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The review articles had focused on important current and fundamental
aspects of protein structure, function, evolution, genetics, significance to the
biological system, and/or relevance to a health and disease. Proteins
associated with a certain disease or the appearance and progression of a
disease are also covered in this series. Before publishing accepted reviews
in print, they will be published online. All chapters are indexed in PubMed
and the Web of Science. Review articles had been by invitation, but some
were also selected from proposed topics. An author who wished to write a
manuscript could submit his/her proposal to the editor.

Here, in the first chapter “Structure and Function of SNMI1 Family
Nucleases,” Hsuan-Yi Wu, Yuanzhang Zheng, Adrian R. Laciak, Nian
N. Huang, Mary Koszelak-Rosenblum, Andrew J. Flint, Grant Carr, and
Guangyu Zhu discuss three human nucleases, SNM1A, SNMI1B/Apollo,
and SNM1C/Artemis, that belong to the SNM1 gene family. These nucleases
are involved in various cellular functions and share a similar catalytic domain
which is characterized as a fused metallo-p-lactamase and a CPSF-Artemis-
SNMI1-PSO2 domain. SNM1A and SNMI1B/Apollo are exonucleases,
whereas SNM1C/Artemis is an endonuclease. The review contains a summary
of recent findings on SNM1’s cellular and biochemical functions, and also
structural biology studies. In addition, protein structure prediction by an
artificial intelligence program provides a different view of the non-catalytic
domain, used with current X-ray results.

The second chapter by Tamara Flusche and Rakhi Rajan, entitled “Molec-
ular Details of DNA Integration by CRISPR-Associated Proteins During
Adaptation in Bacteria and Archaea,” deals with clustered regularly
interspaced short palindromic repeats (CRISPR) and CRISPR-associated
proteins that constitute an adaptive immune system in bacteria and archaea,
where immunological memory is retained in the CRISPR locus as short pieces
of the intruding nucleic acid, termed spacers.

The third chapter by Paul R. Gardner, entitled “Ordered Motions in the
Nitric-Oxide Dioxygenase Mechanism of Flavohemoglobin and Assorted
Globins with Tightly Coupled Reductases,” discusses how nitric oxide
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dioxygenases (NODs) activate and combine O, with NO to form nitrate. A
variety of oxygen-carrying hemoglobins with associated partner reductases or
electron donors function as enzymatic NODs. Analyzing kinetic and structural
studies of the archetypal two-domain microbial flavohemoglobin-NOD,
Dr. Gardner presents an allosteric mechanism that employs selective tunnels
for O, and NO, gates for NO, nitrate, transient O, association with ferric
heme, and an O, and NO-initiated ferric heme spin crossover-driven, motion-
controlled, and dipoleregulated electron-transfer switch.

The last chapter entitled “Structural Analyses of the Multicopper Site of
CopG Support a Role as a Redox Enzyme” by Andrew C. Hausrath and
Megan M. McEvoy, examines how metal ions, including copper, are used as
broad-spectrum biocides in a variety of clinical and environmental settings.
The copG gene is a common component of such copper resistance protein
clusters, but its contribution to copper resistance is not well understood. In this
chapter, the authors summarize the available information about the CopG
protein encoded by this gene. The recent structure is compared to diverse
copper-containing metallochaperones, metalloenzymes, and electron transfer
proteins.

I was the Founding Editor in 1999 and continued as the Editor for 23 years.
Now, because of health reasons, I really must retire and regrettably the book
review series will also be retired and cease publication.

I would like to thank the authors in volume 23 and all previous volumes for
their outstanding contributions, and the readers for their continued support.
I also want to pay special thanks to my wife Lena MousaPasha Atassi, MD,
for her patient help and support during my work on these books.

Houston, TX, USA M. Zouhair Atassi
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Abstract

Clustered regularly interspaced short palin-
dromic repeats (CRISPR) and CRISPR-
associated (Cas) proteins constitute an adap-
tive immune system in bacteria and archaea,
where immunological memory is retained in
the CRISPR locus as short pieces of the intrud-
ing nucleic acid, termed spacers. The adapta-
tion to new infections occurs through the
integration of a new spacer into the CRISPR
array. For immune protection, spacers are tran-
scribed into CRISPR RNAs (crRNA) that are
used to guide the effector nuclease of the sys-
tem in sequence-dependent target cleavage.
Spacers originate as a prespacer from either
DNA or RNA depending on the CRISPR-Cas
system being observed, and the nearly univer-
sal Cas proteins, Casl and Cas2, insert the
prespacer into the CRISPR locus during adap-
tation in all systems that contain them. The
mechanism of site-specific prespacer integra-
tion varies across CRISPR classes and types,
and distinct differences can even be found
within the same subtype. In this review, the
current knowledge on the mechanisms of
prespacer integration in type II-A CRISPR-
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Cas systems will be described. Comparisons
of the currently characterized type II-A
systems show that distinct mechanisms exist
within different members of this subtype and
are correlated to sequence-specific interactions
of Cas proteins and the DNA elements present
in the CRISPR array. These observations indi-
cate that nature has fine-tuned the mechanistic
details while performing the basic step of
DNA integration by Cas proteins, which offers
unique advantages to develop Casl-Cas2-
based biotechnology.

