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Abstract—Modeling the interactions between drugs, targets,
and diseases has significant implications for drug discovery,
precision medicine and personalized treatments. Current com-
putational approaches consider pairwise interaction, including
drug-target or drug-disease interaction individually. On the other
hand, within human metabolic systems, the interaction of drugs
with protein targets in cells influences target activities. Moving
beyond binary relationships and exploring tighter relationships
together as triple is essential to understanding drugs’ mechanism
of action (MoAs). Moreover, considering the heterogeneity of
drugs, targets, and diseases, along with their distinct char-
acteristics, it is critical to model these complex interactions
appropriately. To address these challenges, we develop a novel
Heterogeneous Graph Triplet Attention Network (HeTAN) by
modeling the interconnectedness of all entities in a heterogeneous
graph. HeTAN introduces a novel triplet message passing and
triplet-wise attention mechanism within this heterogeneous graph
structure. In contrast to focusing only on pairwise attention
as the importance of an entity for the other, we define triplet
attention to model the importance of pairs for the other in
the drug-target-disease triplet prediction problem. We perform
extensive experiments on real-world datasets and our results
show that HeTAN outperforms several baselines, demonstrating
its superior performance in uncovering novel drug-target-disease
relationships.

Index Terms—Drug Discovery, Heterogeneous Graph Neu-
ral Network, Graph Neural Network, Representation Learning,
Graph Attention, Triplet Prediction

I. INTRODUCTION

Understanding drugs’ mechanism of action (MoA) is crucial

for drug repurposing, a promising approach to accelerating

drug discovery and offering avenues for personalized medicine

and targeted therapies. However, traditional drug discovery is

time-consuming and expensive [1]. To address this challenge,

computational methods have emerged as invaluable tools for

leveraging large-scale chemical and genomic data [2].

Recent machine learning advancements have enhanced the

study of drugs’ MoAs through various learning tasks like

drug behavior analysis, target activity evaluation, and disease

modeling. [3]. Among these tasks, predicting the relations

of drugs with other entities, such as drug-disease and drug-

target prediction, have gained significant attention [4], [5].

While existing methods have made progress in predicting the

relations of drugs with other entities, they often treat these

tasks as isolated tasks, leading to limitations in capturing the

interconnected nature of drugs with other entities. Crucially, a

drug’s therapeutic effect hinges on its interplay with biological

targets within complex pathways and the overall metabolic

system [1]. Drugs interact with protein targets in cells to

modulate target activities, altering biological pathways to treat

diseases. This activity integrates higher-order relationships

among multiple entities. Therefore, a more comprehensive

triple relationship involving drugs, targets, and diseases must

be considered to capture the interplay between these entities.

Tensor factorization has emerged as a popular approach

for drug-target-disease triplet prediction problems. They infer

missing entries in drug-target-disease tensors via extracting

latent structures from high-dimensional data [6]. NeurTN [7]

combines tensor algebra and deep neural networks to learn

the intrinsic relationships among drugs, targets, and diseases.

However, traditional tensor models like Canonical Polyadic

(CP) decomposition and Tucker decomposition suffer from

issues, including linearity and data sparsity. Nonlinear tensor

factorization methods have shown promise in capturing the

complexities of the data, but they often rely on prior Gaussian

processes that are challenging to estimate [8]. Moreover,

incorporating auxiliary information into tensor models requires

tedious feature engineering, making it challenging to han-

dle large-scale healthcare data [9]. Furthermore, while many

graph-based machine-learning models are common for drug-

related problems, the tensor model does not utilize graph

machine-learning models to predict new triplets.

Heterogeneous graphs, also called Heterogeneous Informa-

tion Networks (HIN) [10], provide a robust framework for

representing diverse entities and interactions in drug discovery.
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In these graphs, nodes represent entities like drugs, proteins,

pathways, chemical substructures, ATC codes, and diseases,

while edges capture interactions between them. While many

models are developed to represent the relationship between

drug, target, and disease, they focus on predicting pairwise

relations between drug and other entities such as drug-drug,

drug-disease and drug-target [11]–[15]. These methods base

their predictions on established drug-drug similarity, target-

target similarity as well as known drug-target associations.

However, there is no HIN-based triplet prediction model.

To address these limitations and model the complex inter-

actions between drugs, targets, and diseases more effectively,

we propose a novel Heterogeneous Graph Triplet Attention

Network (HeTAN). HeTAN leverages the power of heteroge-

neous graphs, representing diverse entities and their interac-

tions, and employs a novel triplet attention mechanism to

capture higher-order interactions within the drug-target-disease

triplets. We capture higher-order interactions between drug,

target, and disease through a triplet-wise attention mechanism.

