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Abstract

The fundamental molecules of life are polymers. Prominent examples include nucleic acids and
proteins, both of which exhibit a large array of mechanical properties and three-dimensional
shapes. The bending rigidity of individual polymers is quantified by the persistence length. The
shape of a polymer, dictated by the topology of the polymer backbone, a line trace through the
center of the polymer along the contour path, is also an important characteristic. Common
biomolecular architectures include linear, cyclic (ring-like), and branched structures;
combinations of these can also exist, as in complex polymer networks. Determination of
persistence length and shape are largely informative to polymer function and stability in
biological environments. Here we demonstrate Persistence length Shape Polymer (PS Poly), a
near-fully automated algorithm designed to obtain polymer persistence length and shape from
single molecule images obtained in physiologically relevant fluid conditions via atomic force
microscopy. The algorithm, which involves image reduction via skeletonization followed by end
point and branch point detection, is capable of rapidly analyzing thousands of polymers with
subpixel precision. Algorithm outputs were verified by analysis of deoxyribonucleic acid, a very
well characterized macromolecule. The method was further demonstrated by application to
candidalysin, a recently discovered and complex virulence factor from Candida albicans.
Candidalysin forms polymers of highly variable shape and contour length and represents the first
peptide toxin identified in a human fungal pathogen. PS Poly is a robust and general algorithm. It
can be used to extract fundamental information about polymer backbone stiffness, shape, and

more generally, polymerization mechanisms.
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1. INTRODUCTION

Knowledge of cellular function and dysfunction (disease) has advanced through developing a
detailed understanding of many semi-flexible polymeric molecules. A prime example is the
recently discovered peptide toxin candidalysin (CL), which is the virulence factor secreted by the
fungus C. albicans '. CL forms loops in solution which can then embed into membranes and
form pores that damage host cells . When establishing the molecular basis of a disease, such as
invasive candidiasis which emanates from C. albicans and has a high mortality rate °,
characterizing polymer mechanical properties and topology (shape) provides significant insight.
For example, bending rigidity, quantified by the persistence length, sheds light on the expected
diameter of loops formed by CL. This geometric information can be used to predict what size
molecules might be able to pass through the CL pores in host cell membranes during C. albicans
infection. Additionally, when studying the kinetics of polymer loop formation (cyclization) or
branching, which usually involves secondary polymerization interfaces %, it is informative to
separate and quantify polymers by shape so that distinct reactions can be isolated. Such analyses
can be used to construct kinetic models of looping and branching, to determine under what
conditions polymer cyclization occurs, and to explore how conversion of linear polymers to

looped polymers can be controlled.

Atomic Force Microscopy (AFM) is a powerful single molecule imaging technique employed in
micro/nanoscale biophysical investigations and has been used to shed light on polymer
persistence length, Ip ®°. Analysis typically requires a stack of AFM image data containing many
individual polymers. To perform /p calculations, it is necessary to extract the coordinates along

the chain contour, or “backbone”, for each polymer in the analysis. Once these coordinates are
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obtained, a polymer physics model such as the worm-like chain (WLC) can be used to deduce
the persistence length through calculating mean-square end-to-end distances or correlations of

backbone tangent vectors '°.

Existing software for polymer detection and characterization in AFM image data suffer from
limitations ''"?!. For example, popular tools including EasyWorm !, Skan 2!, and
AutoSmarTrace '°, do not simultaneously provide robust feature extraction, skeletonization,
shape, and mechanical property calculations such as persistence length. While EasyWorm is
suitable for analysis of simple, unbranched polymer chains, it does not determine polymer shape,
requires significant manual input, and is only available to the MATLAB community; thus
limiting its accessibility and adaptability for open-source workflows. AutoSmartTrace, also
MATLAB-dependent, requires manual intervention for thresholding and feature identification,
reducing reproducibility across diverse polymer morphologies. While Skan provides Python-
based skeletonization and network analysis, its focus on general image processing necessitates
extensive customization for polymer-specific applications, lacking built-in modules for
persistence length quantification. These limitations underscore the need for an open-source,
flexible, modular, and easily extensible solution for the automated detection and analysis of

polymer structures recorded through AFM imaging.