Keywords

Casl - Cas2 - Cas9 - CRISPR adaptation -
CRISPR-Cas - Csn2 - DNA integration -
Integrase - Prespacer - Type Il CRISPR
systems

Abbreviations

CRISPR

Clustered regularly interspaced short
palindromic repeats

Cas CRISPR-associated
crRNA CRISPR RNA

pre- pre-CRISPR RNA

crRNA

nt nucleotide

nts nucleotides

PAM protospacer adjacent motif
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PFS protospacer flanking site
ssDNA single-stranded DNA
dsDNA double-stranded DNA
tractrRNA  trans-activating-crRNA
ssRNA single-stranded RNA

E. coli Escherichia coli

IHF integration host factor

1 Introduction

Clustered regularly interspaced short palin-
dromic repeats (CRISPR) were discovered as
repetitive sequences in the genomes of bacteria
and archaea (Ishino et al. 1987; Mojica et al.
1993, 2000). These repetitive sequences, termed
“repeats,” were separated by short, fixed length
regions that originated from extracellular DNA,
termed “spacers” (Bolotin et al. 2005; Mojica
et al. 2005). Soon after, CRISPR-associated
(Cas) proteins were found to have roles in
integrating new spacers into the CRISPR array
and targeting extracellular DNA for cleavage in
a sequence-dependent manner, establishing the
CRISPR-Cas operon as one functional system
(Jansen et al. 2002; Haft et al. 2005; Barrangou
et al. 2007). CRISPR-Cas systems have been
established as adaptive immune systems found
in archaea and bacteria, and some systems have
been shown to target intruding RNA, while
others have been identified as essential for gene
regulation (Barrangou et al. 2007; Hale et al.
2009; Silas et al. 2016; Mohr et al. 2018; Faure
et al. 2019; Newsom et al. 2021).

1.1 CRISPR-Cas Systems as Adaptive

Immune Systems

Even though CRISPR systems vary in their
compositions and mechanisms, the overall steps
leading to a successful immune defense, adapta-
tion, expression, and interference are the same in
all organisms that have been characterized so far
(Fig. 1a). When foreign genetic elements, such as
plasmids or bacteriophage, enter the cell, a short
piece of the invading DNA, or RNA in the case of
some systems, will be acquired and integrated
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into the prokaryotic genome as a part of the
repeat-spacer array (Barrangou et al. 2007;
Nuiiez et al. 2014, 2015; Silas et al. 2016; Mohr
et al. 2018). This process is termed “adaptation”
(Fig. 1a). The new spacers are preferentially
integrated upstream of the first repeat, though
integration can occur ectopically at other
positions in the array (Fig. la) (Erdmann and
Garrett 2012; Nufiez et al. 2015; McGinn and
Marraffini 2016). In the second step of “expres-
sion,” the CRISPR array is transcribed into
pre-CRISPR RNA (pre-crRNA), which is then
processed into mature crRNAs containing spe-
cific regions of one repeat-spacer unit (Fig. 1a).
In the final step of “interference,” the crRNA
binds a single or multiple Cas proteins to form
an effector complex to find the target site on the
invading nucleic acid that is complementary to
the guide region of the crRNA (~20-32 nucleotide
(nt) long region) (Jore et al. 2011; Sternberg et al.
2014). Cas nucleases either site-specifically intro-
duce double-stranded breaks or degrade long
regions of the intruder genome, inactivating the
infection (Fig. 1a) (Brouns et al. 2008; Garneau
et al. 2010). To distinguish native nucleic acids
from the intruder during the interference step,
different CRISPR systems employ distinct
mechanisms, such as a protospacer adjacent
motif (PAM) or protospacer flanking site (PFS),
to prevent self-DNA/RNA cleavage (Deveau
et al. 2008; Mojica et al. 2009; Marraffini and
Sontheimer 2010; Abudayyeh et al. 2016). The
PAM and PFS sequence requirements depend on
the organism and CRISPR system with strand
preferences in some of the CRISPR types (Mojica
et al. 2009; Vink et al. 2021).

Classification of CRISPR-Cas
Systems

1.2

The different CRISPR-Cas systems have been
categorized into 2 different classes, 6 types, and
33 subtypes (Makarova et al. 2018, 2020a). Each
CRISPR-Cas system contains an operon of sev-
eral Cas proteins and a CRISPR array consisting
of multiple repeats and spacers (Makarova et al.
2002, 2006; Haft et al. 2005). In certain CRISPR
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Fig. 1 CRISPR-Cas systems as an adaptive immune sys-
tem. (a) Cartoon schematic of the different steps involved
in CRISPR-Cas immune response. There are three distinct
steps in CRISPR immunity. Step 1 is adaptation, which
enables insertion of spacers acquired from invading
nucleic acids. The excised nucleic acid is processed into
a prespacer by protein complexes composed of Cas
proteins as well as yet uncharacterized cellular proteins
(represented by the blue circle). The processed prespacer
(red and blue strands) is integrated into the repeat-spacer
array (rectangle-diamond array) of the CRISPR locus by
Casl (green and salmon circles) and Cas2 (yellow circles).

systems, the DNA region immediately upstream
of the first repeat of the CRISPR array, known as
the leader region, holds promoters for transcrip-
tion of the locus as well as motifs essential for
adaptation (Jansen et al. 2002; Pourcel et al. 2005;
Pougach et al. 2010; Yosef et al. 2012; Wei et al.
2015a).

