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Abstract 22 

The fundamental molecules of life are polymers. Prominent examples include nucleic acids and 23 

proteins, both of which exhibit a large array of mechanical properties and three-dimensional 24 

shapes. The bending rigidity of individual polymers is quantified by the persistence length. The 25 

shape of a polymer, dictated by the topology of the polymer backbone, a line trace through the 26 

center of the polymer along the contour path, is also an important characteristic. Common 27 

biomolecular architectures include linear, cyclic (ring-like), and branched structures; 28 

combinations of these can also exist, as in complex polymer networks. Determination of 29 

persistence length and shape are largely informative to polymer function and stability in 30 

biological environments. Here we demonstrate Persistence length Shape Polymer (PS Poly), a 31 

near-fully automated algorithm designed to obtain polymer persistence length and shape from 32 

single molecule images obtained in physiologically relevant fluid conditions via atomic force 33 

microscopy. The algorithm, which involves image reduction via skeletonization followed by end 34 

point and branch point detection, is capable of rapidly analyzing thousands of polymers with 35 

subpixel precision. Algorithm outputs were verified by analysis of deoxyribonucleic acid, a very 36 

well characterized macromolecule. The method was further demonstrated by application to 37 

candidalysin, a recently discovered and complex virulence factor from Candida albicans. 38 

Candidalysin forms polymers of highly variable shape and contour length and represents the first 39 

peptide toxin identified in a human fungal pathogen. PS Poly is a robust and general algorithm. It 40 

can be used to extract fundamental information about polymer backbone stiffness, shape, and 41 

more generally, polymerization mechanisms.   42 

 43 

 44 
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1. INTRODUCTION 45 

Knowledge of cellular function and dysfunction (disease) has advanced through developing a 46 

detailed understanding of many semi-flexible polymeric molecules. A prime example is the 47 

recently discovered peptide toxin candidalysin (CL), which is the virulence factor secreted by the 48 

fungus C. albicans 1. CL forms loops in solution which can then embed into membranes and 49 

form pores that damage host cells 2. When establishing the molecular basis of a disease, such as 50 

invasive candidiasis which emanates from C. albicans and has a high mortality rate 3, 51 

characterizing polymer mechanical properties and topology (shape) provides significant insight. 52 

For example, bending rigidity, quantified by the persistence length, sheds light on the expected 53 

diameter of loops formed by CL. This geometric information can be used to predict what size 54 

molecules might be able to pass through the CL pores in host cell membranes during C. albicans 55 

infection. Additionally, when studying the kinetics of polymer loop formation (cyclization) or 56 

branching, which usually involves secondary polymerization interfaces 4,5, it is informative to 57 

separate and quantify polymers by shape so that distinct reactions can be isolated. Such analyses 58 

can be used to construct kinetic models of looping and branching, to determine under what 59 

conditions polymer cyclization occurs, and to explore how conversion of linear polymers to 60 

looped polymers can be controlled.  61 

 62 

Atomic Force Microscopy (AFM) is a powerful single molecule imaging technique employed in 63 

micro/nanoscale biophysical investigations and has been used to shed light on polymer 64 

persistence length, lP 6–9. Analysis typically requires a stack of AFM image data containing many 65 

individual polymers. To perform lP calculations, it is necessary to extract the coordinates along 66 

the chain contour, or “backbone”, for each polymer in the analysis. Once these coordinates are 67 
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obtained, a polymer physics model such as the worm-like chain (WLC) can be used to deduce 68 

the persistence length through calculating mean-square end-to-end distances or correlations of 69 

backbone tangent vectors 10.  70 

 71 

Existing software for polymer detection and characterization in AFM image data suffer from 72 

limitations 11–21. For example, popular tools including EasyWorm 11, Skan 21, and 73 

AutoSmarTrace 19,  do not simultaneously provide robust feature extraction, skeletonization, 74 

shape, and mechanical property calculations such as persistence length. While EasyWorm is 75 

suitable for analysis of simple, unbranched polymer chains, it does not determine polymer shape, 76 

requires significant manual input, and is only available to the MATLAB community; thus 77 

limiting its accessibility and adaptability for open-source workflows. AutoSmartTrace, also 78 

