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Abstract—Although the expenses associated with DNA se-
quencing have been rapidly decreasing, the current cost of
sequencing information stands at roughly $120/GB, which is
dramatically more expensive than reading from existing archival
storage solutions today. In this work, we aim to reduce not
only the cost but also the latency of DNA storage by initiating
the study of the DNA coverage depth problem, which aims to
reduce the required number of reads to retrieve information
from the storage system. Under this framework, our main
goal is to understand the effect of error-correcting codes and
retrieval algorithms on the required sequencing coverage depth.
We establish that the expected number of reads that are required
for information retrieval is minimized when the channel follows a
uniform distribution. We also derive upper and lower bounds on
the probability distribution of this number of required reads
and provide a comprehensive upper and lower bound on its
expected value. We further prove that for a noiseless channel
and uniform distribution, MDS codes are optimal in terms of
minimizing the expected number of reads. Additionally, we study
the DNA coverage depth problem under the random-access setup,
in which the user aims to retrieve just a specific information
unit from the entire DNA storage system. We prove that the
expected retrieval time is at least & for [n, k] MDS codes as well
as for other families of codes. Furthermore, we present explicit
code constructions that achieve expected retrieval times below &
and evaluate their performance through analytical methods and
simulations. Lastly, we provide lower bounds on the maximum
expected retrieval time. Our findings offer valuable insights for
reducing the cost and latency of DNA storage.

I. INTRODUCTION

The world’s digital data is growing exponentially, doubling
from 30 to 64 zettabytes in just three years, and it is anticipated
to reach 180 zettabytes by 2025, resulting in many new data
storage challenges. The demand for storage capacity already
exceeds the supply, and the gap continues to grow [32]. Recent
research and insights from the IDC emphasize the struggle of
existing storage technologies to meet the demands of the big
data era.
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Recognizing this challenge, DNA emerges as a promising
storage medium due to its exceptional density and durabil-
ity. The DNA storage pipeline usually involves three main
components. The first is DNA synthesis, which produces
artificial DNA molecules. These synthetic DNA molecules
are called oligos or strands and they can be designed in a
way that encodes the user’s information. The current synthesis
technologies only produce strands that are up to a length of 300
bases [24] and due to technology limitations, they also produce
several noisy copies per encoded strand. Thus, it is likely that
the user information is stored in several different strands. The
second component of the DNA storage pipeline is a storage
container, usually a small tube that contains all the short
strands that encode the user information. Lastly, to read back
the user information, it is required to perform DNA sequencing
on the strands in the tube. The sequencing process translates
the DNA strands into digital sequences over the DNA alphabet,
which are noisy copies of the synthesized strands. These DNA
sequences can be decoded to read back the user’s information.
In DNA storage, the retrieval time of the information can be
measured as the time between the beginning of the sequencing
process and the end of the system’s decoding procedure.

The sequencing process, which is done using a DNA
sequencer, is one of the principal components in any DNA
storage system [2], [13], [26], [40]. Nowadays, DNA se-
quencers suffer from relatively slow throughput as well as high
costs relative to other alternative storage technologies [35],
[41], [43]. These issues are related to the so-called coverage
depth of DNA storage, which is defined as the ratio between
the number of reads that are sequenced and the number of
designed strands [19]. As the retrieval time depends on the
specific technology that is being used, in this work we consider
the number of reads that should be sequenced instead of the
actual retrieval time!. This simplification can be done since
once a specific sequencing technology and algorithms are
selected, the retrieval mainly depends on the number of reads
that should be sequenced [2], [13], [26]. Moreover, sequencing
costs depend on the number of reads, so reducing the coverage
depth can improve the latency of any existing DNA storage
system and reduce its costs.

Motivated by the connection between the coverage depth,
latency, and cost, and in an effort to design coding schemes
that overcome the drawbacks associated with existing se-
quencing technologies, in this work we initiate the study

'Note that the number of reads that should be sequenced is directly
proportional to the coverage depth.



of a novel problem, referred to as the DNA coverage depth
problem. Simply stated, the DNA coverage depth problem
aims to minimize the coverage depth while maintaining system
reliability. We will study the required coverage depth as a
function of the DNA storage channel, the error-correcting
code, and the algorithms involved in retrieving the user’s
information. Furthermore, we seek to understand how to pair
an error-correcting code with a given DNA storage system
in order to minimize the coverage depth. This problem will
be studied under both the random and non-random access
settings. While the latter addresses the problem of retrieving
all the information that was being stored, the former describes
the case in which the user is interested in retrieving only a
specific part of the stored information. Moreover, we plan to
suggest coding schemes that optimize the required coverage
depth and to study, both theoretically and experimentally, how
one can utilize codes to minimize the sequencing time and
costs.

Despite significant work on DNA storage, only a small
number of works have focused on reducing the latency and
costs associated with sequencing in experimental or theoretical
setups. Erlich et. al. [13] encoded digital information into
DNA strands using a Luby transform-based coding scheme.
Later, they diluted their synthesized strands and studied the
effect of this dilution on their ability to sequence and decode
the information. The dilution procedure reduced the potential
(maximal) coverage depth of their system down to roughly
1300 reads per strand, thus making the decoding process more
challenging. They showed that thanks to the error-correcting
capability of their scheme, they were able to perfectly retrieve
the stored information. In another related work, Chandak et.
al. [7] defined the ratio between the number of synthesized
bits and the number of information bits as the writing cost,
and similarly the ratio between the number of bits that have to
be read (sequenced) and the number of information bits was
defined as the reading cost. In their work, they studied the
tradeoffs and relations between the writing and reading costs.
They first showed that for the noiseless channel, it is enough
to read one copy per designed strand. Thus, the relation of
these two costs can be obtained by inferring the channel as
an erasure channel with an erasure probability that can be
approximated using Poisson approximation. Additionally, the
authors suggested an LDPC-based coding scheme that can
improve the ratio between the two costs. They also showed
by simulations how their suggested scheme can be used with
different redundancy levels to reduce both the writing cost and
the reading cost.

The DNA coverage depth problem is related to the coupon
collector’s (CCP), dixie cup, and urn problems [12], [15],
[16], [25]. For all these problems, it is assumed that there
are n different types of coupons and the question of interest
is how many coupons one should collect before possessing one
coupon of each type. It is well known that if the coupons are
drawn uniformly at random (with repetition), then the expected
number of coupons necessary to have at least one coupon from
each type is roughly nlogn. Under our setting, the coupons
refer to the copies of the synthesized oligos and the goal is to
read at least one copy of every oligo.

The CCP has several generalizations [12], [16], [25], some
of which will be explored in this work. One such problem,
which is referred to as the MDS coverage depth problem,
is how many coupons one should collect before possessing
t copies of k coupons. This generalization represents the
scenario where a reconstruction algorithm that requires ¢ reads
of an oligo for successful decoding is used along with an MDS
code that requires correctly retrieving k out of the n synthe-
sized sequences to recover the stored encoded information.
Another problem that is addressed in this paper is the coding
coverage depth problem, which generalizes the MDS coverage
depth and considers the effect of an error-correcting code,
which is not necessarily an MDS code. Under this setup, our
main results show that MDS codes are optimal codes for the
purpose of reducing the expected coverage depth. Furthermore,
our analysis for the MDS coverage depth problem provides a
deep understanding of the required number of reads that should
be sequenced in order to guarantee a successful retrieval of the
information with high probability.

Additionally, motivated by the random-access setting where
one wishes to retrieve a single strand of DNA from a storage
system, in Section VI we consider another problem that is
related to the CCP, but to the best of our knowledge has
not been studied before. Suppose we are given k information
coupons which we can encode into a set of n total coupons.
For any information coupon say 1, what is the expected number
of coupons that need to be collected in order to retrieve the
information in coupon i? Trivially, if no code is used and
every coupon is collected with the same probability, then the
expected number of coupons that need to be collected is equal
to k. In Section VI, we initiate the study of this problem, which
we refer to as the singleton-random-access problem. Our main
result is to show that it is indeed possible to design coding
schemes that allow random access that requires less than k
coupons and provide examples of several such schemes.

This paper is organized as follows. Section II introduces the
definitions that are used throughout the paper. In Section III,
we formally define the problems that are studied throughout
this paper along with related work. Section III also gives a
detailed summary of the main results presented in this paper.
Next, in Section IV, we consider the MDS coverage depth
problem, where Section IV-A is devoted to the case where the
channel is noiseless. Section IV-B extends the study of the
MDS coverage depth problem to noisy channels, and gives
several bounds on the success probability of the decoding
as a function of the number of reads that were sequenced.
Following that, in Section V, we study the coding coverage
depth problem for the case where the channel is noiseless.
The singleton-random-access problem is studied in Section VI.
Finally, Section VII concludes the paper and gives a few
directions for future research. For a detailed summary of the
results and contributions presented in each of the sections, the
reader is referred to Section III-C.

II. DEFINITIONS AND CHANNEL MODEL

In the typical model of DNA-based storage systems [13],
[26], [40], the data is stored as a codeword that can be



described by a vector of length-¢ sequences or strands over
the alphabet ¥ = {A,C,G,T}. The set of all length-¢
vectors over ¥ is denoted by X, and ¥* £ [J;2, %%
For a positive integer n, [n] denotes the set {1,...,n}. In
many cases an outer error-correcting C is used to encode
the data over the length-/ sequences, so it is assumed that
the outer code C receives a vector of k length-¢ sequences,
U = (uy,u,...,u;) € (9% and returns a vector of n
length-¢ sequences X = (x1,xa,...,x,) € (X¢)". For two
vectors U = (uy,...,u,) and V = (vq,...,vg,), we
denote by U o V their concatenated vector, i.e., UoV =
(wy,..., U, ,v1,...,V,). In this work, the code C is denoted
by (n, k) or by [n, k] in case C is an MDS code. The vector
X is the input to the DNA storage system, which we now
describe in more detail and is also illustrated in Fig. 1.

The DNA storage channel, denoted by S, first produces
many noisy copies for each of the strands in the vector
X. Then, these noisy copies are amplified using Polymerase
Chain Reaction (PCR), and lastly, a sample of M of these
strands is sequenced using a DNA sequencing technology
[19]. Therefore, the output of the DNA storage channel can
be described as a multiset Yy = {y1,Ys, ..., Y} Where
each y, € ¥* for j € [M] is called a read and is a noisy
version of some ;, i € [n]. It should be noted that our model
assumes that for any read y;, the index i € [n] such that
y; is a noisy copy of x; is known (this can be achieved by
encoding the index ¢ within the strand x;, e.g., as its prefix).
Depending on the specific sequencing technology being used,
the reads in ), can be obtained either sequentially (one after
the other), or altogether. The former corresponds to Nanopore
sequencing technologies [38], while the latter describes next-
generation sequencing (NGS) technologies [6] (e.g. [llumina).
The number of reads in Yy, that are noisy copies of the i-th
strand x;,¢ € [n], depends upon some categorical probability
distribution p = (p1,...,pn), where for ¢ € [n], p; is the
probability to sample a read of ;. The probability distribution
p is a function of the DNA storage channel S and is referred
by the channel probability distribution, or in short channel
distribution; Note that the distribution p might also depend on
the design of the DNA strands in X, however for simplicity, in
this work we assume that p is only a function of the channel
S. Moreover, it is assumed that p; > 0 for all ¢ € [n], unless
stated otherwise.

Remark 1. Note that in several works, see e.g. [23], [34], it
is assumed that a set (and not a vector) of strands is stored in
the DNA storage system. However, since the strands in these
sets are tagged by indices anyway, we assume for simplicity
that the information is a vector of strands. Furthermore, it may
also be possible that every strand is encoded using an inner
code [13], [26]. Nevertheless, since this part is independent of
the study of this work, it is not treated as part of the encoding
process, but it is taken into account in the success probability
of a retrieval algorithm, as will be explained below.

The decoding process of X (and thus U) starts with
partitioning the reads in ), into groups, also called clusters,
according to their origin strand, i.e., for i € [n], the i-th cluster
should contain all the reads y; that are noisy copies of ;. To

simplify the analysis, we assume that this step is accomplished
error-free. In practice, this assumption can be reached using
indices in the sequence x; which can be further protected
using some error-correcting code [40]. Hence, the probability
of successfully retrieving X and U mainly depends on the
following two components of the solution being used.