This gives us a more comprehensive understanding of drug

MoAs and can accelerate drug repurposing for personalized

medicine. While it is defined for drugs, targets, and diseases

triplets, it is a generic model that can be applied to other

triplets. Our main contributions are as follows:

● Utilizing heterogeneous graph neural network for

drug-target-disease triplet prediction: We propose a

novel approach that models the complex interactions be-

tween drugs, targets, and diseases using a heterogeneous

graph neural network (HGNN). By incorporating different

types of nodes and edges, our approach effectively cap-

tures the rich information embedded in the interactions

between these entities, leading to improved prediction

performance.

● Introducing the HeTAN model: We develop a novel

model, HeTAN, by proposing a novel triplet message

passing and triplet-wise attention mechanisms on differ-

ent types of entities in a heterogeneous graph. Our model

goes beyond the pair-wise interaction and captures higher-

order triplet-wise interactions to make triplet predictions

on the heterogeneous graph. While triplet message pass-

ing enables passing the information among three different

entities (drug-target-disease), the triplet attention mecha-

nism enables the model to focus on the most relevant

pairs for an entity instead of the most relevant neighbor.

These enhance its predictive accuracy and its ability to

capture intrinsic and complex interactions among three

entities. No prior work in GNN and HGNN has explored

triplet-wise message-passing and attention mechanisms.

● Extensive Experiments: We conduct extensive experi-

ments to show the effectiveness of our model on two

different datasets. We also compare the proposed HeTAN

model with several baseline models. The results with

different accuracy measures show that our method signif-

icantly surpasses the baseline models. In addition, differ-

ent case studies denote that different datasets and external

literature evidence can validate our model’s predictions.

The remainder of this paper is organized as follows: Section

II reviews related works. Section III describes the creation

of a heterogeneous graph. Details of the HeTAN model are

presented in Section III. Experiments and results are discussed

in Section IV. Finally, Section V concludes the paper.

II. RELATED WORKS

This section provides an overview of existing research

in computational predictions of drugs, targets, and diseases,

specifically on triplet prediction for high-dimensional struc-

tured data.

A. Modeling drug-target-disease

Treating human diseases involves interactions among drugs,

biological targets, and disease pathways. Computational phar-

macology seeks to uncover associations among these entities

and understand drugs’ mechanisms of action (MoAs) [1]. A

common technique involves network-based inference models,

such as bipartite networks with distinct layers for drugs and

diseases (targets). Various machine learning methods, includ-

ing random walks, matrix factorization, and support vector

machines [16], have been used to predict new drug-disease

and drug-target interactions.

DTINet [15] integrates diverse drug-related information

to build a heterogeneous network and employs a compact

feature learning algorithm to derive low-dimensional vector

representations of nodes. This model uses a known set of

drug-target associations as a reference to determine the optimal

projection from the drug space onto the protein space, ensuring

that the projected feature vectors of drugs closely align with

the feature vectors of their known targets. Chen et al. [16]

integrated a protein-protein similarity network, a drug-drug

similarity network, and a drug-target interaction network into

a heterogeneous network. Using a random walk algorithm,

they inferred new drug-target connections without directly

modeling drug-disease relationships, focusing on predicting

drug-target interactions by learning a transformation matrix

from known interactions. Similarly, Fu et al. [17] utilized

known drug-target connections from various data sources but

did not explicitly use drug-disease-target triples, thus only

predicting drug-target interactions. Zheng et al. [18] developed

a matrix factorization method based on the similarity of

chemical structures and protein sequences to establish drug-

target relationships. These methods rely on chemical structure

similarity through structural fingerprints and protein sequence-

based similarity. However, these approaches treat drug-disease

and drug-target predictions as separate tasks, limiting a com-

prehensive understanding of the interconnected drug-target-

disease relationships.

B. Triplet Prediction

Triplet prediction has broad applications, ranging from drug

repurposing to natural language processing and computer

vision. Zhang et al. [19] introduced an attention mechanism

based on transformers to capture relationships between three
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entities (query, key, and value) for improved language under-

standing and generation. In natural language processing, triplet

prediction has been used for tasks like relationship extraction,

where models use sentence-level attention and entity descrip-

tions to predict relationships between entity triplets in text

[20]. In computer vision, triplet prediction techniques have

been used for face recognition and person re-identification

[21].

In drug-target-disease prediction, various models have been

developed, such as collective matrix factorization [22] and

neural tensor networks [7], to capture nonlinear dependencies

within triplets. Recent research explores the interdependence

of drugs, targets, and diseases through event-graph modeling

and neural tensor network models [7], [23]. Meanwhile, recent

advancements have explored the potential of hypergraphs and

hypergraph neural networks in biomedical problems [24], [25],

including drug-microbe-disease associations, [26]. A hyper-

graph is a unique graph with hyperedges. Unlike a regular

graph where the degree of each edge is 2, hyperedge is

degree-free; it can connect an arbitrary number of nodes.

While these approaches are significant, the application of

heterogeneous graph neural networks (HGNNs) and triplet

attention mechanisms remains largely unexplored.