MATLAB-dependent, requires manual intervention for thresholding and feature identification, 79 

reducing reproducibility across diverse polymer morphologies. While Skan provides Python-80 

based skeletonization and network analysis, its focus on general image processing necessitates 81 

extensive customization for polymer-specific applications, lacking built-in modules for 82 

persistence length quantification. These limitations underscore the need for an open-source, 83 

flexible, modular, and easily extensible solution for the automated detection and analysis of 84 

polymer structures recorded through AFM imaging.    85 

 86 

PS Poly, introduced here, attempts to fill these gaps and is well suited for studies of complex 87 

polymerization processes such as those underlying the host cell attack mechanism of Candida 88 

albicans 2,22,23. PS Poly is designed for polymer backbone isolation with sub-pixel precision, 89 

automated persistence length calculation, and shape categorization (e.g., linear, looped, 90 
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branched, branched-looped, or overlapping chains). A workflow of the algorithm is shown 91 

(Fig. 1). The program is open-source with code written in both Python and Igor Pro 7 92 

(WaveMetrics, Inc.) 24 and is near-fully automatic, requiring only basic information from the 93 

user such as the pixel resolution (nm/pixel) of the source images. PS Poly eliminates manual 94 

input post-thresholding, and outputs quantitative metrics such as total polymerized length and 95 

branch point coordinates. Persistence length results were verified by comparison to established 96 

values and were robust to moderate levels of added noise. The use of a Python framework may 97 

enhance accessibility, automation, open-source development, and modularity. Thus, the 98 

algorithm represents a step toward a standardized tool for AFM-based polymer analysis. 99 

 100 

 101 

FIGURE 1. Program Overview. Images are processed and reduced to polymer backbone coordinates, 102 

then individual features are separated based upon shape. Usually, only measurements of linear polymers 103 

are considered when calculating persistence length, lp. 104 

 105 
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2. METHODS 106 

In this section we first describe the algorithm as it was originally written in Igor Pro 7, 107 

subsequently referred to as PS-Poly. We then turn attention to the Python implementation, 108 

PsPolypy. The methods used for calculating the polymer persistence length and uncertainty are 109 

also discussed. Finally, we describe the techniques used for acquiring AFM images of CL in 110 

near-native conditions.  111 

  112 

2.1 Igor Implementation: PS-Poly  113 

Here we describe the Igor Pro 7 implementation, PS-Poly. Briefly, in this algorithm the images 114 

are skeletonized, a convolutional filter is used to identify endpoints, and a pathfinding algorithm 115 

is used to determine the coordinates of all linear particles used for persistence length analysis. To 116 

separate features by shape, filters were developed to identify branch points and distinguish 117 

branches from cyclic or looped polymers. These steps are described below. We assume that 118 

image preprocessing such as background subtraction has already been applied to the raw AFM 119 

image data prior to PS-Poly analysis.  120 

 121 

Particle segmentation & polymer backbone isolation 122 

The program begins by loading full-field images. Isolating the polymer backbone is the next 123 

step, illustrated in Figure 2. This is achieved automatically, by employing Otsu’s method 25, or 124 

manually, with user defined threshold corresponding to pixel intensity, which is proportional to 125 

topographical height, z, of the polymer in the AFM image. In either case, a binary “mask” image 126 

is created where all values above and below the threshold are set to 1 and 0, respectively. Then, 127 

if upscaling is desired, a copy of this mask is made with a higher pixel density by creating a new 128 
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image with a specified scaling factor. The size of the expanded mask has dimensions scaled by 129 

the specified scaling factor, and each pixel in the original mask is taken up by a block of x 130 

scaling pixels in the expanded mask. This allows the result to be obtained with a subpixel level 131 

of accuracy which can be valuable for characterizing short polymers. A “skeleton” of the mask is 132 

created through a surface thinning algorithm which eliminates layers of the image until only 133 

single pixel linewidth traces remain (Fig. 2D) 26.  134 

 135 

 136 

FIGURE 2. Polymer backbone isolation procedure. The first steps to perform PS-Poly calculations on 137 

an AFM image of candidalysin are shown. Scale bars (yellow) are 100nm. (A) Raw AFM image with 138 

topographic height, z, shown in greyscale. (B) Mask created from the AFM data. (C) New mask that has 139 

been expanded to a higher pixel density. (D) Skeleton created from the expanded mask. (E) Each 140 

molecule is registered as a unique object (pink circles). 141 

 142 

Acquiring polymer coordinates 143 

To obtain separate lists of coordinates for each molecule, we begin by looping through each pixel 144 

on a duplicate of the thinned image. Once a 1-valued pixel is found, that coordinate is stored. 145 

Then a flood-fill algorithm fills-in all 1-valued pixels which are continuous with that coordinate. 146 

