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Abstract—It is established in literature that finding stabilizer
quantum error correcting codes (QECCS) is the same as finding
self-dual additive codes over the finite field F4 under the Her-
mitian trace inner product. Additionally, every self-dual additive
code can be represented by a graph adjacency matrix. Many self-
dual additive codes are constructed from circulant graphs. We
introduce new graph code constructions: the Toeplitz Graph, the
Multidimensional Toeplitz Graph (MDT), and the Generalized
Toeplitz (GT) graph constructions. We consider some of the
properties of the Toeplitz and Multidimensional Toeplitz Graphs
and compare the Circulant and GT code constructions.

Index Terms—Circulant Graphs, Toeplitz Graphs, Circulant
Codes, Quantum Codes, Generalized Toeplitz Graphs

I. INTRODUCTION

In a groundbreaking paper, Calderbank et al. established
that 0-dimensional quantum stabilizer (qubit) codes can be
represented by special types of additive subgroups of GF (4)n

called self-dual additive codes [1]. Self-dual additive codes can
be classified by their length, whether they contain a codeword
of odd length (Type I) or not (Type II), and their minimum
distance (a quantity proportional to the number of errors the
code can correct). Self-dual additive codes can be generated
by graph[2], though many such current codes in literature are
constructed from circulant graphs and their variations.

In this paper, we define a new type of graph, denoted
the multidimensional Toeplitz (MDT) graph, that is a gen-
eralization of the classical Toeplitz graph. We demonstrate
different properties of this graph and its relation to circulant
and Toeplitz graphs. We then use a subcase of the generalized
Toeplitz (GT) graph, first defined by Sheng Bau, to generate
0-dimensional qubit codes. We show that generalized Toeplitz
graphs are capable of creating new 0-dimensional qubit codes
that are of optimal length and are distinct from those created
by Grassl [3]. Additionally, we create codes using the GT
graph that are of a type that cannot be created using circulant
graphs [4].

This material is based upon work supported by the National Science
Foundation under Grant DMS-2243991.

II. BACKGROUND

A. Graph Theory

A graph Γ = (V,E) is a ordered pair consisting of a vertex
set V and an edge set E. Common notation to denote the
vertex and edge sets, respectively, are V (Γ) and E(Γ). Given
that Γ is undirected, for vertices v, w ∈ V , v is a neighbor
of w if {v, w} ∈ E; furthermore, v and w are then said to
be adjacent. The number of neighbors some v ∈ V (Γ) has is
called its degree, denoted deg(v). The graph Γ is regular if for
all v, w ∈ V (Γ), deg(v) = deg(w). This constant is known
as the graph’s valency. The graph Γ is the complete graph
on n vertices, denoted Kn, if for all distinct v, w ∈ V (Γ),
{v, w} ∈ E(Γ), where |V (Γ)| = n.

The complement of Γ, Γ, is defined such that

V (Γ) = V (Γ)

E(Γ) ∪ E(Γ) = E(K|V (Γ)|).

In other words, we consider simple graphs, so taking the
complement of a graph doesn’t create self-loops or multiple
edges.

Assuming Γ is simple (that is, there is at most a single
edge between any distinct vertices and vertices are never self-
adjacent), the adjacency matrix of Γ, denoted in the paper by
Adj(Γ), is an |V (Γ)| × |V (Γ)| matrix with entries:

Adj(G)ij =

{
0 : {vj , vi} /∈ E(Γ)
1 : {vj , vi} ∈ E(Γ)

Since we work only with simple, undirected graphs, any
and all of our adjacency matrices are symmetric and have
zeroes along the entire diagonal, indicating that there are no
self-loops and that vertex i is linked to vertex j if and only
if j is linked to i. Two graphs ΓG and ΓH are isomorphic
if and only if there exists a bijection φ : V (ΓG) 7→ V (ΓH)
that preserves neighbors; in this case, for any vi, vj ∈ V (G),
(vi, vj) ∈ E(ΓG) if and only if (φ(vi), φ(vj)) ∈ E(ΓH).

