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Findings 

Big data products o8er a new paradigm to understand and analyze human 
mobility patterns, a primary interest of long-range transportation planners. 
However, it remains unclear how widely these datasets are utilized by planners 
and to what extent they in;uence decision-making. We present the perspectives 
of more than 50 planners from MPOs across the United States. While we 
found a range of use cases, there was also a tendency to focus on a narrow set of 
applications. Transparency, regulation, and legitimacy emerged as the primary 
factors in;uencing adoption decisions. 

1. QUESTIONS   
Long-range transportation planners (LRTPs) are tasked with supporting 
decision-makers in shaping multibillion-dollar investments in future mobility. 
In recent years, the increased availability and commercialization of big data 
have resulted in the rise of mobility-analytics vendors who o8er a suite of 
products, hereafter referred to as big data products (BDPs), designed to help 
planning agencies make more informed decisions. These vendors aggregate 
passively collected data from multiple sources (such as smartphones, in-
vehicle GPS trackers, connected-vehicle data, etc.) to generate transportation-
related products such as volume counts on a corridor or between an origin-
destination pair, which can be invaluable for understanding mobility trends 
and planning future infrastructure investments. 

While BDPs o8er a new way to understand and analyze mobility patterns, 
we know little about their actual use in transportation planning. It is unclear 
how widely these datasets or products are being utilized by planners or to 
what extent they are in;uencing decision-making processes. Moreover, the 
full potential of these datasets, especially in areas such as forecasting, equity 
analysis, and resilience planning, remains largely unexplored. Understanding 
the gaps in usage and application is key to unlocking their value for long-term 
transportation planning. 

Our paper is motivated by two recurring themes identi:ed through ad-hoc 
conversations with various practitioners. These themes are: (A) the use of 
BDPs has been limited to a narrow range of applications and they are not the 
preferred solution to many problems faced by LRTPs; and (B) only a small 
number of MPOs (primarily ones with su9cient resources) use BDPs. Thus, 
this paper addresses the following questions: 
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2. METHODS   
We conducted an interactive workshop at the Association of Metropolitan 
Planning Organizations (AMPO) Planning Tools & Training Symposium 
in Albuquerque, New Mexico, in May 2024. The workshop was attended 
by over 50 participants, all of whom held roles related to LRTPs in some 
capacity. 

We used Mentimeter to facilitate real-time engagement and gather 
background information. Then, based on the answers to the question, “What 
best describes your role in your MPO?” (Table 1), we divided the room 
into three roughly even-sized groups and conducted focus group discussions 
tailored to each group’s role and expertise. 

3. FINDINGS   
Descriptive Statistics of Participants     
The workshop saw participation from MPO sta8 from across every 
geographical region in the United States, with the Northeast and the Paci:c 
Northwest (PNW) having the most participants (see Figure 1). When asked 
about their MPOs’ experience with BDPs, most of the participants hinted at 
some pro:ciency through in-house usage or via consultants—only 17 percent 
of the respondents had no prior hands-on experience with BDPs (see Table 
1). The prior exposure of workshop participants suggests their insights would 
be more informed and valuable to the discussion. 

We also asked the respondents about their role within the MPO as shown 
in Table 1. They were almost evenly divided between technical sta8 who 
primarily work with data (33%), managers who primarily supervise people, 
projects, or consultants (23%), and sta8 who do both (37%). Hearing from 
both technical and managerial sta8 is crucial, as their perspectives on the 
use of BDPs may di8er. Technical sta8 are typically more engaged with the 
practical, day-to-day data challenges, while managerial sta8 are more focused 
on broader strategic concerns such as resource allocation and decision-making 
processes. Both viewpoints o8er complementary insights into how BDPs can 
be integrated into MPO operations. 

1. How do planners perceive big data products o8ered by mobility 
analytics companies? 

2. What factors in;uence an MPO’s decision to adopt big data 
products and services? 

3. What are the various use cases for big data in regional transportation 
planning? 
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Figure 1. Bar plot of answers mentioned in response to “In which area does your MPO operate?” 

Table 1. Distribution of answers to exploratory questions about the audience 

Answer Answer PercentagePercentage* * 

“What experience does your MPO 
have with big data?” 

None. 7% 

We’re learning about it but don’t have hands-on experience. 10% 

We’ve experimented with it through trial subscriptions or purchases. 17% 

We’ve used it in-house or through consultants to support work 
programs or planning/policy decisions. 

66% 

“What best describes your role in 
your MPO?” 

I primarily manage people, projects, or consultants; focus on the big 
picture; and do NOT handle data. 