This process continues in a loop until the duplicated image is entirely 0-valued, and the resulting 147 

list of coordinates correspond to exactly one “seed” pixel per molecule. Then, depth-first search 148 
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(DFS) is applied in a square around the seed pixel 27. DFS is used to identify connected pixels 149 

and provides detailed information about each connected component. The DFS algorithm explores 150 

all possible paths stemming from one input coordinate until a path is found to another input 151 

coordinate. The implementation of DFS in this program returns 1 if a path is found between the 152 

two coordinates, and 0 if there is no possible path. The search radius is incremented with each 153 

loop iteration, and the loop breaks once all locations continuous with the seed pixel are found. 154 

We found that applying DFS, as opposed to checking for continuity with all of the one-valued 155 

pixels in the image, reduces computational time significantly. 156 

 157 

Sorting polymers by shape 158 

Polymers are sorted based on their shape: Linear, Looped, Branched, and Branched-Looped. 159 

Examples of these four primary polymer classes are shown in AFM images of CL (Fig. 3). This 160 

sorting first requires polymer termination point identification, achieved through convolutional 161 

filtering.  162 

 163 
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 164 

FIGURE 3. Primary polymer types. Examples of the different particle types identified through PS-165 

Poly. Raw AFM image data of CL is shown next to processed skeleton images for Linear, Looped, 166 

Branched, and Branched-Looped polymers. The scale bar spans 50 nm and applies to all images.   167 

 168 

Polymer end point determination 169 

The algorithm loops through the image, cropping 9 × 9 pixel areas surrounding each central pixel 170 

test point. Figure 4A demonstrates the pixel grids that are created for every 1-valued pixel in the 171 

image. There are 16 possible endpoint configurations because there are 8 possible neighboring 172 

pixels, and so for one neighbor, there are 8 possible combinations. For 2 neighbors, there are 16 173 

possible combinations, but only half of them are endpoints because the 2 neighboring pixels 174 

must also be adjacent to each other in order to be an endpoint. The pixel grids corresponding to 175 

the 16 possible endpoint configurations are shown in Figure 4B. Each pixel grid is compared 176 
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with each of the 16 endpoint grids and if any one of them is an exact match, then that coordinate 177 

is considered to be an endpoint. 178 

 179 

 180 

FIGURE 4. Convolutional filtering for end point determination. (A) shows 9 x 9 pixel grids that are 181 

created from points i, ii, and iii on a skeletonized polymer. (B) shows the sixteen different shapes that 182 

were used in the convolutional filter that finds endpoint coordinates. Shapes are clustered via number of 183 

neighbors. 184 

 185 

Branch point identification 186 

Following endpoint detection, branch points are identified through a filter that works by creating 187 

an array corresponding to neighboring pixel values that circle about a central pixel of interest 188 

(Figure 5A). Each path comprises a clockwise 10-pixel-long sweep. A unique path is counted 189 

for each 1 value that is abutted by 0 values (Figure 5A, blue triangles). We note that the last two 190 

pixels in the path are repeats of the first two, allowing evaluation of the starting point of the 191 

array. The array is examined for unique paths. If three or more unique paths are found, then the 192 
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pixel of interest is determined to be a branch point. The algorithm is also prevented from 193 

overcounting branch points, as not all points with three neighbors are true branch points 194 

(Figure 5B).   195 

 196 

 197 

FIGURE 5. Branch point determination. (A) Each pixel in the image is centered in a 3 x 3 grid and a 198 

string of 1’s and 0’s begins at any point neighboring the test pixel. In this example three unique paths 199 

(blue triangles) are found, identifying the center pixel as a branch point. (B) Technique for prevention of 200 

branch point overcounting. Test point D has 3 neighboring 1-valued pixels, each of which corresponds to 201 

a unique path. Test point C also has 3 neighboring 1-valued pixels, but it does not exhibit three unique 202 

paths and is thus not a branch point. The non-unique path is marked by the orange triangle. 203 

 204 

Shape calling, overlapped identification, and total polymer length determination  205 
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If a polymer has exactly two endpoints and no branch points, it is considered to be linear. If there 206 

are no endpoints and no branch points, then it is considered to be a loop. Further, polymers that 207 

branch and loop are separated from those which branch but do not loop. We further differentiated 208 

true branch points from segments where polymers drape over themselves as they adsorb to the 209 

imaging surface.  These overlapped polymers were identified via co-localization of branch points 210 

with topographically high points along the polymer backbone (Figure 6).   211 

 212 

 213 

FIGURE 6. Process for determining overlapped polymers. (A) Cartoon showing an example of how 214 

an overlapped polymer may form. (B) AFM image of CL polymer. The height is shown in greyscale, the 215 

lateral scale bar (yellow) is 20 nm. (C) Skeleton created from the data in panel B shows a junction 216 

comprising the intersection of 4 branches. (D) New skeleton that incorporates height information. (E) 217 

