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ABSTRACT

Species distribution modeling can be used to predict environmental suitability, and removing areas currently lacking appropriate
vegetation can refine range estimates for conservation assessments. However, the uncertainty around geographic coordinates
can exceed the fine resolution of remotely sensed habitat data. Here, we present a novel methodological approach to reflect
this reality by processing habitat data to maintain its fine resolution, but with new values characterizing a larger surrounding
area (the “neighborhood”). We implement its use for a forest-dwelling species (Handleyomys chapmani) considered threatened
by the IUCN. We determined deforestation tolerance threshold values by matching occurrence records with forest cover data
using two methods: (1) extracting the exact pixel value where a record fell; and (2) using the neighborhood value (more likely to
characterize conditions within the radius of actual sampling). We removed regions below these thresholds from the climatic suit-
ability prediction, identifying areas of inferred habitat loss. We calculated Extent of Occurrence (EOO) and Area of Occupancy
(AOO), two metrics used by the TUCN for threat level categorization. The values estimated here suggest removing the species
from threatened categories. However, the results highlight spatial patterns of loss throughout the range not reflected in these
metrics, illustrating drawbacks of EOO and showing how localized losses largely disappeared when resampling to the 2x2 km
grid required for AOO. The neighborhood approach can be applied to various data sources (NDVI, soils, marine, etc.) to calculate
trends over time and should prove useful to many terrestrial and aquatic species. It is particularly useful for species having high
coordinate uncertainty in regions of low spatial autocorrelation (where small georeferencing errors can lead to great differences
in habitat, misguiding conservation assessments used in policy decisions). More generally, this study illustrates and enhances the
practicality of using habitat-refined distribution maps for biogeography and conservation.

1 | Introduction conservation metrics, such as those used by the International
Union for Conservation of Nature (IUCN) for threat level as-
Accurate estimates of the geographic areas suitable for a species sessments (IUCN 2022), which rely on accurate estimates to

are important for their use in biodiversity assessments and cli- categorize threat severity. Two such ITUCN metrics relevant for
mate change research (Peterson et al. 2011; Aragjo et al. 2019). assessing population size reduction for Criterion A and decline

Quantification of a species’ range can be used to calculate of geographic range for Criterion B are the Extent of Occurrence
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(EOO) and Area of Occupancy (AOO). EOO measures the spa-
tial spread of inferred or projected sites and is commonly calcu-
lated from a minimum convex polygon around known localities
(TUCN 2022) but also can be based on the analogous polygon
around a map of suitable habitat in the species’ range (Kass
et al. 2021a). AOO is a subset of the EOO that measures presence
within available habitat at a standardized 2x2km spatial grid
(IUCN 2022). They each quantify aspects of a species’ range,
but since AOO focuses on occupied suitable habitat, it can high-
light vulnerabilities to habitat loss or degradation, especially for
species in fragmented landscapes. Whereas EOO estimates are
generally rather stable via different methodological options, sev-
eral approaches for calculating AOO bracket a vast range from
a lower bound of underestimation to an upper bound of overes-
timation (Anderson 2022). At one extreme, summing the total
area of occupied cells (where documented occurrence localities
fall) within the 2x2km grid gives the lower bound estimates of
AOQO, but this typically leads to strongly biased underestimates
since most cells lack any sampling. On the other end, an upper
bound estimate sums the 2 x 2km grid cells with suitable habitat
within the range (e.g., area of habitat, AOH; Brooks et al. 2019),
assuming the species occupies all of them, which typically yields
biased overestimates (Anderson 2022). Regardless of approach,
all rely on accurate geographic range estimates and georeferenc-
ing of occurrence localities.

One technique for estimating the potential range is species dis-
tribution models (SDMs; sometimes also referred to as ecological
niche models), which use occurrence localities and environmen-
tal data to predict abiotic suitability across geography (Peterson
and Soberén 2012). However, SDMs typically overestimate
the species' true distribution, even after considering dispersal
limitations. Supplying additional habitat information for post-
processing can refine predictions to estimate the current range
(Gomes et al. 2019; Merow et al. 2022a). For example, a recent
study on a Malagasy rodent improved range estimates by tempo-
rally matching occurrence localities and forest cover data to deter-
mine a deforestation tolerance threshold (hereby DTT; the lowest
tree cover percentage sufficient for the species) and then using it
to remove areas of insufficient forest cover at present (Gavrutenko
et al. 2021). However, that study did not consider possible georef-
erencing errors when matching occurrence records to the forest
cover data. We use the temporal matching approach as a stepping
stone for employing a neighborhood processing method to reflect
the uncertainty of geographic coordinates (see below). Our aim
is to improve the ecological realism of conservation assessments
by ameliorating the effects of georeferencing errors, uncertainty,
and mismatched spatial resolutions, to provide more reasonable
quantifications of species’ actual ranges.

