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Abstract

The famous Wegner’s Planar Graph Conjecture asserts sharp upper bounds on the chromatic number

of the square G
2 of a planar graph G, depending on the maximum degree ∆(G) of G. The only case that

the conjecture is known to be true is when ∆(G) ≤ 3. Even the case when ∆(G) = 4 is still open; the

conjecture states that the chromatic number of G2 is at most 9.

We take a completely different approach from previous partial results, and show that a relaxation of

properly coloring the square of a planar graph G with ∆(G) ≤ 4 can be achieved with 9 colors. Instead

of requiring every color in the neighborhood of a vertex to be unique, which is equivalent to a proper

coloring of G2, we seek a proper coloring of G such that at most one color is allowed to be repeated in

the neighborhood of each vertex of degree 4, but not at vertices of other degrees.

1 Introduction

Given a simple graph G, let V (G) and E(G) denote the set of vertices and the set of edges, respectively, of
G. For each v ∈ V (G), the neighborhood of v, denoted NG(v), is the set of vertices adjacent to v, and the
degree of v, denoted dG(v), is the number of neighbors of v. A proper coloring ϕ of a graph G assigns colors
to vertices of G so that ϕ(x) ̸= ϕ(y) for every edge xy of G.

Given a graph G, the square of G, denoted G2, is the graph obtained from G by adding edges between
every pair of vertices at distance 2. The famous and very popular Wegner’s Planar Graph Conjecture [22],
first raised in 1977, asserts sharp upper bounds on the chromatic number of the square G2 of a planar graph
G, depending on the maximum degree ∆(G) of G. We state the conjecture below, and refer the reader to [22]
for illustrations of the sharpness examples.

Wegner’s Planar Graph Conjecture ([22]). If G is a planar graph, then

χ(G2) f











7 if ∆(G) = 3,

∆(G) + 5 if ∆(G) ∈ {4, 5, 6, 7},
3
2∆(G) + 1 if ∆(G) g 8.

For sufficiently large maximum degree, Havet, van den Heuvel, McDiarmid, and Reed [12] proved that the
above conjecture is true asymptotically. For exact results, Molloy and Salavatipour [19] proved the current
best bound.

Theorem 1 ([19]). If G is a planar graph, then χ(G2) f
⌈

5
3∆(G)

⌉

+ 78.
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The only case that the conjecture is resolved is when ∆(G) = 3, which was proven to be true by
Thomassen [20], and independently by Hartke, Jahanbekam, Thomas [11]; the former proof uses a meticulous
induction argument, and the latter uses a simple discharging argument with a computer assisted proof of its
reducible configurations.

In general, Wegner’s Planar Graph Conjecture is still wide open, and we refer the reader to the following
references for various partial results, oftentimes with restrictions on the maximum degree [1, 2, 14, 15, 18,
21, 23, 24]. In particular, when the maximum degree is exactly 4, after a series of improvements in [7, 8, 25]
by various authors, Bousquet, Deschamps, de Meyer, and Pierron [3] recently established an upper bound
of 12. Note that the conjectured upper bound is 9.

The following relaxation of proper coloring the square of a graph was formally defined in [6]: a proper h-
conflict-free (h-PCF for short) k-coloring of a graph G is a proper k-coloring of G such that the neighborhood
of every vertex v has at least min{h, dG(v)} unique colors. (This concept is a generalization of proper conflict-
free coloring, defined recently by Fabrici, Lužar, Rindošová, and Soták [10], and has received considerable
attention, we refer the interested reader to [4, 5, 13, 16].) Note that proper coloring the square of a graph
requires every color in the neighborhood of each vertex to be unique, whereas in an h-PCF coloring the
restriction on the colors of the neighborhood of a vertex is for vertices with degree at least h+ 2.

In this paper, we take a completely different approach from previous authors for attacking Wegner’s
Planar Graph Conjecture for planar graphs G with maximum degree at most 4. Instead of allowing more
colors than the conjectured bound, we show that replacing the condition that the square of G must be
properly colored by the condition that the coloring of G is a 2-PCF coloring, we can obtain the bound
predicted in Wegner’s Planar Graph Conjecture. When restricted to graphs G with maximum degree at
most 4, a 2-PCF 9-coloring is equivalent to a proper coloring of G such that at most one color is allowed
to be repeated in the neighborhood of each vertex of degree 4, but not at vertices of other degrees. Note
that requiring min{3, dG(v)} unique colors in the neighborhood of every vertex v is equivalent to a proper
coloring of the square of the graph when it has maximum degree 4. We now state our main result:

Theorem 2. Every planar graph with maximum degree at most 4 has a 2-PCF 9-coloring. In other words,
every planar graph G with maximum degree at most 4 has a proper 9-coloring such that the neighborhood of
each vertex v has at least min{2, dG(v)} unique colors.