Skeleton created at a threshold of 1.5 times the average height of the polymer distal from the junction 218 

identifies the polymer as overlapped. 219 

 220 

The total polymerized length is found by applying a pathfinding algorithm which sums all pixels 221 

in each feature. For overlapped particles, the length is computed by adding the length of the 222 

original skeleton with the skeleton made at a threshold of 1.5 times the average height of all 223 

pixels on the skeleton with incorporated height information. If over 80% of the polymer is above 224 

1.5 times the average height of the polymer backbone, then it is sorted separately as a noise 225 
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particle. Such features could be aggregates or other artifacts. Polymers with high points that are 226 

not overlaps are still sorted by their shape and stored in a separate folder.  227 

 228 

2.2 Python Implementation: PsPolypy  229 

Preprocessing, Image Loading, & Upscaling 230 

We assume that any image preprocessing including background subtraction has already been 231 

applied. PsPolypy uses as input a list of full-field images (denoted as 𝐼𝐼𝑛𝑛) that contain polymer 232 

particles. The images 𝐼𝐼𝑛𝑛 may have different pixel resolution (𝑁𝑁𝑛𝑛 × 𝑀𝑀𝑛𝑛) but the same fixed real-233 

space resolution (Res), measured in nanometers per pixel (nm/px). Each image is first converted 234 

to normalized grayscale, with pixel intensities 0 ≤ 𝐼𝐼𝑛𝑛 ≤ 1.  Optionally, users can upscale the 235 

pixel resolution of the images using 𝑘𝑘-order interpolation, as implemented in scikit-image 28,29. 236 

For a user-defined magnification factor 𝛾𝛾, the pixel and the real-space resolution of the upscaled 237 

image becomes (𝛾𝛾 · 𝑁𝑁𝑛𝑛 × 𝛾𝛾 · 𝑀𝑀𝑛𝑛) and Res/𝛾𝛾 (nm/px), respectively. This optional step allows for 238 

finer image details to be analyzed. 239 

 240 

Particle Segmentation 241 

Each image 𝐼𝐼𝑛𝑛 in the set undergoes particle segmentation through a multi-step process. Initially, 242 

Otsu thresholding is applied to create a binary mask 𝐵𝐵𝑛𝑛. This mask then undergoes connected-243 

component labeling, segmenting it into distinct regions, each corresponding to a unique polymer 244 

particle, with a well-defined bounding box. To ensure complete particle representation, any 245 

region whose bounding box touches the edge of the full-field image is discarded, as these 246 

particles may be partially cut off. The original image and binary mask are then cropped 247 

according to the bounding boxes of all remaining regions. Finally, a list of particle objects is 248 
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created, with each object containing the cropped image of an individual particle and its 249 

corresponding cropped binary mask. 250 

 251 

Skeletonization 252 

The skeleton of each polymer particle (Fig. 7, green) is obtained by applying the skeletonize 253 

method from scikit-image to the corresponding binary mask. The resulting skeleton is then 254 

analyzed using Skan 21, which automatically determines the topology (e.g., liner, branched, 255 

looped or cyclic) and geometric features (e.g., end-to-end distance, contour length) of the 256 

particle. We denote the set of all paths as 𝑃𝑃, and the 𝑚𝑚-th path as 𝑃𝑃𝑚𝑚. This skeletal analysis 257 

captures the main features of the particle’s structure and morphology. 258 

 259 

 260 

FIGURE 7. Skeletonization and interpolation of different polymer topologies.  Examples of linear, 261 

looped, and branched polymers are shown along with the skeleton (green) and interpolation (red).    262 

 263 

Classification 264 

Polymers are classified into one of six categories based on their skeleton’s structure: Linear, 265 

Branched, Looped, Branched-Looped, Overlapped, or Unknown. If the skeleton contains a single 266 
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path with distinct endpoints, the particle is classified as Linear (see Fig. 7). If the skeleton has a 267 

single path where the start and end points coincide, the particle is classified as Looped. For 268 

skeletons with multiple paths, each crossing is checked whether it is a branch junction or an 269 

overlap, defined by having a height 1.5 larger than the average polymer backbone height distal to 270 

the crossing. Polymers with at least one overlap are classified as Overlapped (as shown in Fig. 271 