PS Poly, introduced here, attempts to fill these gaps and is well suited for studies of complex
polymerization processes such as those underlying the host cell attack mechanism of Candida
albicans >*>23. PS Poly is designed for polymer backbone isolation with sub-pixel precision,

automated persistence length calculation, and shape categorization (e.g., linear, looped,
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branched, branched-looped, or overlapping chains). A workflow of the algorithm is shown
(Fig. 1). The program is open-source with code written in both Python and Igor Pro 7
(WaveMetrics, Inc.) 2* and is near-fully automatic, requiring only basic information from the
user such as the pixel resolution (nm/pixel) of the source images. PS Poly eliminates manual
input post-thresholding, and outputs quantitative metrics such as total polymerized length and
branch point coordinates. Persistence length results were verified by comparison to established
values and were robust to moderate levels of added noise. The use of a Python framework may
enhance accessibility, automation, open-source development, and modularity. Thus, the

algorithm represents a step toward a standardized tool for AFM-based polymer analysis.

Polymer Backbone
Isolation

.

Separate Polymers by

Shape
Linear Looped,
Branched, Etc.
Calculate Ip and Calculate
Other Statistics Statistics

FIGURE 1. Program Overview. Images are processed and reduced to polymer backbone coordinates,
then individual features are separated based upon shape. Usually, only measurements of linear polymers

are considered when calculating persistence length, /.
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106 2. METHODS

107  In this section we first describe the algorithm as it was originally written in Igor Pro 7,

108  subsequently referred to as PS-Poly. We then turn attention to the Python implementation,

109  PsPolypy. The methods used for calculating the polymer persistence length and uncertainty are
110  also discussed. Finally, we describe the techniques used for acquiring AFM images of CL in
111  near-native conditions.

112

113 2.1 Igor Implementation: PS-Poly

114  Here we describe the Igor Pro 7 implementation, PS-Poly. Briefly, in this algorithm the images
115  are skeletonized, a convolutional filter is used to identify endpoints, and a pathfinding algorithm
116  is used to determine the coordinates of all linear particles used for persistence length analysis. To
117  separate features by shape, filters were developed to identify branch points and distinguish

118  branches from cyclic or looped polymers. These steps are described below. We assume that

119  image preprocessing such as background subtraction has already been applied to the raw AFM
120  image data prior to PS-Poly analysis.

121

122 Particle segmentation & polymer backbone isolation

123 The program begins by loading full-field images. Isolating the polymer backbone is the next

124 step, illustrated in Figure 2. This is achieved automatically, by employing Otsu’s method 2, or
125  manually, with user defined threshold corresponding to pixel intensity, which is proportional to
126  topographical height, z, of the polymer in the AFM image. In either case, a binary “mask” image
127  is created where all values above and below the threshold are set to 1 and 0, respectively. Then,

128  if upscaling is desired, a copy of this mask is made with a higher pixel density by creating a new
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129  image with a specified scaling factor. The size of the expanded mask has dimensions scaled by
130  the specified scaling factor, and each pixel in the original mask is taken up by a block of x

131  scaling pixels in the expanded mask. This allows the result to be obtained with a subpixel level
132 of accuracy which can be valuable for characterizing short polymers. A “skeleton” of the mask is
133 created through a surface thinning algorithm which eliminates layers of the image until only

134 single pixel linewidth traces remain (Fig. 2D) 2°.

135

136 B

137  FIGURE 2. Polymer backbone isolation procedure. The first steps to perform PS-Poly calculations on
138  an AFM image of candidalysin are shown. Scale bars (yellow) are 100nm. (A) Raw AFM image with
139  topographic height, z, shown in greyscale. (B) Mask created from the AFM data. (C) New mask that has
140  been expanded to a higher pixel density. (D) Skeleton created from the expanded mask. (E) Each

141  molecule is registered as a unique object (pink circles).