Here, we extend existing post-processing methodologies to con-
sider the idea of coordinate uncertainty of occurrence localities
in relation to the pixel resolution of environmental data. Locality
information assigned to occurrence records may not reflect
where a species actually exists, but rather an approximation of
that locality (e.g., a GPS was not available for older records; or a
single set of coordinates was assigned for all records from var-
ious sublocalities). Also, advancements in technology have led
to finer pixel resolution of remotely sensed data, which may not
match other products used with it (e.g., satellite vegetation index
products vs. climatic data). Considering this, we propose, apply,

and enable a simple approach to resample remotely sensed or
other habitat data for post-processing SDMs, to characterize the
area surrounding occurrence records more realistically (i.e., the
“neighborhood”). This neighborhood approach is advantageous
to balance different spatial resolutions of data being analyzed
(e.g., occurrence record uncertainty values, climate data, other
abiotic habitat data). This is particularly useful in environments
with low spatial autocorrelation, such as mountain ranges,
where a small georeferencing error may lead to great differences
in habitat information.

As an example, we use this neighborhood approach in the con-
text of a conservation assessment for Handleyomys chapmani
(O. Thomas, 1898) a forest-dwelling rodent endemic to Mexico
(Figure 1). It is found in altitudes of 1000-2500m in the cloud
and pine-oak forests of the Sierra Madre Oriental and Oaxacan
Highlands, implying an ecological need for closed-canopy for-
est and climatically related altitudinal constraints (Cano and
Guevara 2021; Almendra et al. 2018; Ceballos 2013). Basic nat-
ural history information known for the species indicates it as
a dietary generalist not thought to be strongly affected by par-
ticular predators or pathogens (Ceballos 2013). This species'
taxonomic understanding had been obfuscated by confusion re-
garding closely related evolutionary lineages, and recent studies
suggest a need for conservation status reevaluation (Almendra
et al. 2018, 2014). It is considered threatened under Criterion

on an AOO below 2000 km?, three known locations, and a con-
tinuing decline in area and quality of habitat (Vazquez 2018;
IUCN 2022). Some of these statements contradict both a prior
taxonomic work (Almendra et al. 2014) and later study of the
species' range (Cano and Guevara 2021; Almendra et al. 2018),
including a larger occurrence dataset.

This species is also opportune for the study because of the
availability of recent high resolution forest cover data and its
altitudinal associations, which correspond to a highly variable
environment within short distances. We first used species dis-
tribution modeling to predict a climatically suitable range for
the species within a region lacking major dispersal barriers.
Using recent occurrence records and forest cover data, we then

FIGURE 1 | Photograph of Handleyomys chapmani, taken by G.E.
Pinilla-Buitrago.
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determined forest cover thresholds (Gavrutenko et al. 2021)
from both exact and neighborhood-processed forest cover data.
Next, we used these respective thresholds to remove areas with
insufficient forest cover from the predicted suitable range, high-
lighting areas of inferred deforestation and therefore range loss.
We then calculated EOO in two ways; based upon occurrences,
and from the two masked suitability maps. From each of these,
we also calculated the upper and lower bounds of AOO. From
these metrics, we reassessed the threat status for the species.
The analyses address the feasibility of post-processing distribu-
tion maps via the proposed neighborhood approach, illustrate
them within the context of ITUCN Red List assessments, and
highlight the importance of spatial grain for conservation uses,
in a way highly applicable to other species and scenarios.

2 | Methods
2.1 | Species Selection

To demonstrate the feasibility of neighborhood processing of
remotely sensed data to refine distribution maps, we selected
a montane, forest-dwelling species with substantial recent re-
cords (collected since 2000, amenable for matching with avail-
able annual vegetation data). We obtained 116 occurrence
records (Appendix S1) of Handleyomys chapmani from a re-
cent study of the species’ range (Cano and Guevara 2021). We
further inspected two of these records because they showed
extremely low modeled suitability values based on prelim-
inary species distribution models. The associated georefer-
ences corresponded to sites of the dry interior high plateau
uncharacteristic for this species, likely representing either
misidentifications or incorrect georeferences. Because they
did not match the species’ known natural history and envi-
ronmental associations, we removed them from subsequent
analyses (Soley-Guardia et al. 2014).