23% 

I primarily work with data to support my MPO’s work programs and 
projects 

33% 

I perform some management, consider the big picture, AND directly 
process/analyze data 

37% 

I perform other roles that little to do with data. 7% 

*rounded to nearest integer 

To minimize ambiguity and avoid in;uencing planners’ responses, we 
explicitly de:ned big data as “data collected from ubiquitous mobile devices 
(e.g., smartphones and in-vehicle GPS trackers) that was not originally 
intended for transportation planning purposes.” We note that the goal of 
the workshop was not to achieve a statistically representative sample of 
MPOs, but rather to gather a diverse range of perspectives from planning 
professionals across di8erent regions. 

Perceptions of Big Data Products      
Most planners view big data as complementary to traditional data collection 
methods—neither a complete replacement nor without value. During the 
focus group discussions, we found some di8erences in how managers 
perceived BDPs compared to that of technical MPO sta8. Managers perceived 
big data as a tool for updating functional classi:cation of various roadways 
and doing related analyses, such as deriving mode splits, normalizing crash 
rates, and assessing land use impacts and project e8ectiveness. In contrast, 
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Figure 2. Word cloud of answers to "What word comes to mind when you think of “big data”? (98 responses) 

technical sta8 highlighted the role of BDPs in data validation and 
completion, serving as proxies for incomplete datasets and validating travel 
demand models. Figure 2 illustrates the most common associations planners 
have with big data. Adjectives such as complex, overwhelming, and expensive 
were frequently mentioned, along with nouns like cell phones, privacy, AI, 
machine learning, and passive data. 

Factors In�uencing MPO Adoption     
When asked, “What would help you gain con:dence or have trust in using 
big data?”, transparency stood out as the most signi:cant factor in;uencing 
planning organizations’ adoption of big data, as participants emphasized 
the need for clear information on how data is collected, processed, and 
validated (see Figure 3). Legitimacy was the second most common concern, 
involving the ability to assess BDP quality via reviews, proven experiences, 
and academic studies (thereby reducing risk). Regulation ranked third, 
referring to data quality guidance from transportation authorities and 
decision makers with vested interest. 

As a follow-up, we asked participants what they would like to know about 
BDPs that they do not already know. The responses included questions 
regarding the quality of the data like “How accurate is it?” and “Is the 
accuracy consistent over time?”, questions that expand on transparency from 
the supplier side like “What steps were taken between the raw and processed 
datasets?”, as well as operational-level questions about the process of adopting 
BDPs like “Will costs change over time?” and “How do we ‘keep’ the data we 
buy after our contract ends?”. These cost-related questions highlight the need 
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Figure 3. Bar plot of factors mentioned in response to “What would help you gain con:dence or have trust in using 
big data?” 

for greater transparency in pricing structures and clearer terms of use to help 
MPOs make informed investment decisions. Exploring sustainable funding 
mechanisms could also alleviate cost-related challenges (i.e., for smaller 
MPOs) and promote broader adoption of BDPs. 

Interestingly, the questions that piqued the interest of managerial MPO sta8 
were not perfectly aligned with those of more technical backgrounds. LRTPs 
who processed or were otherwise hands-on with big data products brought 
up more concepts related to methodology and data application than the 
managers. For example, the idea to standardize preprocessing algorithms were 
popular among planners who have worked with the data, as well as questions 
relating to the extent that trip chaining, a travel behavior concept, can be 
captured in the data. On the other hand, managerial sta8 concerns tended 
more toward the cost, consistency, and reliability of big data products. These 
di8erences highlight how varied professional roles within MPOs in;uence 
priorities and concerns, suggesting that BDP adoption strategies may need to 
be tailored to address the distinct needs of technical and managerial sta8. 

Use Cases   
We found a wide range of BDP use cases among MPOs, as detailed in 
Table 2. However, the majority of LRTPs focus on a small number of BDP 
applications. The most frequently mentioned bene:ts of partnering with 
mobility-analytics companies were the ability to easily derive peak tra9c 
volumes for low functional classi:cation roads, understand turn counts at 
intersections, and measure pedestrian and cyclist activity. This seemed to 
agree with our hypothesis that many MPOs who adopt BDPs only utilize 
them for a narrow scope of problems. 

Among the use cases shown in Table 2, we found few prior works on 
using big data to study work-housing imbalances and job accessibility (i.e., 
only in the context of cities in China). Other equity-related applications, 
such as identifying locations of high noise and vehicle emissions on highway 
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Table 2. Types of questions MPO sta8ers have solved or plan on solving, categorized 

Category Category Short Description Short Description Long Description Long Description 

Equity-
related 

Quantifying work-housing imbalance and job 
accessibility (Zhou, Yeh, and Yue 2018; Zhang, Zhou, and 

Zhang 2017) 

Analyzing the distribution of jobs relative to 
housing to ensure equitable access to employment 

opportunities. 