142

143 Acquiring polymer coordinates

144  To obtain separate lists of coordinates for each molecule, we begin by looping through each pixel
145  on a duplicate of the thinned image. Once a 1-valued pixel is found, that coordinate is stored.

146  Then a flood-fill algorithm fills-in all 1-valued pixels which are continuous with that coordinate.
147  This process continues in a loop until the duplicated image is entirely 0-valued, and the resulting

148  list of coordinates correspond to exactly one “seed” pixel per molecule. Then, depth-first search
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(DFS) is applied in a square around the seed pixel ?’

. DFS is used to identify connected pixels
and provides detailed information about each connected component. The DFS algorithm explores
all possible paths stemming from one input coordinate until a path is found to another input
coordinate. The implementation of DFS in this program returns 1 if a path is found between the
two coordinates, and 0 if there is no possible path. The search radius is incremented with each
loop iteration, and the loop breaks once all locations continuous with the seed pixel are found.

We found that applying DFS, as opposed to checking for continuity with all of the one-valued

pixels in the image, reduces computational time significantly.

Sorting polymers by shape

Polymers are sorted based on their shape: Linear, Looped, Branched, and Branched-Looped.
Examples of these four primary polymer classes are shown in AFM images of CL (Fig. 3). This
sorting first requires polymer termination point identification, achieved through convolutional

filtering.
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AFM Image Skeleton

Looped Linear

Branched

Branched-
Looped

164

165  FIGURE 3. Primary polymer types. Examples of the different particle types identified through PS-
166  Poly. Raw AFM image data of CL is shown next to processed skeleton images for Linear, Looped,
167  Branched, and Branched-Looped polymers. The scale bar spans 50 nm and applies to all images.

168

169  Polymer end point determination

170  The algorithm loops through the image, cropping 9 X 9 pixel areas surrounding each central pixel
171  test point. Figure 4A demonstrates the pixel grids that are created for every 1-valued pixel in the
172 image. There are 16 possible endpoint configurations because there are 8 possible neighboring
173 pixels, and so for one neighbor, there are 8 possible combinations. For 2 neighbors, there are 16
174  possible combinations, but only half of them are endpoints because the 2 neighboring pixels

175  must also be adjacent to each other in order to be an endpoint. The pixel grids corresponding to

176  the 16 possible endpoint configurations are shown in Figure 4B. Each pixel grid is compared
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with each of the 16 endpoint grids and if any one of them is an exact match, then that coordinate

is considered to be an endpoint.

One Neighbor

Two Neighbors

e n[
L AL

Ml -l
AL T

FIGURE 4. Convolutional filtering for end point determination. (A) shows 9 x 9 pixel grids that are
created from points i, if, and iii on a skeletonized polymer. (B) shows the sixteen different shapes that
were used in the convolutional filter that finds endpoint coordinates. Shapes are clustered via number of

neighbors.

Branch point identification

Following endpoint detection, branch points are identified through a filter that works by creating
an array corresponding to neighboring pixel values that circle about a central pixel of interest
(Figure 5A). Each path comprises a clockwise 10-pixel-long sweep. A unique path is counted
for each 1 value that is abutted by 0 values (Figure 5A, blue triangles). We note that the last two
pixels in the path are repeats of the first two, allowing evaluation of the starting point of the

array. The array is examined for unique paths. If three or more unique paths are found, then the

10
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193 pixel of interest is determined to be a branch point. The algorithm is also prevented from
194  overcounting branch points, as not all points with three neighbors are true branch points
195  (Figure 5B).

