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Abstract—The training of Neural Networks is a compute intensive task that, in current classical

implementations, relies on gradient descent algorithms and a certain learning rate that controls

the granularity of the search for a solution. This paper explores a new hybrid quantum-classical

approach, which is not only novel for exploding quantum computing to partially solve the

problem, but also for being the first approach that adjusts the learning rate with exact

information pertaining to the solution of this training problem. The Quantum Adaptive Learning

Rate approach is tested in a proof of concept classification problem. Key aspects of the practical

implementation of the Harrow, Hasidim and Lloy (HHL) quantum algorithm are discussed.

1. Introduction

Quantum computing (QC) is an —still—

emerging technology that takes advantage of

quantum mechanics to offer a computational so-

lution with potential advantages over classical

computing. One of the most promising quantum

algorithms was proposed by Harrow, Hasidim and

Lloy [1], aka HHL algorithm, in 2009 to solve

systems of linear equations with (potentially) ex-

ponential speedup over classical implementations.

Needless to say, the scientific and engineering

communities were full of hope over this algo-

rithm’s potential, including the Machine Learning

community.

Today’s most advanced Machine Learning al-

gorithms, Neural Networks, are inspired by the

brain’s complex network of ∼86 billion neurons.

Neural networks have made significant achieve-

ments (e.g. Krizhevsky et al.’s landmark paper

[2] on ImageNet classification with convolutional

neural networks (CNN)) in the last decade. How-

ever, these improvements come at the cost of

the models’ size and complexity, with today’s

state-of-the-art models containing 100s of billions

of parameters. Moreover, implementing training

and inference of these state-of-the-art models

on conventional CPU/GPU hardware incurs large

overheads that are incompatible with application

domains that have strict size, weight, and power

(SWaP) constraints. Quantum computing is cur-

rently far from being able to help solve this

size problems, but as an emerging technology,

creative exploration of its applications can help

bridge the gap towards practical usage of this new

computational approach. In particular, a single

layer NN can be represented as a linear system

of equations, and therefore, —one would think—

would be a potential candidate for HHL applica-

tion.

However, when one carefully looks at the

HHL algorithm, the true challenges of this ap-

proach arise. Beyond the many difficulties of the

implementation of HHL on quantum hardware

(with noise, error correction, and connectivity

issues to name some), the algorithm has strict

numerical conditions on the input matrix rep-

resenting the system of equations, which can

critically affect the computational advantage or

the precision of the solution. Furthermore, the

solution to the system of equations is quantum

mechanically built, and encoded in quantum su-

perposition. Trying to extract this information
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into the classical representation of each variable

would kill any computational advantage. One of

the most insightful papers on the topic by Scott

Aaronson [3] reflects on these strict conditions,

and their impact on ML.

That being said, if the input matrix can be

manipulated and processed, the output of HHL in

quantum superposition does contain and encode

the solution of the system of equations, and other

quantum operators can be applied to it to extract

some information. Built on these premises, this

paper proposes a Quantum Adaptive Learning

Rate: a hybrid quantum-classical solution that

uses HHL followed by the SWAP test to adjust

the classical gradient descent’s learning rate based

on true knowledge of the distance to the optimal

solution of the training problem. This approach

is tested on a small real case, the classification of

the Iris test set.

These main contributions are important for

two reasons. First, to our knowledge, this is the

first proposed approach to adjust the learning rate

based not on estimations of how close the explo-

ration of the optimization surface is to an absolute

minimum, but based on the certain knowledge of

this absolute minimum. The key here is that this

absolute solution is represented in a quantum state

and cannot be fully extracted. But the quantum

SWAP test provides the distance between the

current exploration point and the solution, and

hence, the gradient descent step can be adjusted

accordingly. Second, the practical implementation

of a real problem on a (simulated) quantum com-

puter provides insight on the limitations of the

HHL algorithm, and the required manipulation of

the input matrix when it pertains to real world

data. This research group was able to success-

fully find the HHL solution to the training of a

single layer NN on the Iris dataset. The proposed

approach does not intend outperform the classical

implementations yet, but to take steps towards a

better understanding of quantum algorithms and

their applications to real problems.

2. Background and related work
Hybrid quantum-classical solutions in the ML

field are not new. Quantum Machine Learning

is a broad field in the intersection of quantum

technology and machine learning. It expands from

quantum-inspired classical algorithms [4] or ML

enhanced quantum technology and tomography

[5] to Quantum Neural Networks implementa-

tions to classify classical or quantum data [6].