6). For the rest of the skeletons, if no combination of paths forms a cycle (as determined using 272 

the NetworkX graph representation of the skeleton) 30, the particle is classified as Branched. 273 

Conversely, if multiple paths are present and at least one cycle exists, the particle is classified as 274 

Branched-Looped. If none of the above criteria are met, the particle is categorized as Unknown. 275 

After classification, users may select only the types of particles they wish for further analysis.   276 

 277 

Interpolate Skeletons 278 

Each path (longer than 3 pixels) within each particle (digitized skeleton) undergoes cubic B-279 

spline interpolation by employing the SciPy’s splev function 31. The coordinates along the 280 

interpolated skeleton path are given by 𝑥𝑥(𝑡𝑡) and 𝑦𝑦(𝑡𝑡), where 𝑡𝑡 is the distance along the contour. 281 

The interpolated paths are sampled at user-defined intervals 𝑑𝑑𝑑𝑑 along the contour. The 282 

interpolated skeleton provides a more precise representation of the particle compared to the 283 

original (digitized) skeleton (Fig. 7, compare red curve with green pixels). For each sampling 284 

point along the interpolated path, both the position 𝑟𝑟(𝑡𝑡) = (𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡)) of the point and the 285 

tangent unit vector 𝜏𝜏 = (𝑥̇𝑥(𝑡𝑡), 𝑦̇𝑦(𝑡𝑡)) to the path are recorded. 286 

 287 

Mean end-to-end distance 288 
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The mean end-to-end distance of the particles, ⟨𝑅𝑅2⟩, as a function of contour length 𝐿𝐿 is 289 

determined as follows. First, for the 𝑚𝑚-th path (𝑃𝑃𝑚𝑚), a symmetric distance matrix 𝐷𝐷𝑖𝑖,𝑖𝑖′𝑚𝑚  is 290 

constructed by calculating the Euclidian distance between all pairs of points 𝑖𝑖 and 𝑖𝑖′ ≥ 𝑖𝑖, along 291 

the contour. Thus, the distances with the same lag 𝑙𝑙 = 𝑡𝑡𝑖𝑖′ − 𝑡𝑡𝑖𝑖 correspond to the 𝑙𝑙-th 292 

superdiagonal of 𝐷𝐷𝑖𝑖,𝑖𝑖′𝑚𝑚  . Finally, ⟨𝑅𝑅2⟩ for 𝐿𝐿 = 𝑙𝑙 is calculated as the mean of the squares of all 𝑙𝑙-th 293 

superdiagonal elements of 𝐷𝐷𝑖𝑖,𝑖𝑖′𝑚𝑚  for all paths 𝑃𝑃𝑚𝑚. The uncertainty of ⟨𝑅𝑅2⟩(𝐿𝐿) is estimated by 294 

calculating the standard error of the mean (SEM). 295 

 296 

Mean orientation correlation function 297 

The orientation (or tangent-tangent) correlation of polymer particles is defined by cos𝜃𝜃𝑖𝑖,𝑖𝑖′ = 𝜏𝜏𝑖𝑖 ⋅298 

𝜏𝜏𝑖𝑖′ , where 𝜏𝜏𝑖𝑖 is the unit tangent vector to the interpolated path at point 𝑖𝑖. The mean orientation 299 

correlation ⟨cos𝜃𝜃⟩(𝑙𝑙), as a function of path length 𝑙𝑙, is calculated by first constructing the 300 

correlation matrix 𝐷𝐷𝑖𝑖,𝑖𝑖′𝑚𝑚 = cos𝜃𝜃𝑖𝑖,𝑖𝑖′, where 𝑚𝑚 is the path index. For 𝑙𝑙 = 𝑡𝑡𝑖𝑖′ − 𝑡𝑡𝑖𝑖, ⟨cos𝜃𝜃⟩(𝑙𝑙) is 301 

calculated as the mean of all 𝑙𝑙-th superdiagonal elements of 𝐷𝐷𝑖𝑖,𝑖𝑖′𝑚𝑚  for all paths 𝑃𝑃𝑚𝑚. Similarly to 302 

⟨𝑅𝑅2⟩, the uncertainty of ⟨cos𝜃𝜃⟩ is estimated through the corresponding SEM. 303 