1) Error-correcting code. When X is a codeword in some
error-correcting code C, it is possible to successfully
retrieve X even if not all of its n symbols were decoded
successfully. The applicable subsets J C [n] such that
X can be retrieved from the symbols «; for j € J
are determined by the code C. For example, if C is an
[n, k] MDS code, then any k strands (symbols of X) are
sufficient to decode the data.

2) The retrieval algorithm. The success probability to re-
trieve the strand x; also depends on the retrieval algo-
rithm, which aims to decode a sequence using several
noisy copies [5]. Typically, this probability depends on
the number of noisy copies which are given as input,
the channel error rates, and the use of an inner code
within the strands. In this work, we model the retrieval
algorithm using an integer ¢ > 1, and we assume that
each strand x; can be retrieved given ¢ reads, which are
noisy copies of it, and cannot be retrieved given less
than ¢ reads?.

The main goal of this paper is to study the required sample
size M that guarantees successful decoding of the information.
According to our model, this sample size depends on the
channel, the error-correcting code, and the channel probability
distribution p.

Remark 2. The analysis presented in this work assumes that
the reads in the multiset ), are received sequentially from
the DNA storage channel as illustrated in step 5a of Fig. 1.
However, our results are also relevant for the case in which all
the reads are obtained together. More specifically, the random
variable that governs the sample size M for which decoding is
possible in the sequential case can be used to describe the non-
sequential case as well. That is, the probability distribution of
the latter corresponds to the decoding success probability given
M strands in the non-sequential case.

In this paper, we explore two different scenarios concerning
our problem. In the first scenario, discussed in both Section IV
and Section V, we focus on the objective of recovering all the
stored information. This involves retrieving the entire vector
U. On the other hand, in Section VI, we shift our attention
to a different scenario where our goal is to retrieve a specific
part of the information, i.e., a specific subset of symbols from
the vector U. For these scenarios, we calculate the expected
required sample size for noiseless/noisy channels and study
how it can be minimized using coding schemes.

2Note that, in practice, the probability that the retrieval algorithm succeeds
is not binary. More precisely it is a function that returns a value between 0
and 1 and increases with .
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III. THE COVERAGE DEPTH PROBLEM IN THE DNA
STORAGE CHANNEL

In this section, we formally define the theoretical problems
studied in this paper and review relevant existing results
in the literature. We then present our contributions and the
corresponding results for each problem.

A. Problems Definition

This work studies the required sample size to retrieve the
information vector U, or a specific subset of its symbols, as

a function of the DNA storage channel, the error-correcting
code, and the retrieval algorithm. Under this framework, our
goal is to understand how to optimally pair an error-correcting
code with a given retrieval algorithm in order to minimize the
sample size, while guaranteeing successful decoding with high
probability.

According to our model characterization, we let ¥ (C) be
the random variable that governs the number of reads that
should be sampled for successful decoding of U. When C is
an [n,k] MDS code, this notation is replaced by vF(n,k).

A

The uniform distribution is denoted by p, = (%,...,1) and



for brevity, we let 14(C) £ v (C) and v,(n, k) = v (n, k).
The first two problems, which focus on retrieving the entire
information vector U, are defined below.

Problem 1. (The MDS coverage depth problem.) For
given values of k£ and n, and a channel distribution p find
the expectation and the probability distribution of the random
variable /¥ (n, k). That is, find the values of E [vP(n, k)] and
P[vP(n,k) > m] for any m € N.

Problem 2. (The coding coverage depth problem.) For a
given value of k, find the following.
1) Given n and p, find an (n,k) code C that is optimal
with respect to minimizing E [ (C)].
2) The minimum value of E [/P(C)] over all possible codes

C with dimension k& and channel distributions p. That is,
find the value M°P!(k) £ lim infc ,{E [vF(C)]}.

The third problem is related to the other setup, in which the
user wishes to retrieve a subset of the k information strands
(i.e., a subset of U’s symbols). This subset can be described by
an index set I C [k], such that the set of information strands to
be retrieved is Uy = {u; : i € I}. In this work, we consider
the special case in which this subset is a singleton, i.e., the
case where the user wishes to retrieve a single information
strand u; for some ¢ € [k]. More formally, we are interested
in the following problem.

Problem 3. (The singleton coverage depth problem.)
Given an (n, k) code C, for i € [k], let 7;(C) be the random
variable that governs the number of samples to recover the i-th
information strand assuming noiseless channel with uniform
distribution. Find the following:
1) The expectation value E[7;(C)] and the probability dis-
tribution P[r;(C) > r] for any r € N.
2) The maximal expected number of samples to retrieve an
information strand, i.e.,
T = max E[r(C)].
3) The average expected number of trials to retrieve an
information strand, i.e.,

o \

Sy

When no coding is used, (i.e., U = X) C is removed from the
notations.

B. Related Work

For the noiseless channel, it is sufficient to have a single
read of each x;,i € [n] to retrieve it. We note that if the
channel distribution is the uniform distribution p,,, and no code
is defined on the data (i.e., £ = n) then finding the expectation
listed in Problem 1 is equivalent to the classical coupon
collector’s problem [15]. This problem was first studied by
Feller [15] where it was referred to as the dixie cup problem.
Under the assumption that we have n coupons and it is equally
likely to collect any of the coupons, the expected number of
draws (i.e., sample size) required to get a single copy for each

coupon is E[vi(n,k = n)] = nH,, = nlogn + yn + O(1),
where H,, is the n-th harmonic number and v ~ 0.577
is the Euler—Mascheroni constant. Furthermore, it was also
proven [16] that E[vi(n, k)] = n(H, — H,—g). It is well-
known that when lim,, o, n — k = 00, the expectation can
be approximated by E[v1(n, k)] =~ nlog(n) — nlog(n — k) =
nlog(27).

For noisy channels, i.e., ¢ > 1, the problem is closely related
to the classical urn problem [12], [25]. Suppose there are n
labeled urns and each can be filled with identical balls. At
every round, a ball is thrown into one of the urns randomly.
In each round, the probability of throwing a ball to the j-th urn
is denoted by p;, for 1 < j <mn, and we let p = (p1,...,Pn).
In [25], it was shown that in order to have ¢ balls in each urn
(or equivalently ¢ copies per coupon), the expected sample size
is E[ve(n, k = n)] = nlogn+n(t—1)loglogn+nC;+o(n),
where C} is a constant that depends on ¢. Following that, Erd&s
and Rényi [12] proved that the distribution of this random
variable is tightly concentrated around the expectation. More
specifically, when drawing nlogn + n(t — 1) loglogn + na
times, the probability to have at least ¢ copies for n coupons is

asymptotically equal to e = for n large enough. Flajolet
et al. [16] generalized these results to a general discrete
distribution on the coupons/balls and proved that the expected
sample size to have at least ¢ copies/balls for k£ out of the n
coupons/urns is

E[vf (n, k)=
Z/ [u?] H et—1(piv) +u (e’ —er—1(piv)))e” "dv, (1)

where e;(x) = Zf:o f—, and for a polynomial Q(u), [u?]Q(u)
is the coefficient of u¢ in @Q(u). This known result solves
the expectation value listed in Problem 1, not only for p,
but for any channel distribution. As can be seen, for practical
purposes, the expression in (1) and its asymptotic behavior are
not easy to calculate or to work with. Hence, in Section IV-B
we solve a closely related problem and present a closed-form
expression. Moreover, to the best of our knowledge, the other
part of Problem 1, i.e., studying the cumulative probability
distribution P[v¥(n, k) > m], is still open.

Another related problem was presented in [7] by Chandak
et al. In their paper, the authors defined the writing cost as
the number of synthesized bases per information bit, and the
reading cost as the number of bases that have to be sequenced
per information bit in order to retrieve the stored information.
Their paper studies the tradeoffs between these two costs.
They first showed that for the noiseless channels, the event
of obtaining zero copies of a specific strand is equivalent to
an erasure of this strand, which can be approximated as a
Poisson random variable. Thus, they were able to compute
the capacity of this channel and by this obtaining the tradeoffs
of the costs. For the noisy channel, the authors suggested an
LDPC-based scheme to improve the ratio between the costs,
for more details see [7]. A related approach was discussed
in [27], where the authors used an LDPC-based scheme for

3In this case, there exists 0 < a < 1, such that for n large enough k < an.



error correction, together with retrieval algorithms, and showed
experimentally that their approach reduces the reading costs
compared to previously published works. In each of the works
[7], [13], and [27], a specific practical coding solution was
proposed and analyzed by the authors, demonstrating that they
effectively reduce the ratio between writing and reading costs
by using their selected codes. This work, however, provides a
more general framework and defines the theoretical problems
that should be studied to rigorously analyze the required cov-
erage depth, focusing on understanding how different coding
schemes affect the required number of reads*. This work
initiates the theoretical study of these problems, which are
related but distinct from the problems discussed in [7], [27].
It establishes theoretical bounds and explores optimal codes,
including for random-access setups. Thus, the results presented
in this paper are independent and complementary to any of the
previously suggested solutions.

The problem of random access in DNA storage has already
been addressed in several works; see e.g. [3], [22], [26], [39],
[42]. The main goal is to support random access to specific
DNA strands in the storage and this can be supported by the
use of different primers for the different strands or physically
storing strands in different storage containers. However, these
solutions incur high costs, and thus the problem of storing
strands together using these primers is still important and this
work addresses it from a coding theory perspective.

C. Main Contributions

In this paper, we define a new family of problems that
should be considered when designing DNA storage systems.
Additionally, this work provides an extensive analysis and
present results that enhance our understanding of the inter-
play between error-correcting codes, retrieval algorithms, and
coverage depth. The main results with respect to each of the
three problems we defined are listed below.

The MDS coverage depth problem (Problem 1) For this
problem, we have the following results in Section IV.

1) We show in Theorem 1 that the value of E[vP(n, k)] is
minimized if and only if the channel has the uniform
distribution.

2) We show in Theorem 3 and in Theorem 4 two upper
bounds on the probability distribution of Plv(n,k) >
m]. We further prove in Lemma 1 a lower bound on the
probability Plvi(n, k) < m]. Combining these results
in Theorem 5 we prove that for any € > 0,

log (ﬁ) + fe(n,R) <E [@}

< (log (ﬁ) + tloglogn + 2log(t + 1)) (1 +2¢),

where f.(n,R) = O(-5).
3) For practical purposes of DNA storage systems, it is
sometimes required to plan ahead and set the number

4The key difference between the problems discussed in this paper and
the problems discussed in [7], [27] is that while in [7], [27], the goal is
to optimize the ratio between the writing cost and reading cost, in this work,
the optimization is done on the number of reads, which is highly related to
the reading cost.

of reads that should be sampled to guarantee successful
decoding. Hence, we show in Theorem 6, that when
sampling more than rg(n, k, t) reads, the expected num-
ber of encoded strands that cannot be recovered (i.e.,
have less than ¢ copies) is at most n— k, which indicates
on the probability of successful decoding. The value of
rg(n,k,t) can be found in equation (10).
The coding coverage depth problem (Problem 2) We
fully solve Problem 2 for the noiseless channel with uniform
distribution. We show that MDS codes are optimal with respect
to minimizing E[v,(n, k)]. We also show that for a fixed %, the
larger n is, the smaller the value of E[v;(n, k)] is. The results
of this problem are given Section V.
The singleton coverage depth problem (Problem 3) We
extensively study the singleton coverage depth problem for
the case in which the channel is noiseless in Section VI. Our
main results are summarized below.

1) We first study and fully solve the case in which n = k.
In particular, we prove that if n = k then the expected
time to retrieve a singleton is minimized when no coding
is used and it is equal to k and T§,,, = TS, = k (see
Lemma 2 and Claim 5).

2) Next, to study more involved cases, we define retrieval
sets and minimal retrieval sets, which correspond to the
(minimal) sets of encoded strands from which a specific
target singleton information strand can be recovered. Us-
ing this property of codes, we analyze the expected time
to retrieve a singleton given that its minimal retrieval
sets are disjoint. See these results in Theorem 8 and
Corollary 4. Moreover, in Corollary 3 we use Theorem 8
to conclude that the expected time to retrieve a singleton
given that C is the simple parity [k + 1, k] code is k.