Quantum Neural Networks is an extremely

active field of research. In QNN, a hybrid iter-

ative process provides a solution to the training

of Neural Networks. This approach starts with

the selection of a quantum ansatz and a set

of quantum parameters. The ansatz is evaluated

quantum-mechanically, while parameters are ad-

justed in the classical side to tune the quantum

ansatz to the training solution. This process is

repeated iteratively until the classical side decides

the parameters are close enough to the optimal

training solution. There are several challenges in

this approach, such as the hardware limitation of

current quantum computers, the initial selection

of the ansatz function and its parameters, the

topology of the optimization problem presenting

barren platoes and narrow gorges, and the back-

and-forth communication between the classical

and quantum sides of the implementation. In

addition, the specific applications of QNN are

still unknown, and they have not yet demonstrated

quantum advantage, that is the ability to outper-

form classical implementations.

The work presented in this paper leverages the

HHL algorithm [1]. A plethora of problems can

be reduced to solving a linear system of equa-

tions, and as such, this quantum acceleration was

a source of hope for many fields. Scott Aaronson

in his “Quantum Machine Learning: Read the fine

print” [3] discusses in detail all the limitations of

the HHL algorithm, from precision of the solution

to the condition number and sparsity of the input

matrix. The encoding of the input data is also

a source of computational complexity in the ab-

sence of a quantum memory. Nevertheless, based

on the HHL solution to a linear regression prob-

lem, Zhao et al. proposed a solution to Bayesian

deep learning using a quantum computer [7]. This

example was a proof of concept on a small, pre-

set system of equations. López Alarcón et al.

proposed the use of the SWAP test to calculate

the distance between a known test point and the

actual solution to the training problem [8]. This

work was limited to binary neural networks, and

explored how knowledge of a distance to the

optimal solution could be used to reduce the

search time of a gradient descent approach. The
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quantum piece of the algorithm was discussed but

not implemented in any practical capacity.

One naive way of finding the weights of

an artificial neural network (ANN) would be to

solve a massive system of equations. In the case

of a single layer ANN, this would be a linear

system of equations. The classical solution of a

linear system of equations has an approximate

complexity of O(N 3). With the current size of

training data, features and weights, this approach

is impracticable, and that is the reason why the

training of ANNs is solved as an optimization

problem in search of the minimum loss function.

While single-layer neural networks can be

used on linear classification and regression prob-

lems, they can also solve large classes of non-

linear problems by first applying transformations

to the input space. For example, so-called ex-

treme learning machines [9] employ a random,

untrained hidden layer of neurons to transform

the input space into a high-dimensional random

feature space. Then, linear combinations of the

random features are used to classify the original

inputs. Reservoir computing [10] leverages a sim-

ilar concept, using random dynamical systems to

cast time series data into a large feature space

which can be learned through simple linear re-

gression.

2.1. HHL algorithm

The HHL algorithm is a quantum algorithm

for solving linear systems of equations [1]. The

problem can be defined as, given a matrix A and

a vector b⃗, find a vector x⃗ such that Ax⃗ = b⃗. In

quantum notation, this linear system of equations

is expressed as

A |xð = |bð (1)

where A is a Hermitian operator — a workaround

exists when A is not Hermitian, see below— and

b⃗ has to be encoded in a quantum state |bð and,

hence, it has to be normalized. The solution to this

linear system of equations is, therefore, expressed

as

|xð = A−1 |bð (2)

The problem boils down to finding A−1, like in

any other algorithm to solve linear systems of

equations. Given a matrix A of size N × N ,

classical algorithms would have a computational

complexity O(N 3). If the operator were ex-

pressed as a diagonal matrix, the calculation of

A−1 is almost immediate, creating a diagonal

matrix in which the eigenvalues ¼i in the di-

agonal are replaced by their corresponding in-

verted values, ¼−1
i . The computationally intensive

portion of this solution in the classical context

is precisely to calculate the eigenvalues of A.

This, however, can be solved rather easily in

a quantum-mechanical manner through the use

of the quantum phase estimation in which the

eigenvalues are calculated and expressed as a

phase.

If the matrix A is not Hermitian, the matrix

and input vector are modified such that:
[

0 A
A† 0

] [

0
x

]

=

[

b
0

]

(3)

which ensures the new matrix is Hermitian.