 304 

2.3 Persistence Length (𝐥𝐥𝐩𝐩) Calculations 305 

In both Python and Igor Pro implementations, the persistence length, 𝑙𝑙𝑝𝑝, of the polymer particles 306 

was estimated by fitting either ⟨𝑅𝑅2⟩(𝐿𝐿) or ⟨cos𝜃𝜃⟩(𝑙𝑙) to their expressions from the worm-like-307 

chain (WLC) model which is commonly used to describe semi-flexible polymers 10, i.e., 308 

⟨𝑅𝑅2⟩ = 4𝐿𝐿𝑙𝑙𝑝𝑝 �1 −
2𝑙𝑙𝑝𝑝
𝐿𝐿
�1 − 𝑒𝑒−𝐿𝐿/2𝑙𝑙𝑝𝑝�� , 309 

and 310 
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⟨cos𝜃𝜃⟩ = exp�−𝑙𝑙/2𝑙𝑙𝑝𝑝� . 311 

In PsPolypy, these nonlinear fits are performed using the feature rich lmfit python library 32. 312 

 313 

2.4 Model Fitting and Uncertainty Analysis 314 

In each data set {𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 ,Δ𝑦𝑦𝑖𝑖}, where 𝑥𝑥𝑖𝑖 represents the length along the paths, 𝑦𝑦𝑖𝑖 the mean of either 315 

𝑅𝑅𝑖𝑖2 or cos𝜃𝜃𝑖𝑖, and Δ𝑦𝑦𝑖𝑖 the corresponding standard error of the mean (SEM), we calculated the 316 

mean ⟨𝑦𝑦⟩ and the uncertainty Δ𝑦𝑦 as a function of 𝑥𝑥 = 𝑙𝑙 or 𝑥𝑥 = 𝐿𝐿. Data was fitted to the one 317 

parameter, 𝑙𝑙𝑝𝑝, WLC model (discussed above) using the lmfit python package. The fitting process 318 

employed weighted least squares minimization, with weights calculated as 𝑤𝑤𝑖𝑖 = 1/Δ𝑦𝑦𝑖𝑖2. The 319 

best-fit parameter 𝑙𝑙𝑝𝑝0 was determined by minimizing the chi-square statistic, with its uncertainty 320 

Δ𝑙𝑙𝑝𝑝 derived from the covariance matrix of the fit, scaled by the reduced chi-squared, �𝜒𝜒𝜈𝜈2. The 321 

95% confidence interval (CI) for 𝑙𝑙𝑝𝑝 was calculated as 𝑙𝑙𝑝𝑝0 ± 1.96Δ𝑙𝑙𝑝𝑝, representing the range 322 

within which the true parameter value is likely to lie with 95% probability. To visualize the 323 

model's predictive capability, 95% prediction bands were computed as f�x; lp0� ± 1.96 ∗324 

σtotal(x), where f�x; lp0� is the WLC model of either 𝑅𝑅2or cos𝜃𝜃 and σtotal2 (𝑥𝑥) = σmodel2 (𝑥𝑥) +325 

σresidual2 + Δy2. Here, 𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) represents the model uncertainty propagated from Δ𝑙𝑙𝑝𝑝, 326 

𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is the standard deviation of the residuals, and Δ𝑦𝑦 accounts for the measurement 327 

uncertainty. The resulting plots display the original data points with error bars ±Δ𝑦𝑦𝑖𝑖, the best-fit 328 

curve 𝑓𝑓(𝑥𝑥; 𝑙𝑙𝑝𝑝0), and the 95% prediction bands, illustrating both the uncertainty in the model and 329 

the expected range for new observations.      330 

 331 

2.5 Atomic force microscopy imaging of CL 332 
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CL was purchased from Peptide 2.0 in powder, then hydrated to 100 μM in MilliQ water. The 333 

stock solution was stored in 10 μL aliquots at -80 °C. Imaging was performed as previously 334 

described 2. Briefly, a CL aliquot was thawed and diluted to 330 nM in the imaging buffer (10 335 

mM Hepes, 150 mM NaCl, pH 7.3). Ninety microliters was added to freshly cleaved mica disks 336 

and incubated for 10 minutes at room temperature (~25 °C). The samples were washed by 337 

exchanging 90 μL of imaging buffer five times to remove any particles in solution or loosely 338 

bound particles. Samples were imaged in the imaging buffer using biolever mini dips (Olympus, 339 

k~0.1 N/m, fo~30 kHz in fluid) in tapping mode (Cypher, Asylum Research). Throughout 340 

imaging, the tip sample force magnitude was kept to ≤100 pN, a regime in which minimal 341 

protein distortion is expected. Prior to algorithm implementation, images were flattened using 342 

