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ABSTRACT
Species distribution modeling can be used to predict environmental suitability, and removing areas currently lacking appropriate 
vegetation can refine range estimates for conservation assessments. However, the uncertainty around geographic coordinates 
can exceed the fine resolution of remotely sensed habitat data. Here, we present a novel methodological approach to reflect 
this reality by processing habitat data to maintain its fine resolution, but with new values characterizing a larger surrounding 
area (the “neighborhood”). We implement its use for a forest-dwelling species (Handleyomys chapmani) considered threatened 
by the IUCN. We determined deforestation tolerance threshold values by matching occurrence records with forest cover data 
using two methods: (1) extracting the exact pixel value where a record fell; and (2) using the neighborhood value (more likely to 
characterize conditions within the radius of actual sampling). We removed regions below these thresholds from the climatic suit-
ability prediction, identifying areas of inferred habitat loss. We calculated Extent of Occurrence (EOO) and Area of Occupancy 
(AOO), two metrics used by the IUCN for threat level categorization. The values estimated here suggest removing the species 
from threatened categories. However, the results highlight spatial patterns of loss throughout the range not reflected in these 
metrics, illustrating drawbacks of EOO and showing how localized losses largely disappeared when resampling to the 2 × 2 km 
grid required for AOO. The neighborhood approach can be applied to various data sources (NDVI, soils, marine, etc.) to calculate 
trends over time and should prove useful to many terrestrial and aquatic species. It is particularly useful for species having high 
coordinate uncertainty in regions of low spatial autocorrelation (where small georeferencing errors can lead to great differences 
in habitat, misguiding conservation assessments used in policy decisions). More generally, this study illustrates and enhances the 
practicality of using habitat-refined distribution maps for biogeography and conservation.

1   |   Introduction

Accurate estimates of the geographic areas suitable for a species 
are important for their use in biodiversity assessments and cli-
mate change research (Peterson et al. 2011; Araújo et al. 2019). 
Quantification of a species' range can be used to calculate 

conservation metrics, such as those used by the International 
Union for Conservation of Nature (IUCN) for threat level as-
sessments (IUCN  2022), which rely on accurate estimates to 
categorize threat severity. Two such IUCN metrics relevant for 
assessing population size reduction for Criterion A and decline 
of geographic range for Criterion B are the Extent of Occurrence 
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(EOO) and Area of Occupancy (AOO). EOO measures the spa-
tial spread of inferred or projected sites and is commonly calcu-
lated from a minimum convex polygon around known localities 
(IUCN  2022) but also can be based on the analogous polygon 
around a map of suitable habitat in the species' range (Kass 
et al. 2021a). AOO is a subset of the EOO that measures presence 
within available habitat at a standardized 2 × 2 km spatial grid 
(IUCN  2022). They each quantify aspects of a species' range, 
but since AOO focuses on occupied suitable habitat, it can high-
light vulnerabilities to habitat loss or degradation, especially for 
species in fragmented landscapes. Whereas EOO estimates are 
generally rather stable via different methodological options, sev-
eral approaches for calculating AOO bracket a vast range from 
a lower bound of underestimation to an upper bound of overes-
timation (Anderson 2022). At one extreme, summing the total 
area of occupied cells (where documented occurrence localities 
fall) within the 2 × 2 km grid gives the lower bound estimates of 
AOO, but this typically leads to strongly biased underestimates 
since most cells lack any sampling. On the other end, an upper 
bound estimate sums the 2 × 2 km grid cells with suitable habitat 
within the range (e.g., area of habitat, AOH; Brooks et al. 2019), 
assuming the species occupies all of them, which typically yields 
biased overestimates (Anderson 2022). Regardless of approach, 
all rely on accurate geographic range estimates and georeferenc-
ing of occurrence localities.

One technique for estimating the potential range is species dis-
tribution models (SDMs; sometimes also referred to as ecological 
niche models), which use occurrence localities and environmen-
tal data to predict abiotic suitability across geography (Peterson 
and Soberón  2012). However, SDMs typically overestimate 
the species' true distribution, even after considering dispersal 
limitations. Supplying additional habitat information for post-
processing can refine predictions to estimate the current range 
(Gomes et al. 2019; Merow et al.  2022a). For example, a recent 
study on a Malagasy rodent improved range estimates by tempo-
rally matching occurrence localities and forest cover data to deter-
mine a deforestation tolerance threshold (hereby DTT; the lowest 
tree cover percentage sufficient for the species) and then using it 
to remove areas of insufficient forest cover at present (Gavrutenko 
et al. 2021). However, that study did not consider possible georef-
erencing errors when matching occurrence records to the forest 
cover data. We use the temporal matching approach as a stepping 
stone for employing a neighborhood processing method to reflect 
the uncertainty of geographic coordinates (see below). Our aim 
is to improve the ecological realism of conservation assessments 
by ameliorating the effects of georeferencing errors, uncertainty, 
and mismatched spatial resolutions, to provide more reasonable 
quantifications of species' actual ranges.

Here, we extend existing post-processing methodologies to con-
sider the idea of coordinate uncertainty of occurrence localities 
in relation to the pixel resolution of environmental data. Locality 
information assigned to occurrence records may not reflect 
where a species actually exists, but rather an approximation of 
that locality (e.g., a GPS was not available for older records; or a 
single set of coordinates was assigned for all records from var-
ious sublocalities). Also, advancements in technology have led 
to finer pixel resolution of remotely sensed data, which may not 
match other products used with it (e.g., satellite vegetation index 
products vs. climatic data). Considering this, we propose, apply, 

and enable a simple approach to resample remotely sensed or 
other habitat data for post-processing SDMs, to characterize the 
area surrounding occurrence records more realistically (i.e., the 
“neighborhood”). This neighborhood approach is advantageous 
to balance different spatial resolutions of data being analyzed 
(e.g., occurrence record uncertainty values, climate data, other 
abiotic habitat data). This is particularly useful in environments 
with low spatial autocorrelation, such as mountain ranges, 
where a small georeferencing error may lead to great differences 
in habitat information.

