists an N(ε)
such that for every N > N(ε), there exists an ε-gapped
strong-stuck-at-code of length N .

Proof. Let L be an integer such that L ≤ 2ε−1 ≤ L+1
and let N be an integer such that L+1 divides N . For ev-
ery i ∈ [L], define Mi :=

{
(i,m) | m ∈ {0, 1}

N
L+1 ·i

}
.

Every Mi, i ∈ [L] can be seen as a message space of a
specific length, and our encoder, based on the fraction of
frozen symbols, will encode a message from the largest
possible message space.

Our strategy will be to randomly assign vectors from
{0, 1}N into

∣∣∪L
i=1Mi

∣∣ bins where each bin will be
labeled Bi,m. Formally, every v ∈ {0, 1}N and (i,m) ∈
∪L
i=1Mi,

Pr [v is assigned to Bi,m] =
1

L · 2
N

L+1 ·i
.

Our encoder, which receives as input a vector v ∈
{0, 1}N , a set F ⊆ [N] of size ρN performs the
following:

1) Sets j to be the largest integer such that (1−ρ)N ≥
j

L+1N + ε
2N .

2) Encodes a message m ∈ {0, 1}
j

L+1N by choosing
a vector u ∈ Bj,m such that vF = uF and will
store this vector in the memory.

Note that by the choice of j, we have ensured that the
gap between the length of the message and the number
of unfrozen bits is at least ε/2 · N . Also observe that
in step 2, there might be multiple vectors u ∈ Bj,m

such that vF = uF ; in this case we choose the first
such vector. Clearly, the decoder who knows the partition
of {0, 1}N to the sets Bi,m will correctly identify the
message. Thus, it remains to show that the consistency
condition holds with high probability. Namely, that with
high probability the second step of our encoder always
succeeds.

We first compute the probability for a specific F of
size ρN and a cover vector v, there is no u ∈ Bj,m

for which uF = vF . Since there are 2N−|F| vectors
u ∈ {0, 1}N such that uF = vF , the probability that
none of them falls in Bj,m is at most(

1− 1

L2
N

L+1 ·j

)2N−|F|

≤
(
1− 1

L2
N

L+1 ·j

)2
j

L+1
N+ ε

2
N

≤ exp

(
− 1

L

)2
ε
2
N

≤ exp (−ε)
2

ε
2
N

.

Now, the probability that there exists a vector v ∈
{0, 1}N , a set F ⊆ [N] and a message m (of suitable
length) such that the respective set Bj,m does not contain
a vector that agrees with v on the coordinates specified
by F is at most,

2N · 2N · 2N · exp (−ε)
2

ε
2
N

= exp
(
ln 23N − ε2

ε
2N

)
.

Thus, since ε is constant, the probability that our parti-
tion of {0, 1}N to the sets Bi,m indeed yields a strong

4

stuck-at code is at least 1 − o(1) (the term o(1) goes
to zero as N tends to infinity). For every ρ, the rate of
our probabilistic construction at ρ-fraction of defect is
at least 1− ρ− 1

L+1 − ε
2 ≤ 1− ρ− ε.

III. CONSTRUCTION WITH SIDE INFORMATION

In this section, we will assume that the encoder can
transmit O

(
1
ε logN

)
bits to the decoder where this

transmission is done via a side channel. This transmis-
sion is clean in the sense that all bits are unfrozen.
The decoder will use this short metadata to decode the
original message. This construction is a first step towards
our final construction which does not assume that there
is a side channel between the encoder and the decoder.
Throughout this section, we assume that C is a universal
constant (independent of N) that is known both to the
encoder and the decoder. Also, we denote by hb(d) the
function that takes as input an integer d ∈ [0, b− 1] and
outputs its binary representation using ⌈log b⌉ bits.

Our encoding algorithm is given in Algorithm 1 and
the decoding algorithm is given in Algorithm 2. In the
rest of the section, we prove that

Theorem III.1. Let ε > 0. there exists an N(ε) such
that for every N > N(ε), there exists a randomized ε-
gapped strong stuck-at code of length N such that

1) The encoder uses O
(
1
ε logN

)
random bits and

succeeds with probability 1−O (1/ logN)
2) The encoder transmits O

(
1
ε logN

)
bits to the de-

coder in a side channel.
3) The encoder and the decoder run in time

O (N · poly(logN) · poly(1/ε))

Remark III.2. We note that using the side channel, we
can send the decoder the number of bits that are frozen
and thus, the decoder can know, before the decoding
process, how many bits are stuck. However, our goal is
to design a scheme without the need of side information.
Thus, we do not use these bits to send the exact number
of frozen bits in the vector. Moreover, we could have
defined B = C · log(N/ logN). In that case, the number
of random bits that is needed is O

(
1
ε · log(N/ logN)

)
,

but this comes at the expanse of failure probability which
increases to 1−O(1/C). In this case, we cannot send the
exact number of frozen bits but rather an approximation.
We chose to present the first version for the sake of
notations.

a) Comparison with [Shp13, Theorem 7.1]: Note
that although our primary aim is to design efficiently
strong stuck-at codes, our work represents an improve-
ment over the setup previously studied by Shpilka
[Shp13, Theorem 7.1] where we assume we have access

to a small area of clean memory to store metadata
(equivalently, we have clean side channel between the
encoder and the decoder) and also the decoder knows the
number of stuck-at bits. The next theorem more precisely
states the previous work by Shpilka, which will be useful
as a basis for comparison.

