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Abstract—The training of Neural Networks is a compute intensive task that, in current classical
implementations, relies on gradient descent algorithms and a certain learning rate that controls
the granularity of the search for a solution. This paper explores a new hybrid quantum-classical
approach, which is not only novel for exploding quantum computing to partially solve the
problem, but also for being the first approach that adjusts the learning rate with exact
information pertaining to the solution of this training problem. The Quantum Adaptive Learning
Rate approach is tested in a proof of concept classification problem. Key aspects of the practical

implementation of the Harrow, Hasidim and Lloy (HHL) quantum algorithm are discussed.

1. Introduction

Quantum computing (QC) is an —still—
emerging technology that takes advantage of
quantum mechanics to offer a computational so-
lution with potential advantages over classical
computing. One of the most promising quantum
algorithms was proposed by Harrow, Hasidim and
Lloy [1], aka HHL algorithm, in 2009 to solve
systems of linear equations with (potentially) ex-
ponential speedup over classical implementations.
Needless to say, the scientific and engineering
communities were full of hope over this algo-
rithm’s potential, including the Machine Learning
community.

Today’s most advanced Machine Learning al-
gorithms, Neural Networks, are inspired by the
brain’s complex network of ~86 billion neurons.
Neural networks have made significant achieve-
ments (e.g. Krizhevsky et al’s landmark paper
[2] on ImageNet classification with convolutional
neural networks (CNN)) in the last decade. How-
ever, these improvements come at the cost of
the models’ size and complexity, with today’s
state-of-the-art models containing 100s of billions
of parameters. Moreover, implementing training
and inference of these state-of-the-art models
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on conventional CPU/GPU hardware incurs large
overheads that are incompatible with application
domains that have strict size, weight, and power
(SWaP) constraints. Quantum computing is cur-
rently far from being able to help solve this
size problems, but as an emerging technology,
creative exploration of its applications can help
bridge the gap towards practical usage of this new
computational approach. In particular, a single
layer NN can be represented as a linear system
of equations, and therefore, —one would think—
would be a potential candidate for HHL applica-
tion.

However, when one carefully looks at the
HHL algorithm, the true challenges of this ap-
proach arise. Beyond the many difficulties of the
implementation of HHL on quantum hardware
(with noise, error correction, and connectivity
issues to name some), the algorithm has strict
numerical conditions on the input matrix rep-
resenting the system of equations, which can
critically affect the computational advantage or
the precision of the solution. Furthermore, the
solution to the system of equations is quantum
mechanically built, and encoded in quantum su-
perposition. Trying to extract this information
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into the classical representation of each variable
would kill any computational advantage. One of
the most insightful papers on the topic by Scott
Aaronson [3] reflects on these strict conditions,
and their impact on ML.

That being said, if the input matrix can be
manipulated and processed, the output of HHL in
quantum superposition does contain and encode
the solution of the system of equations, and other
quantum operators can be applied to it to extract
some information. Built on these premises, this
paper proposes a Quantum Adaptive Learning
Rate: a hybrid quantum-classical solution that
uses HHL followed by the SWAP test to adjust
the classical gradient descent’s learning rate based
on true knowledge of the distance to the optimal
solution of the training problem. This approach
is tested on a small real case, the classification of
the Iris test set.

These main contributions are important for
two reasons. First, to our knowledge, this is the
first proposed approach to adjust the learning rate
based not on estimations of how close the explo-
ration of the optimization surface is to an absolute
minimum, but based on the certain knowledge of
this absolute minimum. The key here is that this
absolute solution is represented in a quantum state
and cannot be fully extracted. But the quantum
SWAP test provides the distance between the
current exploration point and the solution, and
hence, the gradient descent step can be adjusted
accordingly. Second, the practical implementation
of a real problem on a (simulated) quantum com-
puter provides insight on the limitations of the
HHL algorithm, and the required manipulation of
the input matrix when it pertains to real world
data. This research group was able to success-
fully find the HHL solution to the training of a
single layer NN on the Iris dataset. The proposed
approach does not intend outperform the classical
implementations yet, but to take steps towards a
better understanding of quantum algorithms and
their applications to real problems.

2. Background and related work

Hybrid quantum-classical solutions in the ML
field are not new. Quantum Machine Learning
is a broad field in the intersection of quantum
technology and machine learning. It expands from
quantum-inspired classical algorithms [4] or ML

enhanced quantum technology and tomography
[5] to Quantum Neural Networks implementa-
tions to classify classical or quantum data [6].