As an example, we use this neighborhood approach in the con-
text of a conservation assessment for Handleyomys chapmani 
(O. Thomas, 1898) a forest-dwelling rodent endemic to Mexico 
(Figure 1). It is found in altitudes of 1000–2500 m in the cloud 
and pine-oak forests of the Sierra Madre Oriental and Oaxacan 
Highlands, implying an ecological need for closed-canopy for-
est and climatically related altitudinal constraints (Cano and 
Guevara 2021; Almendra et al. 2018; Ceballos 2013). Basic nat-
ural history information known for the species indicates it as 
a dietary generalist not thought to be strongly affected by par-
ticular predators or pathogens (Ceballos  2013). This species' 
taxonomic understanding had been obfuscated by confusion re-
garding closely related evolutionary lineages, and recent studies 
suggest a need for conservation status reevaluation (Almendra 
et  al.  2018, 2014). It is considered threatened under Criterion 
B of the IUCN (Vulnerable B2ab(ii, iii); Vázquez  2018), based 
on an AOO below 2000 km2, three known locations, and a con-
tinuing decline in area and quality of habitat (Vázquez  2018; 
IUCN 2022). Some of these statements contradict both a prior 
taxonomic work (Almendra et  al.  2014) and later study of the 
species' range (Cano and Guevara 2021; Almendra et al. 2018), 
including a larger occurrence dataset.

This species is also opportune for the study because of the 
availability of recent high resolution forest cover data and its 
altitudinal associations, which correspond to a highly variable 
environment within short distances. We first used species dis-
tribution modeling to predict a climatically suitable range for 
the species within a region lacking major dispersal barriers. 
Using recent occurrence records and forest cover data, we then 

FIGURE 1    |    Photograph of Handleyomys chapmani, taken by G.E. 
Pinilla-Buitrago.
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determined forest cover thresholds (Gavrutenko et  al.  2021) 
from both exact and neighborhood-processed forest cover data. 
Next, we used these respective thresholds to remove areas with 
insufficient forest cover from the predicted suitable range, high-
lighting areas of inferred deforestation and therefore range loss. 
We then calculated EOO in two ways; based upon occurrences, 
and from the two masked suitability maps. From each of these, 
we also calculated the upper and lower bounds of AOO. From 
these metrics, we reassessed the threat status for the species. 
The analyses address the feasibility of post-processing distribu-
tion maps via the proposed neighborhood approach, illustrate 
them within the context of IUCN Red List assessments, and 
highlight the importance of spatial grain for conservation uses, 
in a way highly applicable to other species and scenarios.

2   |   Methods

2.1   |   Species Selection

To demonstrate the feasibility of neighborhood processing of 
remotely sensed data to refine distribution maps, we selected 
a montane, forest-dwelling species with substantial recent re-
cords (collected since 2000, amenable for matching with avail-
able annual vegetation data). We obtained 116 occurrence 
records (Appendix  S1) of Handleyomys chapmani from a re-
cent study of the species' range (Cano and Guevara 2021). We 
further inspected two of these records because they showed 
extremely low modeled suitability values based on prelim-
inary species distribution models. The associated georefer-
ences corresponded to sites of the dry interior high plateau 
uncharacteristic for this species, likely representing either 
misidentifications or incorrect georeferences. Because they 
did not match the species' known natural history and envi-
ronmental associations, we removed them from subsequent 
analyses (Soley-Guardia et al. 2014).

2.2   |   Species Distribution Modeling

Species distribution modeling was performed within the soft-
ware Wallace EcoMod (R-package “wallace”; Kass et al. 2022; 
Kass et  al.  2018; R Core Team  2022), hereafter Wallace. To 
reduce effects of sampling bias, we applied 10 km spatial 
thinning using the R-package “spThin” (Aiello-Lammens 
et al. 2015) within Wallace. Thinning distance followed other 
studies in this system (Guevara et  al.  2018), given the level 
of spatial sampling bias for small nonvolant mammals in the 
region, the species' dispersal limitations, and consideration 
of the elevational gradients and environmental homogeneity 
of the area. After spatial thinning the 116 records, 41 occur-
rences remained for final modeling (Appendix S1). For en-
vironmental predictors, we used four bioclimatic variables 
with a 30 arcsecond resolution from the CHELSA v1.0 data-
base (Karger et al. 2018, 2017): maximum temperature of the 
warmest month (bio05), minimum temperature of the coldest 
month (bio06), precipitation of the wettest month (bio13), and 
precipitation of the driest month (bio14). These capture major 
climatic conditions of the species' range and have been used 
in previous studies of cloud forest species in the region (Cano 
and Guevara 2021; Guevara et al. 2018).

A species distribution model for H. chapmani was built using 
Maxent (Phillips et  al.  2006). We delimited the study region 
as a 0.5° buffer around localities (to include a variety of en-
vironments but avoid including regions without records of 
the species because of low sampling or barriers to dispersal; 
Soley-Guardia et  al.  2024) and sampled the full background 
of 131,680 pixels to provide a comprehensive representation 
of the environments available within the extent (i.e., avoid 
missing any rare conditions, which could lead to artifactual 
environmental truncations of modeled responses; Guevara 
et  al.  2018). Harnessing the functionality of the “ENMeval” 
2.0 R-package (Kass et al. 2021b) and the “maxnet” R-package 
(Phillips  2021; Phillips et  al.  2017) included in Wallace, we 
delineated training and validation data with a block spatial 
partitioning method (k = 4 folds), and models were built with 
varying complexity. Specifically, linear; linear-quadratic; 
hinge; and linear-quadratic-hinge feature class combinations 
were employed with regularization multipliers from 1 to 5 
with a 0.5 step value, generating 36 candidate models. The 
model performance metrics output by Wallace (Appendix S2) 
include the Akaike Information Criterion corrected for small 
sample size (AICc), training and validation Area Under the 
Curve values (AUC.train & AUC.val), and omission rates 
(OR). We selected the optimal model based on the lowest 
AICc, while also inspecting the average validation AUC val-
ues and omission rates (Guevara et  al.  2018; Anderson and 
Gonzalez 2011), all performance metrics commonly used with 
Maxent modeling. After selecting the optimal model, we made 
a cloglog-transformed continuous prediction and applied the 
minimum training presence threshold to convert it into a bi-
nary (i.e., suitable vs. unsuitable) range prediction (Figure 2, 
top left panel).