Theorem III.3. [Shp13, Theorem 7.1] Let ρ < 1 and
let v ∈ {0, 1}N containing ρN frozen bits. There is a
randomized encoder and a deterministic decoder such
that

1) The encoder can encode (1− p− ε)N bits for any
constant ε > 0.

2) The encoder transmits O
(
log3 N

)
bits to the de-

coder using a side channel.
3) The encoder runs in polynomial time in N and 1/ε.

Note that the construction presented in this section
requires only O

(
ε−1 · log(N)

)
bits to be transmitted

to the decoder in the side channel compared to the
O
(
log3 N

)
bits required by [Shp13].

We present also a deterministic version of Theo-
rem III.1

Theorem III.4. Let ε > 0. there exists an N(ε) such
that for every N > N(ε), there exists a explicit ε-gapped
strong stuck-at code of length N such that

1) The encoder transmits O
(
1
ε logN

)
bits to the de-

coder in a side channel.
2) The encoder runs in time NO(1/ε) and the decoder

runs O (N · poly(logN)).

b) Notations and preliminaries for Algorithm 1:
The following notations are used in Algorithm 1

• Let B = C · logN .
• We divide [N] into M := N/B contiguous blocks.
• Let Fi ⊆ F denote the frozen elements that appear

in the ith block and F i the nonfrozen elements in
the ith block.

• Denote by ρi = |Fi|/B the fraction of frozen
symbols in ith block.

We proceed with a high-level description of Algorithm 1,
which consists of three steps where each of which is
described in the next three paragraphs.

Our encoding algorithm will encode the message into
M blocks, each of length B. At Step 1, for each block
i, we compute mi, the number of message bits we will
encode in the ith block. Note that some of the mis can
be zero as it can be the case that (almost) all the bits
of a block are frozen. The total number of bits that are
going to be encoded in the ith block is denoted by mi

and will contain mi, another logN bits for the position
of the next block to be decoded, and another logB bits

5

that denote the number of encoded message bits in the
next block. If we cannot encode message bits in the ith
block (this happens if we have at most 2 logN + logB
unfrozen bits in the block), then we set mi = 0.

At Step 2, we generate B · N bits that are ε-almost
B-wise independent. We do that by sampling a “short”
random string u and then invoking Lemma I.8. The first
m1B bits will form the matrix A1, then the next m2B
bits will form the matrix A2, etc. Overall, at the end of
this step, we have M matrices A1, . . . , AM .

At step 3, we perform the actual encoding. We only
encode bits of our message in blocks for which mi ̸= 0.
For each such block, we solve the linear system

Ai ·wi = mi ◦ hN/ logN (i′) ◦ hB(mi′)

(wij)Fij
= (vij)Fij

where i′ is the next block index for which mi′ ̸= 0
and recall that ◦ is the concatenation of two strings. We
note that this step might fail since it can be that (Ai)Fi

does not have full rank. We will prove that this happens
with small probability. Finally, we concatenate all the
blocks to produce our encoded cover object. Also, we
transmit to the decoder the metadata that he needs to
decode the message (recall that we use a side channel
for this transmission). This metadata includes the random
string u that was sampled and was then was used to
generate the matrices A1, . . . , AM , the position of the
first block that encodes message bits, and the number of
message bits that are encoded in that block.

A. Analysis

a) Rate.: The number of message bits that we
encode in each block i, is mi = max(B(1 − ρi) −
2 logN − logB, 0). Thus, the number of bits that we
can encode is at least

M∑
i=1

mi ≥
M∑
i=1

B(1− ρi)− 2 logN − logB

= N − |F| − 2M logN −M logB

and therefore, the rate of the scheme is at least

1− ρ− 2

C
− log(C logN)

C logN
≥ 1− ρ− 3

C
, (1)

where the inequality follows for large enough N .
The following proposition proves the correctness of

the algorithm.