Quantum Neural Networks is an extremely
active field of research. In QNN, a hybrid iter-
ative process provides a solution to the training
of Neural Networks. This approach starts with
the selection of a quantum ansatz and a set
of quantum parameters. The ansatz is evaluated
quantum-mechanically, while parameters are ad-
justed in the classical side to tune the quantum
ansatz to the training solution. This process is
repeated iteratively until the classical side decides
the parameters are close enough to the optimal
training solution. There are several challenges in
this approach, such as the hardware limitation of
current quantum computers, the initial selection
of the ansatz function and its parameters, the
topology of the optimization problem presenting
barren platoes and narrow gorges, and the back-
and-forth communication between the classical
and quantum sides of the implementation. In
addition, the specific applications of QNN are
still unknown, and they have not yet demonstrated
quantum advantage, that is the ability to outper-
form classical implementations.

The work presented in this paper leverages the
HHL algorithm [1]. A plethora of problems can
be reduced to solving a linear system of equa-
tions, and as such, this quantum acceleration was
a source of hope for many fields. Scott Aaronson
in his “Quantum Machine Learning: Read the fine
print” [3] discusses in detail all the limitations of
the HHL algorithm, from precision of the solution
to the condition number and sparsity of the input
matrix. The encoding of the input data is also
a source of computational complexity in the ab-
sence of a quantum memory. Nevertheless, based
on the HHL solution to a linear regression prob-
lem, Zhao et al. proposed a solution to Bayesian
deep learning using a quantum computer [7]. This
example was a proof of concept on a small, pre-
set system of equations. Lépez Alarcén et al.
proposed the use of the SWAP test to calculate
the distance between a known test point and the
actual solution to the training problem [8]. This
work was limited to binary neural networks, and
explored how knowledge of a distance to the
optimal solution could be used to reduce the
search time of a gradient descent approach. The
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quantum piece of the algorithm was discussed but
not implemented in any practical capacity.

One naive way of finding the weights of
an artificial neural network (ANN) would be to
solve a massive system of equations. In the case
of a single layer ANN, this would be a linear
system of equations. The classical solution of a
linear system of equations has an approximate
complexity of O(N?). With the current size of
training data, features and weights, this approach
is impracticable, and that is the reason why the
training of ANNs is solved as an optimization
problem in search of the minimum loss function.

While single-layer neural networks can be
used on linear classification and regression prob-
lems, they can also solve large classes of non-
linear problems by first applying transformations
to the input space. For example, so-called ex-
treme learning machines [9] employ a random,
untrained hidden layer of neurons to transform
the input space into a high-dimensional random
feature space. Then, linear combinations of the
random features are used to classify the original
inputs. Reservoir computing [10] leverages a sim-
ilar concept, using random dynamical systems to
cast time series data into a large feature space
which can be learned through simple linear re-
gression.

2.1. HHL algorithm

The HHL algorithm is a quantum algorithm
for solving linear systems of equations [1]. The
problem can be defined as, given a matrix A and
a vector b, find a vector Z such that AZ = b. In
quantum notation, this linear system of equations
is expressed as

Alz) = |b) ey

where A is a Hermitian operator — a workaround
gxists when A is not Hermitian, see below— and
b has to be encoded in a quantum state |b) and,
hence, it has to be normalized. The solution to this
linear system of equations is, therefore, expressed
as

lz) = A7 [b) )

The problem boils down to finding A~*, like in
any other algorithm to solve linear systems of
equations. Given a matrix A of size N x N,
classical algorithms would have a computational
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complexity O(N?3). If the operator were ex-
pressed as a diagonal matrix, the calculation of
A~! is almost immediate, creating a diagonal
matrix in which the eigenvalues )\; in the di-
agonal are replaced by their corresponding in-
verted values, \; ! The computationally intensive
portion of this solution in the classical context
is precisely to calculate the eigenvalues of A.
This, however, can be solved rather easily in
a quantum-mechanical manner through the use
of the quantum phase estimation in which the
eigenvalues are calculated and expressed as a
phase.

If the matrix A is not Hermitian, the matrix
and input vector are modified such that:

bl

which ensures the new matrix is Hermitian.
In this case, the size of the matrix is doubled.