196

1000110010 1001001010
197 A 4 A A o 4

198  FIGURE 5. Branch point determination. (A) Each pixel in the image is centered ina 3 x 3 grid and a
199  string of 1’s and 0’s begins at any point neighboring the test pixel. In this example three unique paths
200  (blue triangles) are found, identifying the center pixel as a branch point. (B) Technique for prevention of
201  branch point overcounting. Test point D has 3 neighboring 1-valued pixels, each of which corresponds to
202 aunique path. Test point C also has 3 neighboring 1-valued pixels, but it does not exhibit three unique
203  paths and is thus not a branch point. The non-unique path is marked by the orange triangle.

204

205  Shape calling, overlapped identification, and total polymer length determination

11
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206  If a polymer has exactly two endpoints and no branch points, it is considered to be linear. If there
207  are no endpoints and no branch points, then it is considered to be a loop. Further, polymers that
208  branch and loop are separated from those which branch but do not loop. We further differentiated
209  true branch points from segments where polymers drape over themselves as they adsorb to the
210  imaging surface. These overlapped polymers were identified via co-localization of branch points

211  with topographically high points along the polymer backbone (Figure 6).

\(//\¥)3 : E - -

214  FIGURE 6. Process for determining overlapped polymers. (A) Cartoon showing an example of how

212

213

215  an overlapped polymer may form. (B) AFM image of CL polymer. The height is shown in greyscale, the
216  lateral scale bar (yellow) is 20 nm. (C) Skeleton created from the data in panel B shows a junction

217  comprising the intersection of 4 branches. (D) New skeleton that incorporates height information. (E)
218  Skeleton created at a threshold of 1.5 times the average height of the polymer distal from the junction
219  identifies the polymer as overlapped.

220

221  The total polymerized length is found by applying a pathfinding algorithm which sums all pixels
222 in each feature. For overlapped particles, the length is computed by adding the length of the

223 original skeleton with the skeleton made at a threshold of 1.5 times the average height of all

224  pixels on the skeleton with incorporated height information. If over 80% of the polymer is above

225 1.5 times the average height of the polymer backbone, then it is sorted separately as a noise

12
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particle. Such features could be aggregates or other artifacts. Polymers with high points that are

not overlaps are still sorted by their shape and stored in a separate folder.

2.2 Python Implementation: PsPolypy

Preprocessing, Image Loading, & Upscaling

We assume that any image preprocessing including background subtraction has already been
applied. PsPolypy uses as input a list of full-field images (denoted as I,,) that contain polymer
particles. The images I, may have different pixel resolution (N,, X M,,) but the same fixed real-
space resolution (Res), measured in nanometers per pixel (nm/px). Each image is first converted
to normalized grayscale, with pixel intensities 0 < I, < 1. Optionally, users can upscale the
pixel resolution of the images using k-order interpolation, as implemented in scikit-image 252’
For a user-defined magnification factor y, the pixel and the real-space resolution of the upscaled

image becomes (y - N,, X y - M) and Res/y (nm/px), respectively. This optional step allows for

finer image details to be analyzed.

Particle Segmentation

Each image I, in the set undergoes particle segmentation through a multi-step process. Initially,
Otsu thresholding is applied to create a binary mask B,,. This mask then undergoes connected-
component labeling, segmenting it into distinct regions, each corresponding to a unique polymer
particle, with a well-defined bounding box. To ensure complete particle representation, any
region whose bounding box touches the edge of the full-field image is discarded, as these
particles may be partially cut off. The original image and binary mask are then cropped

according to the bounding boxes of all remaining regions. Finally, a list of particle objects is

13
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created, with each object containing the cropped image of an individual particle and its

corresponding cropped binary mask.

Skeletonization

The skeleton of each polymer particle (Fig. 7, green) is obtained by applying the skeletonize
method from scikit-image to the corresponding binary mask. The resulting skeleton is then
analyzed using Skan !, which automatically determines the topology (e.g., liner, branched,
looped or cyclic) and geometric features (e.g., end-to-end distance, contour length) of the
particle. We denote the set of all paths as P, and the m-th path as P,,. This skeletal analysis

captures the main features of the particle’s structure and morphology.