Proposition III.5. Let v ∈ {0, 1}N , F ⊆ [N] where
|F| = ρN . Let m ∈ {0, 1}m where m ≤ N(1− ρ− 3

C)
be a message to be encoded. If we execute Algorithm 1
on v, F , and m, then the following holds

Algorithm 1: Encoding with assumption

input : A vector v ∈ {0, 1}N , a set of frozen
indices F ⊆ [N], |F| = ρN , and
message m ∈ {0, 1}m where
m ≤ N

(
1− ρ− 2

C − log(C logN)
C logN

)
output : A vector w ∈ {0, 1}N and

u ∈ {0, 1}∗.
[1] for every i ∈ [M] do

if B(1− ρi) > 2 logN + logB then
Set mi :=
min (B(1− ρi)− 2 logN − logB,m)

Set mi := mi + logN + logB
Update m = m−mi

else
Set mi := 0

end
[2] Let r = B ·N , µ = N−C , k = B and let t be

as given in Lemma I.8. Sample ut uniformly at
random from {0, 1}t and apply the function g
(given in Lemma I.8) to get a ∈ {0, 1}B·N . Use
the first B ·m bits of a to construct M matrices

A1 ∈ {0, 1}m1×B , . . . , AM ∈ {0, 1}mM×B

[3] Let 1 ≤ i1 < · · · < iM ′ ≤ M be all the indices
for which mij ̸= 0. Also let iM ′+1 = 0 and
miM′+1

= 0

for every j ∈ [M ′] do
if (Aij)Fij

is not full rank then
Declare failure and exit

end
Compute wij ∈ {0, 1}B such that

Aij ·wij = mij ◦hN/ logN (ij+1)◦hB(mij+1)

and
(wij)Fij

= (vij)Fij

end
[4] Return the string w = w1 ◦w2 ◦ · · · ◦wM and

the string u = ut ◦ hN/ logN (i1) ◦ hB(m1)

1) The algorithm succeeds with probability at least
1 − O (1/(C logN)). Specifically, the only step
that might cause the algorithm to fail and abort
is Step 3.

2) If the algorithm succeeds and outputs the vector w
and the metadata u, then the decoding algorithm,
Algorithm 2, which receives w and u as input, will
output m.

Proof. Recall that we denote by Fi ⊆ F the frozen

6

Algorithm 2: Decoding with assumption

input : A vector v ∈ {0, 1}N and
u ∈ {0, 1}t+logB

output : A message m ∈ {0, 1}∗
[1] Identify from u the vector ut, and the values i

and mi

[2] Compute g(ut) to get a string a ∈ {0, 1}B·N

[3] while i ̸= 0 do
Identify the matrix Ai ∈ {0, 1}mi×B from
the string a

Compute Aivi to get mi and update the next
i and mi

end
[4] Return m = m1 ◦ · · · ◦mM

elements that appear in the ith block and by F i the
nonfrozen elements that are in the ith block of v.
The step that might fail in Algorithm 1 and cause
the algorithm to abort is Step 3. If one of the matri-
ces (A1)F1

, . . . , (AM)FM
does not have full rank, say

(A1)F1
, then clearly we have that {(A1)F1

· w | w ∈
{0, 1}B−ρ1B} ⊊ {0, 1}m1 . Thus, there exists a vector in
{0, 1}m1 that cannot be encoded using this procedure.
Therefore, in order to be able to encode any message,
we must require that the matrices (Ai)Fi

each have full
rank.

We compute the probability that (A1)F1
does not have

full rank. Note that (A1)F1
∈ {0, 1}m1×(B−ρ1B) where

m1 ≤ B − ρ1B − logN . Also, it is easy to see that
a random variable that is µ-almost k-wise independent,
is also (2k−k′

µ)-almost k′-independent for every k′ <
k. Thus, according to Claim I.10, the probability that
(A1)F1

does not have full rank is at most

2− logN + µ · 2Bρ1 · 2B(1−ρ1)−logN =
2

N
.

Now by union bound, the probability that
there exists a matrix among the matrices
(A1)F1

, (A2)F2
, . . . , (AM)FM

that does not have
full rank is at most M · (2/N) = 2/(C logN) =
O (1/(C logN)). Therefore, Step 3 can fail with
probability at most 1 − O (1/(C logN)). If all the
matrices are indeed full rank, then the linear equations
at Step 3 all have solutions and therefore, the encoded
vector w ∈ {0, 1}N is just the concatenation of all the
wis. The second output of the encoder is a vector u
which concatenates the string ut generated in Step 2
with the position of the minimal i ∈ [M] for which
mi ̸= 0 and the corresponding mi. The last two values
correspond to the position of the first block that encodes

message bits and the number of message bits that are
encoded in this block, respectively.

Note that the decoder, which has access to u and
knows the value C can read the first t bits to identify
ut. Then, reading the following logN + logB bits, the
decoder knows the identity of the first block, i ∈ [M],
that encodes message bits and the exact number of bits
mi the block encodes. Note here that i ∈ [M] where
M = N/(C logN) and that mi ≤ B− 2 logN − logB,
therefore, logN followed by logB bits suffice in order
to save i and mi, respectively.

Computing g(ut), the decoder identifies the matrix
Ai and then simply computes Aiwi to get mi and
the position of the next block that contains information,
i < j, and the number of encoded bits in wj . The de-
coder continues until he reaches the last block containing
information. Note that this process stops. Indeed, when
the decoder decodes the last block, he encounters that 0
is encoded as the position of the next block that contains
information.

We are now ready to prove Theorem III.1.