Another approach to setting up the input ma-
trix is to transform the system of linear equations
to

AT Alz) = A"|b) 4)

Modifying the input matrix to be AT A means
the input matrix will always be a square matrix,
which is a requirement for the HHL algorithm.
This is useful for machine learning datasets which
usually have many more rows, or data entries,
than columns, or features. However, this method
will increase the range of the matrix entries and
increase the complexity of the eigenvalues, which
has a negative impact on the size of the quantum
circuit, as is shown in Section 4.

The circuit implementation can be broken
down into six different circuit stages, as shown in
Figure 1: loading the |b) input, Quantum Phase
Estimation, Eigenvalue Inversion, inverse Quan-
tum Phase Estimation, ancilla qubit measurement,
and application of a function F'(z) followed by
measurement . F'(x) can be any linear equation
in which some quantum mechanical operator is
applied in order to obtain an estimate of the
expectation value.

The HHL algorithm can potentially estimate
the function of the solution vector in running
time complexity O(log(N)s?k?/€), given that
the matrix A is s-sparse and well-conditioned,
where ~ denotes the condition number of the
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Figure 1: Generic HHL Algorithm with 5 stages: state |b) preparation, Quantum Phase Estimation,
Eigenvalue Inversion, inverse QPE, measurement of the flag qubit, and application of some function
F(x). Note that only in the case of the measurement in the first register producing the outcome 1 the

algorithm succeeds [1].

system, and e the accuracy of the approximation
[1]. It is important to take into account that the
algorithm assumes the case being considered is
one in which the solution |z) does not need to
be fully known, but rather an approximation of
the expectation value of some operator associated
with the solution vector. |z) is in a superposition
state of all the independent values of the vector. It
is an amplitude encoded solution: the amplitude
of each basis state contains each of the weights,
solution to the optimization problem. Trying to
read each of them would require an amount
of time such that it would ruin any quantum
advantage.

2.2. Distance to the solution through the SWAP
test

With that perspective, the work by Lopez
Alarcon et al. [8] proposed to combine HHL
with the SWAP test to extract information of the
distance between the |z) vector and some other
known |test,) state.

The circuit for a two state comparison is
shown in Figure 2. Given a “reference” state,
the SWAP test can provide the distance from the
solution to the this state, and hence, reduce the
classical search of the solution to the hypersphere
of distance d from the reference state. The SWAP
test routine is a quantum algorithm that expresses
the scalar product of two input states. Two input
states | A) and | B) are compared using controlled-
SWAP gates and a control bit.

Previous research [8], describes a framework
for how the Euclidean distance can be used to
reduce the search space of a classical regression
algorithm, improving a neural network’s ability
to find ideal weights. The work utilizes the Eu-
clidean distance between the solution and well

selected test points to restrict the search space
to a smaller radius hyper-sphere of solutions. Al-
though this was a promising route, this approach
has some downsides: First, the solutions and
test cases need to be normalized, and therefore,
the distance is known between the normalized
vectors, not the true scale ones. Second, exploring
the optimization landscape with a new constraint
does not necessarily simplify the search process;
it may instead produce a new surface which,
despite having reduced dimensionality, is not well
suited for gradient descent. Last, the approach
was tested on binary neural networks, which
simplified the problem but also seriously limited
the practical test cases to implement quantum
mechanically.

3. Quantum Adaptive Learning Rate,
QALR

This paper proposes an improvement to the
approach described in Section 2.2, in which the
Euclidean distance is implemented in a classical
regression algorithm. A full circuit implementa-
tion is designed and simulated to combine the
HHL algorithm and SWAP test to determine the
Euclidean distance between the solution to a sys-
tem of linear equations and a selected test point.
The Euclidean distance is then used to speedup
a classical regression algorithm to improve a
neural network’s ability to find ideal weights.
This is done by incorporating the quantum circuit
between iterations of a classical gradient descent
algorithm.

As the classical gradient descent algorithm
iterates towards an estimate of the true solution,
the quantum circuit measures the Euclidean dis-
tance between the true solution and the gradi-
ent descent’s estimated solution. The Euclidean
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distance between the true solution and current
estimated solution is then used to adjust the
gradient descent’s learning rate. This quantum
adaptive learning rate allows for a larger initial
learning rate that is reduced as the estimated
solution approaches the true one. The quantum
adaptive learning rate improves the convergence
speed of the gradient descent algorithm, when
compared to constant learning rates.