Class 1 is defined by multi-protein effector
complexes. Class 1 consists of types I, III, and
IV. Type I has an effector complex known as the
CRISPR-associated complex for antiviral defense
or cascade, which is composed of multiple Cas
proteins that bind the crRNA (Brouns et al. 2008;
Jore et al. 2011; Wiedenheft et al. 2011). The
cascade complex targets DNA based on

D=

Cas2 Csn2

Repeat-Spacer Array

Step 2 is expression, where the repeat-spacer array is
transcribed into pre-crRNA and then processed into indi-
vidual crRNAs (hairpin structures). The crRNAs are taken
up by Cas proteins (red circle) forming an effector com-
plex that surveys the host cell for the presence of intruder
genome. In step 3, the ribonuclear complex locates the
intruder by sequence specific interactions of crRNA with
the intruder genome, followed by cleavage and inactiva-
tion of the intruder by signature Cas proteins, offering
protection from invasion. (b) Cartoon schematic of a
type II-A CRISPR locus

complementarity with the crRNA, followed by
recruitment of the signature protein Cas3, which
uses an HD endonuclease for DNA degradation
(Brouns et al. 2008; Sinkunas et al. 2011; Jore
et al. 2011; Huo et al. 2014). Type III systems
are unique due to their ability to perform crRNA-
dependent RNA cleavage as well as transcription-
coupled single-stranded DNA (ssDNA) cleavage,
both of which are essential for complete protection
against the intruder (Hale et al. 2009; Staals et al.
2013; Samai et al. 2015). The RNA and DNA
cleavages also trigger the synthesis of cyclic
oligoadenylates by Cas10, which activates nonspe-
cific cellular RNA cleavage by Csm6/Csx|1, arrest-
ing cell growth (Niewoehner et al. 2017;
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Kazlauskiene et al. 2017; Koonin and Makarova
2018). Type IV systems are highly derived
CRISPR systems that generally do not have
components such as adaptation modules or Cas
interference nucleases (Makarova et al. 2020a;
Moya-Beltran et al. 2021). While some type IV
subtypes have been shown to cleave plasmids by
association of CRISPR-Cas components with
accessory proteins, some subtypes have been
predicted to be involved in non-CRISPR-mediated
immune defense and gene regulation (Taylor et al.
2021; Moya-Beltran et al. 2021). Future research is
essential to characterize type IV systems that are
very distinct from the currently well-characterized
CRISPR-Cas systems.

Class 2 systems are defined by their use of
specific multi-domain single proteins as the
effector complex. Class 2 consists of types
II, V, and VI. Type II contains the effector
nuclease Cas9, which possesses two separate
endonuclease domains (HNH and RuvC) for
double-stranded DNA (dsDNA) cleavage
(Haft et al. 2005; Makarova et al. 2006; Jinek
et al. 2012; Gasiunas et al. 2012; Sternberg
et al. 2014). Cas9 requires a trans-activating-
crRNA (tracrRNA) along with the crRNA to
perform DNA interrogation and cleavage
(Deltcheva et al. 2011). Type V contains the
effector nuclease Cas12, which uses one nucle-
ase domain (RuvC) for successive cleavages of
both strands of DNA (Zetsche et al. 2015;
Makarova et al. 2015). Type VI contains the
effector nuclease Casl3 which targets RNA
and uses two HEPN nuclease domains to inflict
cis and trans-RNA cleavages to induce dor-
mancy in phage-infected bacteria (Abudayyeh
et al. 2016; East-Seletsky et al. 2016).

1.3 CRISPR Adaptation Has
a Conserved Mechanism Across

the Different CRISPR Types

Even though the exact protein composition of the
different CRISPR-Cas systems vary widely as
mentioned above, most of them possess Casl
and Cas2 proteins (Makarova et al. 2020a).
Though they vary in their sequence similarities,
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these homologous proteins are the driving force
of the adaptation module in CRISPR immunity
(Makarova et al. 2020a). Cas1 was first identified
as a divalent metal-dependent DNA endonuclease
(Wiedenheft et al. 2009). Metal binding pocket
residues, including metal coordinating residues,
have been found to be acidic (D/E) (Wiedenheft
et al. 2009; Rollie et al. 2015). It houses the
catalytic site for the integration reaction, and
mutations of the key active site residues abolish
integration entirely (Rollie et al. 2015). Cas2 was
identified as a divalent metal-dependent single-
stranded RNA (ssRNA) endoribonuclease with a
ferredoxin-like fold (Beloglazova et al. 2008).
However, Cas2 has not been observed to have
any catalytic function during prespacer integra-
tion since mutation of the key active site residues
does not inhibit integration (Rollie et al. 2015;
Nufiez et al. 2014). Casl and Cas2 form a
heterohexameric structure with the stoichiometry
of Casly-Cas2, to promote integration, which is
critical for the integration reaction to occur
(Fig. 2a) (Wright and Doudna 2016; Xiao et al.
2017).