In this case, the size of the matrix is doubled.

Another approach to setting up the input ma-

trix is to transform the system of linear equations

to

ATA|xð = AT |bð (4)

Modifying the input matrix to be ATA means

the input matrix will always be a square matrix,

which is a requirement for the HHL algorithm.

This is useful for machine learning datasets which

usually have many more rows, or data entries,

than columns, or features. However, this method

will increase the range of the matrix entries and

increase the complexity of the eigenvalues, which

has a negative impact on the size of the quantum

circuit, as is shown in Section 4.

The circuit implementation can be broken

down into six different circuit stages, as shown in

Figure 1: loading the |bð input, Quantum Phase

Estimation, Eigenvalue Inversion, inverse Quan-

tum Phase Estimation, ancilla qubit measurement,

and application of a function F (x) followed by

measurement . F (x) can be any linear equation

in which some quantum mechanical operator is

applied in order to obtain an estimate of the

expectation value.

The HHL algorithm can potentially estimate

the function of the solution vector in running

time complexity O(log(N)s2»2/ϵ), given that

the matrix A is s-sparse and well-conditioned,

where » denotes the condition number of the
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Figure 1: Generic HHL Algorithm with 5 stages: state |bð preparation, Quantum Phase Estimation,

Eigenvalue Inversion, inverse QPE, measurement of the flag qubit, and application of some function

F (x). Note that only in the case of the measurement in the first register producing the outcome 1 the

algorithm succeeds [1].

system, and ϵ the accuracy of the approximation

[1]. It is important to take into account that the

algorithm assumes the case being considered is

one in which the solution |xð does not need to

be fully known, but rather an approximation of

the expectation value of some operator associated

with the solution vector. |xð is in a superposition

state of all the independent values of the vector. It

is an amplitude encoded solution: the amplitude

of each basis state contains each of the weights,

solution to the optimization problem. Trying to

read each of them would require an amount

of time such that it would ruin any quantum

advantage.

2.2. Distance to the solution through the SWAP

test

With that perspective, the work by Lopez

Alarcon et al. [8] proposed to combine HHL

with the SWAP test to extract information of the

distance between the |xð vector and some other

known |testxð state.

The circuit for a two state comparison is

shown in Figure 2. Given a “reference” state,

the SWAP test can provide the distance from the

solution to the this state, and hence, reduce the

classical search of the solution to the hypersphere

of distance d from the reference state. The SWAP

test routine is a quantum algorithm that expresses

the scalar product of two input states. Two input

states |Að and |Bð are compared using controlled-

SWAP gates and a control bit.

Previous research [8], describes a framework

for how the Euclidean distance can be used to

reduce the search space of a classical regression

algorithm, improving a neural network’s ability

to find ideal weights. The work utilizes the Eu-

clidean distance between the solution and well

selected test points to restrict the search space

to a smaller radius hyper-sphere of solutions. Al-

though this was a promising route, this approach

has some downsides: First, the solutions and

test cases need to be normalized, and therefore,

the distance is known between the normalized

vectors, not the true scale ones. Second, exploring

the optimization landscape with a new constraint

does not necessarily simplify the search process;

it may instead produce a new surface which,

despite having reduced dimensionality, is not well

suited for gradient descent. Last, the approach

was tested on binary neural networks, which

simplified the problem but also seriously limited

the practical test cases to implement quantum

mechanically.

3. Quantum Adaptive Learning Rate,
QALR

This paper proposes an improvement to the

approach described in Section 2.2, in which the

Euclidean distance is implemented in a classical

regression algorithm. A full circuit implementa-

tion is designed and simulated to combine the

HHL algorithm and SWAP test to determine the

Euclidean distance between the solution to a sys-

tem of linear equations and a selected test point.

The Euclidean distance is then used to speedup

a classical regression algorithm to improve a

neural network’s ability to find ideal weights.

This is done by incorporating the quantum circuit

between iterations of a classical gradient descent

algorithm.