10)

|4)
|B) X

Figure 2: The standard SWAP test. The resulting
state of the circuit is (without normalizations)
0) (JAB) + | BA)) + |1) (|AB) — |BA)), and
thus the probability of obtaining outcome |1) on
the measurement is ;((AB| — (BA|)(]AB) —
|BA)) = % — % (A|B))|?, where if |A) =
>, a; |i) and analogously for | B), then (A|B) =
> afb;. This allows computing the overlap of
|A) and | B) with additive error e.

3.1. Gradient descent

Gradient descent can be used to find the least
squares solution to linear regression problems
of the form Aw@ = b + U, where A is an
n X m matrix representing a dataset of n m-
dimensional examples, b is the expected outputs
associated with each example, w is the vector
of true parameters, and v is a Gaussian noise
variable. We define a mean squared error losi

function as £ = - S (6@ — p®)2, where b
=1

p_
is the output of our linear model based on an

estimate of the parameters: b= Aw*. Applying
gradient descent to the loss function, we get the
parameter update for each iteration as

T LS (500 . i — p\g®)

w* = wr—n X — a't -w* —bP)a? (5)

nx ;_:1( )

where - is the vector dot product. Over many
iterations, w* is guaranteed to converge to the
global minimum of the mean squared error loss
function provided that the learning rate is less
than 2/L, where L is the Lipschitz constant of
the loss gradient. More specifically, the learning
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rate hyperparameter 1 plays a key role in con-
trolling the convergence rate. This learning rate is
fundamental to the efficiency of the gradient de-
scent algorithm. A large learning rate may result
in random exploration that misses the absolute
minimum, while small learning rates will not only
make the search slow, but can also get stuck in
local minima for non-convex loss functions. For
that reason, many gradient-based optimization
algorithms employ learning rates that adapt based
on the local topography of the loss landscape
and/or the trajectory of the solution estimate. For
example, methods such as momentum, adagrad,
RMSprop, and second order techniques like New-
ton’s method are able to speed up convergence of
gradient-based optimization [11]. In this work, we
show that convergence of gradient descent can be
further enhanced by leveraging knowledge of the
Euclidean distance from a particular test point to
the solution.

3.2. Quantum Adaptive Learning Rate

Unique to the approach in this paper is that the
learning rate is defined based on true knowledge
of the problem’s solution. To aid the gradient
descent, the SWAP test distance between the
estimation w* and the HHL solution is performed.
The result from the SWAP test is the Euclidean
distance between the normalized vector of the
current iteration’s estimation and the normalized
true solution to the system of linear equations.
The Euclidean distance across iterations is then
used as a metric to adjust the gradient descent’s
learning rate. The distance indicates how close the
linear regression is to the correct solution. Even
though this distance is normalized and not the true
distance between the solution and test point, the
distance can indicate if large steps can be used or
if finer iterations are required to obtain a correct
estimate.

In this approach, the learning rate, n, is up-
dated following the expression:

Tin
L+ (1-2)«p ©
where Fd is the Euclidean distance determined
by the SWAP test and (3 is a user modifiable
parameter. This formula works similar to adaptive
learning rates using time based decay [11]. The
Euclidean distance is divided by the square root

77n+1 -

5

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in Computing in Science & Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MCSE.2025.3581848

Quantum Processor

Classical Processor

HHL(A,b) SWAP(W*,x*) | --

Ed

--F--» Ed = Quantum(A,b, x*)

gradient descent(A,b,1lr,beta):
x* = zeros ()

while MSE < epsilon:

lr *= 1/ (1+(1-Ed/sqgrt (2)) *beta)

gradient = (ATs (Aex-b)
x* = x*- lr e gradient

return x*

Figure 3: Pseudo-code representation of the quantum adaptive learning rate (Ir in the code). The hybrid
Quantum-Classical model for the gradient descent algorithm is represented, separating the quantum

steps from the classical ones.

of two to set the range between zero and one.
This value is then subtracted to one so that the
denominator increases as the Euclidean distance
decreases. The result is an adaptive learning rate
that decreases with the Euclidean distance. To re-
duce the number of SWAP tests used, the learning
rate can be updated periodically instead of every
iteration. Figure 3 illustrates the hybrid model,
separating classical from quantum computations.