Type II CRISPR-Cas systems have been the
focus of many studies due to the presence of the
signature nuclease Cas9, which is heavily used in
many biotechnological and genome editing
applications. All type II systems have Cas9,
Casl, and Cas2 in the CRISPR locus and are
further categorized into three subtypes based on
a secondary signature protein (Chylinski et al.
2013, 2014; Makarova et al. 2020a). Type II-A
contains the protein Csn2 (Fig. 1b), which has
been found to have dsDNA binding activity,
with no demonstrated catalytic activity (Nam
et al. 2011; Ellinger et al. 2012; Arslan et al.
2013). Type II-B contains the protein Cas4,
which has been shown to have divalent metal-
dependent endonuclease activity as well as 5’ to
3’ exonuclease activity against ssDNA (Lemak
et al. 2013). While the role of Cas4 in type II-B
adaptation is not currently known, Cas4s in other
CRISPR types have been demonstrated to have a
role in adaptation (Rollie et al. 2018; Kieper et al.
2018; Lee et al. 2018, 2019; Makarova et al.
2020a). Type II-C contains only Cas9, Casl,
and Cas2 in its cas operon.
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Fig. 2 Components of prespacer integration in type II-A
systems. (a) Crystal structure of the Casly-Cas2,-
prespacer integration complex; PDB ID: 5XVN (Xiao
et al. 2017). (b) Crystal structure of the integration com-
plex where the prespacer has been integrated into the
leader-repeat junction of the target DNA; PDB ID:
5XVO (Xiao et al. 2017). (¢) Close-up of the leader
recognition helix of Casl. Residues of the helix make

In this review, we will be describing the
mechanisms of prespacer acquisition and inte-
gration in CRISPR systems, with more in-depth
mechanistic details being presented for the type
II-A systems. A prespacer is a processed section
of an intruder DNA or RNA that will be
integrated into a repeat-spacer array. The
prespacer integration mechanism has been
well characterized in type II-A and type I-E;
however, type II-A is distinct from type I-E in
that accessory protein factors are not needed to
facilitate sequence-specific prespacer integra-
tion into the CRISPR array. This independent
mechanism of type II-A Casl and Cas2 to inte-
grate DNA site specifically can potentially be
advantageous for Cas1-Cas2-based biotechnol-
ogy (Shipman et al. 2016, 2017; Schmidt et al.
2018).

sequence-specific contacts with nucleotides of the leader
(interactions are shown in lime green); PDB ID: 5XVO
(Xiao et al. 2017). (d) Crystal structure of the integration
complex where the prespacer has been integrated into both
sides of the target DNA; PDB ID: 5XVP (Xiao et al.
2017). Color scheme: proximal Casl, green; distal Casl,
salmon; Cas2, yellow; prespacer, red and blue strands;
target DNA, cyan and orange strands.

2 Integration in Type II-A
Systems
2.1 Prespacer Acquisition Precedes

Integration

Prespacer acquisition is the process of acquiring a
piece of invading nucleic acid so that it can be
integrated into the repeat-spacer array. A com-
plete mechanism for prespacer acquisition in
type II-A systems has yet to be elucidated due to
several outstanding questions. Current knowl-
edge shows that all four Cas proteins in the type
II-A locus as well as tracrRNA are essential for
prespacer acquisition under in vivo conditions
and that all four Cas proteins are able to form a
stable complex and co-purify through a size
exclusion column (Wei et al. 2015b; Heler et al.
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2015; Wilkinson et al. 2019). Prespacer acquisi-
tion preferentially occurs around regions of
double-strand breaks in DNA such as those cre-
ated through AddAB-mediated repair, restriction
enzyme digestion, or preexisting cos sites in viral
DNA. As such, prespacer acquisition is thought to
begin with Cas9 either identifying a PAM
sequence near a dsDNA break or generating a
dsDNA break through crRNA-mediated cleavage
(Modell et al. 2017; Nussenzweig et al. 2019;
Maguin et al. 2022). The flanking region of
DNA is then excised and processed by Cas9 or
other undefined nuclease(s) to ensure that the
prespacer DNA contains features essential for
Casl-Cas2 to perform the integration reaction,
such as the presence of an accessible 3’-OH on
both ends of the prespacer and removal of the
PAM sequence (Nufiez et al. 2015; Jakhanwal
et al. 2021).

Even though Cas9 is essential for adaptation,
its catalytic activity is dispensable. It has been
observed that spacer uptake occurs from both
the bacterial genome and intruding DNA when
Cas9 is catalytically inactive (Wei et al. 2015b;
Heler et al. 2015). Mutational studies of Cas9
showed that the substitution of I473F increased
the rate of spacer acquisition at the expense of
increased spacer uptake from the bacterial
genome (Heler et al. 2017). This mutation has
not been observed in any Cas9 protein so far
and thus indicates the importance of avoiding
autoimmune spacer sequences and establishes
Cas9’s role in propagating daughter cells with
only functionally relevant spacers (Wei et al.
2015b; Heler et al. 2015, 2017).