As the classical gradient descent algorithm

iterates towards an estimate of the true solution,

the quantum circuit measures the Euclidean dis-

tance between the true solution and the gradi-

ent descent’s estimated solution. The Euclidean
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distance between the true solution and current

estimated solution is then used to adjust the

gradient descent’s learning rate. This quantum

adaptive learning rate allows for a larger initial

learning rate that is reduced as the estimated

solution approaches the true one. The quantum

adaptive learning rate improves the convergence

speed of the gradient descent algorithm, when

compared to constant learning rates.

|0ð H H

|Að

|Bð

Figure 2: The standard SWAP test. The resulting

state of the circuit is (without normalizations)

|0ð (|ABð + |BAð) + |1ð (|ABð − |BAð), and

thus the probability of obtaining outcome |1ð on

the measurement is 1
4
(ïAB| − ïBA|)(|ABð −

|BAð) = 1
2
− 1

2
| ïA|Bð)|2, where if |Að =

∑

i ai |ið and analogously for |Bð, then ïA|Bð =
∑

i a
∗
i bi. This allows computing the overlap of

|Að and |Bð with additive error ϵ.

3.1. Gradient descent

Gradient descent can be used to find the least

squares solution to linear regression problems

of the form Aw⃗ = b⃗ + Å⃗, where A is an

n × m matrix representing a dataset of n m-

dimensional examples, b⃗ is the expected outputs

associated with each example, w⃗ is the vector

of true parameters, and Å is a Gaussian noise

variable. We define a mean squared error loss

function as L = 1
2n

n
∑

p=1

(b̂(p) − b(p))2, where
⃗̂
b

is the output of our linear model based on an

estimate of the parameters:
⃗̂
b = Aw⃗∗. Applying

gradient descent to the loss function, we get the

parameter update for each iteration as

w⃗∗ := w⃗∗ − ¸×
1

n

n
∑

p=1

(⃗a(p) · w⃗∗ − b(p))⃗a(p) (5)

where · is the vector dot product. Over many

iterations, w⃗∗ is guaranteed to converge to the

global minimum of the mean squared error loss

function provided that the learning rate is less

than 2/L, where L is the Lipschitz constant of

the loss gradient. More specifically, the learning

rate hyperparameter ¸ plays a key role in con-

trolling the convergence rate. This learning rate is

fundamental to the efficiency of the gradient de-

scent algorithm. A large learning rate may result

in random exploration that misses the absolute

minimum, while small learning rates will not only

make the search slow, but can also get stuck in

local minima for non-convex loss functions. For

that reason, many gradient-based optimization

algorithms employ learning rates that adapt based

on the local topography of the loss landscape

and/or the trajectory of the solution estimate. For

example, methods such as momentum, adagrad,

RMSprop, and second order techniques like New-

ton’s method are able to speed up convergence of

gradient-based optimization [11]. In this work, we

show that convergence of gradient descent can be

further enhanced by leveraging knowledge of the

Euclidean distance from a particular test point to

the solution.

3.2. Quantum Adaptive Learning Rate

Unique to the approach in this paper is that the

learning rate is defined based on true knowledge

of the problem’s solution. To aid the gradient

descent, the SWAP test distance between the

estimation w⃗∗ and the HHL solution is performed.

The result from the SWAP test is the Euclidean

distance between the normalized vector of the

current iteration’s estimation and the normalized

true solution to the system of linear equations.

The Euclidean distance across iterations is then

used as a metric to adjust the gradient descent’s

learning rate. The distance indicates how close the

linear regression is to the correct solution. Even

though this distance is normalized and not the true

distance between the solution and test point, the

distance can indicate if large steps can be used or

if finer iterations are required to obtain a correct

estimate.

In this approach, the learning rate, ¸, is up-

dated following the expression:

¸n+1 =
¸n

1 + (1− Ed√
2
) ∗ ´

(6)

where Ed is the Euclidean distance determined

by the SWAP test and ´ is a user modifiable

parameter. This formula works similar to adaptive

learning rates using time based decay [11]. The

Euclidean distance is divided by the square root
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Figure 3: Pseudo-code representation of the quantum adaptive learning rate (lr in the code). The hybrid

Quantum-Classical model for the gradient descent algorithm is represented, separating the quantum

steps from the classical ones.

of two to set the range between zero and one.

This value is then subtracted to one so that the

denominator increases as the Euclidean distance

decreases. The result is an adaptive learning rate

that decreases with the Euclidean distance. To re-

duce the number of SWAP tests used, the learning

rate can be updated periodically instead of every

iteration. Figure 3 illustrates the hybrid model,

separating classical from quantum computations.