commercial AFM software (Asylum Research).  343 

 344 

3. RESULTS AND DISCUSSION  345 

Double stranded DNA represents a convenient benchmark for polymer chain tracing algorithms 346 

as its persistence length has been well characterized. In an analysis of four AFM images 347 

containing 206 linear strands of DNA with data from Hennan et al 8, PS-Poly persistence length 348 

results for DNA were found to be 48 ± 3 nm. This is within the margin of error for the widely 349 

accepted value for double stranded DNA persistence length of around 50 nm (Table 1). The 350 

persistence length for the polymer Candidalysin was determined in an analogous manner and 351 

found to be 12.1 ± 0.3 nm using seven images containing 670 linear polymers. Using the 352 

Easyworm software 11, the results for Candidalysin were found to be 12 ± 3 nm 2, which is in 353 

good agreement with our algorithm. 354 

 355 
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Table 1. Comparison of PS-Poly to previous work. Results were obtained via the end-to-end distance 356 

method for persistence length. 357 

 358 

 359 

In the process of categorizing polymer feature shapes, the coordinates of all endpoints, branch 360 

points, and three-dimensional overlaps are stored in the output as well as the total length of each 361 

feature, total polymerized length for each image, and total polymerized length for all images. An 362 

example AFM image of CL and the resulting PS-Poly shape output are shown (Fig. 8). 363 

 364 
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365 

FIGURE 8. The output of PS-Poly for shape categorization. (A) Input AFM image of Candidalysin. 366 

The scale bar is 200 nm and the greyscale spans 12 nm.  (B) Output for shape categorization shown in 367 

tabular format. Two types of artifact are identified, high points, defined as any point on a particle that is 368 

above 1.5 times the average height of the polymer backbone in the image and noise particles, defined as 369 

any particle in which 80% or more of the pixels are above 1.5 times the average height of the polymers in 370 

the image.  371 

 372 

After establishing the overall agreement between our algorithm output and previous work, we 373 

analyzed the potential errors and robustness of the persistence length calculations. CL was 374 

employed as this polymer represents a general and complex test case. AFM image data revealed 375 

contour lengths ranging from individual CL subunits that appear as punctate features of 376 

dimension roughly equivalent to the AFM tip radius (~5 nm) to well over 100 nm. However, CL 377 

polymers that are both Linear and long were rare. This is because the longer a CL polymer 378 

becomes the more likely it is to become Looped or Branched or both (i.e, Branched-Looped) 22.  379 

To handle these variations, in our CL lp analysis we restricted the fitting window to contour 380 
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lengths between 10 and 30 nm. The justification for excluding data with (a) 𝐿𝐿 < 10nm, and (b) 381 

𝐿𝐿 > 30nm, is that the WLC model best describes semi-flexible polymers with 𝐿𝐿 comparable or 382 

larger than 𝑙𝑙𝑝𝑝, which in our case is larger than 10 nm; and (b) at higher contour lengths, the poor 383 

sampling of long CL polymers in the images makes the data analysis less robust. Only linear 384 

particles were used when fitting ⟨𝑅𝑅2⟩ the WLC model. When considering only one end-to-end 385 

distance per particle, PsPolypy returned 𝑙𝑙𝑝𝑝 = 12.0 ± 0.9 nm (Fig. 9). On the other hand, when 386 

considering multiple segments per particle, as described in the Methods section (which is the 387 

default), we obtained a more precise result, 𝑙𝑙𝑝𝑝 = 12.5 ± 0.2 nm (Fig. 10B).  In both cases, the 388 

fits were good quality, as indicated by 𝑅𝑅2 > 0.9 and the 95% prediction bands.  389 

 390 

391 

Figure 9. Limiting the contour length fitting window provides robust persistence length calculations 392 
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for CL. Plot of mean-square end-to-end distance versus contour length for CL polymers. The persistence 393 

length 𝑙𝑙𝑝𝑝 was found to be 12.0 ± 0.9 nm. A 95% confidence interval (CI, teal shaded region) and 95% 394 

prediction band (pink shaded region) are shown.  395 

 396 

We next challenged the algorithm by repeating persistence length calculations with noise added 397 

to the raw image data. Figure 10A shows an AFM image of CL with an increasing amount of 398 

white gaussian noise added, quantified by the standard deviation (std).  Analysis of the polymer 399 

persistence length from this data is shown using both the end-to-end distance (R2) method 400 