Another interesting feature of adaptation is
“primed adaptation,” a process by which
preexisting spacers enable faster acquisition of
new spacers in a CRISPR system (Swarts et al.
2012; Datsenko et al. 2012). This mechanism has
been well established in type I systems, where
escaper phages cause stalled interference that
triggers new spacer acquisition through a variety
of pathways (Xue et al. 2015, 2016; Kiinne et al.
2016). Primed adaptation occurs at a higher fre-
quency and with higher efficiency than naive
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adaptation in type I systems (Datsenko et al.
2012). Recent studies are pointing to features in
type II-A adaptation that resemble primed adap-
tion (Nicholson et al. 2018; Nussenzweig et al.
2019). Bioinformatic analysis of spacer distribu-
tion showed evidence of priming in several
CRISPR systems, including types II-A and II-C,
with the existence of a directionality in spacer
selection in certain subsets (Nicholson et al.
2018). Experimental analysis testing two different
type II-A systems, from Streptococcus pyogenes
and Streptococcus thermophilus, showed an
increased uptake of new spacers when an active
Cas9 was able to induce targeted DNA cleavage
with a preexisting spacer (Nussenzweig et al.
2019). A difference noted in type II systems is
that primed adaptation occurs with a completely
complementary crRNA, rather than only with
escaper phages, implicating that type II-A
systems proactively acquire new spacers for pro-
tection  against future escaper phages
(Nussenzweig et al. 2019).

It is unknown how Cas9 specifically interacts
with the other Cas proteins during spacer acquisi-
tion, but binding assays have shown that Cas9
interacts and forms a stable complex with Csn2
in vitro but not with Casl or Cas2 (Ka et al.
2018). Csn2 has been proposed to protect the
prespacer from degradation during the adaptation
process as it has been shown to bind dsDNA ends,
but the mechanism by which it assists prespacer
integration is unclear (Arslan et al. 2013;
Wilkinson et al. 2019). Cryo-electron microscopy
structures of Cas proteins from the type II-A
CRISPR3 locus of Streptococcus thermophilus
revealed a Csn24-Caslg-Cas2, prespacer capture
complex protecting ~30 base pairs of dsDNA
(Wilkinson et al. 2019). It is still unclear how
this observed complex functions in in vivo
settings. Based on the current literature, it is
speculated that the Cas14-Cas2, heterohexameric
integration complex acquires the prespacer in a
form that is ready to proceed to the chemical step
of integration from a complex composed of all
four type II-A Cas proteins (Jakhanwal et al.
2021).
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2.2 Cas1-Cas2 Is the Minimal Subunit
for Site-Specific Prespacer

Integration

Prespacers are integrated into the repeat-spacer
array by the integration complex through a
transesterification reaction (Nuiiez et al. 2014).
The Casls distal to the Cas2 dimer catalyze the
transesterification between the 3'-hydroxyl of the
prespacer strand and the phosphate backbone of
the genomic DNA (Fig. 2b) (Nuiiez et al. 2015).
The Cas2 dimer holds the prespacer DNA
through interactions with the phosphate backbone
of the DNA (Nuiiez et al. 2014; Xiao et al. 2017).
The optimal length of prespacer is variable
depending on the organism and has been linked
to the size and orientation of the Cas2 dimer in the
integration complex, which in turn affects the
distance between the Cas1 active sites for cataly-
sis (Xiao et al. 2017). The integration complex is
the minimal subunit for site-specific prespacer
integration in type II-A systems when the
correctly processed prespacer is available for inte-
gration (Wright and Doudna 2016).

Prespacer integration is dependent on
sequence-specific interactions between the integra-
tion complex and the leader region of DNA, the
region immediately upstream of the first repeat of
the CRISPR array (Jansen et al. 2002; Pourcel
et al. 2005; Yosef et al. 2012; Wei et al. 2015a).
Integration of a new prespacer occurs preferen-
tially at the first repeat of the repeat-spacer array,
a position referred to as the leader-repeat junction
(Fig. 3) (Barrangou et al. 2007; Yosef et al. 2012).
The sequence immediately upstream of the first
repeat was found to be crucial for on-target inte-
gration, and crystal structures of the integration
complex bound to a DNA representing the type
II-A leader-repeat junction showed that Casl
makes sequence specific contacts with the bases
of the genomic DNA through a conserved alpha
helix called the leader-recognition helix (Fig. 2b,
¢) (Wei et al. 2015a; McGinn and Marraffini 2016;
Xiao et al. 2017; Budhathoki et al. 2020). If the
sequence of the leader-repeat junction is mutated,
ectopic spacer integration occurs, mainly at other
repeat-spacer junctions within the repeat-spacer
array (McGinn and Marraffini 2016).

Two transesterification reactions at both ends
of the first repeat, coinciding with the leader-
repeat and the repeat-spacer junctions, are essen-
tial for the complete integration of a prespacer
into a CRISPR array. In type II-A systems, inte-
gration preferentially occurs at guanine
nucleotides in both these locations (Kim et al.
2019). Once Casl has made sequence-specific
contacts with the leader-repeat junction, a
molecular-ruler mechanism defines the second
integration site (Kim et al. 2019). The two inte-
gration reactions are not always sequential (Van
Orden et al. 2020). The transesterification reac-
tion is reversible at either the leader-repeat junc-
tion or the repeat-spacer junction, which has
biological implications (Ma et al. 2021).