We end this section with a subsection on definitions and notation used for the proof of Theorem 2, which
is in section 2. We end the paper with some future directions in section 3.

1.1 Definitions and notation

A k-vertex, k−-vertex, k+-vertex is a vertex of degree k, at most k, at least k, respectively.
Given a vertex v of a graph G with a 2-PCF coloring ϕ, the unique colors of v are the unique colors

appearing in the neighborhood of v; in particular, let ϕ1(v) and ϕ2(v) denote two (different) unique colors
of v, if they exist. We say v has k unique colors if there are k unique colors in the neighborhood of v. For
X ¦ V (G), we abuse the notation and define ϕ(X) = {ϕ(v) : v ∈ X}.

For S ¦ V (G) where each vertex in S has at most two neighbors not in S, define G ∗ S to be the
graph obtained from G by removing S (as well as edges with an endvertex in S) and adding an edge uv for
u, v ∈ V (G) \ S if u and v have a common neighbor in S and uv is not an edge already; G ∗ S is called the
S-reduced graph. Note that G ∗ S is planar whenever G is planar, and the maximum degree of G ∗ S is at
most the maximum degree of G.

For a 2-PCF coloring ϕ of G ∗ S, let v ∈ S and u ∈ NG(v) \ S. If all vertices in NG(u) \ S receive
distinct colors (in particular if u is a 3-vertex in G), then let BS(u) = {ϕ(u), ϕ1(u), ϕ2(u)}. If either
ϕ1(u) or ϕ2(u) is not defined, then do not include it in BS(u). (Recall that ϕ1(v) and ϕ2(v) denote two
(different) unique colors of v, if they exist.) If there is a repeated color among vertices in NG(u) \ S, then
let BS(u) = {ϕ(u)} ∪ ϕ(NG−S(u)). Notice that for u ∈ V (G ∗ S) with a neighbor in S

|BS(u)| f 3 (1)
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if G has maximum degree at most 4. Let CG∗S(v) =
⋃

u∈NG(v)\S BS(u). By (1), |CG∗S(v)| f 3|NG(v) \ S|
when G has maximum degree at most 4. Moreover, for a partial coloring ϕ of G, if we extend ϕ to G by
assigning a color not in CG∗S(v) to v, then two unique colors are guaranteed for vertices in NG(v) \S under
ϕ and ϕ is still a (partial) proper coloring of G.

2 Proof of Theorem 2

Let G be a counterexample to Theorem 2 with the minimum number of vertices. If G has maximum degree
at most 3, then χ(G2) f 7, by Thomassen [20] and independently by Hartke, Jahanbekam, and Thomas [11],
so G has a 2-PCF 7-coloring. Thus, we may assume G has maximum degree exactly 4. We first prove a
sequence of claims regarding the structure of G.

Claim 1. G does not have a 2−-vertex.

Proof. Let v be a vertex of minimum degree in G. Suppose v is a 2−-vertex. For S = {v}, let H be the
S-reduced graph. By the minimality of G, H has a 2-PCF 9-coloring ϕ. Extend ϕ to all of G by coloring v
with a color not in CH(v). Now ϕ is a 2-PCF 9-coloring of G, which is a contradiction.

x

y

zw

u

Figure 1: Two 3-cycles sharing an edge

Claim 2. G does not have two 3-cycles sharing an edge.

Proof. Suppose G contains two 3-cycles xyz and xyw that share an edge xy. See Figure 1.
Let H be the graph obtained from G by removing x and adding the edge wz. Since H is a planar graph

with maximum degree at most 4, by the minimality of G, H has a 2-PCF 9-coloring ϕ. Because ϕ gives
w, y, z distinct colors, regardless of the color on u (if it exists), x is already guaranteed (at least) two unique
colors at this point. Let B1 = {ϕ1(v), ϕ2(v) : v ∈ NG(x) \ {y, z, w}} and B2 = {ϕ(NG(v)) : |ϕ(NG(v))| =
2 and v ∈ {w, z}}. Note that B1 or B2 might be empty. Moreover, |ϕ(NG(v))| g 2 for v ∈ {w, z} since
otherwise ϕ is not a 2-PCF coloring of H. When coloring x, avoiding colors in B1 and B2 will guarantee two
unique colors for u (if it exists) and w, z, respectively. Let B = ϕ(NG(x)) ∪B1 ∪B2. Since |B| f 8, we can
extend ϕ to x by using a color not in B. Now, ϕ is a 2-PCF 9-coloring of G, which is a contradiction.