3) We extend the result of Corollary 3 to any systematic
[n, k] MDS code, by the construction and detailed eval-
uation of the corresponding generating function. That is,
we show in Theorem 9, that for any [n, k] MDS code C
and any i € [k], E[r;(C)] = TSy = The = k-

4) We give two explicit code constructions (Construction 1
and Construction 2) for codes with k information strands
for which TS, < k, ie., E[r;(C)] < k for all i € [K].
Furthermore, we analyze the behavior of these codes
both analytically and by computer simulations.

5) To conclude the analysis of the singleton coverage depth
problem, we provide in Lemma 3 and in Theorem 13
two lower bounds on the value of TS, . Moreover,
in Corollary 7, for n large enough, we show that for
any (n,k) code C, such that R = %, we have that
TSox > k(% + 152 - In(1 — R)). In particular, the lat-
ter implies that when R approaches zero, Triax > %, and
when R approaches one, the lower bound approaches k

from below.

IV. THE MDS COVERAGE DEPTH PROBLEM

In this section, we focus on the case discussed in Problem 1.
That is, the case where the code C is is an MDS code. We
start with the noiseless channel which refers to ¢ = 1 in Sec-
tion IV-A and the noisy channel is considered in Section IV-B.



A. The MDS Coverage Depth Problem - Noiseless Channel

In this section, we focus on the setup where ¢ = 1. Hence,
we can assume that the retrieval algorithm simply returns the
sampled sequences and thus if x; has at least one copy, i.e.,
t > 1, itis enough to retrieve it. Under this setup, the minimum
sample size M is equivalent to the quantity which is governed
by the random variable ¥ (n, k). Using our notation, note that
the expected value of vP(n,k) is given in (2). In this case
the distribution probability function for p = p,, was studied
in [12]. Clearly, when k = 1, we have that E[vy(n,1)] = 1.
Hence, this section is focused on the case where k > 2. Our
main result is to show that E[v(n, k)] is minimized when
p is the uniform distribution and is bounded from below by
kloge if £ =©(1).

In light of the existing results, we first show that for the
uniform channel distribution, when k is fixed, E[vy(n, k)]
decreases as n increases.

Claim 1. For all n > k, E[v1(n, k)] > E[vi(n + 1,k)].

Proof: The proof follows by showing that E[vy(n, k)] is
a monotonic function that decreases with n. From [16] for any
n € N we have that

k-1
Bl BBl 41,0 = 3 1 —g o
_k_1< n  n+tl )
—\n -t n+1-—i
k—1 ;
T2t >0,
which completes the proof. [ |

In the next theorem it is shown that for MDS codes,
E[v?(n, k)] is minimized when p = p,,.

Theorem 1. For any p, E[vP(n, k)] > E[v1(n, k).

Proof: By (1), which was proven originally in [16], we
have that

k=1 ,co n
E[vf (n, k)] = Z/ [ud] H (1+u(e?’ —1))e “dv
q=0"0 i=1

k=1 oo
= [ e X e
q=0"0 IC[n] i€l
[T1=q
o k—1
| e fe o
q= n] i€l
\1\ q
Define f(pla tee 7pn) £ Zz;é <ZIC[n] Hie[(epﬂ) - 1))
[T|=q

We show next that f is minimized if and only if p; = L
for all 1 < ¢ < n. Furthermore, since f is minimized if and
only if E[vP(n, k)] is minimized, this concludes the proof.

Define g(p) = —1+ Y ., p;. Using Lagrange multipliers,
the Lagrangian function is

L(p, ) = f(p) + Ag(p)

I o

qg=0 \ IC[n] i€l
[I|= q

We are looking for values of p, that satisfy

0L(p,\)
) 1+ Z pi =0, 3)

and forall 1 <37 <mn,

— XA i
=1

aL( <
ap’ = E E vePi? I |(e”j” -1 | =0,
i q=1 \ I1C[n]\ {3} jer
H=a—1

which is equivalent to

A = —vePi? Z H(epf” —1). 4)
ICn]\{i} jel
[I|<k—1

Hence, for any 1 < i < i’ < n we have that

eP Z H(epﬂv—l):epi/” Z H(ep-“’

ICn)\{i}jel IC[n)\{4"} JET
[I|<k—1 [T]<k—1

By reorganizing the latter equation, we have that for any 1 <

1< <n,
> ey

(ep,iv _ epi/v)
IC[n)\{i,i'} JEI
[I|<k—1
= (el — ePi'?) Z H(epjv
IC[n]\{i,i'} 7€1
[I|<k—2

which is equivalent to

(epﬂ) _ eplli)) _ 0

> e

ICn\{i,i'} g€l
[T|=k—2
Hence, we have that p; = p;s or that |{j : j # i,7/,p; > 0}] <
k — 2. To complete the proof, let us show that the minimum
is not attained for any p such that, |supp(p)| < n. We prove
the latter using an induction on n. For clarity, we will use
the notation f,, to indicate the relevant value of n and p7,

(1,...,1). The base case in wh1ch n = 2 can be Verlﬁed
manually. This implies that p = p2 = (%, %) is the only

minimum point for fo. Assume the claim holds up to n, and
let us prove its correctness for n+1. Let p = (p1, ..., Pnt1) be
a minimum point for f, 11, and assume by contradiction that
|supp(p)| < n+ 1 and further assume w.l.o.g. that p,+1 = 0.
Define p’ = (p1,...,pn) and note that f,,+1(p) = fn(p'). B
the induction assumption, we know that a minimum point of
frn has a support of size n and hence, by the analysis of the
Lagrangian function, we have that f,, has a unique minimum
point at p;,. Therefore, we have that

far1(P) = fu(P) > fu(Ph),



and equality is obtained if and only if p’ = pI. Moreover,
Claim 1 implies that f,,(p2) > fn+1(p?*!), and thus,

fn+1(p) > fn(p;i) > fn+1(pz+1)a

which is a contradiction. Thus, we get that |supp(p)| = n+1,

which implies that the only minimum point of f,,1 is p2*1.

|

Theorem 1, together with the previous claims imply a lower
bound on E[¢¥(n, k)], which is given next.

Corollary 1. For any channel distribution p it holds that,

k—1
E[vP(n, k)] > E[v1(n, k)] = Z

=0

n

&)

n—1
and if lim,,_,.on — k = oo then Zf;ol =~ nlog(-"%).
Moreover (11) holds with equality if and only if p = p,,.

Finally, we give the asymptotic value for the minimum
expected sample size for the noiseless channel, E[v;(n, k)],
where the proof can be found in Appendix A.

Theorem 2. Let R be a constant, 0 < R < 1. Then, we have
that

. En(n,k=|nR])] 1 1
i P A <1—R> ~

Furthermore, consider a sequence of MDS codes {C;}72,
with parameters [n;, k;] such that lim;_, ., k;/n; = 0. Then,

lim E[vy(n;, ki)]

=1

B. The MDS Coverage Depth Problem - The Noisy Channel

The main goal of this section is to address Problem 1 for
the noisy channel under the uniform distribution. Under this
setup, we assume the data is encoded with an [n, k] MDS code
and that each strand x; can be retrieved given some ¢ > 1
reads, which are noisy copies of it, and cannot be retrieved
given less than ¢ reads. Similarly to the previous section, it
is enough to successfully decode k (or more) sequences x;
in order to retrieve the stored information and so under this
setup the minimum sample size for our problem is equivalent
to the quantity v;(n, k) where ¢ > 1.

It should be noted that as listed in the related work section,
the first part of Problem 1, i.e., the value of E[v:(n, k)] is
known [16] and is given in (1). However, it is not a closed-
form expression, and in this section, we give several closed-
form expressions that bound this value and thus extend the
known result. Furthermore, the most related result regarding
the probability distribution Plv;(n, k) > m] was given in [12].
The authors showed that for n = k any x € R, the probability
satisfies

Plvi(n,n) > nlogn + (t — 1) loglogn + nz| < e~ =

In this section, we extend the latter result, by providing
several bounds for the case when & < n, which is assumed
for the rest of this section. Our main results for this case are
stated in Theorem 3 and in Lemma 1. To discuss these results,

we first define the following value. Given n, k, and ¢ as stated
above, we define

r(n, k,t) = nlog (nnk) +ntloglogn+2nlog(t + 1). (6)
In Theorem 3, it is shown that when n is large enough, the
probability that more than r(n, k,t) reads are required to re-
trieve the information i.e., P[v:(n, k) > r(n, k,t)] approaches
Zero.

Furthermore, for the case in which kK = Rn, where 0 < R <
1 is a fixed constant, the value of r(n,k,t) can be reduced
by replacing the expression loglog(n) with any function of n
that approaches to infinity with n. To conclude this discussion,
we also show in Lemma 1 that for any ¢, the probability that
less than nlog(-"+) — nc reads are enough to retrieve the
information is bounded from above by e~¢(1+ —L). We start
by showing that for any € > 0, P [v(n, k) < r(n,k,t)] > 1—¢
for n large enough.

Theorem 3. For any ¢ > 0 and any integer n, such that
6t.2t—1
> 16, we have that,

n>e -«
Plv(n k) <r(n,k,t)] >1—e.

Proof: To prove the statement in the theorem it is suffi-
cient to show that

Pvi(n, k) > r(n,k,t)] <e.

Denote r = r(n, k,t) and recall that within the context of the
urn problem (see Section III-B), the random variable v;(n, k)
denotes the number of balls (or rounds) until we have a set of
k urns where each urn has at least ¢ balls. Hence, we show that
if the number of balls thrown is at least r, then the probability
of having n — kK + 1 or more urns which are not filled with ¢
balls is approaching zero. The approach leveraged in the proof
is inspired by a technique first employed by Erdds and Rényi
in [12]. Let us define the following event.

EET): After r rounds, there exists a set S;, of n — k + 1

urns, each containing less than ¢ balls.

Next, we show that the probability of Et(T) approaches zero
when n is large. To this end, we define z;(n,r) for 1 <i <mn,
as a random variable that governs the number of balls in the
i-th urn, after r draws. For n large enough, the probability
that urn ¢ has at most ¢ — 1 balls after r draws is denoted by
Plz;i(n,r) <t —1] and is given by,

e EO )
(O

N N -

St-(tr_1> <i> (1_3L) |

where the first inequality is proven in Claim 6 in Appendix B,
and the last inequality follows from the fact that ( " ) <

-1
(£%)'~1. Note that (%)~ < 3, for ¢ > 1. Thus,

T t—1

Plzi(n,r) <t —1] < 3t- (f)H (1 - 1)71(”_”) .

n n



We have that,
Plzi(n,r) <t—1]

t—1
<3t <log (Lk)—|—tloglog(n)—|—210g(t—|—1)) e
n—
—k 1 1 -1
< 3t(2logn)' "t (2 =
< 3t(2logn) ( n log® n (t+1)2 ¢
_ 3. e . (2logn)t~? n—k
I G ) e ey
=1 t—1
_3p. " 2 n—=k

(t+1)2 log(n) n °

where the second inequality holds since for n large enough
log(-2+) + tloglog(n) 4+ 2log(t 4+ 1) < (2logn). It should
be noted that fog_v} > t, which is the case of our interests, we

have that 3t - % < 6t, and hence,
2t—1 —k
Ple(nr)<t—1] <6t — 1%
log(n) n

Now let us define a random variable Y as the number of
urns with less than ¢ balls. From the linearity of expectation,
regardless if the urns are independent or not, the expected
number of urns that have less than ¢ balls is,

ElY] = 2L Elzi(n,r)]
2t71
log(n)’

=n-Plzn,r)<t—1<(n—k)-6t-
where the last inequality holds for n large enough.
Note that
P [EET')} =PlY >n—k+1],
and hence by Markov’s inequality, we can conclude that,

BT g 20
n—k+1 log(n

PlY >n—k+1]<

~—

Thus, we get that P[Et(r)] — 0 for n large enough which
implies the statement in the theorem. ]

For fixed-rate codes, i.e., for the case where k = Rn, when
0 < R <1, and R is a fixed constant (when n grows), we
present a stronger result in the next theorem. The proof of this
theorem can be found in Appendix B.

Theorem 4. Let f : N — R be a function such that
lim,, 00 f(n) = 00, and let

R
Then, for n large enough, it holds that

(2- f(n)*
et f(n)

r¢(n,k=Rn,t) = nlog(l_l)+ntf(n)—|—2n(t +1). (1

Pvi(n, k) > ry(n,k,t)] < 6t -(1-R).