2.2 | Species Distribution Modeling

Species distribution modeling was performed within the soft-
ware Wallace EcoMod (R-package “wallace”; Kass et al. 2022;
Kass et al. 2018; R Core Team 2022), hereafter Wallace. To
reduce effects of sampling bias, we applied 10km spatial
thinning using the R-package “spThin” (Aiello-Lammens
et al. 2015) within Wallace. Thinning distance followed other
studies in this system (Guevara et al. 2018), given the level
of spatial sampling bias for small nonvolant mammals in the
region, the species’ dispersal limitations, and consideration
of the elevational gradients and environmental homogeneity
of the area. After spatial thinning the 116 records, 41 occur-
rences remained for final modeling (Appendix S1). For en-
vironmental predictors, we used four bioclimatic variables
with a 30 arcsecond resolution from the CHELSA v1.0 data-
base (Karger et al. 2018, 2017): maximum temperature of the
warmest month (bio05), minimum temperature of the coldest
month (bio06), precipitation of the wettest month (biol3), and
precipitation of the driest month (biol4). These capture major
climatic conditions of the species’ range and have been used
in previous studies of cloud forest species in the region (Cano
and Guevara 2021; Guevara et al. 2018).

A species distribution model for H. chapmani was built using
Maxent (Phillips et al. 2006). We delimited the study region
as a 0.5° buffer around localities (to include a variety of en-
vironments but avoid including regions without records of
the species because of low sampling or barriers to dispersal;
Soley-Guardia et al. 2024) and sampled the full background
of 131,680 pixels to provide a comprehensive representation
of the environments available within the extent (i.e., avoid
missing any rare conditions, which could lead to artifactual
environmental truncations of modeled responses; Guevara
et al. 2018). Harnessing the functionality of the “ENMeval”
2.0 R-package (Kass et al. 2021b) and the “maxnet” R-package
(Phillips 2021; Phillips et al. 2017) included in Wallace, we
delineated training and validation data with a block spatial
partitioning method (k =4 folds), and models were built with
varying complexity. Specifically, linear; linear-quadratic;
hinge; and linear-quadratic-hinge feature class combinations
were employed with regularization multipliers from 1 to 5
with a 0.5 step value, generating 36 candidate models. The
model performance metrics output by Wallace (Appendix S2)
include the Akaike Information Criterion corrected for small
sample size (AICc), training and validation Area Under the
Curve values (AUC.train & AUC.val), and omission rates
(OR). We selected the optimal model based on the lowest
AICc, while also inspecting the average validation AUC val-
ues and omission rates (Guevara et al. 2018; Anderson and
Gonzalez 2011), all performance metrics commonly used with
Maxent modeling. After selecting the optimal model, we made
a cloglog-transformed continuous prediction and applied the
minimum training presence threshold to convert it into a bi-
nary (i.e., suitable vs. unsuitable) range prediction (Figure 2,
top left panel).

2.3 | Forest Cover and Neighborhood Processing

We acquired annual vegetation layers of percent tree cover for
each year from 2000 to 2019 (the most recent at the time of
analyses). These derived from the NASA Moderate Resolution
Imaging Spectroradiometer (MODIS) aboard the Terra satel-
lite. The MOD44Bv006 vegetation continuous fields (VCF)
yearly product, which has a 250 m pixel resolution, is generated
from monthly composites of 500-m surface reflectance data
(DiMiceli et al. 2015). The compositing removes cloud cover and
cloud shadow, an advantage for assessing vegetation in areas
of frequent cloud cover. These layers were downloaded from
NASA's Land Processes Distributed Active Archive Center (LP
DAAC) open-source data pool as two tiles for Mexico (h8v6
and h8v7) and reprojected to WGS84 and World Cylindrical
Equal Area projection. Coordinate uncertainty (e.g., from co-
ordinates reconstructed by prior workers for the records lack-
ing GPS readings, or other GPS reading issues) is sometimes
available for occurrence records. While our dataset lacked doc-
umented coordinate uncertainty, we considered possible er-
rors in latitude and longitude, including mention of locality
descriptions of “by road” distances from populated towns
(Appendix S1). From this, also considering the natural history
of the species, we determined a 750 m distance from the georef-
erence to be reasonable as a first attempt to illustrate the neigh-
borhood approach for addressing these problems. Accordingly,
we resampled each of the yearly forest cover layers individually
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FIGURE2 | Flowchart of the methodologies employed. Green represents data, blue denotes analyses, and yellow signifies products. Step 1 (SDM):
A species distribution model (SDM) was built. Step 2 (DTT): The output from the SDM was post-processed two times independently, to remove areas