4. HHL limitations: encoding the
eigenvalues

As explained in Section 2.1, and in previous
work [3], HHL is a powerful quantum algorithm,
however, it also has significant limitations. Sec-
tion 2.1 explained how the matrix should be well-
conditioned, as reflected by kK = % This is in-
herent to the matrix. But, further, the eigenvalues
have an impact on the overall error depending
on the size of the register that encodes them.
This section explores the limitations associated
with the eigenvalues of the matrix representing
the system of linear equations. To this end, imple-
mentations were tested under noiseless simulation
using IBM’s Qiskit tools [12]. The focus of these
experiments is to explore the inherent difficulties
of the algorithm itself, and their impact on ac-
curacy, rather than the challenges of the physical
implementation. Since quantum circuit results are
presented as a probability distribution, a quantum
circuit must be run many times to create an
accurate distribution of the results. Each run is

called a shot, and all simulations in this work
used 20,000 shots.

4.1. Model under ideal conditions

To demonstrate the combined HHL and
SWAP test circuit, the following standard system
with well defined eigenvalues (8, 4, 1, and 2) was
tested:

15 9 5 -3 3
119 15 3 —5/. 1|2
ils 3 15 —9olT73 1| @

3 -5 -9 15 0

This is a standard first step in testing HHL, but in
this case, the intention is to examine the error in
the Euclidean distance measurement to a test vec-
tor. It should be noted that to be able to measure
this distance accurately in the computational ba-
sis, the solution should be in the R realm. Given
that the eigenvalues are well defined — known
beforehand, easily invertible powers of two—, the
system of equation’s solution is exactly known,
free of error. The circuit used 16 qubits and had
a depth of 888 quantum steps. The results of the
Euclidean distance calculation and its error are
shown in Table 1, calculating the distance in two
instances: the solution vector against itself, and
the solution vector against a random test vector
(first and second rows respectively). The distance
is shown for each one of these. The error is calcu-
lated as the L2 error between the measured output
of the SWAP test and the true output containing
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the Euclidean distance between the normalized
solution and test point. The distance error shows
that the Euclidean distance is exactly correct, (no
error) when measured against the solution of the
problem. In this case the distance is 0 with error 0.
However, the second case with some random test
vector, there is an small error of approximately of
0.0056 over the normalized state vector output of
the SWAP test. Since the experiments are done
through noiseless simulation, this error is only
due to the sampling out of the state vector, and
a higher number of shots will further reduce this
small error.

Table 1: Ideal matrix swap test euclidean distance
error to two test vector cases, the normalized
exact solution (first row), and a random test vector
(second row). The distance error is measured
against the normalized ideal SWAP test output.

Test Euclidean | Distance
Vector Distance Error
0.8590, 0.2342,
0.2342,0.3904 0.0 0.0
0.5,0.5,0.5,0.5 0.5312 0.0056

4.2. Number of qubits for Quantum Phase
Estimation

One significant source of error in the HHL
algorithm is in the quantum phase estimation
(QPE) stage. In this circuit’s stage, the eigenval-
ues are estimated and stored in a quantum register.
Since this stage performs an estimation of the
eigenvalues and not an exact calculation, there
will likely be error. However, the amount of error
in this stage can vary depending on the size of
the quantum register being used to represent the
calculated eigenvalues. The number of qubits for
phase estimation, in turn, has a critical impact
on the width and depth the circuit. Either way,
not knowing what the eigenvalues are, one can
only guess how many qubits are needed for their
quantum phase estimation. The objective of this
section is to evaluate the impact of this parameter
on the general HHL implementation.

To manually test the impact of QPE register
size, experiments using different sizes of quantum
register were simulated to determine its effect on
the error of the HHL result, and the error on the
SWAP test distance.

Two simple matrices were tested to see the
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impact of the register size:

1.25 0 1.125 0
Al_[o 1]A2_[ 0 1} ®)

The eigenvalues of A; are 1.25 and 1, and the
eigenvalues of A, are 1.125 and 1. The L2 error
between the true Euclidean distance and SWAP
test Euclidean distance, and the L2 error between
the true solution and the HHL statevector solution
were recorded in Table 2.

Table 2: Error depending on the quantum phase
estimation register size, for matrices Al and A2
as represented in Equation 8. The distance error
is measured against the normalized ideal SWAP
test output.

Matrix A
Reglster Distance Error Statevector
Size Error
3 0.2936 0.0963
4 0.1645 0.0236
5 0.0 0.0
6 0.0 0.0
7 not tested not tested
8 not tested not tested
Matrix Ao
Reglster Distance Error Statevector
Size Error
3 0.1904 0.0161
4 0.1995 0.0696
5 0.2314 0.0854
6 0.2147 0.0605
7 0.0 0.0
8 0.0 0.0

As expected, unless there are enough qubits
to perfectly represent the matrix’s eigenvalues in
the phase encoding, there will be error associated
to both the distance and the state vector. Once
the number of qubits is increased such that the
eigenvalues can be exactly encoded, there is no
longer error caused by the HHL circuit.