Identifying locations of high noise and vehicle emissions 
on highway network (Lan, He, and Cai 2020) 

Locating areas with high levels of noise and 
emissions to address environmental justice 

concerns. 

Assessing community resiliency (Sarker et al. 2020) 
Assessing the transportation network’s ability to 
withstand and recover from adverse events such 

as natural disasters. 

Planning-
related 

Origin-destination studies (Alexander et al. 2015; Iqbal 
et al. 2014; Z. Liu, Liu, and Fu 2022) 

Studying travel patterns between different origins 
and destinations to understand mobility Pows. 

Mode choice analysis (Phithakkitnukoon et al. 2017; 
Gong et al. 2012; M. Yang et al. 2022) 

Analyzing the factors inPuencing the selection of 
different modes of transport (e.g., car, public 

transit, cycling). 

Complete Street studies (“Lessons Learned from 
Evaluating Complete Streets Project Outcomes with 

Emerging Data Sources,” n.d.) 

Planning and designing streets that accommodate 
all users, including pedestrians, cyclists, and 

motorists. 

Visitor analysis (Miah et al. 2017; Reif and Schmücker 
2020) 

Understanding the travel behaviors and patterns 
of visitors to optimize transportation services for 

tourism. 

Validation of observed travel behavior data (Chen et al. 
2016; F. Liu et al. 2014; Ugurel, Huang, and Chen 2024) 

Comparing big data insights with observed travel 
behaviors to ensure accuracy and reliability. 

EV charging demand estimation (T. Yang et al. 2017) 
Forecasting the demand for electric vehicle 

charging stations to support the growing number 
of EVs. 

Transit planning and routing (Lu et al. 2021; 
Hadjidimitriou, Lippi, and Mamei 2021) 

Designing and optimizing public transit routes to 
improve efOciency and coverage. 

Bicycle and pedestrian trip planning (Lee and Sener 
2020; Yu et al. 2020) 

Tracking bicycle and pedestrian trips to support 
infrastructure improvements and promote active 

transportation. 

Freight movement tracking (Akter, Hernandez, and 
Camargo 2023) 

Monitoring the movement of goods to enhance 
freight logistics and reduce congestion. 

Land use changes (Yin et al. 2021) 
Assessing the impact of land use changes on 

transportation networks and planning accordingly. 

Safety-
related 

Safety planning and project identiOcation (Ambros et al. 
2024) 

Identifying and prioritizing safety projects to 
reduce accidents and enhance road safety. 

Crash hotspot analysis (Xie et al. 2017) 
Pinpointing locations with high accident rates to 

implement targeted safety measures. 

Mobile device usage while driving (Khurana and Goel 
2020; Ahlström et al. 2020) 

Monitoring mobile device usage to identify 
distracted driving behaviors and develop 

interventions. 

Lane change analysis (Park et al. 2018) 
Analyzing lane change behaviors to improve road 

design and trafOc Pow management. 

Operational-
related 

Land border crossing monitoring (Sakhare et al. 2024) 
Providing real-time information on wait times and 

trafOc conditions at land border crossings. 

Through trip volume estimation (Huntsinger and Ward 
2015) 

Measuring the volume of trips passing through a 
region without stopping to better understand 

transit patterns. 

Turn count estimation (Kan et al. 2019) 
Counting vehicle turns at intersections to 

optimize signal timing and improve trafOc Pow. 

Demand estimation during special events (Pereira, 
Rodrigues, and Ben-Akiva 2015) 

Analyzing transportation demand and patterns 
during special events to enhance planning and 

resource allocation. 

networks and assessing community resiliency, were similarly under-explored. 
Such literature often exists in the form of reports or case studies :scally 
sponsored by planning authorities. More connection between academic and 
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public-sector research in these areas could provide valuable insights to address 
transportation inequities and improve public health and community 
resilience. 

Conclusion  
While big data presents promising tools for advancing transportation 
planning, its adoption faces challenges due to concerns over transparency, 
legitimacy, and regulation. Planners’ perceptions of big data di8er based on 
their managerial or technical roles. Moreover, most focus on a limited set 
of applications despite the broader range of potential use cases. To fully 
realize the potential of big data in transportation planning, stakeholders must 
prioritize developing clear regulatory frameworks, fostering collaboration 
between data providers and planners, and investing in capacity-building 
e8orts that bridge the gap between technical and managerial perspectives. 
This requires coordinated action from policymakers, industry leaders, and 
planning organizations to ensure equitable, transparent, and e8ective 
integration of big data into planning processes. 
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