4. HHL limitations: encoding the
eigenvalues

As explained in Section 2.1, and in previous

work [3], HHL is a powerful quantum algorithm,

however, it also has significant limitations. Sec-

tion 2.1 explained how the matrix should be well-

conditioned, as reflected by » = λmax

λmin

. This is in-

herent to the matrix. But, further, the eigenvalues

have an impact on the overall error depending

on the size of the register that encodes them.

This section explores the limitations associated

with the eigenvalues of the matrix representing

the system of linear equations. To this end, imple-

mentations were tested under noiseless simulation

using IBM’s Qiskit tools [12]. The focus of these

experiments is to explore the inherent difficulties

of the algorithm itself, and their impact on ac-

curacy, rather than the challenges of the physical

implementation. Since quantum circuit results are

presented as a probability distribution, a quantum

circuit must be run many times to create an

accurate distribution of the results. Each run is

called a shot, and all simulations in this work

used 20,000 shots.

4.1. Model under ideal conditions

To demonstrate the combined HHL and

SWAP test circuit, the following standard system

with well defined eigenvalues (8, 4, 1, and 2) was

tested:

1

4









15 9 5 −3
9 15 3 −5
5 3 15 −9
−3 −5 −9 15









x⃗ =
1

2









3
2
1
0









(7)

This is a standard first step in testing HHL, but in

this case, the intention is to examine the error in

the Euclidean distance measurement to a test vec-

tor. It should be noted that to be able to measure

this distance accurately in the computational ba-

sis, the solution should be in the R realm. Given

that the eigenvalues are well defined — known

beforehand, easily invertible powers of two—, the

system of equation’s solution is exactly known,

free of error. The circuit used 16 qubits and had

a depth of 888 quantum steps. The results of the

Euclidean distance calculation and its error are

shown in Table 1, calculating the distance in two

instances: the solution vector against itself, and

the solution vector against a random test vector

(first and second rows respectively). The distance

is shown for each one of these. The error is calcu-

lated as the L2 error between the measured output

of the SWAP test and the true output containing
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the Euclidean distance between the normalized

solution and test point. The distance error shows

that the Euclidean distance is exactly correct, (no

error) when measured against the solution of the

problem. In this case the distance is 0 with error 0.

However, the second case with some random test

vector, there is an small error of approximately of

0.0056 over the normalized state vector output of

the SWAP test. Since the experiments are done

through noiseless simulation, this error is only

due to the sampling out of the state vector, and

a higher number of shots will further reduce this

small error.

Table 1: Ideal matrix swap test euclidean distance

error to two test vector cases, the normalized

exact solution (first row), and a random test vector

(second row). The distance error is measured

against the normalized ideal SWAP test output.

Test Euclidean Distance
Vector Distance Error

0.8590, 0.2342,
0.2342,0.3904 0.0 0.0

0.5,0.5,0.5,0.5 0.5312 0.0056

4.2. Number of qubits for Quantum Phase

Estimation

One significant source of error in the HHL

algorithm is in the quantum phase estimation

(QPE) stage. In this circuit’s stage, the eigenval-

ues are estimated and stored in a quantum register.

Since this stage performs an estimation of the

eigenvalues and not an exact calculation, there

will likely be error. However, the amount of error

in this stage can vary depending on the size of

the quantum register being used to represent the

calculated eigenvalues. The number of qubits for

phase estimation, in turn, has a critical impact

on the width and depth the circuit. Either way,

not knowing what the eigenvalues are, one can

only guess how many qubits are needed for their

quantum phase estimation. The objective of this

section is to evaluate the impact of this parameter

on the general HHL implementation.

To manually test the impact of QPE register

size, experiments using different sizes of quantum

register were simulated to determine its effect on

the error of the HHL result, and the error on the

SWAP test distance.

Two simple matrices were tested to see the

impact of the register size:

A1 =

[

1.25 0
0 1

]

A2 =

[

1.125 0
0 1

]

(8)

The eigenvalues of A1 are 1.25 and 1, and the

eigenvalues of A2 are 1.125 and 1. The L2 error

between the true Euclidean distance and SWAP

test Euclidean distance, and the L2 error between

the true solution and the HHL statevector solution

were recorded in Table 2.

Table 2: Error depending on the quantum phase

estimation register size, for matrices A1 and A2

as represented in Equation 8. The distance error

is measured against the normalized ideal SWAP

test output.