Linear - Branched

FIGURE 7. Skeletonization and interpolation of different polymer topologies. Examples of linear,

looped, and branched polymers are shown along with the skeleton (green) and interpolation (red).

Classification
Polymers are classified into one of six categories based on their skeleton’s structure: Linear,

Branched, Looped, Branched-Looped, Overlapped, or Unknown. If the skeleton contains a single

14
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267  path with distinct endpoints, the particle is classified as Linear (see Fig. 7). If the skeleton has a
268  single path where the start and end points coincide, the particle is classified as Looped. For

269  skeletons with multiple paths, each crossing is checked whether it is a branch junction or an
270  overlap, defined by having a height 1.5 larger than the average polymer backbone height distal to
271  the crossing. Polymers with at least one overlap are classified as Overlapped (as shown in Fig.
272 6). For the rest of the skeletons, if no combination of paths forms a cycle (as determined using
273  the NetworkX graph representation of the skeleton) °, the particle is classified as Branched.
274  Conversely, if multiple paths are present and at least one cycle exists, the particle is classified as
275  Branched-Looped. If none of the above criteria are met, the particle is categorized as Unknown.
276  After classification, users may select only the types of particles they wish for further analysis.
277

278  Interpolate Skeletons

279  Each path (longer than 3 pixels) within each particle (digitized skeleton) undergoes cubic B-
280  spline interpolation by employing the SciPy’s splev function *!. The coordinates along the

281 interpolated skeleton path are given by x(t) and y(t), where t is the distance along the contour.
282  The interpolated paths are sampled at user-defined intervals dt along the contour. The

283  interpolated skeleton provides a more precise representation of the particle compared to the

284  original (digitized) skeleton (Fig. 7, compare red curve with green pixels). For each sampling
285  point along the interpolated path, both the position 7(t) = (x(t), y(t)) of the point and the

286  tangent unit vector T = (x(t), y(t)) to the path are recorded.

287

288  Mean end-to-end distance

15
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289  The mean end-to-end distance of the particles, (R?), as a function of contour length L is

290  determined as follows. First, for the m-th path (P,,), a symmetric distance matrix D7, is

291  constructed by calculating the Euclidian distance between all pairs of points i and i’ > i, along

292  the contour. Thus, the distances with the same lag [ = t;, — t; correspond to the [-th

m
i,ir

293 superdiagonal of D, . Finally, (R?) for L = [ is calculated as the mean of the squares of all [-th

294  superdiagonal elements of D]}, for all paths B,. The uncertainty of (R*)(L) is estimated by

295  calculating the standard error of the mean (SEM).

296

297  Mean orientation correlation function

298  The orientation (or tangent-tangent) correlation of polymer particles is defined by cosf;;, = 7; -
299 7, , where 7; is the unit tangent vector to the interpolated path at point i. The mean orientation

300  correlation {cos@)(l), as a function of path length [, is calculated by first constructing the

m

301  correlation matrix D}, = cos#; ;,, where m is the path index. For [ = t;, — t;, (cos8)(l) is

m

302 calculated as the mean of all [-th superdiagonal elements of Dy}, for all paths P,,. Similarly to

303  (R?), the uncertainty of (cos@) is estimated through the corresponding SEM.
304

305 2.3 Persistence Length (lp) Calculations

306  Inboth Python and Igor Pro implementations, the persistence length, L, of the polymer particles

307  was estimated by fitting either (R?)(L) or (cos8)(l) to their expressions from the worm-like-

308  chain (WLC) model which is commonly used to describe semi-flexible polymers '°, i.e.,

21
309 (R?) = 4LL, ( — T” (1- e—L/Zlv)> :
310 and

16
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(cosf) = exp(—l/le) .

In PsPolypy, these nonlinear fits are performed using the feature rich Imfit python library 2.