Proof of Theorem III.1. Let C be a universal constant
and define ε = 3/C. Let N be a large enough integer
(depending only on ε) and let v ∈ {0, 1}N be a
cover vector, and F ⊂ [N] be a set of frozen sets
of size ρN where ρ ∈ (1 − ε, 0). Then, according to
Proposition III.5, we can encode any m ∈ {0, 1}(1−ρ−ε).
Note that regardless of ρ, the fraction of stuck-at bits,
our decoding algorithm always succeeds in decoding
the encoded message given an encoded vector and the
metadata that was generated by Algorithm 2.

The rest of the proof analyzes the complexity and
the metadata size that is sent via the side channel.
Clearly, 1 of the encoding algorithm takes O (N) as
we just scan the input cover vector and identify the
sets of frozen components in each block. The time
complexity of Step 2 is the time that it takes to compute
a value of the function g which is O (N · poly(logN)).
In Step 3, we solve M = O (ε ·N/ logN) lin-
ear equation systems, each contains at most B =
O
(
ε−1 logN

)
equations. Thus, this step can be per-

formed in O
(
M ·B3

)
= O

(
ε−2 ·N · log2 N

)
time.

Therefore, overall, the encoding algorithm, Algorithm 1,
runs in at most O

(
ε−2 ·N · poly(logN)

)
time.

The decoding algorithm reads the value ut and the
value m1 and by applying g on ut, it retrieves the
matrices A1, . . . , AM . This step takes the time of com-
puting g, i.e., O (N · poly(logN)). Then, recovering
each portion of the message mi is done in O

(
B2

)
(simple multiplication of a vector of length B with

7

a matrix of both dimensions ≤ B). Thus, recover-
ing the entire message m is done in O

(
M ·B2

)
=

O
(
ε−1 ·N · logN

)
. Thus, the overall running time of

the decoder is O
(
ε−1 ·N · poly(logN)

)
.

The number of random bits the algorithm needs is

O
(
log

(
B log(B ·N)

N−C

))
= O (C log (N)) ,

and since ε = 3/C, the total number of random bits is
O
(
ε−1 logN

)
. Note that metadata, u, that is generated

by Algorithm 1 is of length

O (C logN) + logN + logB = O (C logN)

= O
(
ε−1 logN

)
. (2)

Remark III.6. Note that to prove Theorem III.4, one
simply needs to change Step 2 from sampling to a brute
force search. Namely, for each one of the NO(C) vectors
in the space {0, 1}t (recall that t = O (C logN)) we
will compute the function g and check if all the matrices
(Ai)Fi

, i ∈ [M] are full rank. Doing this step now takes
NO(1/ε)poly(logN) time. Clearly, the complexity of this
step dominates the complexity of the algorithm. The rest
of proof is identical to that of Theorem III.4.

IV. FINAL CONSTRUCTION

Note that the main issue with the previous construction
is that it assumes that we can transmit the decoder
the metadata u that contains the data required by the
decoder to perform the decoding. In this section, we
shall overcome this problem. Intuitively speaking, our
solution will encode the message but also the metadata
and location of the metadata in our cover object. In this
section, we prove Theorem I.4 which is restated next.

Theorem I.4. For every ε > 0, there exists an N(ε)
such that for every N > N(ε), there exists a randomized
ε-gapped strong-stuck-at-code of length N such that

1) The encoder and the decoder run in
O (N · poly(logN) · poly(1/ε)).

2) The number of random bits that are used by the
encoder is O

(
1
ε logN

)
and the encoder succeeds

with probability 1− o(1).

A. Auxiliary claims

We start by proving two auxiliary claims that will be
useful. We shall divide our cover vector into four sub-
vectors, v = v1◦v2◦v3◦v4. In v1 and v3 we will encode
our message and in v2 and v4 we will make sure that we
have enough unfrozen bits to encode the metadata. The

following claim makes sure that such a partition is indeed
feasible. Specifically, we will show that for any small
enough δ, there exists an interval [i · δN, (i+1)δN − 1]
(we will define v2 = v[i·δN,(i+1)δN−1]) such that it
contains at most (ρ + 2δ)δN frozen elements and that
this interval does not intersect the subvector v4 which
contains exactly N/ logN unfrozen bits.

Claim IV.1. Let ρ, δ ∈ (0, 1) such that 2δ < 1−ρ and let
F ⊆ [N] be of size ρN . Let j ∈ [N] be the largest such
that

∣∣[j + 1, N] ∩ F
∣∣ = N/ logN . Then, there exists an

integer i ∈ [⌊1/δ⌋] such that
1) i · δN + δN − 1 ≤ j
2) |[i · δN, (i+ 1) · δN − 1] ∩ F| ≤ (ρ+ 2δ)δN

In order to encode a small number of bits, say ℓ bits,
one could do the following simple trick. Let x represent
the decimal number that corresponds to our ℓ bits of
information, then, one can just flip unfrozen bits such
that the weight of the resulting vector is x(mod2ℓ).
The following simple claim shows how many unfrozen
bits are needed to encode using this method.