To test the impact of the register size when
the eigenvalues cannot be trivially represented,
the following system of equations was used

2. L N
Tl e

which was modified to be Hermitian.

A = [5.53637, —5.53637,1.26437, —1.264371]

These eigenvalues cannot be exactly encoded
with a reasonable amount of qubits. The HHL
algorithm uses a scaling factor on the eigenvalues
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of s = 1.26436 in this case, which resulted in
post scaling eigenvalues equal to

A
2 = [4.37877, —4.37877,1, —1]
S

This approach allows for some of the eigenval-
ues to be accurately represented, thus improving
the chances of accurate final results. Even post
scaling, a significant number of qubits would be
required to perfectly represent the eigenvalues
in this case. Experiments were run increasing
the number of qubits used in the register during
the quantum phase estimation stage of the HHL
algorithm. The true solution was used as the test
vector in the SWAP test so the expected Euclidean
distance would be zero. The L2 error between the
true solution and the statevector solution, and the
L2 error in the distance through the SWAP test
are recorded in Table 3.

Table 3: Error depending on the quantum phase
estimation register size, for non-trivial eigenval-
ues. The distance error is measured against the
normalized ideal SWAP test output.

Register Size | Distance Error | Statevector Error
4 0.3931 0.00031
5 0.1817 0.0001
6 0.2944 0.0188
7 0.2991 0.0063
8 0.0 0.0001
9 0.0 0.001

Table 3 indicates that increasing the number of
qubits in the quantum phase estimation stage can
reduce the error in the final HHL solution even
if the eigenvalues are not exactly represented.
However, the relationship between error and reg-
ister size is not linear. since additional qubits will
not always better represent a value. For example,
the number 0.625 can be perfectly represented
with four binary digits: 0.101. However, if fewer
binary digits are used, the estimation will remain
the same with two or three binary digits: 0.1 and
0.10 both estimate 0.625 to 0.5. With enough
qubits the error drops significantly. This indicates
that even if the eigenvalues are not exactly repre-
sented by the quantum phase estimation, a high
enough accuracy can be achieved for an accurate
SWAP test result.

While increasing the register size may im-
prove the results, it will also have a negative
impact on the width and depth of the circuit. This

means selecting the size of the quantum phase
estimation register is not a trivial step in utilizing
the HHL algorithm.

4.3. HHL applied to the Iris data set
The Iris data set is a simple data set often used
to test classification in machine learning.

Iris Setosa

Iris Versicolor

Iris Virginica

Figure 4: Iris data set visualization.

The data set consists of three classes and four
features. The three classes represent three distinct
iris plant species. The four features are the sepal
length, sepal width, petal length, and petal width
of an iris flower. This data set is strong candidate
for testing the HHL algorithm because it is a
simple, widely used, and tangible data set. The
following system of linear equations was created
by randomly selecting four samples from the Iris
data set

5.2 6.6 58 6.3
27 29 28 29
39 46 51 5.6
14 13 24 138 2

MO = =

T =

(10)

which was altered to be Hermitian as explained
in Section 2.1 before performing the HHL algo-
rithm. The resulting matrix used was an eight by
eight matrix with the eigenvalues

A =[16.75792, -16.75792, 1.07088, -1.07088,
0.48816, 0.23879, -0.23879, -0.48816]

Two experiments were run with this system
of linear equations, one with eigenvalue scaling
enabled and one without scaling. The first ex-
periment with eigenvalue scaling used a scaling
factor of s = 0.23879 resulting in post scaled
eigenvalues of

% =[70.17819, -70.17819, 4.48461, -4.48461,
2.04429, 1, -1, -2.04429]

Both experiments used eight qubits for the
QPE counting register to represent the eigenval-
ues. This resulted in a quantum circuit with a
depth of 34,200 steps and a total of 16 qubits:
three to encode the input vector, eight for the QPE
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stage, one ancilla qubit, three to encode the test
vector, and one control qubit for the SWAP test.

Table 4: Error With and without eigenvalue scal-
ing. The distance error is measured against the
normalized ideal SWAP test output.