2.4 Model Fitting and Uncertainty Analysis

In each data set {x;, y;, Ay;}, where x; represents the length along the paths, y; the mean of either
R? or cos@;, and Ay; the corresponding standard error of the mean (SEM), we calculated the
mean (y) and the uncertainty Ay as a function of x = [ or x = L. Data was fitted to the one
parameter, l,,, WLC model (discussed above) using the Imfit python package. The fitting process
employed weighted least squares minimization, with weights calculated as w; = 1/Ay?. The
best-fit parameter 1,, was determined by minimizing the chi-square statistic, with its uncertainty
Al,, derived from the covariance matrix of the fit, scaled by the reduced chi-squared, \/)(_5 . The
95% confidence interval (CI) for [, was calculated as [,y = 1.96Al,, representing the range
within which the true parameter value is likely to lie with 95% probability. To visualize the
model's predictive capability, 95% prediction bands were computed as f(x; lpo) + 1.96 =

Orotal (X), Where f(x; 1) is the WLC model of either RZor cos6 and 62,5 (x) = 62,04e1(X) +
Olesidual + Ay?. Here, 0ppoq0: () represents the model uncertainty propagated from Al,,

Oresiaua 1 the standard deviation of the residuals, and Ay accounts for the measurement
uncertainty. The resulting plots display the original data points with error bars +Ay;, the best-fit
curve f(x; Lyo), and the 95% prediction bands, illustrating both the uncertainty in the model and

the expected range for new observations.

2.5 Atomic force microscopy imaging of CL

17
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333  CL was purchased from Peptide 2.0 in powder, then hydrated to 100 uM in MilliQ water. The
334  stock solution was stored in 10 pL aliquots at -80 °C. Imaging was performed as previously
335  described 2. Briefly, a CL aliquot was thawed and diluted to 330 nM in the imaging buffer (10
336 mM Hepes, 150 mM NaCl, pH 7.3). Ninety microliters was added to freshly cleaved mica disks
337  and incubated for 10 minutes at room temperature (~25 °C). The samples were washed by

338  exchanging 90 pL of imaging buffer five times to remove any particles in solution or loosely
339  bound particles. Samples were imaged in the imaging buffer using biolever mini dips (Olympus,
340  £~0.1 N/m, fo~30 kHz in fluid) in tapping mode (Cypher, Asylum Research). Throughout

341  imaging, the tip sample force magnitude was kept to <100 pN, a regime in which minimal

342  protein distortion is expected. Prior to algorithm implementation, images were flattened using
343  commercial AFM software (Asylum Research).

344

345 3. RESULTS AND DISCUSSION

346  Double stranded DNA represents a convenient benchmark for polymer chain tracing algorithms
347  as its persistence length has been well characterized. In an analysis of four AFM images

348  containing 206 linear strands of DNA with data from Hennan et al &, PS-Poly persistence length
349  results for DNA were found to be 48 & 3 nm. This is within the margin of error for the widely
350  accepted value for double stranded DNA persistence length of around 50 nm (Table 1). The
351  persistence length for the polymer Candidalysin was determined in an analogous manner and
352 found to be 12.1 £ 0.3 nm using seven images containing 670 linear polymers. Using the

353  Easyworm software !!, the results for Candidalysin were found to be 12 + 3 nm 2, which is in

354  good agreement with our algorithm.

355
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356  Table 1. Comparison of PS-Poly to previous work. Results were obtained via the end-to-end distance

357  method for persistence length.

Sample Esrr\s;]i:]ence Persistence Length
i ing PS-Pol
Previous work using oly
46.8 +/- .6 nm
478 +/- 2.6 nm
DNA N =126 e
(Ref 8)
12 +/- 3 nm
Candidalysi N=191 12.1 +/- .3 nm
andidalysin "
’ (Ref 2) N=752
358
359

360 In the process of categorizing polymer feature shapes, the coordinates of all endpoints, branch
361  points, and three-dimensional overlaps are stored in the output as well as the total length of each
362  feature, total polymerized length for each image, and total polymerized length for all images. An
363  example AFM image of CL and the resulting PS-Poly shape output are shown (Fig. 8).