2.3   |   Forest Cover and Neighborhood Processing

We acquired annual vegetation layers of percent tree cover for 
each year from 2000 to 2019 (the most recent at the time of 
analyses). These derived from the NASA Moderate Resolution 
Imaging Spectroradiometer (MODIS) aboard the Terra satel-
lite. The MOD44Bv006 vegetation continuous fields (VCF) 
yearly product, which has a 250 m pixel resolution, is generated 
from monthly composites of 500-m surface reflectance data 
(DiMiceli et al. 2015). The compositing removes cloud cover and 
cloud shadow, an advantage for assessing vegetation in areas 
of frequent cloud cover. These layers were downloaded from 
NASA's Land Processes Distributed Active Archive Center (LP 
DAAC) open-source data pool as two tiles for Mexico (h8v6 
and h8v7) and reprojected to WGS84 and World Cylindrical 
Equal Area projection. Coordinate uncertainty (e.g., from co-
ordinates reconstructed by prior workers for the records lack-
ing GPS readings, or other GPS reading issues) is sometimes 
available for occurrence records. While our dataset lacked doc-
umented coordinate uncertainty, we considered possible er-
rors in latitude and longitude, including mention of locality 
descriptions of “by road” distances from populated towns 
(Appendix S1). From this, also considering the natural history 
of the species, we determined a 750 m distance from the georef-
erence to be reasonable as a first attempt to illustrate the neigh-
borhood approach for addressing these problems. Accordingly, 
we resampled each of the yearly forest cover layers individually 
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so that each new pixel value became the mean of itself and the 
surrounding eight pixels (a 3 × 3 pixel grid, herein referred to 
as the “neighborhood”), using the “focal()” function from the 
R-package “terra” (Hijmans et al. 2023). This maintained the 
layers at the original 250 × 250 m resolution, but the values of 
the pixels in this new set of rasters represent the composite of 
those from a 750 × 750 m neighborhood (Figure 2, bottom left 
panel; Figure 3).

2.4   |   Determining Deforestation Tolerance 
Thresholds (DDTs)

For this stage, we subset occurrence records for H. chapmani to in-
clude only those collected between 2000 and 2019, to correspond 
to the forest cover layers available at the time of analyses. This 
included localities from the initial dataset, as well as additional re-
cords not used in modeling due to: identical coordinates but with 
different collection dates; different coordinates falling within the 
same climatic data cell as another record; or removed by the spatial 
thinning (Appendix S1). Note that although we conducted spatial 
thinning for the occurrence dataset used in modeling the species' 
distribution, the DTTs and the associated neighborhood approach 
should not be strongly affected by sampling bias. Because of this, 
and to retain the maximum number of datapoints possible, for this 
part of the analysis records were not thinned spatially.

To extract the values of forest cover for the place and time where 
each record fell, we temporally matched the year of collection 
with the corresponding annual forest cover layer (separately for 
the exact unprocessed layers and the neighborhood-processed 
ones; Figure 2, bottom left panel). Since H. chapmani is a forest-
dwelling species, localities with an extremely low forest cover 
percentage may indicate problematic coordinates or issues 
within the forest cover data itself. Therefore, after sorting by for-
est cover percentages, we visually inspected the localities asso-
ciated with the lowest ones using Google Earth imaging (https://​
earth.​google.​com) and Esri World Imagery (Esri 2023) to check 
for inconsistencies. For each dataset (exact and neighborhood), 
we then eliminated any localities with aberrantly low forest 
cover values (Figure 2, bottom left panel).

2.5   |   SDM Post-processing & Range Calculations

Using the DDTs derived from each of the two methods, along 
with the respective forest cover layer for 2019 (the most recent 
one considered), we post-processed the range prediction to in-
clude only areas both climatically suitable and with sufficient 
forest cover. This was done by masking using the R-package 
“maskRangeR” (Merow et  al.  2022b). From each of these 

FIGURE 2    |    Flowchart of the methodologies employed. Green represents data, blue denotes analyses, and yellow signifies products. Step 1 (SDM): 
A species distribution model (SDM) was built. Step 2 (DTT): The output from the SDM was post-processed two times independently, to remove areas 
with forest coverage below two respective deforestation tolerance thresholds (DTTs): one using the exact forest cover data, and the second using the 
neighborhood approach to process forest cover data. Step 3 (IUCN): The post-processed SDMs were then used along with the occurrence data for cal-
culating Extent of Occurrence (EOO) and Area of Occupancy (AOO) for the International Union for the Conservation of Nature (IUCN) assessments.

FIGURE 3    |    Example of neighborhood approach to processing envi-
ronmental data. To extract forest cover values for occurrence records 
(red circle; shown here is record MZFC 11106 in Manuel Gutiérrez 
Nájera, Veracruz [see Appendix  S1]), two approaches were used. The 
exact method extracted the value of the pixel where the record fell from 
the raw, unprocessed forest cover layer (values shown in white; here, 
17%). In contrast, the neighborhood approach involved processing the 
forest cover layer so that each pixel was a better representation of the 
surrounding space but maintained the original data resolution. This 
study used the mean of a 3 × 3 grid (red dashed line); here, the neighbor-
hood value was 37.8%.

 20457758, 2025, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.71631 by Test, W

iley O
nline Library on [14/07/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://earth.google.com
https://earth.google.com


5 of 11

resulting maps, we calculated EOO and the upper and lower 
bounds for AOO with the R-package ‘changeRangeR’ (Galante 
et  al.  2022), QGIS v3.1.2 (QGIS.org  2023), and/or calculations 
with the “terra” R-package (Hijmans et  al.  2023). EOO was 
measured in two ways: first from a minimum convex polygon 
drawn around the occurrence records; and second from a min-
imum convex polygon around the binary suitability prediction 
(each conducted before and after the two respective masking 
procedures).

For AOO comparison, we calculated analogous areas of suitabil-
ity at the finer spatial resolution (which matches the forest cover 
data), as well as after the suitability map and its two masked 
versions were reprojected into a World Cylindrical Equal Area 
projection with a coarser resolution of a 2 × 2 km grid, which 
is standard for AOO calculations (IUCN  2022). Lower bound 
AOOs were calculated by totaling the grid cells corresponding 
to occurrence records, both before considering sufficient forest 
cover and then again after having removed records below the 
respective DTT threshold of each habitat-masked suitability 
prediction. Upper bound AOO estimates were derived from the 
sum of all cells in the grid corresponding to the respective range 
predictions, before and after post-processing by each masking 
method (Figure 2, right panel).

3   |   Results

3.1   |   Species Distribution Modeling

We obtained a high performing and ecologically realistic spe-
cies distribution model for Handleyomys chapmani. Based on 
the lowest Akaike Information Criterion corrected for small 
sample size (909.77), we chose the Hinge feature class with a 
regularization multiplier of two from the resulting candidate 
models (Appendix S2). The model for these settings corre-
sponded to the second highest average validation AUC value 
of the candidate models (only 0.0041 lower than the highest), 
and a low average validation omission rate at the minimum 
training presence threshold (0.023 ). In addition to quantita-
tively good performance, it also output an ecologically realis-
tic prediction concordant with similar studies of the species 
(Cano and Guevara 2021). The continuous prediction showed 
high suitability along the Sierra Madre Oriental into the 
northern Sierra Madre del Sur, with values generally decreas-
ing downslope (Figure  4). Applying the minimum training 
presence threshold (values < 0.23 as unsuitable) emphasized 
the striations in the complex terrain of the northernmost part 
of the range, and there were other indications of natural frag-
mentation throughout the distribution (e.g., lower and/or drier 
passes).