Statevector Error
0.0122
0.5371

Distance Error
0.3645
0.5815

Scaling Enabled
Scaling Disabled

The results in Table 4 show that scaling the
eigenvalues has a positive impact on the ac-
curacy of the HHL algorithm. Because of the
significant reduction in error after scaling the
smallest eigenvalues to one, it indicates that the
minimum eigenvalue contributes greatly to the
system of equations. Even with scaling, and with
a significant reduction, the error is still over 0.36
out of a normalized SWAP state vector, possibly
too high to derive useful information in a real ap-
plication. When using the same number of qubits,
scaling is an effective way of reducing error.
However, in practice it would not be realistic
to scale the eigenvalues of the matrix to exact
integers because it would require prior knowledge
of the matrix’s eigenvalues. One can assume,
as seen Section 4.2, that if enough qubits were
available, scaling would not be necessary as the
error could instead be reduced by increasing the
number of qubits used. But this would further
increase the size and resources necessary for the
implementation. As is shown in Section 5, this is
still useful information when used in conjunction
with QALR.

5. Quantum Adaptive Learning Rate
Results

The ideal matrix, Equation 7, and Iris matrix,
Equation 10, were tested in fully simulated ex-
periments executing the hybrid gradient descent
model. Values for S and the number of iterations
between SWAP tests were assumed to be ade-
quate based on the rage of all other parameters,
but more work can be done in the future to tune
these to each specific problem.

Classical gradient descent was performed on
the ideal matrix with a learning rate (Ir') of
Ir = 0.01 and {r = 0.03. The hybrid model

117 used from here on for consistency with the algorithm and
figures
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was performed with an initial learning rate of
Ir = 0.03 and 8 = 0.3. The learning rate was
updated using the SWAP test every 10 iterations.
By only updating the learning rate every 10
iterations, the number of SWAP tests required is
reduced. If implemented into a larger regression
model, the learning rate could be updated every
epoch similar to step decay learning rates. The
learning rate and loss are recorded in Figure 5.

=4
=
w

e
o
)

— OQALR
Constant Lr=0.01
— Constant Lr=0.03

—-\_\R

Learning Rate

e
o
=1

T T T T T T
0 20 40 60 80 100
terations

— QALR
Constant Lr=0.01
—— Constant Lr=0.03

0 20 a0 60 80 100
terations
Figure 5: Learning Rate (Ir) and Loss vs Itera-
tions (Ideal Matrix)

As expected, the learning rate is updated
similar to a step decay adaptive learning rate.
Across the 100 iterations of gradient descent, 11
SWAP tests were performed. Compared to the
true Euclidean distance between the true solution
and gradient descent estimation, the 11 SWAP
tests had an average L2 error of 0.01211. Com-
pared to the constant learning rate, the quantum
adaptive learning rate (QALR) achieves a lower
loss and quicker descent. This means that with
the quantum adaptive learning rate, the same loss
is reached in fewer iterations than the constant
learning rate. The loss with a constant learning
rate of [r = 0.01 does near the loss seen in
the quantum adaptive learning rate toward the
final iterations, and the constant learning rate of
Ir = 0.03 surpasses the adaptive learning rate
around 60 iterations. This is because the quantum
adaptive learning rate becomes increasingly small
causing its loss to slow during later iterations. The
constant learning rate of I = 0.01 and quantum
adaptive learning rate would intersect to have the
same loss around iteration 110.

For the Iris matrix, the classical gradient de-
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scent was performed with a constant learning rate
of Ir = 0.001 and Ir = 0.003. An initial learning
rate of {r = 0.003 and 5 = 0.5 were used for
the hybrid gradient descent. Due to the amount of
error seen in Table 4, even with scaling enabled,
the number of qubits used in the QPE stage was
increased from 8 to 12.