with forest coverage below two respective deforestation tolerance thresholds (DTTs): one using the exact forest cover data, and the second using the

neighborhood approach to process forest cover data. Step 3 (IUCN): The post-processed SDMs were then used along with the occurrence data for cal-

culating Extent of Occurrence (EOO) and Area of Occupancy (AOO) for the International Union for the Conservation of Nature (IUCN) assessments.

197 17 B

35 30 56

Forest cover

Exact = 17%
Neighborhood = 37.8%

FIGURE 3 | Example of neighborhood approach to processing envi-

ronmental data. To extract forest cover values for occurrence records
(red circle; shown here is record MZFC 11106 in Manuel Gutiérrez
Négjera, Veracruz [see Appendix S1]), two approaches were used. The
exact method extracted the value of the pixel where the record fell from
the raw, unprocessed forest cover layer (values shown in white; here,
17%). In contrast, the neighborhood approach involved processing the
forest cover layer so that each pixel was a better representation of the
surrounding space but maintained the original data resolution. This
study used the mean of a 3x 3 grid (red dashed line); here, the neighbor-
hood value was 37.8%.

so that each new pixel value became the mean of itself and the
surrounding eight pixels (a 3x 3 pixel grid, herein referred to
as the “neighborhood”), using the “focal()” function from the
R-package “terra” (Hijmans et al. 2023). This maintained the
layers at the original 250250 m resolution, but the values of
the pixels in this new set of rasters represent the composite of
those from a 750 750 m neighborhood (Figure 2, bottom left
panel; Figure 3).

2.4 | Determining Deforestation Tolerance
Thresholds (DDTs)

For this stage, we subset occurrence records for H. chapmani to in-
clude only those collected between 2000 and 2019, to correspond
to the forest cover layers available at the time of analyses. This
included localities from the initial dataset, as well as additional re-
cords not used in modeling due to: identical coordinates but with
different collection dates; different coordinates falling within the
same climatic data cell as another record; or removed by the spatial
thinning (Appendix S1). Note that although we conducted spatial
thinning for the occurrence dataset used in modeling the species'
distribution, the DTTs and the associated neighborhood approach
should not be strongly affected by sampling bias. Because of this,
and to retain the maximum number of datapoints possible, for this
part of the analysis records were not thinned spatially.

To extract the values of forest cover for the place and time where
each record fell, we temporally matched the year of collection
with the corresponding annual forest cover layer (separately for
the exact unprocessed layers and the neighborhood-processed
ones; Figure 2, bottom left panel). Since H. chapmani is a forest-
dwelling species, localities with an extremely low forest cover
percentage may indicate problematic coordinates or issues
within the forest cover data itself. Therefore, after sorting by for-
est cover percentages, we visually inspected the localities asso-
ciated with the lowest ones using Google Earth imaging (https://
earth.google.com) and Esri World Imagery (Esri 2023) to check
for inconsistencies. For each dataset (exact and neighborhood),
we then eliminated any localities with aberrantly low forest
cover values (Figure 2, bottom left panel).

2.5 | SDM Post-processing & Range Calculations

Using the DDTs derived from each of the two methods, along
with the respective forest cover layer for 2019 (the most recent
one considered), we post-processed the range prediction to in-
clude only areas both climatically suitable and with sufficient
forest cover. This was done by masking using the R-package
“maskRangeR” (Merow et al. 2022b). From each of these
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resulting maps, we calculated EOO and the upper and lower
bounds for AOO with the R-package ‘changeRangeR’ (Galante
et al. 2022), QGIS v3.1.2 (QGIS.org 2023), and/or calculations
with the “terra” R-package (Hijmans et al. 2023). EOO was
measured in two ways: first from a minimum convex polygon
drawn around the occurrence records; and second from a min-
imum convex polygon around the binary suitability prediction
(each conducted before and after the two respective masking
procedures).