Despite many proposed models for triplet prediction, most

focus on homogeneous entities, and none have applied graph-

based models to drug-related problems. HeTAN distinguishes

itself in drug repurposing by pioneering the combined use of

HGNNs and triplet attention mechanisms. While defined for

drug-target-disease triplets, HeTAN can be applied to other

triplets as well.

III. METHODOLOGY

Given that a triplet includes a drug, a target, and a

disease, our goal is to predict whether the triplet has an

interaction. In this paper, we propose a novel approach that

leverages the power of heterogeneous information networks

(HIN) and introduces the concept of triplet attention. To

achieve this, we develop the Heterogeneous Graph Triplet

Attention Network (HeTAN), which employs an end-to-end

encoder-decoder architecture. The encoder integrates a triplet

attention mechanism to determine the significance of pairs

(e.g., target-disease) for the other entity (e.g., drug) while

learning embeddings of all entities and triplets. Moreover,

HeTAN incorporates a decoder that learns and predicts the

interaction between entities of triplets. The system architecture

of HeTAN is outlined in Figure 1. We optimize the model

parameters with a cross-entropy loss function.

Our proposed model consists of the following steps:

1) Heterogeneous Graph Construction & Node’s Feature

Extraction

2) Heterogeneous Graph Triplet Attention Network Archi-

tecture

● Encoder: Triplet Attention-based node representation

learning

● Decoder: Drug-Target-Disease triplet prediction

A. Heterogeneous Graph Construction & Node’s Feature Ex-

traction

The first step in our approach is to construct a heterogeneous

graph that captures the complex relationships among drugs,

proteins (targets), and diseases. The graph consists of three

types of nodes: drugs, proteins, and diseases. We establish

edges between these nodes based on known drug-target inter-

actions and drug-disease associations. This construction allows

us to represent the rich interactions and dependencies between

different entities in the graph.

Graph neural network (GNN) models can optimize and

refine node representations with an iterative learning process.

These models transform initial node attributes or features

with message passing and aggregation mechanisms from the

node’s neighbors to generate enriched and effective node

vector representations. In our next step, we utilize the struc-

tural properties of drugs and targets to extract node features

from our heterogeneous graph. Specifically, we focus on the

chemical substructures of drugs and targets, represented as

SMILES strings [27] and Amino Acid sequences, respectively.

We employ the Explainable Substructure Partition Fingerprint

(ESPF) [28] algorithm to create drug and target features. ESPF

decomposes the SMILES string and Amino Acid sequence

into frequent substructures, selecting the most significant ones

based on a frequency threshold. These substructures provide

informative features for the drugs and targets utilized in the

subsequent steps of the HeTAN model. We represent disease

nodes with one-hot encoded representations. After construct-

ing the heterogeneous graph and extracting node features, we

propose the HeTAN architecture for learning representations

that capture complex relationships among drugs, targets, and

diseases.

B. Heterogeneous Graph Triplet Attention Network

The core goal of our research is to address the challenge of

predicting drug-target-disease interactions. To achieve this, our

model HeTAN leverages the rich information in heterogeneous

networks and captures the complex relationships among drugs,

targets, and diseases. The model is trained using an end-

to-end approach to predict drug-target-disease interactions.

The model is responsible for aggregating information from

neighboring nodes and learning higher-order relationships in

the graph using a triplet attention mechanism, the critical

component of our model. The triplet attention mechanism

calculates attention coefficients based on the features of all

three nodes in a triplet (i, j, and k), where i is the central node,

and j and k are neighboring nodes. When aggregating infor-

mation, these coefficients are used to weigh the importance of

neighboring node pairs for the central nodes in each triplet.

The attention mechanism is applied to all graph-generated

triplets, enabling the model to capture complex, interconnected

relationships among the different node types. Afterward, the

encoded representations of nodes are obtained by aggregating

information from neighboring nodes, weighted by the atten-

tion coefficients. This process is repeated for each layer of
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Fig. 1: The HeTAN workflow comprises three steps: Heterogeneous Graph Construction, Encoder, and Decoder. Initially, a

heterogeneous network is built with drug, target, and disease nodes connected by drug-target or drug-disease edges. Target-

disease connections (dashed lines) are inferred from shared drug associations. We introduce Triplet Message Passing (TMP)

and Triplet-wise attention to generate node representations. Finally, using concatenated node representations, a Multi-Layer

Perceptron (MLP) predicts drug-target-disease interactions.

the HeTAN model, allowing the model to learn increasingly

complex patterns and dependencies across multiple layers.