Claim IV.2. Let v ∈ {0, 1}N and let d < N be an
integer so that there are at least 2d unfrozen bits in v.
Then, we can flip at most d unfrozen bits of v to get a
vector w such that wt (w) ≡ x(mod d) for any x < d.

We can see that the rate of this encoding method is
very small. Indeed, we cannot hope to encode more than
logN bits using this method. We will use this method to
encode the location of the specific intervals that contain
the metadata needed for decoding the message.

B. Encoding and decoding algorithms

We shall use the following notations throughout this
section. Again, C is some universal constant known to
the encoder and the decoder.

• Let δ = 1/C and let B′ = δN . Also, assume that
2δ < 1− ρ.

• Let K be the constant implied by (2). Namely, the
vector u, that is returned from Algorithm 1 is of
length K · C logN where N is the length of the
cover object.

We note that 2δ < 1 − ρ implies that the decoder
knows an upper bound on ρ, the fraction of frozen bit.
We emphasize here that δ will be chosen later so that ρ ≤
1− ε and so it coincides with ε-gapped strong stuck-at
code definition (Definition I.2). The encoding algorithm
is given in Algorithm 3 and the decoding algorithm in
Algorithm 4.

Before delving into the details, we give a high-level
overview of the encoding algorithm. At the first step, we

8

divide v into four contiguous parts, i.e., v = v1 ◦ v2 ◦
v3 ◦ v4 with the premise given in Claim IV.1. Namely,
|v2| = B′ where the number of frozen bits in v2 is
at most (ρ + 2δ)B′ and v4 contains exactly N/ logN
unfrozen bits.

The second step invokes Algorithm 1 in order to
encode the message m into v1 and v3. We guarantee that
the algorithm will encode only at these parts by adding
to the set of frozen bits all the unfrozen bits in v2 and
v4. Note that this step produces a metadata vector u1 of
length at most KC logN that contains the information
needed to decode the message.

The third step first divides v2 into three contiguous
parts, v2 = v21 ◦ v22 ◦ v23 such that v22 is of length
N1/2KC and contains at most (ρ + 2δ)N1/2KC frozen
bits. Then, we encode u1 in v22 using Algorithm 1.
This produces a metadata vector u2 of length KC ·
logN1/2KC = log

√
N which can be represented by

a decimal number U ≤
√
N . We shall encode u2 in v21

and v23 by flipping at most 2
√
N bits to make sure that

wt (v2) ≡ U(mod
√
N) (see Claim IV.2).

Finally, at the fourth step, we encode the starting po-
sition of v2 and v22. We will see that both positions can
be identified using only log(N1−1/2KC) bits. Therefore,
by Claim IV.2 we can encode this information in v4

by flipping 2N1−1/2KC bits and recall that we have
N/ logN unfrozen bits there.

C. Analyses

We start by analyzing the rate and then proceed to
show the correctness of the algorithms.

a) Rate.: Our message m is encoded in Step 2 by
invoking Algorithm 1 with v = v1 ◦ v2 ◦ v3 ◦ v4 and a
set of frozen elements of size at most ρN + δN + N

logN
(We enlarge the set of frozen elements by adding to F
all the coordinates of v2 and v4). Thus, by the premises
of Algorithm 1 (see inequality (1)), for large enough N ,
we can encode up to

(1− ρ− δ)N − N

logN
− 3N

C
(3)

bits which implies that the rate is

1− ρ− δ − 3

C
− 1

logN
≥ 1− ρ− 5

C

where the inequality holds for large enough N and by
recalling that δ = 1/C.

The correctness is given in the following proposition

Proposition IV.3. Let v ∈ {0, 1}N , F ⊆ [N] where
|F| = ρN . Let m ∈ {0, 1}m where m ≤ N(1− ρ− 5

C)
be a message to be encoded. Then, applying Algorithm 3

Algorithm 3: Encode

input : A vector v ∈ {0, 1}N , a set of frozen
indices F ⊆ [N], |F| = ρN , and a
message m, |m| < (1− ρ− 5

C)N
output : A vector w ∈ {0, 1}N .

[1] Find the maximal j ∈ [N] such that there are at
least N/ logN unfrozen coordinates in v to the
right of j. Find i ∈ [j/δN] such that

|[i ·B′, (i+ 1) ·B′ − 1] ∩ F| ≤ (ρ+ δ)B′

and (i+ 1) · δN ≤ j. Denote
v = v1 ◦ v2 ◦ v3 ◦ v4 and
F = F1 ∪ F2 ∪ F3 ∪ F4, where

v1 = v[1,iB′−1] v2 = [1, iB′ − 1]

v3 = v[(i+1)·B′,j−1] v4 = v[j:N]

F1 = [1, iB′ − 1] ∩ F
F2 = [i ·B′, (i+ 1) ·B′ − 1] ∩ F
F3 = [(i+ 1) ·B′, j − 1] ∩ F
F4 = [j : N] ∩ F