For AOO comparison, we calculated analogous areas of suitabil-
ity at the finer spatial resolution (which matches the forest cover
data), as well as after the suitability map and its two masked
versions were reprojected into a World Cylindrical Equal Area
projection with a coarser resolution of a 2x2km grid, which
is standard for AOO calculations (IUCN 2022). Lower bound
AOOs were calculated by totaling the grid cells corresponding
to occurrence records, both before considering sufficient forest
cover and then again after having removed records below the
respective DTT threshold of each habitat-masked suitability
prediction. Upper bound AOO estimates were derived from the
sum of all cells in the grid corresponding to the respective range
predictions, before and after post-processing by each masking
method (Figure 2, right panel).

3 | Results
3.1 | Species Distribution Modeling

We obtained a high performing and ecologically realistic spe-
cies distribution model for Handleyomys chapmani. Based on
the lowest Akaike Information Criterion corrected for small
sample size (909.77), we chose the Hinge feature class with a
regularization multiplier of two from the resulting candidate
models (Appendix S2). The model for these settings corre-
sponded to the second highest average validation AUC value
of the candidate models (only 0.0041 lower than the highest),
and a low average validation omission rate at the minimum
training presence threshold (0.023 ). In addition to quantita-
tively good performance, it also output an ecologically realis-
tic prediction concordant with similar studies of the species
(Cano and Guevara 2021). The continuous prediction showed
high suitability along the Sierra Madre Oriental into the
northern Sierra Madre del Sur, with values generally decreas-
ing downslope (Figure 4). Applying the minimum training
presence threshold (values <0.23 as unsuitable) emphasized
the striations in the complex terrain of the northernmost part
of the range, and there were other indications of natural frag-
mentation throughout the distribution (e.g., lower and/or drier
passes).

3.2 | Determining Deforestation Tolerance
Thresholds (DDTs)

In total, 57 recent records collected between 2000 and 2019
were used to determine DDTs (Appendix S1). The lowest at-
tributed forest cover percentages using the exact data were
two records tied at 17% (Figure 5, orange). One was collected
in 2010 from the town of “Manuel Gutiérrez Néjera” and the

= 23N
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—20°N

Occurrence Records -19°N

O Modeling dataset
® Removed by thinning

reeen

i IUCN range

g Suitability Values 18N
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- Moderate
B Low 0

o] 50 100 km
[

| ! 1 | !
100°W 90w 98W 97W 96°W

FIGURE 4 | Continuous suitability prediction from species distri-
bution modeling for Handleyomys chapmani. Red indicates the high-
est suitability, while blue denotes the lowest. Occurrence localities are
shown as circles; those in white indicate the data used for modeling af-
ter 10km thinning; black circles indicate additional localities removed
via thinning. The current range reported by the International Union for
the Conservation of Nature (IUCN; Vazquez 2018) is represented by the
dashed polygon. Basemap is ESRI World Topo EPSG:4326 (Esri 2023).

other in 2013 from “28.5 NE of Tetela de Ocampo (by road),
Puebla”. For the neighborhood data, the lowest was 21.1%
collected in 2001 from “6 km SW de Xicotepec of Juarez (by
road), Puebla” followed by a jump to 31% for the second low-
est, collected in 2006 near “El Durazno Ixtlahuaca, Tezuitlan,
Puebla” (Figure 5, blue). Upon inspection using Google Earth
imaging and Esri World Imagery, we determined that infor-
mation for two of the lowest scoring localities, one for each
approach, did not match general knowledge of the species'
known natural history. Rather, we inferred that the true
sites of sampling likely correspond either to extremely small
patches of remnant vegetation (under the 0.25 km pixel size of
the forest data) or to a place in the general vicinity of the as-
signed coordinates (i.e., only very approximate match with the
coordinates currently assigned to the record). For the exact
approach, the lowest locality (17%; Figure 5) fell into a pixel
that included the edge of a town. The second lowest, also 17%,
fell in a pixel including a farm and associated buildings inter-
spersed with intact forest. For the neighborhood approach, the
record with the lowest forest cover value (21.1%; Figure 5) cor-
responded to a pixel that was diagonally transected by a major
highway, but the second lowest (31%; Figure 5) represented a
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FIGURE 5 | Forest cover values corresponding to temporally matched occurrence records of Handleyomys chapmani for the two methods (exact

and neighborhood-processed) to determine deforestation tolerance thresholds (DTTs). On the x-axis, occurrences are ranked by method for compar-

ison (note, the locality with the lowest value from the exact method does not necessarily correspond to the same one for the neighborhood). These

thresholds, 17% and 31%, were then used in post-processing to remove regions that fall below the thresholds.

forest expanse surrounding a nearby town. The record with
the lowest value for exact forest cover was not the same one
as the lowest for the neighborhood approach, a notable differ-
ence across scales. For each approach, we interpret a record
with the lowest value as uncharacteristic of the species' nat-
ural history. In contrast, the second lowest value for each ap-
proach comprised a mosaic of forested and nonforested areas,
plausible for the species. Therefore, we dropped the lowest
value for each approach and chose the second lowest one as
the respective DTT instead (17% exact, 31% neighborhood;
Figure 5).