Our proposed model consists of the following steps:

● Encoder: Triplet Attention-based Node Representation

learning

● Decoder: Predicting Drug-Target-Disease Interactions

1) Node Representation Learning (Encoder): The encoder

component of our model focuses on learning informative node

representations. In a heterogeneous graph, nodes and edges

belong to different types, and each type of node has its own

distinct feature space. To effectively learn informative node

representations, we must align these diverse feature spaces

into a common one. This enables meaningful comparisons

and interactions among nodes of different types. To overcome

this challenge, we introduce a type-specific transformation

matrix M , which projects the features of different nodes into

a common feature space as h
′

i =M ○ hi

Traditional Graph Convolutional Networks (GCNs) rely

on pairwise message passing, where neighboring nodes pass

messages to each other. However, this approach falls short

in capturing intricate dependencies beyond pairwise relation-

ships, especially in our case, where understanding drug-target-

disease interactions requires considering the complex relations

inherent in drug-target-disease triplets.

To solve this limitation, we define the Triplet Message

Passing function (TMP), a novel mechanism that leverages

node triplets for representation learning. Instead of pairwise

interactions, TMP considers neighboring node pairs and their

influence on the central node. For a central node of type i,

we define its neighbors as node pairs (Ni) comprising node

pairs of type j and k as Ni = {(j1, k1), ..., (jn, kn)}. We pass

messages from these neighbor pairs to the central node i. This

allows the model to capture richer contextual information and

complex relationships in drug-target-disease interactions. The

triplet message passing function is defined as:

zli = TMP (zl−1i ,Ni) (1)

For one central node, there are several node pairs as the

neighbors. However, it is essential to note that not all neighbor

pairs are equally crucial for the central node. Message passing

should consider these varying levels of importance. We design

a novel Triplet-wise Attention mechanism to incorporate the

importance of neighbor pairs for a central node into message

passing. This attention mechanism utilizes the features of all

three nodes in a triplet and assigns attention coefficients,

signifying the relative importance of the neighbor pairs for

the central node. Based on the features of all three nodes in a

triplet, the attention coefficient eijk is defined as follows:

eijk = a(h
′

i, h
′

j , h
′

k)

= LeakyRELU(NN(h
′

i∣∣h
′

j ∣∣h
′

k))
(2)

In Eq. 2, a denotes the triplet-wise attention mechanism, and

∣∣ denotes the concatenation operation. We employ a neural

network in the attention mechanism, denoted as NN . This

neural network is designed to capture essential relationships

and dependencies among the nodes in a triplet. Additionally,
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to capture the nonlinear dependencies among drug-target-

disease data, we apply the LeakyReLU activation function.

LeakyReLU is chosen for its ability to introduce nonlinearity

in the model, allowing it to capture complex relationships crit-

ical for accurately predicting drug-target-disease interactions.

It is vital to make attention coefficients easily comparable

across different nodes. Therefore, the attention coefficients

are then normalized using a Softmax function. This step

ensures that the model appropriately weighs the attention of

each neighbor when aggregating information. The normalized

attention coefficient αijk is defined as follows;

αijk = softmaxj(eijk)

=

exp(eijk)

3l,m∈N(i) exp(eilm)

(3)

During the triplet message passing process, it is imperative

to consider the message from neighbor pairs. To generate

messages from pairs, we concatenate the representations of

the nodes within the pair. We then pass this concatenated

feature vector of size 2d through a single-layer feedforward

neural network to transform it into a feature vector of size

d. After multiplying each pair message with calculated pair-

wise attention, these messages are aggregated and combined

with the central node’s representation using a self-attention

mechanism. This mechanism considers the node’s features

and aggregated information, allowing the model to capture

its unique influence within the heterogeneous graph. So, the

triplet message passing function, TMP in Eq 1 is defined as

follows:

zi = δ(h
′

i +W ○ ∑
j,k∈N(i)

(αijk ○NN(h
′

j ∣∣h
′

k))) (4)

where ○ represents multiplication operator and W is a trainable

parameter. To incorporate self-attention, we use W , which

determines the weight or importance of node i’s embedding

in the aggregation process. The purpose of W is to control

the influence of node i’s features and the aggregated features

of its neighboring nodes on the overall representation.

We employ multi-head attention to capture more complex

patterns and relationships, each focusing on different aspects

of the data. This further enhances the model’s ability to learn

intricate patterns and relationships within the heterogeneous

graph. In multi-head attention, multiple attention mechanisms

(K) are used individually to transform the features, and the

outputs are concatenated (∣∣) to obtain the final representation.

So, the final triplet message passing with multi-head attention

is defined as follows;

zi = ∣∣
K
k=1δ(h

′

i +W ○ ∑
j,k∈N(i)

(αijk ○NN(h
′

j ∣∣h
′

k))) (5)

By integrating these equations and steps, our model

learns informative node representations within a heterogeneous

graph. This ensures it captures complex relationships, intricate

patterns, and crucial interactions for predicting drug-target-

disease interactions.

2) Drug-Target-Disease Triplet Prediction (Decoder):

Our model has a decoder component that predicts the likeli-

hood of interactions between drugs, targets, and diseases as

new triplets based on the representations of entities obtained

from the encoder. Decoder, in particular, assigns a score to

drug, target, and disease triplet (vi,vj ,vk), expressing how

likely it is that drug vi target vj , and disease vk are interacting.