Claim 3. G does not have a 3-cycle with a 3-vertex.

Proof. Suppose G contains a 3-cycle T : xyz where x is a 3-vertex. Let x1, y1, z1 be neighbors of x, y, z,
respectively, not on T . Let y2 (resp. z2) be the neighbor of y (resp. z) that is neither on T nor y1 (resp. z1)
if y (resp. z) is a 4-vertex. See Figure 2(a). By Claim 2, all vertices in the figure are distinct.

Suppose x1 is a 3-vertex. For S = {x, x1}, let H be the S-reduced graph. By the minimality of
G, H has a 2-PCF 9-coloring ϕ. Now extend ϕ to all of G as follows: color x1 with a color not in
CH(x1) ∪ {ϕ(y), ϕ(z)} to guarantee two (actually three) unique colors for x, and color x with a color not in
{ϕ(x1), ϕ1(x1), ϕ2(x1), ϕ(y), ϕ(z), ϕ(y1), ϕ(z1)} to guarantee two (actually three) unique colors for x1. Thus
ϕ is a 2-PCF 9-coloring of G, which is a contradiction.
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Figure 2: (a), (b): A 3-cycle with a 3-vertex (c): 3-cycle with no 3-vertex

Now we know x1 is a 4-vertex. For S′ = {x, y, z}, let H ′ be the S′-reduced graph. By the minimality of
G, H ′ has a 2-PCF 9-coloring ϕ′. Since x1 has three unique colors at this point, at least two unique colors
for x1 are guaranteed regardless of the color assigned to x.

Suppose y is a 3-vertex. Then color z with a color not in CH′(z) ∪ {ϕ′(x1), ϕ
′(y1)}, and color y with a

color not in CH′(y)∪ϕ′(NG(z)\S
′)∪{ϕ′(x1), ϕ

′(z)}. At this point x has two (actually three) unique colors.
Color x with a color not in {ϕ′(x1), ϕ

′(y), ϕ′(z), ϕ′(y1)} ∪ ϕ
′(NG(z) \ S

′) to guarantee two unique colors for
each of y and z. Thus ϕ′ is a 2-PCF 9-coloring of G, which is a contradiction.

By symmetry, we may assume both y and z are 4-vertices. See Figure 2(b). Now, color y with a color not
in CH′(y)∪{ϕ′(x1)}, and color z with a color not in CH′(z)∪{ϕ′(y), ϕ′(x1)}. This guarantees two (actually
three) unique colors for x. Color x with a color not in {ϕ′(x1), ϕ

′(y), ϕ′(y1), ϕ
′(y2), ϕ

′(z), ϕ′(z1), ϕ
′(z2)} to

guarantee an additional unique color for each of y and z. Note that each of y and z already had a unique
color in NG(y) \ {x} and NG(z) \ {x}, respectively, since H ′ is an S′-reduced graph. Then ϕ′ is a 2-PCF
9-coloring of G, which is a contradiction.

Claim 4. G does not have a 3-cycle.

Proof. Suppose G contains a 3-cycle T : xyz. By Claim 3, all vertices on T are 4-vertices. Let x1, x2, and
y1, y2, and z1, z2 be the neighbors of x and y and z, respectively, not on T . See Figure 2(c). By Claim 2, all
vertices in the figure are distinct. For S = {x, y, z}, let H be the S-reduced graph. By the minimality of G,
H has a 2-PCF 9-coloring ϕ. Let C ′ = CH(x) ∪ {ϕ(y1), ϕ(y2), ϕ(z1), ϕ(z2)}.

Suppose |C ′| f 8. First color x with a color not in C ′ to guarantee three unique colors for each of y and
z, so at least two unique colors are guaranteed for y and z regardless of the colors assigned to y and z.