3.3 | SDM post-processing and Range Calculations

The climatically suitable range of H. chapmani was reduced
when using both the DTT of 17% with the exact forest cover
data (Figure 6A), and the DTT of 31% with the neighborhood-
processed forest cover data (Figure 6B). While there was a
drastic disparity in the area of the EOOs calculated from oc-
currence records versus from the modeled range (Figure 7),
much less difference existed between the exact and neigh-
borhood methods of masking (Table 1). Despite the removal
of some older records falling into areas of current low forest
cover, the estimates for EOO based on localities were the
same for both masking methods, as well as without any post-
processing (72,513 km?). Additionally, when calculating the
EOO from a polygon around the modeled range estimates, the
maps before and after post-processing with the exact forest
cover were similar (129,029 and 129,015 km?, respectively) but
reduced by approximately 1000 km? when using the neighbor-
hood approach (128,067 km?).

Estimates of AOO varied greatly between lower and upper
bounds but were rather similar among post-processing ap-
proaches. The lower bound of AOO, estimated from cells
documented as occupied by occurrences currently holding
sufficient forest via the respective post-processing methods,
was only 368-380km? (and slightly higher at 388 km? with
no consideration of current forest cover; Table 1). The upper
bound of AOO, estimated from cells holding suitable cli-
mate and sufficient forest cover, was 53,240km? when using
the exact method and 52,580km? using the neighborhood
approach (and somewhat higher without habitat masking;
Table 1).

4 | Discussion
4.1 | Threat Level Reassessment

Estimates of EOO and the most reasonable of those for AOO
suggest removing Handleyomys chapmani from any threat-
ened category. Regardless of approach, the EOO quantifications
are far larger than the previous characterization of 49,406km?
(Vazquez 2018), due to the inclusion here of many additional
occurrence localities in the northern part of the range. All put
the species outside the Vulnerable category based on EOO for
Criterion B since they are above 20,000 km? (IUCN 2022). Lower
and upper bound estimations of AOO from this study lead to
a span from a dire scenario to delisting the species from being
threatened. The lower bound AOO values would qualify the
species as Endangered under Criterion B2 (<500km?, if nec-
essary subcriteria are met; IUCN 2022), but they presumably
are strongly biased underestimates due to sparse sampling
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FIGURE 6 | Post-processed climatic suitability maps for Handleyomys chapmani. Areas removed were those that fell below respective defor-
estation thresholds for 2019 determined in two ways: using the exact value as a threshold and the raw forest cover data (A; yellow), and using forest

cover processed with the proposed neighborhood approach and subsequent threshold value (B; dark green). Note greater proportional loss for the

neighborhood approach.

throughout the region. In contrast, the upper bound measure-
ments of AOO (under either the exact or neighborhood ap-
proach) put the species outside of any threatened category, even
Vulnerable (<2000km?; TUCN 2022), assuming the species
inhabits all suitable areas still holding habitat within its range.
Even highly likely values of prevalence (i.e., proportion of sites
currently containing habitat that a species occupies within its
range; Anderson 2022), for example 0.5 and above, would lead to
an estimated AOO far above the 2000 km? threshold.

Based on the conservation metrics reported here, we suggest the
current placement of the species in the vulnerable category is
inappropriate and misdirects conservation focus, since the es-
timates of both EOO and AOO generated here put the species
outside of any threatened category. However, despite suggesting
the delisting of the species, this study does pinpoint locations
where deforestation has reduced its range, as well as areas of
both climatic suitability and sufficient forest worth protecting
for conservation planning. Such spatial details may be useful
at a regional extent, such as for managing individual national
parks or other protected areas.