23 Mechanisms to Ensure Fidelity
and Repair During CRISPR

Adaptation

Integration at the leader-repeat junction followed
by the repeat-spacer junction is essential for
maintaining fidelity of prespacer integration and
avoid insertions into sites within the genome that
will disrupt the functionality of genes. While
certain type II-A systems inherently possess a
sequential order, leader-repeat junction followed
by repeat-spacer integration, some others can
integrate at either of these sites equally well
under in vitro conditions (Kim et al. 2019;
Budhathoki et al. 2020; Van Orden et al. 2020).
Several mechanisms that are not fully
characterized are proposed to ensure the fidelity
of site-specific spacer insertion. One such mecha-
nism to establish the fidelity is the ability of Cas1-
Cas2 proteins to promote disintegration of the
prespacer if the first integration occurs at a site
other than the leader-repeat junction (Nuiiez et al.
2015; Wright and Doudna 2016). Recently, dis-
integration of prespacers is being proposed as a
prerequisite for the second site insertion to relieve
topological stress on the genomic DNA during
the prespacer integration as well as to initiate
DNA repair mechanisms to fill in and seal the
gaps following a new prespacer integration
(Ma et al. 2021).
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Fig.3 Type II-A can be further divided into three distinct ~ where R is any purine. Group 3 has the consensus
subgroups with differing integration mechanisms. (a) The = sequence of NNNNNCG, where N is any nucleotide. (b)
three groups within type II-A are divided based on the  Group 1 target recognition occurs with a minimal unit of
sequence conservation at the 3’ end of the leader region. 7 nt of the leader and 5 nt of the repeat. (¢) Group
Group 1 has the consensus sequence of ATTTGAG. 1 prespacer integration ensues with the first of two sequen-
Group 2 has the consensus sequence of CTRCGAG, tial transesterification reactions occurring at the leader-
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Integration of the prespacer leaves ssDNA
gaps composed of the repeat region on either
side of the newly integrated spacer (Fig. 3f).
These gaps are believed to be repaired by cellular
polymerases and ligases, leading to the addition
of a new repeat sequence upstream of the newly
integrated spacer. Recent evidence has shown that
resolution of the post-synaptic complex created
during prespacer integration and subsequent gap
repair can occur in tandem through transcription-
coupled DNA repair (Budhathoki et al. 2020).
smFRET experiments observed that the Casl-
Cas2 heterohexameric complex remained bound
to the fully integrated prespacer in a post-synaptic
complex. It is postulated that transcription-
coupled DNA repair can play a significant role
in the resolution of the post-synaptic complex as
transcription with RNA polymerase occurs more
frequently than replication with DNA polymerase
in a bacterial cell (Budhathoki et al. 2020).

2.4 Leader-Repeat as a Motif
for Site-Specific Spacer Insertion

in Type II-A Systems

As mentioned previously, the leader-repeat junc-
tion is crucial for providing site-specificity and
independency of prespacer integration by the type
II-A Casl-Cas2 proteins. Recent studies have
found that based on the sequence conservation
of the last seven nucleotides at the 3’ end of the
leader region, the type II-A CRISPR systems can
be divided into three distinct groups, each with a
distinct mechanism for prespacer insertion
(Fig. 3a) (Van Orden et al. 2017, 2020). Interest-
ingly, phylogenetic analyses of the leader-repeat

<

junction and each of the four Cas proteins from a
comprehensive list of type II-A systems
segregated them into the same three groups
based on the leader-repeat conservation (Van
Orden et al. 2017). This indicates coevolution of
the leader-repeat sequence and the Cas proteins in
the three groups of type II-A systems and the
sequence-specific  protein-DNA  interactions
within each group for efficient prespacer integra-
tion (Van Orden et al. 2017, 2020). Despite all
proteins being of the type II-A loci, Casl-Cas2
proteins are not cross-compatible between the
type II-A subgroups. Casl from one type II-A
group will not form an integration complex with
Cas2 from another group under in vitro
conditions (Van Orden et al. 2020).

When investigating the differences in integra-
tion mechanism between these three groups, it
was found that each group possesses a distinct
biochemical mechanism for prespacer insertion
(Van Orden et al. 2020). Groups 1 and 2, which
both manifested strong leader-repeat conserva-
tion, can perform efficient prespacer integration
under in vitro conditions using the isolated Casl1-
Cas2 proteins from each group (Wright and
Doudna 2016; Kim et al. 2019; Van Orden et al.
2020). Group 3 systems have the least conserved
3’ leader sequence, and biochemical analysis
showed little to no activity by this Casl-Cas2
complex in integrating into its cognate leader-
repeat sequence under in vitro conditions (Van
Orden et al. 2020). Group 2 Cas1-Cas2 was found
to be able to perform the two prespacer integra-
tion steps, at the leader-repeat junction and at the
repeat-spacer junction, independent of the other
reaction (Fig. 3e) (Budhathoki et al. 2020; Van
Orden et al. 2020). Group 1 Cas1-Cas2, however,

Y

Fig. 3 (continued) repeat junction. (d) Group 2 target
recognition occurs with the whole repeat region. (e) Both
leader-repeat and  repeat-spacer transesterification
reactions can occur independent of the other reaction.
Disintegration may occur if the repeat-spacer reaction
occurs first or integration happens at an off-target site. (f)
Full site integration is achieved when the prespacer is
integrated at both the leader-repeat and repeat-spacer
junctions. In group 1, the second of two sequential

transesterification reactions occur at the repeat-spacer
junction and requires the whole repeat sequence for this
reaction to proceed. Group 2 which does not follow a
sequential pattern completes the second reaction to attach
both the ends of the prespacer. The integration complex
disengages and leaves single-stranded gaps on either side
of the newly integrated spacer. These gaps are proposed to
be filled and ligated by host polymerases and repair
machinery
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follows a sequential order in the process with the
leader-repeat integration preceding the repeat-
spacer integration under in vitro conditions
(Fig. 3¢) (Kim et al. 2019; Van Orden et al. 2020).