Matrix A1

Register
Size

Distance Error
Statevector

Error

3 0.2936 0.0963

4 0.1645 0.0236

5 0.0 0.0

6 0.0 0.0

7 not tested not tested

8 not tested not tested

Matrix A2

Register
Size

Distance Error
Statevector

Error

3 0.1904 0.0161

4 0.1995 0.0696

5 0.2314 0.0854

6 0.2147 0.0605

7 0.0 0.0

8 0.0 0.0

As expected, unless there are enough qubits

to perfectly represent the matrix’s eigenvalues in

the phase encoding, there will be error associated

to both the distance and the state vector. Once

the number of qubits is increased such that the

eigenvalues can be exactly encoded, there is no

longer error caused by the HHL circuit.

To test the impact of the register size when

the eigenvalues cannot be trivially represented,

the following system of equations was used
[

2.5 3
1 4

]

x⃗ =

[

1
1

]

(9)

which was modified to be Hermitian.

¼ = [5.53637,−5.53637, 1.26437,−1.264371]

These eigenvalues cannot be exactly encoded

with a reasonable amount of qubits. The HHL

algorithm uses a scaling factor on the eigenvalues
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of s = 1.26436 in this case, which resulted in

post scaling eigenvalues equal to

¼

s
= [4.37877,−4.37877, 1,−1]

This approach allows for some of the eigenval-

ues to be accurately represented, thus improving

the chances of accurate final results. Even post

scaling, a significant number of qubits would be

required to perfectly represent the eigenvalues

in this case. Experiments were run increasing

the number of qubits used in the register during

the quantum phase estimation stage of the HHL

algorithm. The true solution was used as the test

vector in the SWAP test so the expected Euclidean

distance would be zero. The L2 error between the

true solution and the statevector solution, and the

L2 error in the distance through the SWAP test

are recorded in Table 3.

Table 3: Error depending on the quantum phase

estimation register size, for non-trivial eigenval-

ues. The distance error is measured against the

normalized ideal SWAP test output.

Register Size Distance Error Statevector Error

4 0.3931 0.00031

5 0.1817 0.0001

6 0.2944 0.0188

7 0.2991 0.0063

8 0.0 0.0001

9 0.0 0.001

Table 3 indicates that increasing the number of

qubits in the quantum phase estimation stage can

reduce the error in the final HHL solution even

if the eigenvalues are not exactly represented.

However, the relationship between error and reg-

ister size is not linear. since additional qubits will

not always better represent a value. For example,

the number 0.625 can be perfectly represented

with four binary digits: 0.101. However, if fewer

binary digits are used, the estimation will remain

the same with two or three binary digits: 0.1 and

0.10 both estimate 0.625 to 0.5. With enough

qubits the error drops significantly. This indicates

that even if the eigenvalues are not exactly repre-

sented by the quantum phase estimation, a high

enough accuracy can be achieved for an accurate

SWAP test result.

While increasing the register size may im-

prove the results, it will also have a negative

impact on the width and depth of the circuit. This

means selecting the size of the quantum phase

estimation register is not a trivial step in utilizing

the HHL algorithm.

4.3. HHL applied to the Iris data set

The Iris data set is a simple data set often used

to test classification in machine learning.

Figure 4: Iris data set visualization.

The data set consists of three classes and four

features. The three classes represent three distinct

iris plant species. The four features are the sepal

length, sepal width, petal length, and petal width

of an iris flower. This data set is strong candidate

for testing the HHL algorithm because it is a

simple, widely used, and tangible data set. The

following system of linear equations was created

by randomly selecting four samples from the Iris

data set








5.2 6.6 5.8 6.3
2.7 2.9 2.8 2.9
3.9 4.6 5.1 5.6
1.4 1.3 2.4 1.8









x⃗ =









1
1
2
2









(10)

which was altered to be Hermitian as explained

in Section 2.1 before performing the HHL algo-

rithm. The resulting matrix used was an eight by

eight matrix with the eigenvalues

¼ = [16.75792, -16.75792, 1.07088, -1.07088,

0.48816, 0.23879, -0.23879, -0.48816]

Two experiments were run with this system

of linear equations, one with eigenvalue scaling

enabled and one without scaling. The first ex-

periment with eigenvalue scaling used a scaling

factor of s = 0.23879 resulting in post scaled

eigenvalues of
λ

s
= [70.17819, -70.17819, 4.48461, -4.48461,

2.04429, 1, -1, -2.04429]

Both experiments used eight qubits for the

QPE counting register to represent the eigenval-

ues. This resulted in a quantum circuit with a

depth of 34,200 steps and a total of 16 qubits:

three to encode the input vector, eight for the QPE
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stage, one ancilla qubit, three to encode the test

vector, and one control qubit for the SWAP test.