[2] Run Algorithm 1 with v,
F1 ∪ [iB′, (i+ 1)B′ − 1] ∪ F3 ∪ [j,N], and
m = m. Denote the first output by
w1 ◦ v2 ◦w3 ◦ v4 where |w1| = |v1| and
|w3| = |v3| and second output as u1

[3] Find i′ ∈ [i ·B′, (i+ 1) ·B′ − 1] such that i is a
multiple of N1/2KC and
|[i′, i′ +N1/2KC − 1] ∩ F2| ≤ (ρ+ 2δ)N1/2KC

Denote F ′
2 = |[i′, i′ +N1/2KC − 1] ∩ F2| and

v2 = v21 ◦ v22 ◦ v23 where

v21 = v[i·B′,i′−1]

v22 = v[i′,i′+N1/2KC−1]

v23 = v[i′+N1/2KC ,(i+1)B′−1]

[3.1] Run Algorithm 1 with v = v22, F = F ′
2,

and m = u1. Denote the output by w22 and
u2. Let U ∈ [

√
N] be the decimal number that

corresponds to u2

[3.2] Flip unfrozen bits in v21 and v23 to get
w21 and w23 so that for w2 := w21 ◦w22 ◦w23

it holds that wt (w2) ≡ U(mod
√
N)

[4] Let d = h1/δ(i) ◦ hδ·N1− 1
2KC

(i′) and denote by
d ∈ [N1− 1

2KC] the integer whose binary
representation is d
Flip unfrozen bits in v4 to get the vector w4

where it holds that
wt (w1 ◦w2 ◦w3 ◦w4) ≡ d(modN1− 1

2KC)

9

Fig. 1. The message m is encoded using Algorithm 1 in v1 and v3. Then the metadata u1 that is needed to decode m is encoded in v22.
The metadata u2 that is needed to decode u1 is encoded using Claim IV.2 in v21 and v23 and the locations of v2 and v22 are encoded in v4

Algorithm 4: Decode

input : A vector v ∈ {0, 1}N
output : A message m ∈ {0, 1}∗

[1] Let d ≡ wt (v) (modN1− 1
2KC) and from

h
N

1
2KC

(d) identify i, the starting of v2, and i′,
the position inside v2 where u1 is encoded

[2] Let U ≡ wt
(
v[i,(i+1)δN−1]

)
(mod

√
N)

[3] Run Algorithm 2 with input v[i′,(i′+1)N1/2KC−1]

and h√
N (U) to get u1

[4] Run Algorithm 2 with input v and u1 to get m

on v, F , and m succeeds with probability at least
1−O (1/ log(N)). Furthermore, if Algorithm 3 succeeds
and outputs the vector w then the decoding algorithm,
Algorithm 4, which receives w as input, will output m.

Proof. First note that Claim IV.1 guarantees that the
partition that we perform in Step 1 is indeed possible.

In Steps 2, we invoke Algorithm 1. In doing that, we
have to make sure that the input we give the algorithm
is valid. Specifically, if one wishes to encode a message
m of length m in a vector v of length N with a set of
frozen indices F , then by (1) we need that

|m| ≤ N − |F| − 3N

C
. (4)

We already showed in (3) what is the maximal message
length that can be encoded in Step 2 and that our
message length is below that threshold for large enough
N .

In Step 3, we focus just on v2 = v[i·B′,i·B′−1]. We
first find an index i′ ∈ [i ·B′, i ·B′−1] that is a multiple
of N1/2KC such that v22 = v[i′,i′+N1/2KC−1] has at
most (p + δ)N1/2KC frozen bits. Since v2 contains at
most (ρ+ δ)B′ frozen bits, such an index must exist by
a simple averaging argument. Then, in Step 3.1, our goal
is to encode u1, the metadata that was returned at the
previous step, in v22. By the proof of Theorem III.1, the
length of u1 is KC logN (recall that K is the constant
implied by (2)). Now, since |v22| = N1/2KC and |F ′

2| ≤
(ρ + δ)N1/2KC (F ′

2 is the set of frozen coordinates in

v22), then, for large enough N , inequality (4), holds with
m = u1, F = F ′

2, and N = N1/2KC . Recall that
Algorithm 1 returns the encoded vector, which we call
w22, and a metadata vector, u2, that is needed to decode
w22. The length of u2 is KC log(N1/2KC) = log(

√
N)

and our next goal it using Claim IV.1.
To encode u2 in Step 3.2, we represent it using a

decimal number U which is at most
√
N . Observe that

the number of unfrozen bits in v21 and v23 is at least
(1− ρ− 2δ)δN −N1/2KC which is greater than 2

√
N ,

for large enough N . Therefore, by Claim IV.2, we can
flip

√
N unfrozen bits in v21 and v23 and make sure

that the resulting weight of w2 = w21 ◦w22 ◦w23 will
be U(mod

√
N). We now compute what is the failure

probability of Steps 2 and 3. Recall that Algorithm 1
can fail with probability O (1/(C logN)), therefore, the
failure probabilities of Step 2 and 3 are O (1/(C logN))
and O (2K/ logN).