If |CH(y) ∪ {ϕ(x), ϕ(x1), ϕ(x2)}| f 8, then color y with a color not in CH(y) ∪ {ϕ(x), ϕ(x1), ϕ(x2)},
guaranteeing three unique colors for x, so at least two unique colors are guaranteed for x regardless of the
color assigned to z. Now color z with a color not in CH(z) ∪ {ϕ(x), ϕ(y)}. Now, ϕ is a 2-PCF 9-coloring of
G, which is a contradiction.

Thus, by symmetry, we may assume |CH(y)∪{ϕ(x), ϕ(x1), ϕ(x2)}| = |CH(z)∪{ϕ(x), ϕ(x1), ϕ(x2)}| = 9.
Without loss of generality, assume ϕ(xi) = i for i ∈ {1, 2}, ϕ(x) = 3, and CH(y) = CH(z) = {4, 5, 6, 7, 8, 9}.
Delete the color on x and color y with 3 and z with 1 to guarantee two unique colors for x, y, z. Now color
x with a color not in CH(x) ∪ {ϕ(y), ϕ(z)} to obtain a 2-PCF 9-coloring of G, which is a contradiction.

Now we know, |C ′| = 9, so either ϕ(y1) or ϕ(y2) appears only once on C ′. Without loss of generality,
assume ϕ(y1) does not appear in C ′ except on y1. Color x with ϕ(y1), guaranteeing the three unique colors
for z. Color z with a color not in CH(z) ∪ {ϕ(y1), ϕ(y2)}, guaranteeing two unique colors for y.

If ϕ(z) /∈ {ϕ(x1), ϕ(x2)}, then x has three unique colors, so coloring y with a color not in CH(y)∪{ϕ(z)}
guarantees at least two unique colors for x. If ϕ(z) ∈ {ϕ(x1), ϕ(x2)}, then color y with a color not in
CH(y) ∪ {ϕ(x1), ϕ(x2)}, guaranteeing an additional unique color for x. Note that NG(x) \ {y} already
has a unique color since H is an S-reduced graph. In all cases, ϕ is a 2-PCF 9-coloring of G, which is a
contradiction.

Claim 5. G does not have a path on three 3-vertices where the middle vertex is adjacent to a 4-vertex.
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Figure 3: Figures for Claims 5, 6, 7, and 8

Proof. Suppose G has a path xyz on three 3-vertices where the neighbor y1 of y other than x and z is a
4-vertex. See Figure 3(a). For S = {x, y, z}, let H be the S-reduced graph. By the minimality of G, H
has a 2-PCF 9-coloring ϕ. Color x with a color not in CH(x) ∪ {ϕ(y1)}, and color z with a color not in
CH(z) ∪ {ϕ(x), ϕ(y1)} to guarantee two (actually three) unique colors for y. Since y1 is a 3-vertex in H,
ϕ(NG(y1)) consists of three distinct colors and at least two unique colors for y1 are guaranteed regardless of
the color assigned to y. Color y with a color not in ϕ((NG(x) ∪NG(z)) \ S) ∪ {ϕ(x), ϕ(y1), ϕ(z)} to obtain
a 2-PCF 9-coloring ϕ of G, which is a contradiction.

Claim 6. G does not have a path on four 3-vertices.

Proof. Suppose G has a path xyzw on four 3-vertices, and let y1 (resp. z1) be the neighbor of y (resp. z)
that is not on the path. See Figure 3(b). By Claim 4, all vertices in the figure are distinct. Here, we may
assume xw is not an edge; the case where xw is an edge is analogous. For S = {x, y, z, w}, let H be the
S-reduced graph. By the minimality of G, H has a 2-PCF 9-coloring ϕ. Note that |CH(x) ∪ {ϕ(y1)}| f 7.
If |CH(x)∪ {ϕ(y1)}| = 7, then color y with a color in (CH(x) ∪ {ϕ(y1)}) \ (CH(y) ∪ ϕ((NG(x) \ S) ∪ {z1})),
and if |CH(x)∪{ϕ(y1)}| f 6, then color y with a color not in CH(y)∪ϕ((NG(x)\S)∪{z1}). This guarantees
two (actually three) unique colors for x, and in both cases, |CH(x) ∪ {ϕ(y), ϕ(y1)}| f 7. Color w with a
color not in CH(w) ∪ {ϕ(y), ϕ(z1)} to guarantee two (actually three) unique colors for z, and color z with a
color not in CH(z)∪ ϕ(NG(w) \ S)∪ {ϕ(y), ϕ(y1), ϕ(w)} to guarantee two (actually three) unique colors for
w. Finally, color x with a color not in CH(x) ∪ {ϕ(y), ϕ(y1), ϕ(z)} to guarantee two (actually three) unique
colors for y, and now ϕ is a 2-PCF 9-coloring of G, which is a contradiction.