Additionally, we found a noteworthy distinction in the spatial
and proportional patterns of loss at the different spatial resolu-
tions. While the areas with insufficient forest removed from the
climatic suitability prediction were generally similar throughout
the extent of the species’ distribution, the most notable inferred
loss occurred on the western slopes of the range, especially be-
tween northern Puebla and Veracruz states (Figure 6, black). At
the grain of the forest cover data (0.25km), the inferred loss of

climatically suitable area from the binary SDM prediction was
2553km? using the exact method and 5946km? for the neigh-
borhood approach (Table 1). In contrast, the estimated range lost
when resampled to the TUCN standard 2 X 2km resolution was
only 776 and 3436km?, respectively. Importantly, by converting
to the 2x2km grid, many of the spatial patterns of current veg-
etation are erased and some of the insufficiently forested areas
detected within the range are not visible at the coarser resolu-
tion (Figure 8). For example, in the neighborhood masked map,
much of the inferred range loss (Figure 8, dark green) at the finer
grain is undetectable when transformed to the coarser resolu-
tion (Figure 8, bright green). This discrepancy across resolutions
is prevalent throughout the range, particularly along the valleys,
where finer resolution data pick up lower levels of forest cover.

4.2 | Utility of Neighborhood Approach

More generally, the neighborhood approach for post-processing
suitability predictions is a transparent way to include relevant
habitat data as an additional post-processing step in species dis-
tribution modeling and may be helpful when models are used
for conservation assessments (Merow et al. 2022b). Particularly
when used to mask a distributional estimate from an SDM (as
here), it is more replicable than using subjective expert-drawn
maps (Merow et al. 2022a). More generally, it enhances exist-
ing pathways for considering recent habitat information and bi-
otic interactors in post-processing, especially for relatively data
poor species (Galante et al. 2022; Gavrutenko et al. 2021; Gomes
et al. 2019; Kass et al. 2021a; Merow et al. 2022a).
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Nevertheless, specific implementations of the neighborhood
processing and associated methodologies explored here of
course hold various limitations. Critically, they depend on either
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FIGURE 7 | Comparison of Extent of Occurrence (EOO) for
Handleyomys chapmani, calculated from a minimum convex polygon
surrounding occurrence localities (red), and around suitable habitat
predictions within the range (black).

TABLE 1 | Table of conservation metrics values.

data or assumptions regarding coordinate uncertainty (e.g., here
the 750 m neighborhood chosen). Fortunately, current data col-
lection protocols tend to include such information, for example
via community science and camera trapping initiatives (Kays
et al. 2020), and estimation of coordinate uncertainty via retro-
spective georeferencing (e.g., of older museum and herbarium
specimens) represents a key direction in biodiversity informat-
ics (Anderson et al. 2020; Stein and Wieczorek 2004). Another
limitation is access to relevant environmental data sources for
post-processing, as not all are publicly accessible, free, and/
or available in compatible formats. However, use of remotely
sensed products in distribution modeling (as predictor variables
or in post-processing) has risen substantially and should con-
tinue (He et al. 2015). This is helpful since studies using SDMs
for conservation are often limited to basing “current” predic-
tions on 30-year climatic averages, whereas many remotely
sensed habitat data are updated annually (DiMiceli et al. 2015).
The neighborhood approach can be applied to many terrestrial
as well as aquatic species, as well as be used with various rele-
vant datasets beyond forest cover, such as NDVI, soil moisture
and acidity indices, ocean temperature, depth, and salinity.
We emphasize that the species’ natural history (to the degree
known) should be taken into account, including consideration
of strong biotic interactions. Additionally, because an SDM it-
self remains subject to many methodological assumptions and
decisions, researchers should closely follow best practices and
community standards for building, evaluating, estimating un-
certainty, and reporting (Araujo et al. 2019; Zurell et al. 2020;
Soley-Guardia et al. 2024).

In this study, we considered forest cover percentages for a forest-
dwelling species to refine the geographic range estimates via
EOO and AOO metrics. While some occurrence localities can
be considered no longer viable due to too low forest cover, this
had no impact on EOO calculations derived from occurrence
records (Figure 7; Table 1), largely because the dropped local-
ities corresponded to central areas of the range, rather than the
outer edges where a minimum convex polygon's shape would be

Extent of Occurrence Area of Occupancy

Occurrence Area of Localities Habitat Occupied Suitable
Post-processing method records range (km?) (km?) map (km?) cells (km?) habitat (km?)
Full dataset/SDM (no 114 42,894 72,513 129,029 388 54,016
post-processing)
Exact 112 40,341 72,513 129,015 380 53,240
DTT=17% (SDM - raw
forest cover <17%)
Neighborhood 108 36,948 72,513 128,067 368 50,580

DTT=31% (SDM -
neighborhood-processed
forest cover < 31%)