The sequence requirements of the 3’ leader end
in integration varies between the type II-A
subgroups (Van Orden et al. 2020). Under
in vitro conditions, while group 1 Casl-Cas2
strictly requires a 12-nt-long leader-repeat junc-
tion (7 nt of the leader and 5 nt of the repeat) to
catalyze the prespacer insertion at the leader-
repeat junction (Fig. 3b), group 2 Casl-Cas2 can
perform independent leader-repeat and repeat-
spacer insertions with the minimum requirement
of a whole repeat region (36 nt long) without the
need for the conserved leader end (Fig. 3c) (Wei
et al. 2015a; Budhathoki et al. 2020; Van Orden
et al. 2020). Addition of extra nucleotides at the 3’
leader end, along with the full repeat, drastically
improves the efficiency of integration by the
group 2 Casl-Cas2 complex (Van Orden et al.
2020). This is distinct compared to the complete
absence of integration in the group 1 system with-
out the conserved leader-repeat junction sequence
(Van Orden et al. 2020). Even though leader-
repeat insertion requires only a 12-nt leader-
repeat conservation in the group 1 system, the
repeat-spacer insertion needs the full 36-nt repeat
region along with the 3’ leader end (Van Orden
et al. 2020). These observations point to the avail-
ability of different natural mechanisms to perform
prespacer integration, while  maintaining
sequence specificity, which will enable discrete
biotechnological applications.

Repeat sequences themselves can contribute
differently to prespacer insertion in the different
type II-A groups. The repeat regions are unique
due to their palindromic sequence patterns. In
several systems, the repeat sequence possesses
inner or terminal inverted repeats (usually one
set of two inverted sequences per repeat). The
inverted repeat regions are crucial for the group
2 integration complex to recognize the genomic
DNA, and integration is completely abolished
when both inverted repeat sequences are altered
(Fig. 3c) (Wright and Doudna 2016; Xiao et al.
2017; Budhathoki et al. 2020). Group 1 inverted
repeats do not impact integration specificity;
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however, it does affect the efficiency of the
repeat-spacer insertion (Fig. 3b) (Kim et al.
2019). This agrees with previous observations of
target sequence requirements for each of these
subgroups with group 2 needing the full repeat
for insertion, while group 1 requires only the
conserved leader-repeat junction (Kim et al.
2019; Budhathoki et al. 2020; Van Orden et al.
2020).

Significant differences are also seen in the
prespacer forms that could be integrated by
isolated Casl-Cas2 proteins belonging to each
type II-A group. Group 1 can efficiently integrate
prespacers containing either 4- or 5-nt symmetri-
cal overhangs at the 3’ ends (Van Orden et al.
2020). Group 2 is more robust as it can efficiently
integrate prespacers with splayed, symmetrical,
and nonsymmetrical overhangs at the 3’ end
(Van Orden et al. 2020). This ability to integrate
multiple forms of prespacer makes group 2 more
autonomous than group 1.

3 Integration in Other CRISPR
Systems

Of the other CRISPR types, integration has
been most studied in type I-E from Escherichia
coli K12. In type I-E systems, a Casl4-Cas2,
heterohexameric complex performs spacer inte-
gration with important differences. Spacer
acquisition begins with the Cas1-Cas2 complex
recognizing the PAM sequence (Wang et al.
2015; Yoganand et al. 2019). Casl is able to
recognize the cognate PAM sequence through
sequence specific interactions with the
PAM-complementary sequence and does not
depend on other Cas proteins for this function
(Wang et al. 2015; Yoganand et al. 2019). This
independent  function allows for the
overexpression of type I-E Casl and Cas2
alone, with no other Cas proteins, to facilitate
the insertion of functionally relevant spacers in
a bacterial system devoid of any CRISPR types
(Yosef et al. 2012; Nuiiez et al. 2014).