Claim 7. G does not have a 4-cycle xyzw where x and y are 3-vertices.

Proof. Suppose G has a 4-cycle F : xyzw where x and y are 3-vertices. Let x1, y1, z1, w1 be a neighbor of
x, y, z, w, respectively, that is not on F . By Claim 6, we may assume z is a 4-vertex, so let z2 be the neighbor
of z that is neither on F nor z1, and if w is a 4-vertex, then let w2 be the neighbor of w that is neither
on F nor w1. See Figure 3(c). Note that x1 and zi ∈ {z1, z2} may coincide, and y1 and wi ∈ {w1, w2}
may coincide, but all other vertices in the figure are distinct by Claim 4. For S = {x, y, z, w}, let H be
the S-reduced graph. By the minimality of G, H has a 2-PCF 9-coloring ϕ. Color z with a color not in
CH(z)∪ {ϕ(y1), ϕ(w1)}, and color w with a color not in CH(w)∪ {ϕ(z), ϕ(x1)}. Color y with a color not in
CH(y) ∪ {ϕ(x1), ϕ(w), ϕ(z), ϕ(z1), ϕ(z2)} to guarantee two unique colors for each of x and z. Finally, color
x with a color not in CH(x) ∪ {ϕ(y), ϕ(y1), ϕ(z), ϕ(w), ϕ(w1)} to guarantee two unique colors for each of y
and w. Now, ϕ is a 2-PCF 9-coloring of G, which is a contradiction.

Claim 8. G does not have a 3-vertex incident with two 4-faces.

Proof. Suppose G has a 3-vertex v incident with two 4-cycles xyzv and uwzv. By Claim 7, x, z, u are 4-
vertices. Let z1 be the neighbor of z that is not y, v, w. See Figure 3(d). Let H be the graph obtained from
G by removing v and adding the edge xu. Note that xu did not exist beforehand by Claim 4. Note that H
is still planar and the maximum degree did not increase. By the minimality of G, H has a 2-PCF 9-coloring
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Figure 4: Figures for Claims 9, 10, and 11

ϕ, so each of ϕ(NG(x)) and ϕ(NG(u)) must consist of at least two distinct colors. Let α, β be two distinct
colors in ϕ(NG(x)), and let γ, δ be two distinct colors in ϕ(NG(u)). Note that there are three unique colors
for z, so regardless of the color assigned to v, at least two unique colors are guaranteed for z.

If ϕ(NG(v)) consists of three distinct colors, then color v with a color not in {ϕ(x), α, β, ϕ(z), ϕ(u), γ, δ} to
guarantee two unique colors for each of x and u. Now ϕ is a 2-PCF 9-coloring of G, which is a contradiction.
Thus, ϕ(NG(v)) consists of two distinct colors.

Without loss of generality, assume ϕ(x) = ϕ(z). There must be two unique colors for y, so y must be a 4-
vertex and the two neighbors of y other than x and z received different colors that is also different from ϕ(x).
Thus, by reassigning a color to z, two unique colors are guaranteed for y. Note that since ϕ(NG(w)) contains
at least three colors, there is a color a ∈ ϕ(NG(w)) \ {ϕ(u), ϕ(z)}. Let b and c be two distinct colors in
ϕ(NG(z1)\{z}). Recolor z with a color not in {ϕ(x), ϕ(u), ϕ(y), ϕ(z1), b, c, ϕ(w), a} to guarantee two unique
colors for each of v, z1 and w, and color v with a color not in {ϕ(x), α, β, ϕ(z), ϕ(u), γ, δ} to guarantee two
unique colors for each of x and u. Now, ϕ is a 2-PCF 9-coloring of G, which is a contradiction.

Claim 9. G does not have a 5-cycle with three consecutive 3-vertices.