The corresponding entities’ features are concatenated and

passed through a multilayer perceptron (MLP).

predx,y,z =MLP (zx∣∣zy ∣∣zz) (6)

The MLP outputs a prediction score, Y ′, between 0 and 1.

A score close to 1 indicates a high likelihood of interaction

among the triplets, whereas a score close to 0 indicates less

likely interaction.

3) Model Optimization: We train our entire encoder-

decoder architecture as a binary classification problem by

minimizing a binary cross-entropy loss function specified as

follows:

L = −
N

∑
i=1

Yi logY
′

i + (1 − Yi) log(1 − Y
′

i ) (7)

where N is the total number of triplets, Yi is the actual label

indicating the presence or absence of an interaction for the

triplet, and Y
′

i is the predicted score for the triplet.

C. Analysis of HeTAN model

Here we give the analysis of HeTAN as follows:

● Handling Diverse Nodes and Relationships: HeTAN

effectively handles different types of nodes and relation-

ships, integrating rich semantics within a heterogeneous

graph. We facilitate message passing among neighbor

node pairs and a given node. During this message passing,

we incorporate the importance of neighbor pairs for a

central node through a novel Triplet-wise Attention mech-

anism. Leveraging Triplet Message Passing and Triplet-

wise Attention allows for enhanced integration, promo-

tion, and improvement of diverse node embeddings.

● Efficiency and Complexity: The proposed HeTAN is

highly efficient and can be easily parallelized. The com-

plexity of HeTAN can be analyzed based on its main

components: heterogeneous graph construction, triplet

attention mechanism, and message passing. The initial

step of constructing a heterogeneous graph involves nodes

(drugs, targets, diseases) and edges (interactions), with

a complexity of O(∣V ∣ + ∣E∣). For each triplet of nodes

(i, j, k), the triplet attention mechanism computes atten-

tion scores and normalizes them, resulting in a complexity

of O(∣E∣ff ′ + ∣V ∣df ′), where f is the initial feature

dimension, f ′ is the output feature dimension, and d is

the average degree of nodes.

HeTAN leverages multi-head attention to capture com-

plex patterns, scaling the computation by the number
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TABLE I: Statistics of Dataset

# of Instances DrugBank (DB) DrugBank and CTD

Drugs 531 450

Targets 836 708

Diseases 279 1, 267

Triplets 27,238 175, 288

TABLE II: Hyper-parameter Settings

Parameter Values

Learning rate 1e-2, 5e-2, 1e-3, 5e-3, 1e-5

Number of heads per layer 8, 16, 32

Hidden units 8, 16, 32, 64, 128

Dropout 0.1, 0.3, 0.5, 0.6

Weight decay 0.01, 0.001

of heads K. The message passing and aggregation pro-

cess, combined with multi-head attention, contributes to

an overall complexity of O(K(∣E∣ff ′ + ∣V ∣df ′)). This

efficient handling of heterogeneous graphs and higher-

order interactions enables HeTAN to effectively capture

intricate relationships among drugs, targets, and diseases,

demonstrating its capability in drug-target-disease triplet

prediction.

IV. EXPERIMENT

To evaluate our HeTAN model, we conduct experiments

involving negative sampling and random dataset splitting into

train and test sets. Our performance assessment include Recall,

Precision, F1-score, AUROC, and the commonly used top-

n metric hit@n. This section summarizes our experimental

parameters, evaluation protocols, and analysis of results.

A. Datasets, Parameter Settings & Baselines

Our study utilizes data from DrugBank and CTD, pro-

viding insights into drug-related information. Two dataset

configurations are employed. One uses data exclusively from

DrugBank, encompassing details about drug-target interactions

and drug-disease associations. The other configuration inte-

grates information from DrugBank (concerning drug-target

interactions) with data from CTD (providing drug-disease

associations). This integration provides a comprehensive view

of <drug, target, disease> triplets. Subsequently, the DrugBank

and combined datasets will be referred to as DB and DB&C,

respectively. Table I summarizes the vital characteristics of

nodes and edges in the heterogeneous graph.

Datasets are split into random training (80%) and testing

(20%) subsets for five iterations. This splitting process is

repeated five times, and the average accuracy metrics are

calculated and reported in the results section. The optimal

hyper-parameters are obtained by grid search based on the

validation set. The ranges of grid search are shown in Table

II. We train the HeTAN model using the cross-entropy loss and

optimize the model parameters using the Adam optimizer. The

optimal learning rate is determined to be 1e-5, and the optimal

dropout rate is found to be 0.6 to prevent overfitting. Training

runs for 2000 epochs with early stopping after 200 consecutive

epochs without validation loss improvement.