Theorem 4 draws a connection between the sample size
and the probability of successful retrieval when using fixed-
rate codes. In particular, using the results of Theorem 4 one
can pick any function f(n) that approaches infinity as slowly
(or fast) as possible to get an upper bound on this probability
which gets bigger (or smaller).

In the next lemma, an upper bound on the probability
Plvy(n, k) < nlog (ﬁ)
given. The proof is based on the fact that v4(n, k) > v1(n, k)
and can be found in Appendix C.

— nc|, for any positive ¢ € R, is

Lemma 1. For any ¢ > 0, and any ¢ > 1 it holds that,
P luvi(n, k) <nlo (L)—nc <e‘ 1—|—L
B = & n—=k - n—k)/)’
Combining Lemma 1 and Theorem 3, and assuming ¢ is a
constant with respect to n, in the next theorem we show upper
and lower bounds on E {@], and the detailed proof can
be found in Appendix D.

Theorem 5. For any € > 0, there exists n., such that for any
n > n. we have that,

log <1> + f.(n,R) <E [

n

1
< <log <1—R> + tloglogn + 2log(t + 1)) (1 +2¢),

(1 “a 1R>2h)

where

1 1 . Bop
fen ) =5, (1 - 13) =2

h=1
1
=o0)

and Bj, denotes the h-th Bernoulli number.

For practical purposes of DNA storage systems, it is some-
times required to plan ahead and sample the number of reads
that guarantees successful decoding with high probability.
Hence, we turn to the following strongly related problem
and give a closed-form expression to the corresponding value.
Turning back to the urn problem terminology, we define X (")
as the number of urns that are not filled with at least ¢ balls
after r rounds. The goal is to find a lower bound on the number
of rounds r, that guarantees that the expected number of urns
that are not filled with ¢ balls is at most n — k. That is, to find
rg, such that for any r > rg, we have that E[X(T)] <n-—k.
In order to derive this result, we first consider the probability
that any fixed urn is not filled with ¢ or more balls by the r-th
round. This probability is given by,

S (N, (1o L) < prpesty
p=3 (s (1-1) 7 cemmein,

j=0

where the last inequality follows from Chernoff bound [9]
for r > n(t — 1), and D(al|p) is the Kullback-Leibler
divergence [10] which is given by

1—-a

1—

Under our setup, each of the n urns can be interpreted as a
Bernoulli random variable with probability p, which is denoted
by X" for 1 <i < n. Note that X™ = 3" | X" is the
number of urns that are not filled with at least ¢ balls after
r rounds, which implies that the number of urns that have at
least ¢ balls is n — X ). Our approach will be to determine a

D(a|lp) £ alog, Z; + (1 —a)log,



value for r, which guarantees (in expectation) that X (") is at
most n — k. From the linearity of expectation,

E[X™] = np

< e~ (=D 1o (M) —(r— (1= 1) log (“TE=") (g

The next claim will be used in the derivation to follow and
its proof can be found in Appendix F.

Claim 2. For > n(t — 1), we have that E[X ("] < n —k, if,

log 2

r r 1 kY 1
' ewm>_-(1-EL ,
n(t — 1)6 T e ( n) ©)

Using known results on the Lambert W function [11,
Section IV], [8, Theorem 1], the values of  for which (9) holds
can be concluded. This is summarized in the next theorem,
and the complete proof can be found in Appendix F. For
0 < R < 1, we denote,

re(n,k = Rn,t) £

2log?2
t—1

n(t—1)—nlog2log(1—R)+n(t—1)4/— log(1-R). (10)
Theorem 6. Let R = % For any r > rg(n,k,t), we have

that E[X ("] <n — k.

At this point, we would like to shed some light on the
relation between Theorem 3, Theorem 4 and Theorem 6.
In our setup, which uses the urn problem terminology, it is
assumed that r balls are thrown into n unique urns, and we
are interested in the event that at least k£ of these urns contain
at least ¢ balls each. This scenario can be parameterized in two
different ways; (a) the number of balls that need to be thrown,
and (b) the number of urns that contain £ — 1 or less balls. The
random variable v;(n, k) governs the value in (a), assuming
that the value in (b) is fixed. Analogously, the random variable
X governs the value in (b), assuming that the value in (a)
is fixed.

In the case where the probability distribution is tightly con-
centrated (i.e., where v¢(n, k) is tightly concentrated around
its mean and similarly for X (")), one would expect these two
quantities to coincide. Fig. 2, shows results from computer
simulations we made to demonstrate the results of Theorem 3
and Theorem 6. In the presented simulation we used n =
100,000 urns, R € {0.5,0.8}, k = Rn, and t = 5. In each
simulation r balls are drawn, each inserted into one of the urns
randomly, and the simulation is considered as success if it ends
with at least & urns, each with at least ¢ balls. For any value of
r, the presented result is the fraction of successful simulations
out of 1,000 simulations we have made per r. The Y-axis
shows the fraction of successful experiments, and the X-axis
shows the number of draws r normalized by nlog(ﬁ). It
can be seen that the success rate of both values presented in
Theorem 3 (r(n, k,t)) and Theorem 6 (rg(n,k,t)) are 1.

Practically speaking, as mentioned above, the noisy channel
fits the real scenario of DNA storage systems. Hence, it should
be mentioned that a similar problem was studied experimen-
tally by Erlich and Zielinski [13], however, with a slightly
different setup. They presented the DNA fountain, a Luby
transform-based scheme and assumed that the total number

of reads is fixed and is given (from the DNA sequencer) and
it is distributed with a negative binomial distribution. Thus,
they were able to calculate the average number of copies per
strand and empirically evaluate the required sample size as a
function of the distribution’s parameters. It should be noted
that they only considered reads of the design length and thus
the error rates were reduced. They also evaluated how dilution
affects the distribution and the required sample size.

Finally, another variation of the noisy channel S is studied,
which is relevant to the DNA fountain [13] and similar
schemes. Here, it is required to obtain a single noiseless copy
from k out of the n synthesized strands. Assuming uniform
distribution on the strands, in this channel, any sampled read
is drawn noiseless with some fixed probability 0 < a < 1.
We use the notation of w,(n,k) to denote the random vari-
able describing the required sample size to ensure successful
decoding in this case. We note that this setup is easier to
analyze, and the following results can be derived using similar
techniques as in the classical coupons collector’s problem [15];
see Appendix G.

Theorem 7. For any k < n,

Elwa(n, k)] = g (Hyp — Hy_y) -

V. THE CODING COVERAGE DEPTH PROBLEM -
NOISELESS CHANNEL

In this section we fully solve Problem 2 in the case ¢t = 1
and show that MDS codes are optimal for any categorical
channel distribution.

The next claim solves Problem 2.1 and states that given
k information strands, for any channel distribution p, using
an [n,k] MDS code minimizes the expectation of v¥(C)
compared to any other length-n codes. This can be verified
by showing that the number of subsets of size k& which are
sufficient to retrieve the information is maximized when an
MDS code is used.

Claim 3. Given k, n, and p, assume that C is an (n, k) code.
Then, it holds that, E[vP (n, k)] < E[vP(C)], where equality is
obtained if and only if C is an MDS code.

Proof: Given a sample of size M, we denote by J C [n]
the indices of the unique strands that are represented in this
sample. If | J| < k then it is impossible to successfully decode
the information, which follows since the dimension of the code
is k. Otherwise, when |J| > k, any [n,k] MDS code can
decode the stored information, while if C is not an MDS code
there exists J' of size k from which the stored information
cannot be decoded using C. Therefore, if C is not an MDS
code, for any J C [n], if the information can be deocded using
C, then it can also be deocdedby an [n, k] MDS code. This
implies the inequality stated in the theorem, where equality
holds if and only if C is an MDS code. [ ]

Next, based on Corollary 1 and Claim 3, we obtain the next
corollary
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Fig. 2: Simulation results of the success rate (fraction of successful experiments) as a function of the number of draws. The
X-axis shows the number of draws (normalized by nlog(ﬁ)), while the Y-axis shows the fraction of simulations in which
there were at least k& urns with ¢ balls each. The parameters used in the simulations were n = 100,000, ¢ = 5, and for each
number of draws, we had 1,000 simulations. It can be seen that for both Theorem 3 and Theorem 6 the success rate of 1, as
expected.



Corollary 2. For any channel distribution p and any (n,k)
code C, it holds that,
=1
BP0 > B k)] > Eba(n k)] = 3 72,
1=

(1)

and if lim, ,,on — k = oo then Zf:_()l -~ nlog(-"%).

Moreover (11) holds with equality if and only if p = p,, and
C is an MDS code.

Additionally, from Claim 1 we know that for fixed k, the
larger n is, the smaller the value of E[v4(n, k)] is and the value
of lim,, oo w is given in Theorem 2. Together,
these results fully solves Problem 2.2 for the case ¢ = 1.
While this section fully solves the coverage depth problem
for ¢ = 1, the case where the channel is noisy (i.e. ¢ > 1)
remains a challenge that is left for future work.

VI. RANDOM ACCESS

In this section we study the problem of optimizing the
sample size for random access queries in DNA storage sys-
tems. Recall that, in this problem, a vector of k information
strands each of length ¢, U = (u1,us,...,ux) € (X9F,
is encoded into a vector of m strands, each of length ¢,
X = (z1,T2,...,T,) € (X°)" that are stored in the DNA
storage channel as described in Section II. Later, the user
wishes to retrieve a single information strand w; for some
i € [k]. Unless stated otherwise, we assume the channel is
uniform and noiseless.

We start by studying the case when the number of in-
formation strands matches the number of coded strands (i.e.
n = k), and prove that the optimal retrieval strategy involves
no coding, resulting in an expected retrieval time of k.
These preliminary results are given in Section VI-A. Next, in
Section VI-B, we extend our insights to more involved cases,
including systematic MDS codes, affirming that the expected
retrieval time remains k for any information strand. Furthere-
more, in Section VI-C, we present explicit code constructions
achieving expected retrieval times below k& and evaluate their
performance analytically and through simulations. Finally,
Section VI-D concludes this analysis with lower bounds on
the maximum expected retrieval time in different scenarios.

A. Preliminary Results

Recall that given an (n, k) code C, for i € [k], we denote by
7;(C) the random variable that governs the number of samples
to recover the i-th information strand. The next lemma fully
solves Problem 3 when no coding is used.

Lemma 2. Let n > 1. For any 1 < ¢ < n, we have that
1) E[r;] =n and Thnax = Tayg = 1.
2) For any r € N we have that P[r; > 7] = (1— )", and
Plr=r]=1.1-1)"
Proof: As no coding is used, U = X and hence for any

i, T; governs the number of draws until we draw x; = wu;
once. For the first part, note that for any i, 7, has geometric

distribution with success probability p = % and hence we have
that E[7;] = p~! = n which implies that

Tmax = max E[7;] =pl=n,

1<i<n

and
-1

1 — np
TaV:7§Ei: =p 1 =n.
g n &= [7:] n p n

For the second part we have that 7; > r for an integer r
only if w; was not sampled in the first r trials, and hence

mn>ﬂ=u—mw=0—;f,

Pt (-1
|

The proof follows the same ideas as the proof for the
coupon collector’s problem and is given in Appendix H for
completeness.

and

Claim 4. For any (n, k) code C and any J C [n] of size p we
have that E[7;(C)] = nH,.

For the rest of this section, it is assumed that C is an (n, k)
code and X is the encoded codeword of the information vector
U. The structure of C defines for each information strand all
the possible sets of encoded strands that are sufficient for its
recovery. This concept is similar to recovery sets in locally
repairable codes [28] as well as the ones with availability [14],
[21], [37].

This can be defined formally as follows.

Definition 1. Let C be an (n, k) code. We say that J C [n] is
a retrieval set of the i-th information strand (i.e., w;) if it is
possible to decode the information strand u; from the encoded
strands whose indices belong to J. The set of all retrieval sets
of u; is denoted by D(i), and D(i) is the set of all minimal
retrieval sets of u; (with respect to the inclusion relation).

Throughout the rest of the paper, we sometimes use D(i)
with a slight abuse of notation, where the retrieval sets are
expressed in terms of the encoded strands rather than their
indices, to simplify the discussion.