Proof. Suppose G has a 5-cycle F : xyzuv with three consecutive 3-vertices y, z, and u. Let y1 and u1
be the neighbor of y and u, respectively, that is not on F . By Claim 6, x, v, y1, u1 are 4-vertices. See
Figure 4(a). By Claims 4 and 7, all vertices in the figure are distinct. For S = {x, y, z, u, v}, let H be
the S-reduced graph. By the minimality of G, H has a 2-PCF 9-coloring ϕ. Color v with a color not
in CH(v) ∪ {ϕ(u1)}, and color x with a color not in CH(x) ∪ {ϕ(v), ϕ(y1)}. Color z with a color not in
CH(z)∪{ϕ(u1), ϕ(v), ϕ(y1), ϕ(x)} to guarantee two (actually three) unique colors for each of y and u. Color
y with a color not in CH(y)∪ϕ((NG(x)∪NG(z))\S)∪{ϕ(z), ϕ(x)} to guarantee two unique colors for x. Note
that u1 already has three unique colors, so regardless of the color assigned to u, at least two unique colors are
guaranteed for u1. Color u with a color not in ϕ((NG(v)∪NG(z))\S)∪{ϕ(y), ϕ(z), ϕ(v), ϕ(u1)} to guarantee
two unique colors for each of z and v. Now, ϕ is a 2-PCF 9-coloring of G, which is a contradiction.

Claim 10. If G has a 5-cycle F incident with three 3-vertices, then every 3-vertex on F has a 4-neighbor
that is not on F .

Proof. Let F : xyzuv be a 5-cycle of G incident with three 3-vertices. By Claim 9, we may assume x, z, v are
3-vertices and y, u are 4-vertices. Let x1, z1, and v1 be the neighbor of x, z, and v, respectively, that is not
on F . See Figure 4(b). By Claim 5, x1 and v1 are 4-vertices. Note that z1 may coincide with w ∈ {x1, v1}
if z1 is a 4-vertex, but all other vertices in the figure are distinct by Claim 4.

Suppose z1 is a 3-vertex. For S = {x, y, z, u, v, z1}, let H be the S-reduced graph. By the minimality of
G, H has a 2-PCF 9-coloring ϕ. Color y with a color not in CH(y)∪{ϕ(x1)}, and color u with a color not in
CH(u)∪ {ϕ(y), ϕ(v1)}. Color z1 with a color not in CH(z1)∪ {ϕ(y), ϕ(u)} to guarantee two (actually three)
unique colors for z. Color z with a color not in ϕ(NG(z1)\S)∪{ϕ(y), ϕ(u), ϕ(z1)} to guarantee two (actually
three) unique colors for z1. Note that there are three unique colors for each of x1 and v1, so regardless of
the color assigned to x and v, at least two unique colors are guaranteed for x1 and v1. Color x with a color
not in ϕ(NG(y) \ S)∪ {ϕ(y), ϕ(u), ϕ(v1), ϕ(x1)} to guarantee two unique colors for each of y and v. Color v
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with a color not in ϕ(NG(u) \ S) ∪ {ϕ(u), ϕ(v1), ϕ(x), ϕ(x1), ϕ(y)} to guarantee two unique colors for each
of x and u. Now, ϕ is a 2-PCF 9-coloring of G, which is a contradiction.

Let us define a 3-vertex on a 4-cycle to be bad, and a 3-vertex on no 4-cycles to be good.

Claim 11. If G has a 5-cycle F incident with three 3-vertices, then every 3-vertex on F is a good 3-vertex.

Proof. Let F : xyzuv be a 5-cycle with three 3-vertices. By Claim 9, we may assume x, z, v are 3-vertices
and y, u are 4-vertices. Let x1, z1, and v1 be the neighbor of x, z, and v, respectively, that is not on F . By
Claim 10, x1, z1, and v1 are 4-vertices.