3.2   |   Determining Deforestation Tolerance 
Thresholds (DDTs)

In total, 57 recent records collected between 2000 and 2019 
were used to determine DDTs (Appendix S1). The lowest at-
tributed forest cover percentages using the exact data were 
two records tied at 17% (Figure 5, orange). One was collected 
in 2010 from the town of “Manuel Gutiérrez Nájera” and the 

other in 2013 from “28.5 NE of Tetela de Ocampo (by road), 
Puebla”. For the neighborhood data, the lowest was 21.1% 
collected in 2001 from “6 km SW de Xicotepec of Juárez (by 
road), Puebla” followed by a jump to 31% for the second low-
est, collected in 2006 near “El Durazno Ixtlahuaca, Tezuitlán, 
Puebla” (Figure 5, blue). Upon inspection using Google Earth 
imaging and Esri World Imagery, we determined that infor-
mation for two of the lowest scoring localities, one for each 
approach, did not match general knowledge of the species' 
known natural history. Rather, we inferred that the true 
sites of sampling likely correspond either to extremely small 
patches of remnant vegetation (under the 0.25 km pixel size of 
the forest data) or to a place in the general vicinity of the as-
signed coordinates (i.e., only very approximate match with the 
coordinates currently assigned to the record). For the exact 
approach, the lowest locality (17%; Figure 5) fell into a pixel 
that included the edge of a town. The second lowest, also 17%, 
fell in a pixel including a farm and associated buildings inter-
spersed with intact forest. For the neighborhood approach, the 
record with the lowest forest cover value (21.1%; Figure 5) cor-
responded to a pixel that was diagonally transected by a major 
highway, but the second lowest (31%; Figure 5) represented a 

FIGURE 4    |    Continuous suitability prediction from species distri-
bution modeling for Handleyomys chapmani. Red indicates the high-
est suitability, while blue denotes the lowest. Occurrence localities are 
shown as circles; those in white indicate the data used for modeling af-
ter 10 km thinning; black circles indicate additional localities removed 
via thinning. The current range reported by the International Union for 
the Conservation of Nature (IUCN; Vázquez 2018) is represented by the 
dashed polygon. Basemap is ESRI World Topo EPSG:4326 (Esri 2023).
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forest expanse surrounding a nearby town. The record with 
the lowest value for exact forest cover was not the same one 
as the lowest for the neighborhood approach, a notable differ-
ence across scales. For each approach, we interpret a record 
with the lowest value as uncharacteristic of the species' nat-
ural history. In contrast, the second lowest value for each ap-
proach comprised a mosaic of forested and nonforested areas, 
plausible for the species. Therefore, we dropped the lowest 
value for each approach and chose the second lowest one as 
the respective DTT instead (17% exact, 31% neighborhood; 
Figure 5).

3.3   |   SDM post-processing and Range Calculations

The climatically suitable range of H. chapmani was reduced 
when using both the DTT of 17% with the exact forest cover 
data (Figure 6A), and the DTT of 31% with the neighborhood-
processed forest cover data (Figure  6B). While there was a 
drastic disparity in the area of the EOOs calculated from oc-
currence records versus from the modeled range (Figure  7), 
much less difference existed between the exact and neigh-
borhood methods of masking (Table  1). Despite the removal 
of some older records falling into areas of current low forest 
cover, the estimates for EOO based on localities were the 
same for both masking methods, as well as without any post-
processing (72,513 km2). Additionally, when calculating the 
EOO from a polygon around the modeled range estimates, the 
maps before and after post-processing with the exact forest 
cover were similar (129,029 and 129,015 km2, respectively) but 
reduced by approximately 1000 km2 when using the neighbor-
hood approach (128,067 km2).

Estimates of AOO varied greatly between lower and upper 
bounds but were rather similar among post-processing ap-
proaches. The lower bound of AOO, estimated from cells 
documented as occupied by occurrences currently holding 
sufficient forest via the respective post-processing methods, 
was only 368–380 km2 (and slightly higher at 388 km2 with 
no consideration of current forest cover; Table 1). The upper 
bound of AOO, estimated from cells holding suitable cli-
mate and sufficient forest cover, was 53,240 km2 when using 
the exact method and 52,580 km2 using the neighborhood 
approach (and somewhat higher without habitat masking; 
Table 1).

4   |   Discussion

4.1   |   Threat Level Reassessment

Estimates of EOO and the most reasonable of those for AOO 
suggest removing Handleyomys chapmani from any threat-
ened category. Regardless of approach, the EOO quantifications 
are far larger than the previous characterization of 49,406 km2 
(Vázquez  2018), due to the inclusion here of many additional 
occurrence localities in the northern part of the range. All put 
the species outside the Vulnerable category based on EOO for 
Criterion B since they are above 20,000 km2 (IUCN 2022). Lower 
and upper bound estimations of AOO from this study lead to 
a span from a dire scenario to delisting the species from being 
threatened. The lower bound AOO values would qualify the 
species as Endangered under Criterion B2 (< 500 km2, if nec-
essary subcriteria are met; IUCN  2022), but they presumably 
are strongly biased underestimates due to sparse sampling 

FIGURE 5    |    Forest cover values corresponding to temporally matched occurrence records of Handleyomys chapmani for the two methods (exact 
and neighborhood-processed) to determine deforestation tolerance thresholds (DTTs). On the x-axis, occurrences are ranked by method for compar-
ison (note, the locality with the lowest value from the exact method does not necessarily correspond to the same one for the neighborhood). These 
thresholds, 17% and 31%, were then used in post-processing to remove regions that fall below the thresholds.
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throughout the region. In contrast, the upper bound measure-
ments of AOO (under either the exact or neighborhood ap-
proach) put the species outside of any threatened category, even 
Vulnerable (< 2000 km2; IUCN  2022), assuming the species 
inhabits all suitable areas still holding habitat within its range. 
Even highly likely values of prevalence (i.e., proportion of sites 
currently containing habitat that a species occupies within its 
range; Anderson 2022), for example 0.5 and above, would lead to 
an estimated AOO far above the 2000 km2 threshold.