We say that an (n, k) code C is a systematic code if for any
i € [k] it holds that u; has a retrieval set of size one. In other
words, C is systematic if for any 7 € [k] we have that

min{|J| : J € D(i)} = 1.

Next, we consider the case of non-systematic codes for k =
n (in particular U # X). Since X and U have the same
length, given any set of strands {x; : ¢ € J}, we can recover
at most |J| information strands from U. Our goal is to extend
Lemma 2 to the coded case when & = n using this basic
insight.
Claim 5. For any code (n = k, k) C, we have that TS >

Timax = n and Ta(f,g > Tue = n, where equality is obtained if

and only if C is systematic. In particular, if we let p; be the



size of the smallest retrieval set for the information strand w;,
then

1) E[r(C)] =nH,,,

2) TC = nH,, where p £ max; p;,

3) avg Z?:l Hﬂz"

Proof: If each u,; can be retrieved from a single strand
x; (i.e., C is a systematic code), then similarly to the proof of
Lemma 2 we have that TS, = TacVg = E[r;(C)] = n, for any
i € [n]. Otherwise, assume w.l.0.g. that u; cannot be retrieved
from a single strand and let J C [n] be a set of minimal size
|J| = p1 such that J € D(1). By the latter observation and
since it is possible to retrieve any information strand w; from
all the n strands, the fact that n = k implies that if there exists
J' C [n], such that J’ is a retrieval set of u; (i.e., J' € D(1))
D(1)| =1, ie., the set J is the
only minimal retrieval set of w;, and by Claim 4, we have that
E[7;(C)] = E[7;(C)] = nH,, > n, where the last inequality
holds since |J| = p; > 1. Thus,

C . — =
Thox = = max E[r;(C)] nax nH,, =nH,,

max

and

1 k 1 n n
avg E; 77 :E;nH1:;H7

Note that H,, > 1 for any i € [k] and since p; > 1, we have
that H, > 1. Hence TC.. > nand TS, > n which completes

max avg

the proof. ]

B. The Singleton Coverage Depth Problem

We continue by studying cases where n > k. Next, the case
where the minimal retrieval sets are disjoint is considered.
We start with the case in which a strand x; has exactly two
minimal retrieval sets D(i) = {A, B} and AN B = (), while
the next example considers the simple parity code which is a
special instance of this case.

Example 1. Let C be the (4,3) parity code. We have that
X = (u,us, us, xyq), where

T4 = Ul + U2 + U3.

Since the code is symmetric, let us consider w.l.o.g. u;. Note
that D(1) = {{w1}, {w2, u3,x4}} and the two retrieval sets
are disjoint. Hence, we cannot recover uw; from a series of r
draws only if the series of draws does not contain w;, and
it either contains one unique strand or two unique strands.
Hence,

N =>_P[n(C) > 1]
r=0
> 1 3\ =2 /r\ 1 1
:1+Z; @**Q>;;Q>M'yj
> 2r — 9
- 1+3;4 +3Z

1
* 3+ 3

That is, in this case, E [r1(C)] = k.

The next theorem extends Example 1 to any code C and an
information strand x; with exactly two minimal retrieval sets
A, B such that AN B = .

Theorem 8. Let C be an (n,k) code and i € [k]. If
D(i) = {A, B}, for two disjoint retrieval sets, AN B = 0,
then E[r;(C)] =n- (H|A‘—|-H|B| H\A|+\B|)

A direct corollary from Theorem 8 is that Example 1 can
be generalized to any (n = k + 1,k) simple parity code C,
and for any ¢ € [k] the expected number of draws to retrieve
u; using C is exactly k.

Corollary 3. Assume C is the (n = k + 1, k) simple parity

code (i.e., X = (ug,...,u, Zf 1 4;)). Then, for any i € [k,
we have that, E [r; (C)] =kand TS, =TS, = k.

The proof of Theorem 8 relies on the inclusion-exclusion
principle and can be found in Appendix I. The proof can
also be extended to more than two retrieval sets. Since the
extension is technical and repeats the same ideas as the ones
from Theorem 8, it is omitted from the paper.

Corollary 4. Let C be an (n, k) code and i € [k]. If D(i) =
{Ay, Ay, ..., A,} for mutually disjoint retrieval sets, then

v

D DTN Hiag, 14,0

s=1 1<ji<+<gs<v

E[n(C)]=mn-

Corollary 3 states that the simple parity code does not
improve the value of TC, . This observation raises the problem
of finding codes that indeed improve this parameter, and
next we consider MDS codes for this purpose. First, recall
that by Lemma 2, if no code is used, then we have that
Tmax = Tawe = E[1;] = k for any ¢ € [k]. On the other
hand, assume C is a k-non systematic MDS code in which the
minimal size of a retrieval set, for each of the information
strands is k. In other words, any set of less than & encoded
strands is not a retrieval set. If C is used, then in order to
retrieve any specific information strand, one should sample a
subset of £ distinct encoded strands. Hence, by Corollary 1, for

any i € [k], we have that, T¢, = E[r;(C)] = 25;3 i
nlog(-27), while if £ = R is a constant, we have that
nlog(-2;) = £ Elog(5 ) > k. The next theorem discusses

the case where C is a systematlc MDS code and shows that
for any such code the expected sample size is exactly k. The
proof can be found in Appendix J.

Theorem 9. Let C be a systematic [n, k] MDS code. For any
i € [k] we have that E[7;(C)] = k and hence TS, = TS, = k.

max avg

C. Reducing the Singleton Coverage Depth Below k

In all the codes we studied so far, the expected number of
reads to retrieve a single information strand u;, was at least
k, which means that these codes do not improve upon the
case where no coding is used. Next, we present families of
(n, k) codes for which TS, < k. We start with the following
example of an (8,4) code.



Example 2. Let Cg 4y be the (8,4) code defined as follows.
Let U(8’4) = (’U,l, U2, U3, ’LL4) S (Eé)4 and let

X(s,4)=(u1,u2,u3,u4,u1 + U2, U2 +U3,U3 + U, Us + wy)e(xH®

Denote x; ; L u; + u; and w.l.o.g. assume that we are
interested in retrieving . It can be verified that

{u1}7 {U2,331,2}7 {U4,€E174},
{u3,$273,sc172}, {U37$3,4,w1,4},
{u4;ﬂ’33,4,332,3,561,2}7 {u2,$3,47$2,3,$1,4}

D(1) =

Let &£._1 be the random variable that represents the number
of unique strands that were sampled in the first 7 — 1 draws.
Since any set of 6 or more unique strands is a retrieval set of
w1, we have that

P [11(Cs.ay) > 7]
5
=Y P[n(Csa) =rl&1=i] -P[E_1=1]

Il
-

+ P [71(6(8,4)) >rlE_1 > 6] -P[&—_1 > 0]

P [7’1 (C(874)) >r|E_1= Z] -P [5,»_1 = Z] .

I
'MU‘

i=1
It can be readily verified that
P [Tl(C(SA)) > 7|1 = 1] = %. In case &_1 = 2,

there are (3) = 28 different pairs of strands, and since
1 (C(8,4)) > r, we should consider only the pairs from which
w; cannot be retrieved. Note that two of the pairs are in
D(1) and 7 additional pairs contain u;. Hence we have
that P [11(Cg4)) > &1 =2] = 222 = 13 Similarly,
there are (g) = 56 different triples, from which (;) =21
contain wg, five more triples contain {ug,x12} and do not
contain wq, additional five triples contain {us,x;3} (and
do not contain u;), and two more triples are in D(1). That

23

iS, P[T1(6(8,4))2T|5T_1:3] = W = %5

Using  similar  counting techniques, it can be
shown that P[r1(Cisa) >7|€rm1=4] = &, and
P [Tl(C(SA)) >r|€—1= 5] = 5—16. Furthermore, using

the inclusion-exclusion principle, it can be proved that

8 1—1 .
Pl =i =3 S (§)vi-ar.
=0

By combining all of the above we obtain that

E[r1(Cisa)l =Y P [n(Cisa) > 7]

r=1

403
= — ~ 3.838 = 0.9595k.
105

Example 2 can be extended to any integer k > 2 as follows.
Construction 1. Let C (o, ) be the (n = 2k, k) code such that
Uop,p) = (U1, uz, ..., up) € (BHk

and
X 2,0y = (W1 ooy Wk, U1 + U, oo, Uk + Uk, Ui + ur ) E(S1)

Similarly to Example 2, the value E[ri(C(as,k))] can be
expressed using the conditional probabilities P[r(C (2 k)) >

r|Ey—1 = i]. The evaluation of these conditional probabilities
can be done using a recursive formula which is given in the
next theorem together with the expected value of 7y (C(Qk’ k)),
while the proof appears in Appendix J.

Theorem 10. For any k& > 2, and any j € [k] we have that

2k—3

2k
E[7;(Ciak,i))] = 1+ B(k,i) - ————5»
; (2k =) (21' )
where

(** Y+42B(k—1,i-1)—-B(k—2,i-2) k>2,i>2
1 k>0,i=0
, 2k+1 k>0,i=1
Blk:i)=91 k=1,i=2"
0 k=0,i>2
0 k=1,i>3

Even though we did not solve the recursive formula in
Theorem 10 to obtain an exact value for E[r;(C(ax ))], We
used it to calculate E[r; (C(a5,))] for values 2 < k < 100 and
the results can be found in Fig 5. Based on these results we
have the following conjecture.

Conjecture 1. For any k¥ > 4 and any j € [k], we have that

E[7;(C(2k,k))] < k. Moreover, the ratio w decreases
with k£ and
E[r;(C
tim 2C@R)] g o456
k—o0

The following definition is used in the next theorem.

Definition 2. Given an (n, k) code C as defined above and an
integer v > 1, we say that a (yn,vk) code C7 is the y-block
code of C if for an information word

U:U10U2...0U,Y

:(ul, ey uk)o(u;Hl, ces ,’Ll,gk)o- . ~O(’U,(A/,1)k+1, cee ,uyk),

the corresponding codeword X, satisfies,

EC’Y(U) :X:X10X20"'OX7
= FEc(Uyp) o Ee(Ug)o---0 EC(UW),

where E¢ denotes the encoder of the code C.

In the next theorem, we show that given an (n,k) code
C, one can increase k by using a -y-block code C7, without
changing the ratio between the expected number of draws to
the number of information strands; see Appendix L for the
proof.

Theorem 11. Let C be an (n, k) code. For an integer v > 1,
let C7 be a ~y-block code of C. For any 1 < ¢ < ~k, it holds
that, E[7;(C")] = vE[7(C)], where i’ = ¢ (mod k) and 1 <
i <k

Theorem 11 implies that given an (n,k) code C, that
achieves good results in terms of minimizing the expressions
w, for i € [k, it is possible to construct an infinite family
of fixed-rate codes {C7}3%;, such that for any integer v > 1,



C" is an (yn,vk) code and for any i, € [yk] there exists
i € [k], such that

E[ri, (C1)]

E[r:(C)]
vk -k
That is, for any integer v > 1, the code C” has the same
behavior as the code C in terms of minimizing the normalized
expected singleton coverage depth. Hence, combining Exam-
ple 2 and Theorem 11 leads to the following corollary.

Corollary 5. For any integer v > 1, let C(WS 1) be the ~-
block code of C = C(g 4y (see Example 2). For any i., € [yk],
where k = 4, we have that

4 Cl ~
E [, (Clyy.a)] = T = Tyl

Note that our numerical computations of the expression in
Theorem 10 imply that the value w decreases with
k, for 2 < k < 100. In particular, for k& > 3, M
0.9456 and thus by Theorem 11 it is possible to construct
codes that improve upon the result in Corollary 5 for infinite
values of k.

Next, we demonstrate that the value ]E[”k(c)] can be further
reduced, by letting the rates of our codes vanish.

= 0.95957k.

Construction 2. Let n be an integer, p € (0, 1), and assume
for simplicity that np is an integer that is dividable by k.
Additionally, let C)'?% be a [n(1 —p) +k, k] systematic MDS
code. We define the (n, k) code C,’ip as follows. For U =
(w1, g, ..., u) € (X9, let

(w1, ug, ..., U, T1, T2, ..., T(1—p)n) € (Shyni=prth

be the encoding of U using the encoder of C)'P° . Then,

X = (ul,...,uh U2,y ey U2y ooy Uy ooy WLy, X1, T2, ...7£I:(1_p)n),

pn times pn times

and X G(E‘g)”.