To construct negative triplets, we employ negative sampling

by randomly replacing one or all nodes in positive triplets, en-

suring they are absent from the actual data. We assess HeTAN’s

performance through a diverse set of metrics encompassing

accuracy, precision, F1-score, and AUROC. We also utilize

the commonly used top-n metric hit@n and NDCG@n, as

proposed by [29], [30]. Hit@n measures whether a test triplet

appears within the top-n ranked predictions, while NDCG@n

prioritizes higher-ranked matches. We rank triplets in descend-

ing order based on model prediction scores, prioritizing those

most likely to represent valid interactions.

To evaluate HeTAN’s effectiveness, we compare it to a range

of state-of-the-art models categorized by their approaches:

● Tensor Decomposition Methods: CP and Tucker are fa-

mous tensor models with diverse variants that are being

successfully applied in health data analysis [31]. They

both adopt multilinear assumptions.

● Attention-based Methods: We use transformer, a robust

deep learning architecture that captures complex relation-

ships and patterns in the data. It utilizes self-attention

mechanisms to effectively learn and represent the inter-

actions between drugs, targets, and diseases. For these

models, the embeddings of the triplet nodes (drug, target,

disease) are concatenated, and the combined embeddings

are used to predict interactions.

● Graph Neural Network (GNN): We use GNN architec-

tures on our heterogeneous graph to learn the representa-

tion of nodes. We select three standard GNN-based meth-

ods: GIN [32], GAT [33], and GraphSAGE [34]. Among

these GNN models, GAT [33] uses pairwise attention to

generating node representation. Similar to attention-based

methods, GNN models concatenate the embeddings of the

triplet nodes and use these concatenated embeddings for

interaction prediction.

● Heterogeneous Graph Neural Network (HGNN): For this

baseline, we use the commonly used HGNN model het-

erogeneous graph transformer (HGT) [35]. HGT incorpo-

rates pairwise attention on a heterogeneous graph to learn

the representation of nodes. The triplet node embeddings

are concatenated and used to predict interactions.

● NeurTN: Neural Tensor Network (NeurTN) [7] combines

tensor algebra and deep neural networks, offering a

more powerful way to capture the nonlinear relationships

among drugs, targets, and diseases. Both NeurTN and

HeTAN combine drug-target and drug-disease interactions

from DrugBank and CTD.

● DDTE: Moon et al. [36] construct a heterogeneous knowl-

edge graph including various drug-related information

and utilize TransE [30] model to infer drug–disease–target

relationships.

● MHGNN: MHGNN-DTI [37] builds the model with a

dual-channel architecture to learn drug and target embed-

dings, respectively, using a graph attention mechanism

and metapath techniques. It proposes building correlation

graphs to exploit high-order relations. Finally, it performs
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TABLE III: Comparing performance of HeTAN with other baseline models on DB

Model Method F-1 Score Precision Recall ROC-AUC AUPR

TD 47.00 48.51 45.59 49.19 48.98
Tensor-based CPD 52.91 52.19 56.19 49.84 50.06

Attention-based Transformer 52.31 62.96 51.18 60.62 59.46

GraphSAGE 72.24 61.3 83.94 66.4 59.92
GNN-based GIN 74.06 71.18 77.2 73.08 66.31

GAT 72.63 62.65 82.34 67.64 60.92

HGT 80.44 82.71 79.41 83.13 83.32
HGNN-based MHGNN 81.9 87.16 83.86 92.63 91.57

HeTAN 86.31 88.43 84.34 93.46 93.07

TABLE IV: Comparing performance of HeTAN with other baseline models on DB&C

Model Method F-1 Score Precision Recall ROC-AUC AUPR

TD 53.17 62.45 47.86 60.65 62.04
Tensor-based CPD 57.23 63.72 52.19 59.82 60.76

Attention-based Transformer 83.05 85.24 81.09 82.04 75.36

GraphSAGE 83.31 78.97 90.04 75.98 70.72
GNN-based GIN 83.98 78.16 83.49 76.45 71.52

GAT 85.17 82.44 82.11 83.76 77.15

HGT 85.22 87.08 84.55 87.98 84.07
HGNN-based MHGNN 87.7 85.88 88.79 95.64 94.45

HeTAN 90.91 93.12 89.88 98.01 97.75

Fig. 2: Evaluation of top-n performance for HeTAN and other baseline models in terms of

a) Hit@n and b) NDCG@n on DB and DB&C

pairwise drug-target interaction prediction.

B. Comparison with baselines

In this study, we conduct a comprehensive performance

analysis of HeTAN compared to a selection of state-of-the-

art baseline models. We employ diverse performance metrics

to assess these models’ efficacy. Specifically, we report the

F-1 Score, Precision, Recall, ROC-AUC, and AUPR results

in Table III for DB and Table IV for DB&C. Both tables

refer to the tensor-based baselines, tucker decomposition and

CP decomposition as TD and CPD, respectively. Our model,

HeTAN, outperforms all baseline models for both datasets,

showcasing its exceptional predictive capabilities.