364
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Particle |Number of| Average | Percentage of
Type Features | Length Total Polymerized
(nm) Length
Linear 164 255 62.1
Looped 2 76.7 23
Branched 18 78.0 208
(no looping)
Brahchrd: 8 125.1 14.8
Looped
Overlapped 0 N/A 0
Number of High Points 17
Number of Noise Particles 1

365

366 FIGURE 8. The output of PS-Poly for shape categorization. (A) Input AFM image of Candidalysin.
367  The scale bar is 200 nm and the greyscale spans 12 nm. (B) Output for shape categorization shown in
368  tabular format. Two types of artifact are identified, high points, defined as any point on a particle that is
369  above 1.5 times the average height of the polymer backbone in the image and noise particles, defined as
370  any particle in which 80% or more of the pixels are above 1.5 times the average height of the polymers in
371  the image.

372

373  After establishing the overall agreement between our algorithm output and previous work, we
374  analyzed the potential errors and robustness of the persistence length calculations. CL was

375  employed as this polymer represents a general and complex test case. AFM image data revealed
376  contour lengths ranging from individual CL subunits that appear as punctate features of

377  dimension roughly equivalent to the AFM tip radius (~5 nm) to well over 100 nm. However, CL
378  polymers that are both Linear and long were rare. This is because the longer a CL polymer
379  becomes the more likely it is to become Looped or Branched or both (i.e, Branched-Looped) 2.

380  To handle these variations, in our CL /, analysis we restricted the fitting window to contour

20
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381  lengths between 10 and 30 nm. The justification for excluding data with (a) L < 10nm, and (b)
382 L > 30nm, is that the WLC model best describes semi-flexible polymers with L comparable or
383  larger than [,, which in our case is larger than 10 nm; and (b) at higher contour lengths, the poor
384  sampling of long CL polymers in the images makes the data analysis less robust. Only linear
385  particles were used when fitting (R?) the WLC model. When considering only one end-to-end
386  distance per particle, PsPolypy returned [, = 12.0 + 0.9 nm (Fig. 9). On the other hand, when
387  considering multiple segments per particle, as described in the Methods section (which is the

388  default), we obtained a more precise result, [, = 12.5 £ 0.2 nm (Fig. 10B). In both cases, the

389  fits were good quality, as indicated by R? > 0.9 and the 95% prediction bands.

390
| | | | ] | | | | ] | | | | ] | | | |
1500F — Best fit -
i 95% Prediction Band ]
: 95% CI :
| ¢ Excluded data + |
1000 ¢ Fitted data
~ |
~ - [,=12.0+0.9 nm 1
500 [x?=2.9, R*=0.981] _
O‘ ] ] ] ] ] ] ] ] ] ] ] ] ] ]
0 10 20 30 40
L [X1nm]
391

392  Figure 9. Limiting the contour length fitting window provides robust persistence length calculations
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393  for CL. Plot of mean-square end-to-end distance versus contour length for CL polymers. The persistence
394 length [, was found to be 12.0 + 0.9 nm. A 95% confidence interval (Cl, teal shaded region) and 95%

395  prediction band (pink shaded region) are shown.

396

397  We next challenged the algorithm by repeating persistence length calculations with noise added
398  to the raw image data. Figure 10A shows an AFM image of CL with an increasing amount of
399  white gaussian noise added, quantified by the standard deviation (std). Analysis of the polymer
400  persistence length from this data is shown using both the end-to-end distance (R*) method

401  (Fig. 10B) and the tangent-tangent correlation (TTC) method (Fig. 10C). Despite this added
402 noise, the calculated L, value remains close to the nominal value of 12 nm (14 nm) using the R?
403  (TTC) method. Note that the slightly larger [,, value returned by the TTC method is most likely
404  due to its sensitivity to the precise form of the interpolated skeletons. This conclusion is

405  consistent with the relatively large 95% prediction band in Fig. 10C. It appears, however, that
406  the algorithm is robust to a moderate amount of random pixel noise as is typically encountered in

407  experimental settings.