JLi
% times

Theorem 12. For k = 2,3, there exists ps,p3 € (0,1),
such that for any information strand ¢ € [k], we have that,

E[r;(C2,,)] ~ 1.83 = 0.9143k, and E[r;(C3 )] ~ 2.67 =
0.89k.

The proof of Theorem 12 can be found in Appendix M.
Combining Theorem 11 and Theorem 12 leads to the following
corollary.

Corollary 6. Let pa,ps € (0,1) be the constants from
Theorem 12. For any integer v > 1, let C2 7, be the (n7,27)

~-block code of C = C2 ., and s1m11ar1y “let C37. be the
(nv, 37) v-block code of C = C3 = (see Deﬁmtlon 2). For
any ig € [27], and i3 € [37] we have that

n,ps

c2y c2
E[7i, (C27)] = Tmax™® = Tavg™* ~ 1.83y = 0.9143 - (27),
and
o3 Cs,w
El7i (C37,)] = Tois™® = Top™ & 2.67y = 0.89 - (37).

The evaluation of E[7;(C} )] for k > 3 can be done using
the same technique, however, it becomes less elegant and we
do not attempt to evaluate the latter expression rigorously.

Nevertheless, we did try to gain a better understanding of the
behavior of these codes by computer simulations as follows.
Each simulation was done while fixing & € {1,...,10} U
{20,30,...100} and p € {0.2,0.4,0.6,0.8}. For each pair
of k£ and p we started by encoding k information strands
with an [[(1 — p)n| + k, k] MDS code C)'2°, from which
we constructed the (n,k) code ijyp (see Construction 2).
Then, we simulated the sampling process by picking a single
strand at each draw (with an equal probability of %). The
simulation stops whenever we can recover u;. We repeated
this process 107 times for each pair of k and p and plotted
the mean number of the required draws, which is an empirical
approximation of E[r;(C% )]. Our simulations imply that for
most of the tested values of k, the optimal value of p is around
0.6. Furthermore, it can be seen that E[r;(Cf; )] decreases as
k increases. Finally, it should be noted that even though such
codes are not applicable, they allow us to gain insights about
the achievable values of E[r;(C)].

D. Lower Bounds

This section concludes with lower bounds on the value of

E[r(C)].

Lemma 3. For any (n, k) code C, T, > kL

max— 2 -

Proof: Assume the word U was encoded to the codeword
X. Every sequence of reads can be expressed as a vector
v € [n]*, and for every such a v, denote by n;(v), for i € [k],
the minimum read index A which allows retrieving the i-th
information strand w;. The key intuition behind our approach
is that each new sample collected during the sequence of
reading the strands allows us to recover at most one new
information strand. Hence,

> o

Hence, it follows that, Zf,l 7.(C) > k(k+
k

D il

=1

v) +ng(v)+ -+ ng(v k(k+1)/

HM»

) / 2 and therefore

] ZEQ )] > k(k+1)/2.

In particular, there exists i € [k] for which E[r;(C)] > &£,
ie., TG, > . [

Even though the bound in Lemma 3 holds for any code C,
it appears that in most cases the bound is not tight. To obtain
a tighter lower bound on T¢,_ in the next theorem we also

consider the rate of the code C.

Theorem 13. Let C be an (n, k) code. It holds that

E

~ n(n—k)
max—k_ ’fl—Z_ k‘

(Hy — Hop).

Proof: Let us use the same notations as in the proof of
Lemma 3. Additionally, denote by ¢;(v) the time to collect the
i-th new sample (after collecting the previous one). Clearly,
we have that

k
me

k

=Y n

i=1

k i
)23 S 1)

i=1 j=1
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Cr )] (Construction 2) for different values of p € {0.2,0.4,0.6,0.8} as a function of
,100}, where n = 10%. The approximated values were obtained empirically by 10,000,000

computer simulations per any pair of values of k and p. The presented results are normalized by k.

Define ¢;(C) to be the random variable that governs the time
to collect the j-th new sample (after collecting the previous

one). Hence,

Note that for any j € [k], we have that ¢;(C) is a geometric

so E[t;(C)] =

random variable with success probability p; = w and
A and
E i
> D E[(0)]
i=1 j=1
ko
=230
Hmn-0-1
k
1 1
n;(n—i—i—l n—1i+2 n)
k+k—1 n 1
=n|—- ..
n n-—1 n—k+1
ki
=n

For any ¢ € [k], we have that

k—i k(K _i
n—i n n)n—i

which implies that

k . k—1 .
k—1 k k 1
"Z%li:”ZX}‘G‘n)nJ

=0

k—1

:kQ—n<1—fL)Zni_‘

1=

:kQ—(n—k)ljzzl<n7iZ 1>

k—1
=k 4+ k(n—Fk)— _
+ k(n n(n ; —
=nk —n(n —k)(H, —k)-
Hence we have that
1 k n b
FEROI2 13 =
i=1 1=0
nin—k
=n — ) (Hn_Hn—k)~
In particular, there exists i € [k] for which E[r;(C)] > % -
ZZZO Z:z =n— n(nk—k), . (Hn — ank)’ i.e., Tr?lax > % .
Yo gt =n— " (Hy — Hoog). =

Lastly, we conclude with the following lemma, which is
proven in Appendix N.



Corollary 7. Let 0 < R < 1 and consider a sequence of
codes {C;}$2, with parameters (n;,k;) such that for any i,
ni <nit1, and R = %It holds that,

TS 1 1-R
i omax s [ Z . _ .
dm == 2 (R T el R>)

That is, for any £ > 0, there exists 4 large enough (i.e., n;, k;
large enough) such that,

TS >k (1

1-R

max —

Fig. 4 presents a comparison between the lower bounds of
Lemma 3 and Corollary 7 as a function of the code rate R =
%. As can be seen in the figure, in most cases, the bound in
Corollary 7 is tighter than the one from Lemma 3. More than
that, the code rate from which the bound in Corollary 7 is
tighter than the bound from Lemma 3 decreases with k.

Finally, we give in Fig. 5 a comparison of the normalized
expected singleton coverage depth for different codes with
rate of exactly R = 0.5. It can be seen in the figure that
the k-non systematic MDS code achieves the worst results,
while the code in Theorem 10 achieves the best results, which
are roughly 55% lower than the k-non systematic MDS code
and roughly 10% lower than a systematic MDS code. To
offer a better understanding of these results, the lower bounds
discussed in Lemma 3 and Corollary 7 are also given in the
figure.

VII. CONCLUSIONS AND DISCUSSION

In this paper, we have introduced and extensively inves-
tigated the novel problem of DNA coverage depth, aiming
to reduce sequencing costs and latency while ensuring high-
accuracy retrieval. Our contributions encompass the MDS cov-
erage depth problem, demonstrating the superiority of MDS
codes in the noiseless channel. For noisy channels, we proved
several bounds on the probability of successfully retrieving
the information for a given sample size. Additionally, we
have explored the singleton coverage depth problem, revealing
insights into code properties and retrieval times, as well as pre-
senting code constructions that can improve the retrieval time.
These findings collectively provide a foundational framework
for designing efficient and reliable DNA storage systems, with
potential implications for advancing the field.

Nonetheless, future research should address the diverse
challenges posed by different noise models, investigate coding
schemes beyond MDS codes, and extend the coverage depth
problem for additional scenarios. Several possible directions
and open problems are listed below.

1) Extend the results presented in this paper with respect
to Problem 1 from a uniform distribution to additional
channel distributions p; e.g. the normal distribution.

2) In this work, the noisy channel was modeled by a
parameter ¢, under the assumption that retrieval succeeds
with probability 1 given ¢ or more noisy copies and fails
otherwise. A very relevant extension to this noise model
is to consider the more realistic behavior of the channel,
in which the success probability can increase or decrease

as a function of the number of noisy copies, i.e., as a
function of the cluster size.

3) Define and study the coverage depth random access
problem for the case in which a subset of size greater
than one should be retrieved. This can be considered for
arbitrary subsets of the information strands or for pre-
defined subsets, that represent units of information (e.g.
files).

4) Study the coverage depth random access problem under
the assumption of noisy channel and/or channel with
non-uniform distribution.

5) As mentioned in Section III-B, the problems studied
in this paper are strongly related to the problem of
optimizing the ratio of writing and reading costs, which
was discussed in [7]. In particular, the costs of the
reading and writing process in this setup are considered
somewhat equivalent, while in this work, we neglect the
writing cost. As archival storage is considered one of
the most promising applications for DNA storage in
the near future, it makes sense to put less focus on
reducing the writing cost. However, this cost should still
be considered, and the framework of the problem should
be extended to incorporate this idea. Such extension can
be done, for example, by a parameter that captures the
number of times a piece of information is expected to be
accessed. We note that the idea for this extension follows
from a comment of one of the anonymous reviewers.

Recently, following the publication of the conference ver-
sion of this work, several works have been studied as ex-
tensions of the model given in this paper. The results on
the singleton random access problem were extended in [17].
Additionally, several results on the random access problem for
the case where we are interested in a subset of the information
strands (i.e., Open Problem 3) were presented in [1]. The non-
random access scenario of the DNA coverage depth problem
was further extended in [30], [36] to support the setup of the
combinatorial composite of DNA shortmers [31].
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APPENDIX A

Proof of Theorem 2:

If 0 < R < 1is fixed, then n goes to infinity together with
k and thus we have that,
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Fig. 5: Comparison of the normalized expected singleton coverage depth for code with rate R = 0.5.

below holds.

lim E[v1(n, k = [nR])] ~ lim n(Hy, — Hp—)
n—00 k n—oo k
(i)
R 1-R)’
where the first equality holds from [15] and the second equality lim Bl (m, ki)l _ lim ni(Hn = Hoi 1)
is a known result. e ki R k;:
Furthermore, in the case in which we have a sequence of — lim Ej;o nied

MDS codes {C;}52,, such that lim; fL— = 0, the equality i—00 ks ’



where,
Do k()
. =0 i —1
lim =2 iT) < lim mi( )
1—00 7 71— 00 kl
1
= lim i =1
1—00 kl ’
and,
k=1 n; k. ( n; )
dico s i\ mi—0
lim S=0 g S gy N g
Thus, we can conclude that, lim;_, w =1. |

APPENDIX B
Claim 6. For n > 16, it holds that,

t—1 j r—j t—1 r—(t—1)
30 [CICEE) I (Y I (B
= 7 n n t— n n
Proof: To prove the claim, we show that for 0 < j <t—1,
J r—j j+1 r—(j+1)
IR I 16 R (EF)
7 n n J+1 n n

The latter can be proved by showing the following equivalent

inequality
r—j( 1)‘1
< - 1—— .
—j+1 n

The expression =i (1 — l)_1 is minimized at j = ¢ — 1

7j+1 n
(considering only j € {0,1,...,¢ — 1}), thus it is enough to

show that, n < £=HEL (1 - 1)7" = =L (o) which
follows if

r=r(nk,t) >tn—1)+ (t—1).
Lastly, it can be verified that r(n,k,t) > t(n — 1) + (t — 1)
for any integers n > 16 and ¢ > 1. [ |

Proof of Theorem 4:

Denote 7y £ ry(n,k,t). Similarly to the proof of The-
orem 3, when n is large enough, the probability that urn
t has at most ¢ — 1 balls after ry draws is denoted by
P(zi(n,ry) < t—1), where z;(n,rs) is a defined as in the
proof of Theorem 3. Thus, the probability is given by,

P(zi(n,ry) <t —1) <3t (ﬁ‘)* ! (1 B 711)"(7{'*"1)
SGttM'(l—R)

et'f(”)

Now let us define a random variable Y as the number of
urns with less than ¢ balls. As in the proof of Theorem 3, we
have that,

(2- f(n)

et'f(")

where the last inequality follows from Markov’s inequality. ll

P(E Y =P(Y >n—k+1) <6t (1-R),

APPENDIX C

Proof of Lemma 1:

We first highlight that v¢(n,k) > vq(n, k), and thus it is
enough to show that

1
P {yl(n k) < nlog( n k) —nc] <e‘ <1+ n—k) .
We have that,

elos(72%)—c E{ - ’“’}

— olos(ztp)—c Z e P [v1(n, k) = j]
=1
o0

— Z 610g( Lr)—c—

%P[Vl(nv k) :.]]