Based on the conservation metrics reported here, we suggest the 
current placement of the species in the vulnerable category is 
inappropriate and misdirects conservation focus, since the es-
timates of both EOO and AOO generated here put the species 
outside of any threatened category. However, despite suggesting 
the delisting of the species, this study does pinpoint locations 
where deforestation has reduced its range, as well as areas of 
both climatic suitability and sufficient forest worth protecting 
for conservation planning. Such spatial details may be useful 
at a regional extent, such as for managing individual national 
parks or other protected areas.

Additionally, we found a noteworthy distinction in the spatial 
and proportional patterns of loss at the different spatial resolu-
tions. While the areas with insufficient forest removed from the 
climatic suitability prediction were generally similar throughout 
the extent of the species' distribution, the most notable inferred 
loss occurred on the western slopes of the range, especially be-
tween northern Puebla and Veracruz states (Figure 6, black). At 
the grain of the forest cover data (0.25 km), the inferred loss of 

climatically suitable area from the binary SDM prediction was 
2553 km2 using the exact method and 5946 km2 for the neigh-
borhood approach (Table 1). In contrast, the estimated range lost 
when resampled to the IUCN standard 2 × 2 km resolution was 
only 776 and 3436 km2, respectively. Importantly, by converting 
to the 2 × 2 km grid, many of the spatial patterns of current veg-
etation are erased and some of the insufficiently forested areas 
detected within the range are not visible at the coarser resolu-
tion (Figure 8). For example, in the neighborhood masked map, 
much of the inferred range loss (Figure 8, dark green) at the finer 
grain is undetectable when transformed to the coarser resolu-
tion (Figure 8, bright green). This discrepancy across resolutions 
is prevalent throughout the range, particularly along the valleys, 
where finer resolution data pick up lower levels of forest cover.

4.2   |   Utility of Neighborhood Approach

More generally, the neighborhood approach for post-processing 
suitability predictions is a transparent way to include relevant 
habitat data as an additional post-processing step in species dis-
tribution modeling and may be helpful when models are used 
for conservation assessments (Merow et al. 2022b). Particularly 
when used to mask a distributional estimate from an SDM (as 
here), it is more replicable than using subjective expert-drawn 
maps (Merow et  al.  2022a). More generally, it enhances exist-
ing pathways for considering recent habitat information and bi-
otic interactors in post-processing, especially for relatively data 
poor species (Galante et al. 2022; Gavrutenko et al. 2021; Gomes 
et al. 2019; Kass et al. 2021a; Merow et al. 2022a).

FIGURE 6    |    Post-processed climatic suitability maps for Handleyomys chapmani. Areas removed were those that fell below respective defor-
estation thresholds for 2019 determined in two ways: using the exact value as a threshold and the raw forest cover data (A; yellow), and using forest 
cover processed with the proposed neighborhood approach and subsequent threshold value (B; dark green). Note greater proportional loss for the 
neighborhood approach.
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Nevertheless, specific implementations of the neighborhood 
processing and associated methodologies explored here of 
course hold various limitations. Critically, they depend on either 

data or assumptions regarding coordinate uncertainty (e.g., here 
the 750 m neighborhood chosen). Fortunately, current data col-
lection protocols tend to include such information, for example 
via community science and camera trapping initiatives (Kays 
et al. 2020), and estimation of coordinate uncertainty via retro-
spective georeferencing (e.g., of older museum and herbarium 
specimens) represents a key direction in biodiversity informat-
ics (Anderson et al. 2020; Stein and Wieczorek 2004). Another 
limitation is access to relevant environmental data sources for 
post-processing, as not all are publicly accessible, free, and/
or available in compatible formats. However, use of remotely 
sensed products in distribution modeling (as predictor variables 
or in post-processing) has risen substantially and should con-
tinue (He et al. 2015). This is helpful since studies using SDMs 
for conservation are often limited to basing “current” predic-
tions on 30-year climatic averages, whereas many remotely 
sensed habitat data are updated annually (DiMiceli et al. 2015). 
The neighborhood approach can be applied to many terrestrial 
as well as aquatic species, as well as be used with various rele-
vant datasets beyond forest cover, such as NDVI, soil moisture 
and acidity indices, ocean temperature, depth, and salinity. 
We emphasize that the species' natural history (to the degree 
known) should be taken into account, including consideration 
of strong biotic interactions. Additionally, because an SDM it-
self remains subject to many methodological assumptions and 
decisions, researchers should closely follow best practices and 
community standards for building, evaluating, estimating un-
certainty, and reporting (Araújo et al. 2019; Zurell et al. 2020; 
Soley-Guardia et al. 2024).

In this study, we considered forest cover percentages for a forest-
dwelling species to refine the geographic range estimates via 
EOO and AOO metrics. While some occurrence localities can 
be considered no longer viable due to too low forest cover, this 
had no impact on EOO calculations derived from occurrence 
records (Figure 7; Table 1), largely because the dropped local-
ities corresponded to central areas of the range, rather than the 
outer edges where a minimum convex polygon's shape would be 

FIGURE 7    |    Comparison of Extent of Occurrence (EOO) for 
Handleyomys chapmani, calculated from a minimum convex polygon 
surrounding occurrence localities (red), and around suitable habitat 
predictions within the range (black).

TABLE 1    |    Table of conservation metrics values.

Post-processing method
Occurrence 

records
Area of 

range (km2)

Extent of Occurrence Area of Occupancy

Localities 
(km2)

Habitat 
map (km2)

Occupied 
cells (km2)

Suitable 
habitat (km2)

Full dataset/SDM (no 
post-processing)

114 42,894 72,513 129,029 388 54,016

Exact
DTT = 17% (SDM – raw 
forest cover < 17%)

112 40,341 72,513 129,015 380 53,240

Neighborhood
DTT = 31% (SDM – 
neighborhood-processed 
forest cover < 31%)

108 36,948 72,513 128,067 368 50,580

Note: The full occurrence dataset (corresponding to the 114 occurrence records for Handleyomys chapmani) and the species distribution model prediction (SDM) were 
post-processed two ways: (1) The exact method used 17% as a deforestation tolerance threshold (DTT); any occurrences or pixels falling into areas with lower forest 
cover for 2019 were removed. (2) The neighborhood approach used the neighborhood-processed forest cover layer for 2019 to remove any records or pixels falling 
below the neighborhood DTT of 31%. The Area of Range (km2) was calculated at the resolution of the forest cover data (0.25 × 0.25 km) in World Cylindrical Equal 
Area projected coordinate system. Minimum convex polygons were drawn around the occurrence localities, or the respective suitability map, to calculate estimates of 
Extent of Occurrence. Lower bounds of Area of Occupancy were calculated by summing the occupied cells of a 2 × 2 km grid corresponding to the respective records. 
The upper bounds of Area of Occupancy were calculated from the 2 × 2 km grid cells with both suitable climate and habitat (separately for each post-processing 
method); this assumes that the species occupies all suitable areas with habitat remaining.
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affected. However, this was not the case for the EOO estimates 
derived from post-processing the range map made from the suit-
ability estimate, especially for the neighborhood approach. This 
reiterates how forest loss along the outer extents of the range can 
affect the EOO, but any habitat loss within the central range is 
not captured in these measurements.