Table 4: Error With and without eigenvalue scal-

ing. The distance error is measured against the

normalized ideal SWAP test output.

Distance Error Statevector Error

Scaling Enabled 0.3645 0.0122

Scaling Disabled 0.5815 0.5371

The results in Table 4 show that scaling the

eigenvalues has a positive impact on the ac-

curacy of the HHL algorithm. Because of the

significant reduction in error after scaling the

smallest eigenvalues to one, it indicates that the

minimum eigenvalue contributes greatly to the

system of equations. Even with scaling, and with

a significant reduction, the error is still over 0.36

out of a normalized SWAP state vector, possibly

too high to derive useful information in a real ap-

plication. When using the same number of qubits,

scaling is an effective way of reducing error.

However, in practice it would not be realistic

to scale the eigenvalues of the matrix to exact

integers because it would require prior knowledge

of the matrix’s eigenvalues. One can assume,

as seen Section 4.2, that if enough qubits were

available, scaling would not be necessary as the

error could instead be reduced by increasing the

number of qubits used. But this would further

increase the size and resources necessary for the

implementation. As is shown in Section 5, this is

still useful information when used in conjunction

with QALR.

5. Quantum Adaptive Learning Rate
Results

The ideal matrix, Equation 7, and Iris matrix,

Equation 10, were tested in fully simulated ex-

periments executing the hybrid gradient descent

model. Values for ´ and the number of iterations

between SWAP tests were assumed to be ade-

quate based on the rage of all other parameters,

but more work can be done in the future to tune

these to each specific problem.

Classical gradient descent was performed on

the ideal matrix with a learning rate (lr1) of

lr = 0.01 and lr = 0.03. The hybrid model

1lr used from here on for consistency with the algorithm and
figures

was performed with an initial learning rate of

lr = 0.03 and ´ = 0.3. The learning rate was

updated using the SWAP test every 10 iterations.

By only updating the learning rate every 10

iterations, the number of SWAP tests required is

reduced. If implemented into a larger regression

model, the learning rate could be updated every

epoch similar to step decay learning rates. The

learning rate and loss are recorded in Figure 5.

Figure 5: Learning Rate (lr) and Loss vs Itera-

tions (Ideal Matrix)

As expected, the learning rate is updated

similar to a step decay adaptive learning rate.

Across the 100 iterations of gradient descent, 11

SWAP tests were performed. Compared to the

true Euclidean distance between the true solution

and gradient descent estimation, the 11 SWAP

tests had an average L2 error of 0.01211. Com-

pared to the constant learning rate, the quantum

adaptive learning rate (QALR) achieves a lower

loss and quicker descent. This means that with

the quantum adaptive learning rate, the same loss

is reached in fewer iterations than the constant

learning rate. The loss with a constant learning

rate of lr = 0.01 does near the loss seen in

the quantum adaptive learning rate toward the

final iterations, and the constant learning rate of

lr = 0.03 surpasses the adaptive learning rate

around 60 iterations. This is because the quantum

adaptive learning rate becomes increasingly small

causing its loss to slow during later iterations. The

constant learning rate of lr = 0.01 and quantum

adaptive learning rate would intersect to have the

same loss around iteration 110.

For the Iris matrix, the classical gradient de-
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scent was performed with a constant learning rate

of lr = 0.001 and lr = 0.003. An initial learning

rate of lr = 0.003 and ´ = 0.5 were used for

the hybrid gradient descent. Due to the amount of

error seen in Table 4, even with scaling enabled,

the number of qubits used in the QPE stage was

increased from 8 to 12.

Figure 6: Learning Rate (lr) and Loss vs Itera-

tions (Iris Matrix)

The results in Figure 6 resemble those in the

previous experiment. The loss drops lower and

faster than the constant learning rate meaning a

lower loss can be achieved in fewer iterations.