Note: The full occurrence dataset (corresponding to the 114 occurrence records for Handleyomys chapmani) and the species distribution model prediction (SDM) were
post-processed two ways: (1) The exact method used 17% as a deforestation tolerance threshold (DTT); any occurrences or pixels falling into areas with lower forest
cover for 2019 were removed. (2) The neighborhood approach used the neighborhood-processed forest cover layer for 2019 to remove any records or pixels falling
below the neighborhood DTT of 31%. The Area of Range (km?) was calculated at the resolution of the forest cover data (0.25x0.25km) in World Cylindrical Equal
Area projected coordinate system. Minimum convex polygons were drawn around the occurrence localities, or the respective suitability map, to calculate estimates of
Extent of Occurrence. Lower bounds of Area of Occupancy were calculated by summing the occupied cells of a 2x 2km grid corresponding to the respective records.
The upper bounds of Area of Occupancy were calculated from the 2x 2 km grid cells with both suitable climate and habitat (separately for each post-processing
method); this assumes that the species occupies all suitable areas with habitat remaining.
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FIGURE 8 | Post- processed species distribution model predictions
for Handleyomys chapmani. Post-processing and resampling led to sub-
stantial differences in spatial patterns and areal estimates at different
resolutions (example shown here via the neighborhood method using
a deforestation tolerance threshold of 31%). Black indicates climatically
suitable areas under the deforestation tolerance. Green indicates parts
of the suitability prediction that held sufficient forest cover, with dark
green at the native resolution of the forest cover data (0.25x0.25km),
and light green resampled to a 2X2km resolution. Note that inferred
range loss is much less for the coarser resolution (black) than for the fin-
er size (black plus light green), with completely different spatial patterns
of inferred loss. Basemap is ESRI World Topo EPSG:4326 (Esri 2023).

affected. However, this was not the case for the EOO estimates
derived from post-processing the range map made from the suit-
ability estimate, especially for the neighborhood approach. This
reiterates how forest loss along the outer extents of the range can
affect the EOO, but any habitat loss within the central range is
not captured in these measurements.

Similarly, spatial patterns of deforestation are not fully re-
flected in calculations of AOO due to its spatial scale. For the
lower bound estimates of AOO, masking only led to minor
reductions. Even for the upper bounds of AOO, the 2x2km
coarsening required by the IUCN removes many intricacies of
the inferred loss from deforestation (Figure 8), thereby remov-
ing relevant habitat information from such assessments. The
AOO value might also be changed depending on where the
grid lines are drawn, which would affect estimates for all spe-
cies, but especially those with low dispersal rates or sensitive
to microclimate variation.

The differences in threat level for H. chapmani determined by
calculating AOO from documented occurrence records versus a
suitable habitat approach highlight the importance of selecting
appropriate methodologies for calculating AOO, depending on
the spatial density of sampling and variation in data resolutions.
As remotely sensed data improve and their resolutions get finer,
so does the need for higher quality of georeferencing, pointing to-
ward the value of continued biological survey efforts. While the
occurrence records for this species did not include uncertainty
data, databases such as the Global Biodiversity Information
Facility (gbif.org) increasingly need to include this information
(Anderson et al. 2020). This study emphasizes the importance
of accurate georeferencing in the field. Nevertheless, using the
neighborhood approach can alleviate some complications from
uncertainty, leading to better species range predictions and de-
rived areal estimates, particularly those used for conservation
assessments.

4.3 | Outlook

The neighborhood processing code (Appendix S3) was written
in the R-language and is compatible with relevant packages
like “maskRangeR” and “changeRangeR” (Merow et al. 2022b;
Galante et al. 2022); hence, it has promise to improve range es-
timates and conservation assessments when used in conjunc-
tion with them. It can also be customized to match resolutions
of climatic data or remotely sensed data for the modeling stage
itself or for post-processing analyses, as the size of the “neigh-
borhood” can be changed easily. Here, we used the mean of
the 9 pixels, but employing the maximum or minimum value
is also possible, which may be useful for calculating proximity
to streams or roosting sites, or distance from roads. Varying
the neighborhood size and mathematical operation can be ad-
justed for improved characterization of spatial patterns, par-
ticularly in areas with disparate habitat information in close
proximity (e.g., mountains, human impacted regions, urban
areas). While we focused on a montane region, this can be use-
ful for any area with low spatial autocorrelation or a mosaic of
habitats. In conclusion, the general applicability of the neigh-
borhood approach and its simplicity make it a useful tool to
make range assessments more accurate and feasible to update
over time.
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