Similarly, spatial patterns of deforestation are not fully re-
flected in calculations of AOO due to its spatial scale. For the 
lower bound estimates of AOO, masking only led to minor 
reductions. Even for the upper bounds of AOO, the 2 × 2 km 
coarsening required by the IUCN removes many intricacies of 
the inferred loss from deforestation (Figure 8), thereby remov-
ing relevant habitat information from such assessments. The 
AOO value might also be changed depending on where the 
grid lines are drawn, which would affect estimates for all spe-
cies, but especially those with low dispersal rates or sensitive 
to microclimate variation.

The differences in threat level for H. chapmani determined by 
calculating AOO from documented occurrence records versus a 
suitable habitat approach highlight the importance of selecting 
appropriate methodologies for calculating AOO, depending on 
the spatial density of sampling and variation in data resolutions. 
As remotely sensed data improve and their resolutions get finer, 
so does the need for higher quality of georeferencing, pointing to-
ward the value of continued biological survey efforts. While the 
occurrence records for this species did not include uncertainty 
data, databases such as the Global Biodiversity Information 
Facility (gbif.​org) increasingly need to include this information 
(Anderson et al. 2020). This study emphasizes the importance 
of accurate georeferencing in the field. Nevertheless, using the 
neighborhood approach can alleviate some complications from 
uncertainty, leading to better species range predictions and de-
rived areal estimates, particularly those used for conservation 
assessments.

4.3   |   Outlook

The neighborhood processing code (Appendix S3) was written 
in the R-language and is compatible with relevant packages 
like “maskRangeR” and “changeRangeR” (Merow et al. 2022b; 
Galante et al. 2022); hence, it has promise to improve range es-
timates and conservation assessments when used in conjunc-
tion with them. It can also be customized to match resolutions 
of climatic data or remotely sensed data for the modeling stage 
itself or for post-processing analyses, as the size of the “neigh-
borhood” can be changed easily. Here, we used the mean of 
the 9 pixels, but employing the maximum or minimum value 
is also possible, which may be useful for calculating proximity 
to streams or roosting sites, or distance from roads. Varying 
the neighborhood size and mathematical operation can be ad-
justed for improved characterization of spatial patterns, par-
ticularly in areas with disparate habitat information in close 
proximity (e.g., mountains, human impacted regions, urban 
areas). While we focused on a montane region, this can be use-
ful for any area with low spatial autocorrelation or a mosaic of 
habitats. In conclusion, the general applicability of the neigh-
borhood approach and its simplicity make it a useful tool to 
make range assessments more accurate and feasible to update 
over time.
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FIGURE 8    |    Post- processed species distribution model predictions 
for Handleyomys chapmani. Post-processing and resampling led to sub-
stantial differences in spatial patterns and areal estimates at different 
resolutions (example shown here via the neighborhood method using 
a deforestation tolerance threshold of 31%). Black indicates climatically 
suitable areas under the deforestation tolerance. Green indicates parts 
of the suitability prediction that held sufficient forest cover, with dark 
green at the native resolution of the forest cover data (0.25 × 0.25 km), 
and light green resampled to a 2 × 2 km resolution. Note that inferred 
range loss is much less for the coarser resolution (black) than for the fin-
er size (black plus light green), with completely different spatial patterns 
of inferred loss. Basemap is ESRI World Topo EPSG:4326 (Esri 2023).

 20457758, 2025, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.71631 by Test, W

iley O
nline Library on [14/07/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

http://gbif.org


10 of 11 Ecology and Evolution, 2025

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

Data and accompanying R-code are publicly available on Dryad: https://​
doi.​org/​10.​5061/​dryad.​sxksn​03ft.

References

Aiello-Lammens, M. E., R. A. Boria, A. Radosavljevic, B. Vilela, and 
R. P. Anderson. 2015. “spThin: An R Package for Spatial Thinning 
of Species Occurrence Records for Use in Ecological Niche Models.” 
Ecography 38: 541–545. https://​doi.​org/​10.​1111/​ecog.​01132​.

Almendra, A. L., F. X. González-Cózatl, M. D. Engstrom, and D. 
S. Rogers. 2018. “Evolutionary Relationships and Climatic Niche 
Evolution in the Genus Handleyomys (Sigmodontinae: Oryzomyini).” 
Molecular Phylogenetics and Evolution 128: 12–25. https://​doi.​org/​10.​
1016/j.​ympev.​2018.​06.​018.

Almendra, A. L., D. S. Rogers, and F. X. González-Cózatl. 2014. 
“Molecular Phylogenetics of the Handleyomys chapmani Complex in 
Mesoamerica.” Journal of Mammalogy 95: 26–40. https://​doi.​org/​10.​
1644/​13-​MAMM-​A-​044.​1.

Anderson, R. P. 2022. “Integrating Habitat-Masked Range Maps With 
Quantifications of Prevalence to Estimate Area of Occupancy in IUCN 
Assessments.” Conservation Biology 37: e14019. https://​doi.​org/​10.​1111/​
cobi.​14019​.

Anderson, R. P., M. B. Araújo, A. Guisan, et  al. 2020. “Optimizing 
Biodiversity Informatics to Improve Information Flow, Data Quality, 
and Utility for Science and Society.” Frontiers of Biogeography 12: 
e47839. https://​doi.​org/​10.​21425/​​F5FBG​47839​.

Anderson, R. P., and I. Gonzalez. 2011. “Species-Specific Tuning 
Increases Robustness to Sampling Bias in Models of Species 
Distributions: An Implementation With Maxent.” Ecological Modelling 
222: 2796–2811. https://​doi.​org/​10.​1016/j.​ecolm​odel.​2011.​04.​011.

Araújo, M. B., R. P. Anderson, A. M. Barbosa, et al. 2019. “Standards for 
Distribution Models in Biodiversity Assessments.” Science Advances 5: 
eaat4858. https://​doi.​org/​10.​1126/​sciadv.​aat4858.

Brooks, T. M., S. L. Pimm, H. R. Akçakaya, et  al. 2019. “Measuring 
Terrestrial Area of Habitat (AOH) and Its Utility for the IUCN Red List.” 
Trends in Ecology & Evolution 34: 977–986. https://​doi.​org/​10.​1016/j.​
tree.​2019.​06.​009.