However, the gap between the quantum adap-

tive learning rate and constant learning rate of

lr = 0.003 is not as wide. Again, the loss

of the constant learning rate of lr = 0.001
begins to approach the quantum adaptive learning

rate as the adaptive learning rate nears zero.

The constant learning rate and quantum adaptive

learning rate would intersect to have the same loss

after about 45000 iterations. The learning rate was

updated every 5000 iterations and performed the

SWAP test nine times. The Euclidean distance

determined by the SWAP test had an average L2

error of 0.03233 compared to the true Euclidean

distance.

While both experiments had little error, it

is worth noting that the SWAP test returned

an Euclidean distance of zero for the last few

updates. Small distances, approximately less than

0.05 in these examples, returned an Euclidean

distance of zero. Increasing the number of shots

would improve the precision of the Euclidean

distance from the SWAP test. However, this in-

creases the circuit execution time and was deemed

not necessary as the extremely small distances

towards the end of the experiment have minimal

impact on the learning rate. This indicates that

as the distance between the estimated and true

solution becomes increasingly small, the quan-

tum approach becomes less impactful. A more

efficient algorithm could switch to a classical

adaptive learning rate once the Euclidean distance

from the SWAP test becomes minimal.

By incorporating the quantum adaptive learn-

ing rate into classical gradient descent, the train-

ing process of a linear regression problem is

improved. The loss is reduced quicker than a

constant learning rate indicating that the quan-

tum adaptive learning rate improves the speed

at which a gradient descent converges on ideal

weights.

5.1. Circuit and problem complexity

The HHL circuit is kept from previous works

[7], [8] and no notable changes were made to this

part of the circuit. Since the true solution does not

change during gradient descent, the HHL portion

of the model should only need to be performed

once. A previous work [8] explored the cost of

the SWAP test. Experiments demonstrated that

with a carefully selected test point, the SWAP test

was not computationally expensive. Even though

the SWAP test is not computationally expensive,

efforts must be made to mitigate the number of

SWAP tests. This was explored in this work by

limiting the SWAP test to select iterations during

gradient descent, and the possibility of using a

SWAP test with reduced Toffoli gates when the

quantum states are no longer needed, since the

swapped states are not necessarily preserved in

this implementation.

6. Conclusions
HHL is a powerful but limited and highly

conditioned quantum algorithm. This paper looks

at some of these limitations, and uses HHL as

a way of extracting partial information on the

solution to the training problems of neural net-

works. By incorporating the quantum adaptive

learning rate into classical gradient descent, the

training process of a linear regression problem

is improved. The loss is reduced quicker than a

constant learning rate indicating that the quan-
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tum adaptive learning rate improves the speed

at which a gradient descent converges on ideal

weights.

The HHL quantum algorithm is highly depen-

dent on several parameters, such as the sparsity

and conditioning of the system’s matrix to men-

tion two. This paper has looked at the impact the

of quantum phase estimation register’s size on

the accuracy of the results. Improving accuracy

would come at the cost of a more complex circuit

that requires more resources. But that is if the

range of the eigenvalues were known, which will

not be, and one can only estimate the best size

for this register.

On future work, it is possible to use linear

algebra tools to help estimate upper and lower

bounds for the eigenvalues, without compromis-

ing the computational complexity of overall solu-

tion. The ´ step size and the number of iterations

between SWAP tests should also be further eval-

uated.

There is a number of classical adaptive learn-

ing rate methods that could potentially outper-

form the method proposed here. However, clas-

sical adaptive learning rates typically have addi-

tional computational overhead, and that requires

of the tuning/storage of extra hyperparameters.

For example, the momentum technique introduces

a new momentum parameter that needs to be

set carefully to avoid oscillatory or divergent be-

havior. Other approaches, like AdaGrad , require

tuning and storage of learning rates for every

model parameter, which could be a significant

overhead for large model sizes. Finally, second-

order techniques require the computation of the

Hessian matrix which is often not feasible for

very large model sizes [13]–[15]. Quantum adap-

tive learning rate (QALR) has its own difficul-

ties, but makes an adaptive decision based on

certain knowledge of the optimal solution. A fair

question to ask is whether it is worth enlisting a

quantum computer to solve this problem, instead

of paying the price of additional classical com-

putational resources and complexity. This work

does not evaluate the computational complexity

of the problem as a whole (classical+quantum

mechanical), which is also left for a theoretical

analysis of these algorithms in the future.
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