408
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410  Figure 10. Persistence length calculations appear stable in the face of noise. (A) Image sequence

411  showing the addition of noise. The second-row images are detailed views of the region indicated in upper
412  images (red rectangles). The added noise levels for each plot are indicated and range between 0 and 0.03
413  (std). Calculations of persistence length using different methods: (B) end-to-end distance and (C) tangent-
414  tangent correlation. As before, only data within 10 — 30 nm contour windows were included in the fits.

415  The expected range for new observations are indicated by the 95% prediction bands.

416

417 A summary plot displaying L, outputs is provided in Fig. 11. Results from the R? and TTC
418  methods are shown in Fig. 11A and B, respectively. The tables contain additional information.
419  We observe that as the image noise increases, the number of features detected as Linear

420  decreases. This not only results in lower statistical weight of the [,, calculation but also in

421  reduced quality of the fits.

422
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423
424  Figure 11. Persistence length output in the presence of noise. Persistence length results, as a function
425  of added image noise, obtained by using the (A) R? or (B) TTC methods. Rows in the tables are defined:
426  noise std = noise level added to each image; All = total number of polymer features detected; Linear =
427  number of features identified as Linear; 10 < L < 30 = number of Linear features exhibiting contour
428  lengths within the 10 — 30 nm fitting window; L, = value of persistence length; 95% CI = confidence
429  interval; R? statistical goodness of fit parameter.
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430

431  Computational Performance Evaluation

432 The runtime of PS-Poly in Igor Pro 7 (64-bit) was compared to PsPolypy by processing a dataset
433 of nine AFM images containing 779 particles using similar hardware. PS-Poly processed the
434  dataset in 892 seconds on a CPU with an average frequency of approximately 4.2 GHz, while
435  PsPolypy processed the dataset in 3.2 seconds on a CPU with an average frequency of

436  approximately 4.4 GHz. While direct speedup comparisons are complicated by the variation of
437  CPU utilization, these results suggest that the Python implementation achieves a significant

438  reduction in runtime, on the order of two orders of magnitude. In addition to its superior

439  calculation speed, Python’s open source and object-oriented design provides users with greater
440  flexibility to fine-tune the algorithm to specific needs.

441

442

443 4. CONCLUSIONS AND FUTURE OUTLOOK

444  PS Poly is an algorithm designed to calculate both persistence length and shape from single

445  molecule image data of complex polymers. When implemented as a python package the

446  algorithm is modular and object oriented, making it straightforward to maintain and to extend its
447  features and scope. While it can batch process stacks of AFM images, PsPolypy can also be

448  easily used for customized workflows because most of the attributes and methods are directly
449  available to the user. PS Poly currently provides two WLC model-based methods for calculating
450  persistence length (R? and TTC) from the skeletonized representation of the polymer particles;
451  additional methods can be added in the future, as needed. Furthermore, its automated shape

452  detection can be used to provide insight into polymerization mechanisms, as we have recently

453  shown ?2. The benefits of automating this process include reduced human bias as well as time
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saved by the user and the related improvement in statistical weight of the data set. The current
implementations of PS Poly use the Otsu’s method for image thresholding which works
effectively for high signal-to-noise images such as those typically acquired in AFM. However,
other segmentation methods such as watershed algorithms and machine/deep learning features
can also be added to future versions. For best results, it is important to reduce noise in the input
images before running the program. As we showed, the algorithm is robust to moderate levels of
random pixel noise, but it will break down if higher noise levels are encountered. While PS Poly
was developed to analyze AFM image data, it has the potential to generalize to other imaging

modalities.
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