0.003 A
— QALR,

Constant Lr=0.001
—— Constant Lr=0.003

0.002

1
e

Learning Rate

0.001 4

0.000 T T T T T T T
10000 15000 20000 25000 30000 35000 40000
Iterations

T T
[¢] 5000

; — QALR
10545 \, Constant Lr=0.001

103 4 —— Constant Lr=0.003

Loss

105 4

10-7 4

T T T T
10000 15000 20000 25000 30000 35000 40000
Iterations

T
4] 5000

Figure 6: Learning Rate (Ir) and Loss vs Itera-
tions (Iris Matrix)

The results in Figure 6 resemble those in the
previous experiment. The loss drops lower and
faster than the constant learning rate meaning a
lower loss can be achieved in fewer iterations.
However, the gap between the quantum adap-
tive learning rate and constant learning rate of
Ir = 0.003 is not as wide. Again, the loss
of the constant learning rate of lr = 0.001
begins to approach the quantum adaptive learning
rate as the adaptive learning rate nears zero.
The constant learning rate and quantum adaptive
learning rate would intersect to have the same loss
after about 45000 iterations. The learning rate was
updated every 5000 iterations and performed the
SWAP test nine times. The Euclidean distance
determined by the SWAP test had an average L2
error of 0.03233 compared to the true Euclidean
distance.

While both experiments had little error, it
is worth noting that the SWAP test returned
an Euclidean distance of zero for the last few
updates. Small distances, approximately less than
0.05 in these examples, returned an Euclidean
distance of zero. Increasing the number of shots
would improve the precision of the Euclidean
distance from the SWAP test. However, this in-

creases the circuit execution time and was deemed
not necessary as the extremely small distances
towards the end of the experiment have minimal
impact on the learning rate. This indicates that
as the distance between the estimated and true
solution becomes increasingly small, the quan-
tum approach becomes less impactful. A more
efficient algorithm could switch to a classical
adaptive learning rate once the Euclidean distance
from the SWAP test becomes minimal.

By incorporating the quantum adaptive learn-
ing rate into classical gradient descent, the train-
ing process of a linear regression problem is
improved. The loss is reduced quicker than a
constant learning rate indicating that the quan-
tum adaptive learning rate improves the speed
at which a gradient descent converges on ideal
weights.

5.1. Circuit and problem complexity

The HHL circuit is kept from previous works
[7], [8] and no notable changes were made to this
part of the circuit. Since the true solution does not
change during gradient descent, the HHL portion
of the model should only need to be performed
once. A previous work [8] explored the cost of
the SWAP test. Experiments demonstrated that
with a carefully selected test point, the SWAP test
was not computationally expensive. Even though
the SWAP test is not computationally expensive,
efforts must be made to mitigate the number of
SWAP tests. This was explored in this work by
limiting the SWAP test to select iterations during
gradient descent, and the possibility of using a
SWAP test with reduced Toffoli gates when the
quantum states are no longer needed, since the
swapped states are not necessarily preserved in
this implementation.

6. Conclusions

HHL is a powerful but limited and highly
conditioned quantum algorithm. This paper looks
at some of these limitations, and uses HHL as
a way of extracting partial information on the
solution to the training problems of neural net-
works. By incorporating the quantum adaptive
learning rate into classical gradient descent, the
training process of a linear regression problem
is improved. The loss is reduced quicker than a
constant learning rate indicating that the quan-
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dent on several parameters, such as the sparsity
and conditioning of the system’s matrix to men-
tion two. This paper has looked at the impact the
of quantum phase estimation register’s size on
the accuracy of the results. Improving accuracy
would come at the cost of a more complex circuit
that requires more resources. But that is if the
range of the eigenvalues were known, which will
not be, and one can only estimate the best size
for this register.

On future work, it is possible to use linear
algebra tools to help estimate upper and lower
bounds for the eigenvalues, without compromis-
ing the computational complexity of overall solu-
tion. The 3 step size and the number of iterations
between SWAP tests should also be further eval-
uated.

There is a number of classical adaptive learn-
ing rate methods that could potentially outper-
form the method proposed here. However, clas-
sical adaptive learning rates typically have addi-
tional computational overhead, and that requires
of the tuning/storage of extra hyperparameters.
For example, the momentum technique introduces
a new momentum parameter that needs to be
set carefully to avoid oscillatory or divergent be-
havior. Other approaches, like AdaGrad , require
tuning and storage of learning rates for every
model parameter, which could be a significant
overhead for large model sizes. Finally, second-
order techniques require the computation of the
Hessian matrix which is often not feasible for
very large model sizes [13]-[15]. Quantum adap-
tive learning rate (QALR) has its own difficul-
ties, but makes an adaptive decision based on
certain knowledge of the optimal solution. A fair
question to ask is whether it is worth enlisting a
quantum computer to solve this problem, instead
of paying the price of additional classical com-
putational resources and complexity. This work
does not evaluate the computational complexity
of the problem as a whole (classical+quantum
mechanical), which is also left for a theoretical
analysis of these algorithms in the future.
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