[n log(72%)—nc]

- 5 e

=1

b3 () = )
j=1+|nlog(;2%)—nc|

%P ui(n, k) = j]

[nlog(;72%)—nc]

Z Z elog(ﬁ)—c—
Jj=1

[ n log( ﬁ)—nc]

> Z L Plvi(n, k) = j]

=1

> p {le(n,k) < nlog {nfk] - nc} .

P (n,k) = j]

From [29], the generating function of the geometric random
variable v (n, k) is given by

Gy (nypy () = B[ (W]
o) k .
g (n—(G-1)z
= P ]{j = J = -—_—
> Pl =il =TI ==,
7=0 =1
-
- N =1
i=1 -
|
Thus, given = = e~ /™, we get that,
k i—1y —L
—v1 (nk) (1—=2)e n
E {6 : } - n J” "
I
k i—1 k i—
1=t 1 it
- H n_ < H n
R T i1
men - it a5
_ ﬁ 1-2t 1k
= i—2 1
-5 1+
n—k+1 n-k+1
T on+1 n ’



where in the first inequality we used the fact the en > 1+ %
Hence, it holds that, for positive c,

Plog(Ft)—c | g {e—ul(n,k)/n} <ec._"

Finally, we conclude that,

P [ul(n k) < nlog(— n —) —nc]

< Jos(ZER)—c .| |:6*V1(nvk)/n:|

<e |1+ 1
- n—~k)/)’

APPENDIX D

Proof of Theorem 5:

First, we highlight that for any integer ¢ > 0, it holds that
ve(n, k) > v1(n, k). Next, we recall the known results proven
n [16], where they showed E[vy(n, k)] = n(H, — Hy—k).
Hence, we can conclude that the following holds for n large
enough,

I
S
)
[4S)
7 N
3
“IRE
~
N———

7ﬂ%(1fR)+nﬂMJm

where v ~ 0.5772156649 is the Euler-Mascheroni con-
stant, where the last equality was proven in [16]. Next, let
rn 2 7(n,k,t) (recall that by (6), 7(n, k,t) = nlog(l_lR) +
ntloglog(n) + 2nlog(t + 1)). In Theorem 3 we showed that
Plvi(n, k) > r,] < . Using the same methods, in Appendix E
we proved Theorem 14 which states that for any integer ¢ > 1
and for n large enough, Plvi(n, k) > r, -i] <e- -

4
logt(i’l)(n) ’
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and thus we can conclude that,

Elvi(n, k)] ZPthk >r)
reN
=Y Pw(n,k) >r)+ Y Pu(n,k) >r)
r<rn T>Ty
<1- ’I“n—|-Z (ve(n, k) > 1)
r>r,
oo (i+1)rs,
:rn—i—z Z P(vi(n, k) > 1)

=1 r=iry,

o (i+1)ry,

<r,+ P(v(n, k) >i-ry,
2 2 )

zlrzrn

irn+ E rn.
tfl

<7r,+ ZTW . 771)()
e t—1

1
=rate T log'® D (n)

i=1

(n(n,k) >i-ry)

(a)
< 7ry+2-r,
=1, (14 2¢),

where (a) follows since ZZ 1 m < 2 for n large

enough and any integer ¢ > 0. Lastly, we simplify the
expression,

1
—rp (1 + 2¢)

1
= <log (1R> + tloglogn + 2log(t + 1)) (14 2¢)

1
= log (1—]‘1’) + O(tloglogn),

which completes the proof. |

APPENDIX E

6t-2t—1

Theorem 14. For any ¢ > 0, n > e~ =
integer h > 1, we have that,

> 15, and any

ht—l
logt(h_l) (n) .

Proof: Denote £ r(n, k,t) and recall that within the
context of the urn problem (see Section III-B), the random
variable v;(n, k) denotes the number of balls (or rounds)
necessary to guarantee that we have a set of k urns where
each urn has at least ¢ balls.

If r balls are drawn, we show that the probability that there
are at least k£ urns each with at least ¢ balls is approaching one
when n grows. Analogous to the approach used in the previous
section, we will show that if the number of balls thrown is at
least r, then the probability to have at most n — k + 1 urns
which are not filled with ¢ balls is approaching zero.

Pvi(n,k) > h-r(nk,t)] <e



The approach leveraged in this section is inspired by a
technique first employed by Erdds and Rényi in [12]. First,
we define the following event.

Et(r): After r rounds, there exists a set S;, of n — k + 1
urns, each containing less than ¢ balls.

Next, we show that the probability of Etm approaches zero
when n is large. We first define z;(n,r) for 1 <i < n, as a
random variable that governs the number of balls in the i-th
urn, after r draws. For n large enough, the probability that
urn ¢ has at most ¢ — 1 balls after i - r draws is denoted by
P(z;(n,r) <t—1) and is given by,

P(zi(n,h-1r)<t—1)

S -
(T
()T

where the last inequality follows from the fact that (")) <

hre'™! Note that (+2)"~! < 3, for ¢ > 1. Thus,
r_t—1
R\ Pt I\ (E-5)
P(zi(n,r) <t—1) <3t (T> (1 - ) ,
n n

We have that,

P(zi(n,r) <t —1)

-1 —hr+t—1

¢
<3t (hlog( k) + htloglog(n)+2hlog(t + 1)) e =

i1 (n=k\"( 1 1 =1
< 3t-(2hlogn) - og" 1 N en

t—

PV (2hlogn)~t (n—k)h
(07" gy \ n
BV ) (n—ky

(t+ 1)2h logt(h*)“(n) n )

where the second inequality holds since for n large enough
hlog(-2%) + thloglog(n) + 2hlog(t + 1) < (2hlogn). It

should be noted that for n > ¢, we have that 3t - G HL)Q,L < 6t,
and hence,

(2h)t—1 n—k\"
logt(h_l)H(n) ’ n :
Now let us define a random variable Y as the number of
urns with less than ¢ balls. From the linearity of expectation,

regardless if the urns are independent or not, the expected
number of urns that have less than ¢ balls is,

P(zi(n,r) <t—1) <6t-

nl;rr;o E[Y] = nlgr;o S Elzi(n, )]
= ILm nP (zi(n,r) <t—1)
n—k\"! (2h)t-1
< I - S
< lim (n k)( " > 6tlogt(h—1)+1(n)
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Note that

P(ES) =P(Y >n—k+1)

Using Markov’s inequality with n — k& + 1 as the parameter
we can conclude that,

h—1 —
n—k (2h)"‘1

Let us denote €* = 6t - then we get that,

log(n)’
h—1 _
—k ht 1
P(an—k+1)§5*(n) Eh)il
n log"" ! (n)

Ol
B logth—1) (n) )

Hence, we get that P(Et(r)) — 0 for n large enough which
implies the statement in the theorem. [ ]

APPENDIX F

In this appendix, we prove Theorem 6. The proof is partially
based on Claim 2 which is proven next.

Proof of Claim 2:
Recall that by (8), for » > nt we have that

(r—(t—1))n
rn—1) |

E[X")] < e (=1 logy 2 —(r—(i-1)) log,

Hence, a sufficient condition for E[X ()] < n—k = n(1—R),
it that
e~ (1= D) logy M —(r—(t=1) log; SE= (1 _ Ry (12)
Note that
(=) logy M —(r—(t-1)) logy “i=3"
— o frr () - I (=)

(r=(t—1))

)_ In2

B (n(H)> ((T ;o(f_ 11)»”
e

% ™m —7T 1n2)
-Gon) " o)

and by denoting r = fn(t—1), for some 8 > 1 we can rewrite
the sufficient condition in (12) as follows.

. Bn—1 o
8 (1 - _11)) <(1- R

By the deﬁnltlon of e, for any constant S we have that

1_%31711) < e ¥~V Hence, if Be=# < L(1— R)M

holds than (13) also holds.
By the assumption,

13)

r e Tyl = —Be” B > _1(1_R) 22
e

Cn(t—1)

or equivalently
1 In 2

_5 - _ =T
pe" < -(1-R)



which completes the proof. ]

The following two claims are known results related to the
Lambert W function and are given as part of the proof of
Theorem 6.

Claim 7. [11, Section IV] For any real numbers —= L<gp<0
and y, the equation ye¥ = z has exactly two solutlons which
are given by y = Wy(z) and y = W_4(z), where W, and
W_1 are branches of the Lambert W function.

Claim 8. [8, Theorem 1] For any v > 0 we have that

2
1= V2u—u<W_q(—e ") < ~1-V2u-— U

Proof of Theorem 6:

In 2

Denote z = 1(1— R)* and y = 7t—1y» by Claim 7, the
equation
ey = —ye V= —z = _1(1 — Ry
n(t—1) e
has exactly two solutions which are y = —Wy(—=x) and y =
—W_1(—xz). Note that for any y > 1 the function —ye ¥

is continuous and monotonically increasing with y. Hence,
for any given R = E only the branch W_; is relevant. This
implies that for » > n(t — 1), Equation (9) holds if and only
ity > -W_i(-2).

By Claim 8, we know that —TW_(—
for any v > 0. We can rewrite —z as

e ") < 14+v2u+u

—r = —1(1 — R)%‘i — ettt In(1-R)-1
e
with u = =22 In (1 — R) > 0 to obtain
—W_i(=2) <1+ V2u+u

2In2 In2
—1+\/—t11n(1—R)—t11n(1—R)

Hence, a sufficient condition for E[X(")] < n — k is that

r 2In2 In2
—2>1 In(l-R)———In(1-R
G - 2o )
or equivalently,
2In2
rzn(t—l)—n1n21n(1—R)+n(t—1)\/— _nlln(l—R).

APPENDIX G
Proof of Theorem 7:

We denote by w; the probability of collecting an error-free
new strand, given that i —1 strands were collected. In this case,
w; = a2l — =i+l We denote by w; the probability
of collecting an error-free new strand, given that ¢ — 1 strands
were collected. In this case, w; = an_(:;l) = a2=L We

let ¢; be the time to collect a new error-free strand, given
1 —1 such strands were already sampled. Since ¢; is geometric

22

random variable it holds that ¢, =
of expectation, we have that

L Thus, from the linearity

[wa(n k)} [tl +io+ ... tn] - E[tk- +thyr + ... tn]
= E[t1] + Elto] + ... E[tn] — E[te] + Eltxr1] + - - E[tn]
T a\l 2 n a\l 2 —k

n
=—(H, - H,_
a( k)
[ |
APPENDIX H

Proof of Claim 4.

Let t; for 1 < ¢ < p be the number of draws to collect
the 4-th strand in J after the (i — 1)-th strand from J was
collected. Note that 7;(C) = >_7_, ;. Additionally, observe
that ¢; is a geometric random variable with success probability
pi = %;H and E[t;] = %. Hence, by the linearity of the
expectation we have that '

APPENDIX I
Proof of Theorem 8:

Denote psy = |A|,pp = |B|. For a set of indices J C
[n], let Aj(r — 1) be the number of different options to draw
strands in the first » — 1 draws such that for at least one of the
indices j € J, the strand x; was not drawn. Additionally, let
A(r — 1) be the number of different options to draw strands
in the first  — 1 draws such that the i-th information strand
cannot be retrieved from the set of drawn strands. Note that
since D(i) = {A, B}, we have that A(r — 1) is the number of
different options to draw strands in the first » — 1 draws such
that at least one strand from A and at least one strand from
B were not drawn. Hence.