To convince ourselves that Step 4 is feasible, we note
that the maximal value i can take is upper bounded
by C and that the value of i′ is upper bounded by
(N/C) ·N1/2KC = N1−1/2KC/C. Therefore, |hC(i) ◦
hN1−1/2KC/C(i

′)| = logN1−1/2KC which implies that
there exists a decimal number U ′ ≤ N1−1/2KC that
corresponds uniquely to the values i and i′. Note that
as the number of unfrozen bits in v4 is N/ logN >
2N1−1/2KC (where the inequality is for large enough
N), by Claim IV.2, we can flip these unfrozen bits
in v4 to make sure that the weight of w is U ′(mod
N1−1/2KC).

As for the decoder. Note that by computing the weight
of v (in Step 1), the decoder knows the values of
i and i′. Thus, he knows that he needs to compute
wt

(
v[i,i+B′−1]

)
in order to get the metadata that is

needed for decoding u1 from v[i′,i′+N1/2KC−1]. Once
he extracts u1 from v[i′,i′+N1/2KC−1] in Step 3, he can
proceed to Step 4 and decode the message.

Proof of Theorem I.4. Let C be a universal constant and
define ε = 5/C. Note here that δ = 1/C < (1 − ρ)/5
and thus our assumption that 2δ < 1 − ρ holds. Let N
be a large enough integer (depending only on ε) and let
v ∈ {0, 1}N be a cover vector, and F ⊂ [N] be a set

10

of frozen sets of size ρN where ρ ∈ (1 − ε, 0). Then,
according to Proposition IV.3, we can encode any m ∈
{0, 1}(1−ρ−ε). Note that regardless of ρ, the fraction of
stuck-at bits, our decoding algorithm always succeeds in
decoding the encoded message given an encoded vector
Algorithm 3.

We are left to show that the complexity is N ·poly(N)·
poly(1/ε) for both the encoder and the decoder. Clearly,
Step 1 can be done in O (N). Indeed, identifying a
subvector of a specific length with a maximal number of
unfrozen bits requires a single scan of the entire input
vector. Steps 2 and 3 both invoke Algorithm 1, and thus
their running time is N · poly(N) · poly(1/ε). Steps 4
requires at most O (N) as we need just to compute the
weight of a vector and then flip at most N1−1/2KC bits.
Note that finding the bits that need to be flipped takes
also O (N) time since we need to find the dominant
symbol in the unfrozen bits (0 or 1) and then flip the first
unfrozen occurrences of that symbol. Thus, the encoder
runs in N · poly(N) · poly(1/ε) time, as desired.

We analyze now the decoder. Steps 1 and 2 run in time
O (N) as we compute the weight of a vector and perform
a casting of an integer in decimal representation to binary
representation. Steps 3 and 4 invoke Algorithm 2 whose
running time is N · poly(N) · poly(1/ε). Thus, the total
running time is again N · poly(N) · poly(1/ε).

Remark IV.4. As discussed in Remark III.6, to prove
Theorem I.5, which is the deterministic version of The-
orem I.4, we change the second step in Algorithm 1 to
a brute force step. This change affects the complexity
of Step 2 and 3 which now becomes NO(1/ε). The rest
of the proof is identical to the one of the randomized
construction.

V. ACKNOWLEDGEMENTS

The first author would like to thank Dean Doron and
João Ribeiro for helpful discussions about [AGHP92].
The first author also thanks the Simons Institute for
Theoretical Computer Science for their hospitality and
support.

REFERENCES

[AGHP92] Noga Alon, Oded Goldreich, Johan Håstad, and René
Peralta. Simple constructions of almost k-wise indepen-
dent random variables. Random Structures & Algorithms,
3(3):289–304, 1992.

[CKVY19] Yeow Meng Chee, Han Mao Kiah, Alexander Vardy,
and Eitan Yaakobi. Explicit and efficient wom codes of
finite length. IEEE Transactions on Information Theory,
66(5):2669–2682, 2019.

[GS12] Ariel Gabizon and Ronen Shaltiel. Invertible zero-error
dispersers and defective memory with stuck-at errors.
In International Workshop on Approximation Algorithms
for Combinatorial Optimization, pages 553–564. Springer,
2012.

[Hee83] Chris Heegard. Partitioned linear block codes for com-
puter memory with’stuck-at’defects. IEEE Transactions
on Information Theory, 29(6):831–842, 1983.

[Hee85] Chris Heegard. On the capacity of permanent memory.
IEEE Transactions on Information Theory, 31(1):34–42,
1985.

[KK13] Yongjune Kim and BVK Vijaya Kumar. Coding for
memory with stuck-at defects. In 2013 IEEE International
Conference on Communications (ICC), pages 4347–4352.
IEEE, 2013.

[KT74] Aleksandr Vasil’evich Kuznetsov and Boris Solomonovich
Tsybakov. Coding in a memory with defective cells.
Problemy peredachi informatsii, 10(2):52–60, 1974.