For instance, on DB, HeTAN achieves impressive F-1 score,

ROC-AUC, and AUPR of 86.31%, 93.46%, and 93.07%, rep-

resenting significant improvements over the best-performing

baseline, MHGNN, which achieves F-1 score, ROC-AUC, and

AUPR of 81.9%, 92.63%, and 91.57%, respectively. The su-

perior performance of HeTAN is further evident in the DB&C

dataset, where it attains F-1 score, ROC-AUC, and AUPR of

90.91%, 98.01%, and 97.75%, surpassing the performance of

other models by a considerable margin.
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TABLE V: Novel Triplet Predictions by HeTAN FROM DB&C

Drug Target Disease DB&C Label Prediction DB Label

Carbamazepine NR1I2-HUMAN Osteoporosis 0 0.99 1
Testosterone ERR3-RAT Myocardial infarction 0 0.98 1
Nefazodone DRD2-HUMAN Schizophrenia 0 0.97 1
Raloxifene ERR3-RAT Obesity 0 0.93 1
Fenofibrate MMP19-HUMAN Psoriatic arthritis 0 7e-09 0

TABLE VI: Novel Triplet Predictions by HeTAN FROM DB

Drug Target Disease DB Label Prediction DB&C Label

Cyclobenzaprine 5HT2C-HUMAN Muscle Spasm 0 0.99 1
Cyclobenzaprine AA2AR-HUMAN Gout 0 0.98 1

Imipramine ADA1D-HUMAN Interstitial Lung Disease 0 0.97 1
Quetiapine HRH1-HUMAN Schizophrenia 0 9.9e-10 0
Verapamil CAC1S-HUMAN Cluster headache 0 5e-07 0

TABLE VII: Top five drug-target pairs predicted by our proposed HeTAN for depression

Drug (DrugBank) Target (UniProt) Evidence

Amitriptyline Sodium-dependent serotonin transporter Kim Lawson [38]
Nortriptyline 5-hydroxytryptamine receptor 2A Pierre Blier [39]
Imipramine Sodium-dependent serotonin transporter Dempsey et al. [40]

Nortriptyline Muscarinic acetylcholine receptor M5 Philip et al. [41]
Nortriptyline MD(2) dopamine receptor Pierre Blier [39]

In addition to these performance metrics, we adopt the top-

n metrics, Hit@n and NDCG@n, as illustrated in Figure 2.

These metrics are particularly critical in triplet prediction, as

they assess the ranking quality of the model’s predictions.

HeTAN’s top-n metrics (Hit@n and NDCG@n) performance

showcases its superior ranking ability, which is crucial for

accurate triplet prediction. On DB, HeTAN achieves a Hit@15

score of 50.11% and NDCG@15 of 27.36%, significantly

exceeding the top baseline (MHGNN) by over 6% and 3%,

respectively.

Tensor-based models exhibit solid performance but often

lag in recall and ranking. Attention-based methods, like the

Transformer, improve Precision and Recall. NeurTN, combin-

ing tensor and attention models, excels in top-n metrics. Since

different accuracy results like F-1 score, Precision and Recall

are unavailable on NeurTN paper, we could not present and

analyze these results with other baseline models. Similarly, we

could not obtain these results from DDTE.

GNN and HGNN-based models consistently achieve F-

1 scores surpassing 70%, emphasizing the pivotal role of

graph structural information. GNN and HGNN-based mod-

els represent interactions between graph nodes and capture

graph dependence through message passing. Comparing graph

attention-based models, GAT and HGT rely on pairwise

attention, and HeTAN utilizes triplet-wise attention. HeTAN

consistently performs better than GAT and HGT. For example,

GAT achieved F-1 scores of 72.63% on DB and 85.17%

on DB&C, while HGT scored 80.44% on DB and 85.21%

on DB&C. One notable heterogeneous graph neural network,

MHGNN achieves F-1 scores of 81.9% on DB and 87.7%

on DB&C, demonstrating strong performance. MHGNN’s

strength lies in its dual-channel architecture and meta-path

techniques to exploit high-order relations. Still, MHGNN falls

short of HeTAN’s results. HeTAN achieve 86.31% and 90.91%

on DB and DB&C, respectively.

HeTAN effectively manages diverse nodes and relationships,

integrating rich semantics within a heterogeneous graph. By

using triplet message passing and triplet-wise attention, the

model captures intricate patterns and dependencies, offering

a comprehensive understanding of drug-target-disease associ-

ations. Multi-head attention enhances its ability to learn from

complex data, ensuring robust predictions. Overall, HeTAN

significantly improves prediction accuracy, positioning itself as

a powerful tool for drug discovery and personalized medicine.

C. Prediction and Validation of Triplets

This study evaluates HeTAN’s ability to predict drug-target-

disease interactions using real-world datasets. To determine its

effectiveness in predicting missing interactions, we compare

HeTAN’s predictions with data from two distinct datasets.