Suppose z is a bad 3-vertex. Without loss of generality, assume uzz1u1 is a 4-cycle where u1 is a neighbor
of u not on F . See Figure 4(c). Note that z1 and w ∈ {v1, x1} may coincide, but all other vertices in the figure
are distinct by Claims 4 and 7. For S = {x, y, z, u, v, z1, u1}, letH be the S-reduced graph. By the minimality
of G, H has a 2-PCF 9-coloring ϕ. Color z1 with a color not in CH(z1)∪ϕ(NG(u1) \S), color y with a color
not in CH(y)∪ {ϕ(x1), ϕ(z1)}, and color u with a color not in CH(u)∪ϕ(NG(u1) \ S)∪ {ϕ(v1), ϕ(y), ϕ(z1)}
to guarantee two unique colors for each of z and u1. Color u1 with a color not in CH(u1) ∪ {ϕ(z1), ϕ(u)},
and color z with a color not in ϕ(NG(z1) \ S) ∪ {ϕ(z1), ϕ(u), ϕ(y), ϕ(u1)}. At this point, two unique colors
for z1 are guaranteed if z1 /∈ {x1, v1}; if z1 ∈ {x1, v1}, then two unique colors for z1 will be guaranteed
when coloring x and v. Color x with a color not in ϕ(NG(y) \ S) ∪ {ϕ(y), ϕ(x1), ϕ(u1), ϕ(z), ϕ(v1), ϕ(u)} to
guarantee two unique colors for each of y and v, and also z1 if x1 = z1. Note that if x1 ̸= z1, then there are
three unique colors for x1, so regardless of the color assigned to x, at least two unique colors are guaranteed
for x1. Finally, color v with a color not in {ϕ(x), ϕ(x1), ϕ(y), ϕ(u), ϕ(u1), ϕ(z), ϕ(v1)} to guarantee two
unique colors for each of x and u, and also z1 if v1 = z1. Note that if v1 ̸= z1, then there are three unique
colors for v1, so regardless of the color assigned to v, at least two unique colors are guaranteed for v1. Now,
ϕ is a 2-PCF 9-coloring of G, which is a contradiction.

Suppose v or x is a bad 3-vertex. Without loss of generality, assume uvv1u1 is a 4-cycle where u1
is a neighbor of u not on F . See Figure 4(d). Note that z1 and w ∈ {v1, x1} may coincide, but all
other vertices in the figure are distinct by Claims 4 and 7. For S′ = {x, y, z, u, v, u1, v1}, let H ′ be the
S′-reduced graph. By the minimality of G, H ′ has a 2-PCF 9-coloring ϕ′. Color y with a color not
in CH′(y) ∪ {ϕ′(z1), ϕ

′(x1)}, color v1 with a color not in CH′(v1) ∪ ϕ′(NG(u1) \ S
′), and color u with

a color not in CH′(u) ∪ ϕ′(NG(u1) \ S
′) ∪ {ϕ′(y), ϕ′(z1), ϕ

′(v1)} to guarantee two unique colors for each
of z and u1. Color u1 with a color not in CH′(u1) ∪ {ϕ′(u), ϕ′(v1)}, and color v with a color not in
ϕ′(NG(v1)\S

′)∪{ϕ′(v1), ϕ
′(u1), ϕ

′(u), ϕ′(x1), ϕ
′(y)} to guarantee two unique colors for x. At this point two

unique colors for v1 are guaranteed if v1 ̸= z1; if v1 = z1, then two unique colors for v1 will be guaranteed
when coloring z. Color x with a color not in CH′(x)∪{ϕ′(v), ϕ′(v1), ϕ

′(u), ϕ′(y)} to guarantee two (actually
three) unique colors for v. Color z with a color not in ϕ′(NG(y) \S

′)∪{ϕ′(y), ϕ′(z1), ϕ
′(u), ϕ′(u1), ϕ

′(v)} to
guarantee two unique colors for each of u and y, and also v1 if z1 = v1. Note that if z1 ̸= v1, then there are
three unique colors for z1, so regardless of the color assigned to z, at least two unique colors are guaranteed
for z1. Now, ϕ′ is a 2-PCF 9-coloring of G, which is a contradiction.

Using the above claims, we now explicitly state and prove the essential reducible configurations. For a
face f of a plane graph, let d(f) denote the length of a boundary walk of f . We now fix an embedding of G.

Lemma 3. In G, the following holds:

(1) every vertex has degree at least 3,

(2) every cycle has length at least 4,

(3) every 3-vertex is incident with at most one 4-face,

(4) if a 5-face is incident with exactly three 3-vertices, then they are all good 3-vertices.

(5) every 5+-face f is incident with at most
⌊

3d(f)
4

⌋

3-vertices.
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(6) G has no cut-vertex.

Proof. By Claim 1, every vertex has degree at least 3 so (1) holds. By Claim 4, every cycle has length at
least 4 so (2) holds. By Claim 8, every 3-vertex is incident with at most one 4-face so (3) holds. By Claim 11,
if a 5-face is incident with exactly three 3-vertices, then they are all good 3-vertices, hence (4) holds. By

Claim 6, every 5+-face f does not have four consecutive 3-vertices, so f is incident with at most
⌊

3d(f)
4

⌋

3-vertices, hence (5) holds.
Suppose G has a cut-vertex v. Let H be a component of G−v, H1 = G[V (H)∪{v}], and H2 = G[V (G)\

V (H)]. By the minimality of G, for each i ∈ {1, 2}, Hi has a 2-PCF 9-coloring ψi. Since v is a 4−-vertex, we
can permute the colors of the vertices of H1 under ψ1 so that {ψ1(u) | u ∈ NG(v)}∩{ψ2(u) | u ∈ NG(v)} = ∅
and ψ1(v) = ψ2(v). Define a function ϕ on V (G) such that for each vertex v, if v ∈ V (Hi) then ϕ(v) = ψi(v).
Now, ϕ is a 2-PCF 9-coloring of G, which is a contradiction.