Cano, I., and l. Guevara. 2021. “Potential Distribution of a Montane 
Rodent (Cricetidae, Handleyomys chapmani) Through Time in Mexico: 
The Importance of Occurrence Data.” Journal of Mountain Science 18: 
2024–2033. https://​doi.​org/​10.​1007/​s1162​9-​020-​6295-​9.

Ceballos, G. 2013. Mammals of Mexico. Johns Hopkins University Press.

DiMiceli, C., M. Carroll, R. Sohlberg, D. Kim, M. Kelly, and J. 
Townshend. 2015. “MOD44B MODIS/Terra Vegetation Continuous 
Fields Yearly L3 Global 250m SIN Grid V006.” NASA EOSDIS Land 
Processes DAAC. https://​doi.​org/​10.​5067/​MODIS/​​MOD44B.​006.

Esri World Imagery. 2023. “Layer: World Imagery”.

Galante, P. J., S. Chang Triguero, A. Paz, et al. 2022. “changeRangeR: 
An R Package for Reproducible Biodiversity Change Metrics From 
Species Distribution Estimates.” Conservation Science and Practice 5: 
e12863. https://​doi.​org/​10.​1111/​csp2.​12863​.

Gavrutenko, M., B. E. Gerstner, J. M. Kass, S. M. Goodman, and R. P. 
Anderson. 2021. “Temporal Matching of Occurrence Localities and 
Forest Cover Data Helps Improve Range Estimates and Predict Climate 
Change Vulnerabilities.” Global Ecology and Conservation 27: e01569. 
https://​doi.​org/​10.​1016/j.​gecco.​2021.​e01569.

Gomes, V. H. F., I. C. G. Vieira, R. P. Salomão, et al. 2019. “Amazonian 
Tree Species Threatened by Deforestation and Climate Change.” 
Nature Climate Change 9: 547–553. https://​doi.​org/​10.​1038/​s4155​
8-​019-​0500-​2.

Guevara, L., B. E. Gerstner, J. M. Kass, and R. P. Anderson. 2018. 
“Toward Ecologically Realistic Predictions of Species Distributions: A 
Cross-Time Example From Tropical Montane Cloud Forests.” Global 
Change Biology 24: 1511–1522. https://​doi.​org/​10.​1111/​gcb.​13992​.

He, K. S., B. A. Bradley, A. F. Cord, et al. 2015. “Will Remote Sensing 
Shape the Next Generation of Species Distribution Models?” Remote 
Sensing in Ecology and Conservation 1: 4–18. https://​doi.​org/​10.​1002/​
rse2.​7.

Hijmans, R., R. Bivand, E. Pebesma, and M. D. Sumner. 2023. “Terra: 
Spatial Data Analysis.” R Package Version 1.7-3. https://​CRAN.​R-​proje​
ct.​org/​packa​ge=​terra​.

IUCN Standards, and Petitions Committee. 2022. “Guidelines for Using 
the IUCN Red List Categories and Criteria.” Version 15.1. Prepared by 
the Standards and Petitions Committee. https://​www.​iucnr​edlist.​org/​
docum​ents/​RedLi​stGui​delin​es.​pdf.

Karger, D. N., O. Conrad, J. Böhner, et al. 2017. “Climatologies at High 
Resolution for the Earth's Land Surface Areas.” Scientific Data 4: 
170122. https://​doi.​org/​10.​1038/​sdata.​2017.​122.

Karger, D. N., O. Conrad, J. Böhner, et  al. 2018. “Data From: 
Climatologies at High Resolution for the Earth's Land Surface Areas.” 
Dryad. https://​doi.​org/​10.​5061/​DRYAD.​KD1D4​.

Kass, J. M., S. I. Meenan, N. Tinoco, S. F. Burneo, and R. P. Anderson. 
2021a. “Improving Area of Occupancy Estimates for Parapatric Species 
Using Distribution Models and Support Vector Machines.” Ecological 
Applications 31: e02228. https://​doi.​org/​10.​1002/​eap.​2228.

Kass, J. M., R. Muscarella, P. J. Galante, et  al. 2021b. “ENMeval 2.0: 
Redesigned for Customizable and Reproducible Modeling of Species’ 
Niches and Distributions.” Methods in Ecology and Evolution 12: 1602–
1608. https://​doi.​org/​10.​1111/​2041-​210X.​13628​.

Kass, J. M., G. E. Pinilla-Buitrago, A. Paz, et  al. 2022. “Wallace 2: A 
Shiny App for Modeling Species Niches and Distributions Redesigned 
to Facilitate Expansion via Module Contributions.” Ecography 2023: 
e06547. https://​doi.​org/​10.​1111/​ecog.​06547​.

Kass, J. M., B. Vilela, M. E. Aiello-Lammens, R. Muscarella, C. Merow, 
and R. P. Anderson. 2018. “Wallace: A Flexible Platform for Reproducible 
Modeling of Species Niches and Distributions Built for Community 
Expansion.” Methods in Ecology and Evolution 9: 1151–1156. https://​doi.​
org/​10.​1111/​2041-​210X.​12945​.

Kays, R., B. S. Arbogast, M. Baker-Whatton, et al. 2020. “An Empirical 
Evaluation of Camera Trap Study Design: How Many, How Long and 
When?” Methods in Ecology and Evolution 11, no. 6: 700–713. https://​
doi.​org/​10.​1111/​2041-​210X.​13370​.

Merow, C., P. J. Galante, J. M. Kass, et  al. 2022a. “Operationalizing 
Expert Knowledge in Species' Range Estimates Using Diverse Data 
Types.” Frontiers of Biogeography 14: e53589. https://​doi.​org/​10.​21425/​​
F5FBG​53589​.

Merow, C., P. J. Galante, J. M. Kass, C. Babich Morrow, and V. Grisales 
Betancur. 2022b. “maskRangeR: Mask Species Geographic Ranges.” 
R Package Version 1.1. https://​CRAN.​R-​proje​ct.​org/​packa​ge=​maskR​
angeR​.

Peterson, A. T., and J. Soberón. 2012. “Species Distribution Modeling 
and Ecological Niche Modeling: Getting the Concepts Right.” Natureza 
& Conservação 10: 102–107. https://​doi.​org/​10.​4322/​natcon.​2012.​019.

Peterson, A. T., J. Soberón, R. Pearson, et  al. 2011. “Ecological 
Niches and Geographic Distributions.” In Monographs in Population 
Biology 49. Princeton University Press. https://​doi.​org/​10.​1515/​97814​
00840670.