(Fig. 10B) and the tangent-tangent correlation (TTC) method (Fig. 10C). Despite this added 401 

noise, the calculated 𝑙𝑙𝑝𝑝 value remains close to the nominal value of 12 nm (14 nm) using the R2 402 

(TTC) method. Note that the slightly larger 𝑙𝑙𝑝𝑝 value returned by the TTC method is most likely 403 

due to its sensitivity to the precise form of the interpolated skeletons. This conclusion is 404 

consistent with the relatively large 95% prediction band in Fig. 10C.   It appears, however, that 405 

the algorithm is robust to a moderate amount of random pixel noise as is typically encountered in 406 

experimental settings. 407 

 408 
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 409 

A

B

C
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Figure 10. Persistence length calculations appear stable in the face of noise. (A) Image sequence 410 

showing the addition of noise. The second-row images are detailed views of the region indicated in upper 411 

images (red rectangles).  The added noise levels for each plot are indicated and range between 0 and 0.03 412 

(std). Calculations of persistence length using different methods: (B) end-to-end distance and (C) tangent-413 

tangent correlation. As before, only data within 10 – 30 nm contour windows were included in the fits. 414 

The expected range for new observations are indicated by the 95% prediction bands. 415 

 416 

A summary plot displaying 𝑙𝑙𝑝𝑝 outputs is provided in Fig. 11. Results from the R2 and TTC 417 

methods are shown in Fig. 11A and B, respectively. The tables contain additional information. 418 

We observe that as the image noise increases, the number of features detected as Linear 419 

decreases. This not only results in lower statistical weight of the 𝑙𝑙𝑝𝑝 calculation but also in 420 

reduced quality of the fits.   421 

 422 
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 423 

Figure 11. Persistence length output in the presence of noise. Persistence length results, as a function 424 

of added image noise, obtained by using the (A) R2 or (B) TTC methods. Rows in the tables are defined: 425 

noise std = noise level added to each image; All = total number of polymer features detected; Linear = 426 

number of features identified as Linear; 10 < L < 30 = number of Linear features exhibiting contour 427 

lengths within the 10 – 30 nm fitting window; 𝒍𝒍𝒑𝒑 = value of persistence length;  95% CI = confidence 428 

interval; 𝑅𝑅2 statistical goodness of fit parameter. 429 
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 430 

Computational Performance Evaluation 431 

The runtime of PS-Poly in Igor Pro 7 (64-bit) was compared to PsPolypy by processing a dataset 432 

of nine AFM images containing 779 particles using similar hardware. PS-Poly processed the 433 

dataset in 892 seconds on a CPU with an average frequency of approximately 4.2 GHz, while 434 

PsPolypy processed the dataset in 3.2 seconds on a CPU with an average frequency of 435 

approximately 4.4 GHz. While direct speedup comparisons are complicated by the variation of 436 

CPU utilization, these results suggest that the Python implementation achieves a significant 437 

reduction in runtime, on the order of two orders of magnitude. In addition to its superior 438 

calculation speed, Python’s open source and object-oriented design provides users with greater 439 

flexibility to fine-tune the algorithm to specific needs. 440 

 441 

 442 

4. CONCLUSIONS AND FUTURE OUTLOOK 443 

PS Poly is an algorithm designed to calculate both persistence length and shape from single 444 

molecule image data of complex polymers. When implemented as a python package the 445 

algorithm is modular and object oriented, making it straightforward to maintain and to extend its 446 

features and scope. While it can batch process stacks of AFM images, PsPolypy can also be 447 

easily used for customized workflows because most of the attributes and methods are directly 448 

available to the user. PS Poly currently provides two WLC model-based methods for calculating 449 

persistence length (R2 and TTC) from the skeletonized representation of the polymer particles; 450 

additional methods can be added in the future, as needed. Furthermore, its automated shape 451 

detection can be used to provide insight into polymerization mechanisms, as we have recently 452 

shown 22. The benefits of automating this process include reduced human bias as well as time 453 
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saved by the user and the related improvement in statistical weight of the data set. The current 454 

implementations of PS Poly use the Otsu’s method for image thresholding which works 455 

effectively for high signal-to-noise images such as those typically acquired in AFM. However, 456 

other segmentation methods such as watershed algorithms and machine/deep learning features 457 

can also be added to future versions. For best results, it is important to reduce noise in the input 458 

images before running the program. As we showed, the algorithm is robust to moderate levels of 459 

random pixel noise, but it will break down if higher noise levels are encountered. While PS Poly 460 

was developed to analyze AFM image data, it has the potential to generalize to other imaging 461 

modalities. 462 

 463 
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