We use the well-known discharging method to finish off the proof. See [9] for a nice expository survey of the
method. Let F (G) denote the set of faces of G. For each z ∈ V (G)∪F (G), let the initial charge µ(z) of z be
d(z)−4. By Euler’s formula the sum of all initial charge is negative:

∑

v∈V (G)(d(v)−4)+
∑

f∈F (G)(d(f)−4) =

2|E(G)| − 4|V (G)|+ 2|E(G)| − 4|F (G)| = −8.
Here are the discharging rules:

[R1] Every 5-face sends charge 1/3 to each incident good 3-vertex.

[R2] Every 5-face sends charge 1/2 to each incident bad 3-vertex.

[R3] Every 6+-face sends charge 1/2 to each incident 3-vertex.

We recount the charge after applying the discharging rule. We will obtain that the final charge is non-
negative for each vertex and face, to conclude that the sum of the final charge is non-negative. This is a
contradiction since the initial charge sum is negative and the discharging rule preserved the total charge
sum. We conclude that a counterexample could not have existed in the first place.

Only 3-vertices have negative initial charge since G has no 2−-vertices by Lemma 3 (1). Note that G has
no 3-faces by Lemma 3 (2). Also, each face is incident with a vertex at most once by Lemma 3 (6).

Each good 3-vertex v is incident with three 5+-faces, each of which sends charge at least 1
3 to v by [R1]

and [R3], so the final charge of v is at least −1 + 1
3 · 3 = 0. Each bad 3-vertex v is incident with at least

two 5+-faces by Lemma 3 (3), so v receives charge 1
2 at least twice by [R2] and [R3], so the final charge

of v is at least −1 + 1
2 · 2 = 0. Each 4-vertex and 4-face is not involved in the discharging process, so the

final charge is the initial charge, which is 0. If f is a 5-face incident with a bad 3-vertex, then f is incident
with at most one other 3-vertex by Lemma 3 (4) and (5), so the final charge of f is at least 1− 1

2 · 2 = 0 by
[R1] and [R2]. If f is a 5-face not incident with a bad 3-vertex, then f is incident with at most three good
3-vertices by Lemma 3 (5), so the final charge of f is at least 1− 1

3 · 3 = 0 by [R1]. Each 6+-face f has at

most
⌊

3d(f)
4

⌋

incident 3-vertices by Lemma 3 (5). Thus, the final charge of f is at least d(f)− 4−
⌊

3d(f)
4

⌋

1
2

by [R3], which is non-negative since d(f) g 6.

3 Further discussion

As mentioned in the introduction, Wegner’s Planar Graph Conjecture is true for planar graphs with maximum
degree at most 3. Recall that for a graphG (not necessarily planar) with maximum degree 3, properly coloring
G2 is equivalent to a 2-PCF coloring of G. One could also ask what the 1-PCF chromatic number is for
planar graphs with maximum degree 3, yet this is already known to be at most 4 by a result of Liu and
Yu [17]. Their result actually applies to all graphs (not necessarily planar) of maximum degree 3; see also
the discussion in the last section of [4]. Caro, Petruševski, and Škrekovski [4] conjectured that every graph G
that is not the 5-cycle is 1-PCF (∆(G)+1)-colorable; this conjecture is known to be true for only ∆(G) f 3.
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For planar graphs with maximum degree 4, Wegner’s Planar Graph Conjecture is unresolved, so we proved
a result in the flavor of 2-PCF colorings. One could also ask what the maximum 1-PCF chromatic number
is for a planar graph with maximum degree 4. By the conjecture mentioned in the previous paragraph, one
guess is that the bound is at most 5.

We also remark that in [10], Fabrici et al. constructed a planar graph that is not 1-PCF 5-colorable,
conjectured that all planar graphs are 1-PCF 6-colorable, and proved that all planar graphs are 1-PCF
8-colorable.
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