 20457758, 2025, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.71631 by Test, W

iley O
nline Library on [14/07/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://doi.org/10.5061/dryad.sxksn03ft
https://doi.org/10.5061/dryad.sxksn03ft
https://doi.org/10.1111/ecog.01132
https://doi.org/10.1016/j.ympev.2018.06.018
https://doi.org/10.1016/j.ympev.2018.06.018
https://doi.org/10.1644/13-MAMM-A-044.1
https://doi.org/10.1644/13-MAMM-A-044.1
https://doi.org/10.1111/cobi.14019
https://doi.org/10.1111/cobi.14019
https://doi.org/10.21425/F5FBG47839
https://doi.org/10.1016/j.ecolmodel.2011.04.011
https://doi.org/10.1126/sciadv.aat4858
https://doi.org/10.1016/j.tree.2019.06.009
https://doi.org/10.1016/j.tree.2019.06.009
https://doi.org/10.1007/s11629-020-6295-9
https://doi.org/10.5067/MODIS/MOD44B.006
https://doi.org/10.1111/csp2.12863
https://doi.org/10.1016/j.gecco.2021.e01569
https://doi.org/10.1038/s41558-019-0500-2
https://doi.org/10.1038/s41558-019-0500-2
https://doi.org/10.1111/gcb.13992
https://doi.org/10.1002/rse2.7
https://doi.org/10.1002/rse2.7
https://cran.r-project.org/package=terra
https://cran.r-project.org/package=terra
https://www.iucnredlist.org/documents/RedListGuidelines.pdf
https://www.iucnredlist.org/documents/RedListGuidelines.pdf
https://doi.org/10.1038/sdata.2017.122
https://doi.org/10.5061/DRYAD.KD1D4
https://doi.org/10.1002/eap.2228
https://doi.org/10.1111/2041-210X.13628
https://doi.org/10.1111/ecog.06547
https://doi.org/10.1111/2041-210X.12945
https://doi.org/10.1111/2041-210X.12945
https://doi.org/10.1111/2041-210X.13370
https://doi.org/10.1111/2041-210X.13370
https://doi.org/10.21425/F5FBG53589
https://doi.org/10.21425/F5FBG53589
https://cran.r-project.org/package=maskRangeR
https://cran.r-project.org/package=maskRangeR
https://doi.org/10.4322/natcon.2012.019
https://doi.org/10.1515/9781400840670
https://doi.org/10.1515/9781400840670


11 of 11

Phillips, S. 2021. “Maxnet: Fitting ‘Maxent’ Species Distribution Models 
With ‘Glmnet’” R Package Version 0.1.4. https://​CRAN.​R-​proje​ct.​org/​
packa​ge=​maxnet.

Phillips, S. J., R. P. Anderson, M. Dudík, R. E. Schapire, and M. E. Blair. 
2017. “Opening the Black Box: An Open-Source Release of Maxent.” 
Ecography 40: 887–893. https://​doi.​org/​10.​1111/​ecog.​03049​.

Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. “Maximum 
Entropy Modeling of Species Geographic Distributions.” Ecological 
Modelling 190: 231–259. https://​doi.​org/​10.​1016/j.​ecolm​odel.​2005.​
03.​026.

QGIS.org. 2023. QGIS Geographic Information System. QGIS 
Association. http://​www.​qgis.​org.

R Core Team. 2022. R: A Language and Environment for Statistical 
Computing. R Core Team. https://​www.​r-​proje​ct.​org/​.

Soley-Guardia, M., D. F. Alvarado-Serrano, and R. P. Anderson. 2024. 
“Top Ten Hazards to Avoid When Modeling Species Distributions: A 
Didactic Guide of Assumptions, Problems, and Recommendations.” 
Ecography 2024: e06852. https://​doi.​org/​10.​1111/​ecog.​06852​.

Soley-Guardia, M., A. Radosavljevic, J. L. Rivera, and R. P. Anderson. 
2014. “The Effect of Spatially Marginal Localities in Modelling Species 
Niches and Distributions.” Journal of Biogeography 41: 1390–1401. 
https://​doi.​org/​10.​1111/​jbi.​12297​.

Stein, B. R., and J. Wieczorek. 2004. “Mammals of the World: MaNIS as 
an Example of Data Integration in a Distributed Network Environment.” 
Biodiversity Informatics 1: 14–22. https://​doi.​org/​10.​17161/​​bi.​v1i0.​7.

Vázquez, E. 2018. “Handleyomys chapmani. International Union for 
Conservation of Nature.” The IUCN Red List of Threatened Species 
2018: E.T15591A22328808. https://​doi.​org/​10.​2305/​IUCN.​UK.​2018-​2.​
RLTS.​T1559​1A223​28808.​en.

Zurell, D., J. Franklin, C. König, et al. 2020. “A Standard Protocol for 
Reporting Species Distribution Models.” Ecography 43: 1261–1277. 
https://​doi.​org/​10.​1111/​ecog.​04960​.

Supporting Information

Additional supporting information can be found online in the 
Supporting Information section.    

 20457758, 2025, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.71631 by Test, W

iley O
nline Library on [14/07/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://cran.r-project.org/package=maxnet
https://cran.r-project.org/package=maxnet
https://doi.org/10.1111/ecog.03049
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1016/j.ecolmodel.2005.03.026
http://www.qgis.org
https://www.r-project.org/
https://doi.org/10.1111/ecog.06852
https://doi.org/10.1111/jbi.12297
https://doi.org/10.17161/bi.v1i0.7
https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T15591A22328808.en
https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T15591A22328808.en
https://doi.org/10.1111/ecog.04960

	A Neighborhood Approach for Using Remotely Sensed Data to Estimate Current Ranges for Conservation Assessments
	ABSTRACT
	1   |   Introduction
	2   |   Methods
	2.1   |   Species Selection
	2.2   |   Species Distribution Modeling
	2.3   |   Forest Cover and Neighborhood Processing
	2.4   |   Determining Deforestation Tolerance Thresholds (DDTs)
	2.5   |   SDM Post-processing & Range Calculations

	3   |   Results
	3.1   |   Species Distribution Modeling
	3.2   |   Determining Deforestation Tolerance Thresholds (DDTs)
	3.3   |   SDM post-processing and Range Calculations

	4   |   Discussion
	4.1   |   Threat Level Reassessment
	4.2   |   Utility of Neighborhood Approach
	4.3   |   Outlook

	Author Contributions
	Acknowledgements
	Conflicts of Interest
	Data Availability Statement
	References