We start by selecting triplets from Dataset DB&C, which

lack interaction data in DB&C but possess relevant association

information in DB. We train HeTAN on the DB&C dataset,

ensuring that the selected triplets are used exclusively in the

test set to minimize potential bias. The predicted scores for

these triplets, presented in Table V, consistently exceed 90%,

suggesting that these triplets are likely to exhibit interactions

despite the absence of explicit interaction data in DB&C.

To validate these predictions further, we cross-reference them

with the information in DB. Remarkably, this comparison

confirms the interactions between these triplets, reinforcing

the predictive power and accuracy of HeTAN.

To expand our validation process and test HeTAN’s gen-

eralizability, we select another set of five drug triplets from

DB, which lack interaction information within DB but contain

such data in DB&C, as highlighted in Table VI. We train

HeTAN using the DB dataset for this validation, tailoring

the model specifically to this unique dataset configuration.

Subsequently, we validate the predicted scores by cross-

referencing them with DB&C, which serves as an independent
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validation set. Validating predicted scores against DB&C em-

phasizes HeTAN’s reliability and generalizability, showcasing

its adaptability across datasets and reinforcing its real-world

predictive capabilities.
D. Case Study on Depression

Personalized treatment is a core objective in our medical

research, particularly in identifying effective drugs for specific

diseases and understanding their biological targets. HeTAN

has been employed to uncover new drug-target combinations

relevant to depression—a complex condition with various

molecular factors. By focusing on triplets where the disease

is depression, HeTAN was trained on a heterogeneous graph

from DrugBank and CTD datasets. For this experiment, we

filter our predicted triplets to focus on those where the

disease is depression. Table VII enlists the top five pairs

of (drug, target) corresponding to depression and literature

evidence supporting these predictions. For depression, these

pairs are the highest-ranked predictions based on the model’s

scoring and have corresponding evidence in the literature,

demonstrating their potential relevance and validity. These

results underline HeTAN’s potential in identifying clinically

relevant drug-target pairs, marking a significant step toward

personalized medicine. The model’s reliable predictions offer a

promising approach to revolutionizing treatments for complex

diseases like depression.

E. Ablation Study

To assess the contribution of each component in HeTAN,

we perform an ablation study with five variants:

● HeTAN-Sum (HeTAN-S): This variant employs sum-

mation instead of concatenation and neural network trans-

formations for neighbor embedding in Eq 4.

● HeTAN-Concat (HeTAN-C): Three neighbor node

embeddings are concatenated in Eq 2 and then reduced

in dimension.

● HeTAN-Elem-Prod (HeTAN-EP): This variant uses

the element-wise product on neighbor node embeddings

in Eq 4.

● HeTAN-Triplet-Attention-Sum

(HeTAN-TAS): In this variant, three neighbor node

embeddings are summed in Eq 2 to get triplet-wise

attention.

● HeTAN-Triplet-Attention-Elem-Prod

(HeTAN-TAEP): This variant applies the element-

wise product on three neighbor node embeddings in

Eq 2 to get triplet-wise attention.

In comparing the model variants with the original HeTAN,

HeTAN-Sum and HeTAN-Concat demonstrate weaker per-

formance, likely due to their use of summation or concatena-

tion, which may not capture complex relationships as effec-

tively as the original approach. Similarly, HeTAN-TAEP and

HeTAN-TAS underperform compared to HeTAN, highlighting

the efficacy of applying a neural network for concatenated

embeddings. As shown in Figure 3, the original HeTAN model

consistently surpasses its variants across key metrics like F1-

score, Recall, and ROC-AUC, underscoring the effectiveness

Fig. 3: Performance Comparison of HeTAN with its variants

of its triplet-wise attention and message passing mechanisms.

This analysis confirms HeTAN’s robustness in managing com-

plex, heterogeneous data in biomedical research.

V. CONCLUSION

HeTAN stands out as a powerful model for modeling

drug-target-disease interactions thanks to its dedicated HGNN

architecture and innovative triplet-attention mechanism. This

approach effectively addresses limitations encountered in pre-

vious models, leading to significant improvements in perfor-

mance. The novel triplet-attention mechanism holds broad

potential for application beyond drug discovery, extending to

diverse domains involving heterogeneous graphs and higher-

order interactions.

While HeTAN is currently defined for drug-target-disease

triplets, future research could further enhance its capabilities

by applying it to different triplet combinations and incorporat-

ing additional elements, such as drug-target-pathway-disease

interactions. This expansion could lead to a deeper understand-

ing of drug mechanisms and improved predictive accuracy.

Moreover, integrating multi-omics data and exploring more

complex graph structures are promising avenues for boosting

HeTAN’s predictive power and providing a more comprehen-

sive view of biological processes. These advancements can

significantly contribute to progress in personalized medicine

and drug development, ultimately benefiting patient outcomes

and healthcare systems.
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