)\AUB(T — 1) = /\A(T — 1) + )\B(T — 1) — )\(7‘ — 1),
and
A(r—1)

= )\A(T— )4+ Ap(r—1) = Aaup(r —1)

(@) Z <p,4) 1 — )t

=

patpB pa+pB

B Sl (e e
i=1 J



where (a) follows from the inclusion-exclusion principle. Us-
ing the tail sum formula for the expectation we have that

00 r— 0O PA 1 Jj+1 n—4)"— 1
Emwﬂ=2:nrf S RELa
r=1 r=1j=1
= L (78) (1) — !

oo patpB (PA"FPB)( 1)j+1(nij)7‘71

-2 2

r=1 j=1

7‘71

Next, we analyze the first term in the latter expression and
the other two terms can be analyzed similarly.

iPZA )(—1)jti(1n — 4yt
:ii (P;)(_l)]ﬂ (1 - iL>T—1
@2 (ij>( i+t 2 <1 B i>r—1
(:)ji_:l (7‘) (_1)j+1? _ n;_Al (ij) ( 1;g+1

We note that (a) holds since the sum is absolutely convergent.
is a geometric series.

o=

The equality (c) can be observed by considering Euler’s
1r1tegral representatlon of the harmonic numbers [33], H,, =
fol 1—- T a” d:c. using the latter we have that

1 L1 (1 =q)Pa
HpA:/ dx:/ 7( y) dy
0 0 Y

S [ v

(b) follows since

1—ara

1—2x

j=1
e (m) (-’
=\j)
Thus,
E[n(C)]=n- (Hp, + Hpp — Hipsipp)) -
which concludes the proof. ]
APPENDIX J

Proof of Theorem 9:

Let Wy, be the random variable that represents the num-
ber of samples needed to obtain £ distinct coupons where
each draw is taken from a pool of n total coupons. We
denote by Wy ,(x) the generating function for Wi ,,. For
T < l_nj = ;75 it is known [29] that,

k .
P =)o =[] g

i=1

Wk,n (:E) =

r=0
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Additionally, let V. ,, be the random variable that represents
the number of distinct coupons in the first » draws, where each
coupon is taken from a pool of n total coupons. Note that

P[Wk,n = 7‘]
== P[‘/r—l,n =k— 1] : P[‘/r,n == k|‘/7"—1,n =k-— 1]
— (k-1
ey —k,
n
and hence,
n

PV, 1,=k-1=———P n=rl. 14

[ 1, ] n— (k — 1) [Wk, ’I’] ( )

We let Dy, ;,, denote the random variable that represents
the required number of draws to obtain k distinct coupons
or to retrieve coupon ¢ (whichever occurs first), where each
draw is taken from a pool of n total coupons. We denote by
Dy, in () the generating function for Dy ;. To this end we
define D,(f 2 , for 0 < j < k—1, to be the random variable that
represents7 the number of samples needed to obtain j distinct
coupons (each not equal to the i-th coupon), followed by the -
th coupon. Additionally, let Dlg Z)n, be the random variable that
represents the number of samples needed to obtain k distinct
coupons (each not equal to the i-th coupon).

It holds that,

1 T
P[Dlikl_)n =r] = (1 _ ) PWino1 = 1],
(e n
and
k = k
D) (x) = "a"- P[D{"),, =]
r=0
oo 1 T
=Y (1 1) P =]
r=0 n
1
n

— 01— )z
—1-((-1)(1—- 1)

Qe

For 1 < j <k —1, using (14), we have that

) 1 r—1 1
PDY), =1] = (1 - n) ~ (n) “P[Vioip-1 = j]
1\ /1 n—1
=(3) () T e =

7 PWjt1n1 =1]

Il
5
s
)
o
/N
=
|
S|
~—
7
/N
S|
~—
3
[ S
—_
| |~

—1 oo
n—1-53 n n =

o 1\
x (1*g) P[Wj+1,n_1:T‘]

I
3
|
—
3
+
=
3
L
/N
—_
|
S
~
8




Note that, P[Déozn = 7] = L if r = 1 and otherwise
P[D,S?z)n = r] = 0. Therefore, we have that D,gozn( )= .
Next, we present Dy, ; ,(x) as a function of Dl(fl) , for 0 <
J<k

Dy in(z) = Zaﬁ’a P[Dyin=r]
r=0
e k
= Zxr ZP[D,SJZ)H =]
r=0 =0
k oo
=Y o PO, =]
j=0r=0
k: .
=3 DPla@)
7=0

From the above, it can be derived that,

E[Dx,in] = Di,in(1)

1 +Z n(n— (G +1)((=n) — (i +1-n))

n 2 n(n=(j+ 1))
| 10— K)(W(=n) — Yk —n))
n
k—1

= 4> (@ (=n)=w(+1=n)+(n—k)(b(~n) = (k=n)),

j=1

where 1(z) = fooo (Lj - 1e_e ) dt is the digamma func-

tion. In [18], it is claimed that for any z € C and j € N, we
have that, ¢ (z + j) = ¢(2) + Y}_y 5=, Which implies

that, ¢<_n) - w(] - n) =H, — anj-
Hence,
k—1
E[ri(C)] = ElDiin] = -+ 3 (Ho — Hooj1)
j=1
+ (” - k) (Hn - n—k)
k—1
=~ 4 (n =) Hy — (n— k) Hyj — > Hyj
j=1
= E + (n — 1)H — (’I’L — k)Hn,k
n—k—1
Z Hj ~ Z H;
D2y (- ) H, (0~ B Ho
((n —D)(Hp-1—1=(n—k)(Hp—r —1)))
:%—f—(n—l)(Hn—Hn_l—i—l)—(n—k)

n—1

+(n—-1)—n+k

1
_n
fk.,

where (a) follows since for any integer n > 0 we have that
Y Hj=(n+1)H, —n.
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APPENDIX K
Proof of Theorem 10:
Let Ci, be the systematic (2k,k) code that is defined by
Ui = (u1,ug,...,uy) and

X = (w1, .., up, uy + U2, ..., Up_1 + Up, Up + U7).

Similarly to Example 2, we have that

2k—3

Plr Zpﬁ

and

>T’|5 1:’L‘]'P[£r,1:i],

2k i .
PIE, =] :((%)) > <Z.)( 1) (i =)'

=0 M

Since P [11(C) > r|€-—1 = i] does not depend on r, let us
denote P, = P[r1(C) > r|€-—1 = i]. We have that

ZPTl ) > ]
002k3

;:131:1 [ee]

_1+Z ZP 1 =]

2k3

—1+ZPZ(%

2k—3 (2]€> i

_1+Z

\r?

—1 +2§:3P (2k> J(.;) ' 2’?2:
f1+2kz:3P Qk—z

Hence, our goal is to calculate P;. Let A(2k — 1,7) be the
number of options to draw 7 — 1 strands such that w; cannot
be recovered from this set of draws, knowing that the set of
different encoded strands that were drawn is of size exactly <.
Then, we have that P, = %

To present a recursive expregsion for the values A(2k—1,1),
we describe an equivalent way to represent the options that
contribute to A(2k — 1,). Let G, = (V, E) be the directed
graph with the 2k — 1 nodes that correspond to the symbols in
X excluding u;. The set E consists of the following edges:

e For each 2 < j < k — 1, the vertex u; + u; 1 has

four outgoing edges. Two green outgoing edges to the
nodes u; and u;_1 + u;, and two blue outgoing edges
to the nodes w;11 and w41 + w42 (Where ujio = uy
if j=FkF—1).

o There are two blue outgoing edges from w; + ue, to the

nodes us and us + ug.



o There are two green outgoing edges from uy 4w, to the
nodes uy and ug_1 + uy.

Denote the nodes w; + us and ui + uy by So and Sg,
respectively. Additionally, denote the nodes u;, for 2 < j <k
by ending nodes. For a set J C [2k]\{1}, let G,(c']) be the
subgraph of G that contains all the nodes that correspond
to J (considering their locations in X). Note that any set
J C [2k] of size i is not a retrieval set of w; if and only
if the subgraph of G,(CJ), does not contain a monochromatic
path from S or Sy to one of the ending nodes (if So, Sy is
not in G;J), we say that there is no such path from Ss, Sy,
respectively). Hence, A(2k — 1,4) is equal to the number of
subgraphs Gﬁcj) of G, such that J C [2k]\{1} and G,(j) does
not contain a monochromatic path from S5 or Sy to one of the
ending nodes. Denote the nodes of G,(CJ) by V' and consider
the following cases.

1) If Sy, Sk ¢ V' then any such a subgraph G]ij) cannot
contain a valid monochromatic path and there are (2’“;3)
such subgraphs.

2) If S; € V' then we have that us ¢ V' and there are
A(2k — 3,i — 1) such sub-graphs.

3) If S, € V' then we have that u; ¢ V' and there are
A(2k — 3,7 — 1) such sub-graphs.

4) If Sy, Sk € V' then we have that us, uy ¢ V' and there
are A(2k — 5,4 — 2) such subgraphs.

Thus,
. 2k — 3 . .
A(2k—1,z)—( . )+2A(2k‘—3,z—1)—A(2k—5,2—2).
7

By denoting B(k,i) = A(2k + 1,4), we can write the latter
as

Bl(k,i) = (2]“71) +2B(k—1,i—1)— B(k—2,i—2),

7

for any k > 2,4 > 2, and for all k£ > 0 we have that B(k,0) =

1 and B(k,1) = 2k + 1. Additionally A(1,2) =1, for ¢ > 2

we have A(0,7) = 0 and for ¢ > 3 we have B(1,3) = 0.
Thus, we have that

APPENDIX L

Proof of Theorem 11:

For any » > 1 draws, let us denote by ¢! the random
variable that governs the number of strands drawn from X
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(from the r draws), where s is an integer and u; € U,. Then
we have that

E[r(C)] = Pln(CY) > 7]

r=1

I

NE
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~
o™
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I

2]+ P[r(CY) > rlef ™! =]
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Il
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L
il
L o

o
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o
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I

2] Pr(CY) > rlef ! =]

(r ; 1)<i)z(1 a ,1Y>T21P [r(C7)>rlel~ =2]
(r; 1> (i) <1 - i)“z‘l - P[ri(C)zz +1]
e () (-
£ (-2

Plri(C) zz+1] -y

%
Il
ﬂ»_k
Ll
|
= o

I
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Il

I
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Il
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w
Il
=
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Il
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M

I
I
=)

=
NE

I
Il
=]

I

[M]8
!
s

(C) 2 2] - v =1E[n(C)],

w
Il
—

where equality (a) follows from the fact that the probability
to collect z > r — 1 unique strands from X, using only r — 1
draws is zero for any integer s, i.e., P[z—:;*l = 2] =0. To see

that equality (b) holds, recall that >~ 2" = L, and by
taking the derivative of the latter z times we get
- r—z Z'
;7‘-(7‘—1)~'(T—Z+1)$ DR

which is equivalent to

i

rT=z

Lastly, by substituting x = 1 — %, equality (a) follows. ]

APPENDIX M
Proof of Theorem 12:

We prove the claim only for £ = 2, while the proof for
k = 3 relies on the exact same ideas. Assume w.l.o.g. that we
want to retrieve w;. For simplicity of the analysis, also assume
that X contains two information stands i, wo (Without mul-
tiplicity), and that each of them can be drawn with probability
£. First note that since (w1, U2, T1, T2, ..., T(1_p),) belongs
to a [(1—p)n+2,2] MDS code, any two distinct strands form
a retrieval set for u;, and hence the only case in which we
didn’t retrieve w7 in r draws, is when we draw the same strand
(which is not wq) r times.

o 71(C2,) = 1 only in case we draw w; in the first draw
which happens with probability £.
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o 71(C2,) =r for r > 2 only if the first 7 — 1 draws are  Thus, we have that
of the strand = # u; and the last draw is of a different C 1 na(ns — ks)
strand. Hence we have that lim —22% > lim —(n; — ———(Hp, — Hy,—1;)
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For n large enough (1 — 2)3°> (%)T_2 ~ 2 and hence

for n large enough we have that [2]

E[n(C2,)] ~ g + (1 - g) Sor (g)r_l +2(1—p) 3]
p p p7(4—p)
=5+ (1-5) gopp 202 o
_p  pd-p)
754»2(27—]))4»2(1719)

[5]
This expression is minimized when p = 2 — v/2 and in this

case we have
[6]

4—

p pA-p)
222 p)

Note that even though the optimal p is irrational, since the

latter function is continuous for p € (0,1), we can get as

close as we want to this optimum value. Hence, we have that

E[r(C} )] ~ 1.83 = 0.9143k.

+2(1—p) ~ 1.83.

[7]

[8]
[9]

APPENDIX N [10]
Proof of Corollary 7:
From Theorem 13, for any (n, k) code C, we have that

k)

[11]

rr N G [12]

max —

(Hy, — Hp_y).

It can be verified that in this case if R approaches zero, one,
then the latter expression approaches %, 1, respectively.
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