[LMJF10] Luis Alfonso Lastras-Montaño, Ashish Jagmohan, and
MM Franceschini. Algorithms for memories with stuck
cells. In 2010 IEEE International Symposium on Infor-
mation Theory, pages 968–972. IEEE, 2010.

[MV15] Hessam Mahdavifar and Alexander Vardy. Explicit capac-
ity achieving codes for defective memories. In 2015 IEEE
International Symposium on Information Theory (ISIT),
pages 641–645. IEEE, 2015.

[RS82] Ronald L Rivest and Adi Shamir. How to reuse a “write-
once” memory. Information and control, 55(1-3):1–19,
1982.

[Shp13] Amir Shpilka. New constructions of wom codes using the
wozencraft ensemble. IEEE Transactions on Information
Theory, 59(7):4520–4529, 2013.

[Tsy75] Boris Solomonovich Tsybakov. Defect and error correc-
tion. Problemy peredachi informatsii, 11(3):21–30, 1975.

[WZY15] Antonia Wachter-Zeh and Eitan Yaakobi. Codes for
partially stuck-at memory cells. IEEE Transactions on
Information Theory, 62(2):639–654, 2015.

APPENDIX

A. The complexity of g from Lemma I.8

We briefly recall the third construction given in
[AGHP92].

• Let h := k log r and let A ∈ Fr×h
2 be a generating

matrix of binary code whose dual distance is exactly
k.

• Let t := log h
µ

• Let x, y ∈ F2t/2 , where F2t/2 is the finite field with
2t/2 elements. Note that x and y can be viewed also
as elements in {0, 1}t/2 as F2t/2

∼= Ft/2
2 .

The function g : {0, 1}t → {0, 1}r is defined by

g(x, y) = A ·
(
⟨x0, y⟩, ⟨x1, y⟩, . . . , ⟨xh−1, y⟩

)
where ⟨·, ·⟩ is the mod two inner product. By

[AGHP92], g(Ut) is µ-wise k independent variable over
{0, 1}r where Ut is the uniform distribution over Ut.

As for the complexity of computing g. Note that
⟨xi, y⟩ can be performed in poly(t) time and we perform
this operation h times. The multiplication of the vactor
by the matrix takes O (h · r) operations. In total, we
perform,

O (h · poly(t) + h · r)

= O
(
k log r · poly(log

k log r

µ
) + r · k log r

)

11

operations and since in our settings, r = O (N logN),
k = O (logN), and µ = NO(1), we get that the
complexity of g is

O (poly(logN) +Npoly(logN)) = O (Npoly(logN)) .

B. Missing proofs

Proof of Claim I.10. Denote by ri the ith row. The
matrix A has full rank if and only if for any i ∈ [m],

• The rows r1, . . . , ri−1 are linearly independent and,
• ri /∈ span{r1, . . . , ri−1}.

Thus,

Pr[A has full rank] =
m∏
i=1

Pr[ri /∈ span{r1, . . . , ri−1}]

≥
m∏
i=1

(
1− 2i−1(2−n + µ)

)
≥ 1− (2−n + ε) ·

m∑
i=1

2i−1

= 1− 2m−n − µ · 2m

where the first inequality holds since ri =
(Ar,1, Ar,2, . . . , Ar,n) is an µ-almost n-wise random
variable and the second inequality is a standard union
bound.

Proof of Claim IV.1. Denote x = |[j + 1, N] ∩ F| (the
number of frozen bits in v4) and note that j = N −x−

N
logN . Therefore, we have |[j] ∩ F| = ρN − x. Denote
Ii := [i · δN, (i + 1) · δN − 1] for all i ∈ [⌊j/δN⌋ −
1]. Assume that for all i ∈ [⌊j/δN⌋ − 1], it holds that
|Ii ∩ F | > (ρ + 2δ)δN . Then, |[δN · ⌊j/δN⌋] ∩ F | >
(ρ+ 2δ)j − δN . Therefore,

|F| > (ρ+ 2δ) j − δN + x

= (ρ+ 2δ)N + (1− ρ− 2δ)x− (ρ+ 2δ)N

logN
− δN

= (ρ+ δ)N + (1− ρ− 2δ)x−O
(

N

logN

)
> ρN

where the last inequality follows since 2δ < 1 − ρ and
for large enough N .

Proof of Claim IV.2. Assume that wt (v) ≡ y(modd)
for some y < d. Since there are at least 2d unfrozen
bits, at least d of them are either 1 or 0. Assume w.l.o.g.,
that at least d of them are zero. Then, we need to flip
exactly x − y(modd) bits in order to get a vector w
with wt (w) ≡ x(mod d).

12

	Introduction
	Problem setup
	Our results
	Comparison with gabizon2012invertible
	Preliminaries

	Existential result
	Construction with side information
	Analysis

	Final construction
	Auxiliary claims
	Encoding and decoding algorithms
	Analyses

	Acknowledgements
	References
	Appendix
	The complexity of g from lem:k-wise
	Missing proofs