Another important distinction in type I-E
systems is the dependence of the integration com-
plex on another cellular protein, integration host
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factor (IHF), to enable sequence-specific
prespacer insertion in vivo (Nuifiez et al. 2016;
Yoganand et al. 2017). IHF binds to a conserved
motif ahead of the leader-repeat junction and
bends the DNA, inducing a 180° turn (Nufiez
et al. 2016; Yoganand et al. 2017). This large
bend also allows an upstream DNA motif to inter-
act with a secondary site on Casl and enables
protein-protein interactions between IHF and
Casl essential for sequence-specific spacer inte-
gration (Wright et al. 2017). Due to this require-
ment of an accessory protein, 60 nts upstream of
the first repeat are required for site-specific
prespacer integration in type I-E systems, as
opposed to 7 nts required for some type II-A
systems (Yosef et al. 2012; Van Orden et al.
2020). Interestingly, a recent bioinformatic anal-
ysis showed that only 25% of type I-E leaders
have an IHF binding site, indicating IHF is not a
universal mechanism in type I-E systems for
establishing site specificity during spacer inser-
tion (Santiago-Frangos et al. 2021). Among the
systems lacking IHF motifs, as many as 20% of
type I-E system possess a conserved leader-
anchoring motif, a feature similar to the
conserved 3’ leader end present in type II-A
systems, though the sequences vary between the
two (Santiago-Frangos et al. 2021). This work
again shows that there are distinct differences in
spacer integration specificity mechanisms even
within one CRISPR subtype.

The roles of other Cas proteins in CRISPR
adaptation have been established in some CRISPR
systems. Cas4 is found in certain type I and type V
subtypes as well as in type II-B, but its activity has
only been characterized in a few type I systems
(Makarova et al. 2020a). Cas4 is a nuclease that
participates in  PAM-dependent  prespacer
processing during adaptation in types I-A, I-C,
and I-D, and it forms a complex with Casl and
Cas2 (Rollie et al. 2018; Kieper et al. 2018; Lee
et al. 2018, 2019). In certain archaea, Cas4 has
been shown to define orientation of the spacer
during integration (Shiimori et al. 2018). While
Cas9’s role in PAM selection is established in
type II-A systems, the mechanisms defining spacer

orientation is still unknown (Wei et al. 2015b;
Heler et al. 2015).

Similar to the association of type II-A system
with AddAB repair proteins for spacer sources,
genome maintenance components, such as
RecBCD and SbcCD, have been linked to naive
vs primed adaptation in type I-E systems
(Radov¢ié et al. 2018; Kurilovich et al. 2019;
Levy et al. 2015). It was shown that during
naive adaptation in E. coli, spacers are preferen-
tially extracted from replication forks that are
repaired by the RecBCD complex and that the
presence of high-density chi sites in the host
DNA prevents self-spacer insertion (Levy et al.
2015). It was shown that double mutants lacking
RecB-SbcD or RecB-RecJ, but not single
mutants, significantly inhibit primed adaptation,
indicating redundancy in the mechanism of
RecBCD and SbcCD in spacer acquisition
(Kurilovich et al. 2019). As mentioned previ-
ously, primed adaption occurs in type I systems
where spacers are acquired at a faster rate from
the stalled interference complex due to mutations
in the escaper phages that prevents cleavage of
the intruder DNA (Xue et al. 2015, 2016; Kiinne
et al. 2016).

While most focus on the characterization of
CRISPR adaptation has been in type I-E and
type II-A systems found in bacteria, recent studies
have started to reveal the molecular mechanisms
of adaptation in CRISPR-Cas systems found in
archaea (Rollie et al. 2018; Shiimori et al. 2018;
Makarova et al. 2020b; Stachler et al. 2020;
Kolesnik et al. 2021). Although the catalytic
insertion of prespacers by Casl-Cas2 is believed
to be universally conserved, other features such as
the requirement of an accessory, non-Cas protein
for prespacer processing, and/or site-specific
insertion, the role of Cas4 in PAM recognition,
prespacer trimming and ensuring directionality of
prespacer insertion, and the ability of certain
systems to derive prespacers from RNA targets
are different from CRISPR adaptation in bacteria
(Hale et al. 2009; Rollie et al. 2018; Shiimori
et al. 2018; Artamonova et al. 2020; Stachler
et al. 2020; Li et al. 2021).
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4 Conclusion

Prespacer integration has been well characterized
in type II-A CRISPR-Cas systems; however,
there is still much to uncover about the rest of
the adaptation process in type II-A as well as in
types II-B and II-C.

Adaptation in type II-B systems has not been
demonstrated so far. While type II-B systems
contain Cas4 in the cas operon, similar to type I
systems, the roles of Cas4 and Cas1-Cas2 as well
as the DNA sequence requirements in type II-B
systems are currently unknown (Chylinski et al.
2014; Shiimori et al. 2018).

Type II-C is unique among type II systems
since it possesses only Cas9, Casl, and Cas2,
though there is a secondary subtype, type 1I-C2,
found in archaea that contains Cas4 (Makarova
et al. 2020a). A few studies have investigated the
nature of adaptation in type II-C bacterial
systems, examples being the observed adaptation
in Campylobacter jejuni when infected with Class
Il Campylobacter phages that contain a phage-
encoded Cas4-like protein and naive adaptation
observed in Riemerella anatipestifer (Hooton and
Connerton 2015; He et al. 2018). Further studies
are needed to determine the differences in activity
of Casl and Cas2 between the different type II
subtypes.

Available mechanisms of prespacer integration
show similarities and differences between the dif-
ferent CRISPR types. Uncovering such
mechanisms is important for biotechnological
advancements in cell barcoding and cell-based
information storage. A large gap still exists in
terms of deciphering all the distinct steps essential
for adaptation, especially regarding the roles played
by cellular proteins and preparation of prespacers,
and future research will be needed to develop a
comprehensive picture of CRISPR adaptation.
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