B. Coding Theory

Let Fq be the finite field of order q. A code C of length n
over Fq is an additive code if C is a finite additive subgroup
of Fn

q .
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We specifically consider additive codes over F4. Let F4 :=
{0, 1, ω, ω} such that ω = ω2 = ω+1. Each additive code has
a generator matrix M whose rows additively span the entire
code. The conjugates of elements of F4 are given by: 0 = 0,
1 = 1, ω = ω. The trace map Tr : F4 7−→ F2 is defined as:

Tr(x) = x+ x2.

From the trace map, the Hermitian trace inner product,
denoted by ∗, between x,y ∈ Fn

4 is defined as:

x ∗ y :=
n∑

i=1

Tr(xiyi) =
n∑

i=1

(x2
i yi + xiy

2
i ) mod 2

Where x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Fn
4 For some

code C, we define its dual-code C∗ under the Hermitian trace
inner product as:

C∗ := {x ∈ Fn
4 : ∀c ∈ C, c ∗ x = 0}

C is called self-orthogonal if C ⊆ C∗ and self-dual if C =
C∗.

On Fn
4 , we impose a metric known as the Hamming distance

between x, y ∈ Fn
4 , denoted d(x,y), which is defined as:

d(x,y) = |{i : xi ̸= yi}|,

That is, it’s the count of the components where x and y
differ. The weight of some code word x, denoted w(x), is
then defined as:

w(x) = d(x,0),

or the number of nonzero elements in a code word. To
each code C, the minimum distance, denoted dmin(C), the
minimum weight of any given code word in the code. Since
the Hamming distance is invariant under translation of vectors,
the minimum distance between any two vectors is exactly
equal to the minimum weight of any single vector. Thus, since
Hamming distance measures ”distinctness” of code words, a
main goal in coding theory is the production of codes with
maximum minimum distances. The weights of the code words
defines the type of code: a Type II code is one where all code
words in the code have even weight, while a Type I code is
a code where at least one code word is of odd weight. Type
II codes are the only codes that are capable of also being
linear codes. Type I and Type II arise naturally in the study of
codes due to the following well known upper bounds on their
minimum distances:

d1 ≤

 2
⌊
n
6

⌋
+ 1, if n ≡ 0 mod 6

2
⌊
n
6

⌋
+ 3, if n ≡ 5 mod 6

2
⌊
n
6

⌋
, otherwise

d2 ≤ 2
⌊n
6

⌋
+ 2

Additionally, Danielsen and Parker showed that any self-dual
additive code can be generated by A + ωI , where A is the
adjacency matrix of a graph, and I is the identity matrix.

III. GRAPHS

Self-dual additive codes are frequently generated by circu-
lant graphs [3], [4]. Seneviratne et al. considered a multidi-
mensional generalization of the circulant graph and their codes
[5]. In this section, we outline their generalization of circulant
graphs. Additionally, we introduce the Toeplitz graph, our
analogous multidimensional generalization of the Toeplitz
graph and some of their properties. Finally, we introduce the
Generalized Toeplitz graph, from which we generate self-dual
additive codes.

A. Circulant Graphs

A common class of graphs used to generate self-dual
additive codes is that of circulant graphs, so although not
explicitly used, a few definitions have been included for the
reader.
One definition of a circulant graph is a graph whose adjacency
matrix is circulant; That is, it’s a matrix where each row is
the preceding row shifted over to the right by 1 element:

c0 c1 . . . cn−1 cn
cn c0 c1 . . . cn−1

...
. . . . . .

...
...

. . . . . .
...

c1 . . . cn−1 cn c0


Alternatively, we may equivalently define a circulant graph as
follows. Let Zn denote the ring of integers modulo n. Let
S ⊂ Zn such that 0 /∈ S and S = −S. Then the circulant
graph Γ has V (Γ) = {v1, v2, . . . , vn} and edge set E(Γ) =
{vivj : (vi − vj) mod n ∈ S}.

Since circulant graphs are Cayley graphs on cyclic groups
and all Cayley graphs are generalized Toeplitz graphs [6], all
circulant graphs are generalized Toeplitz graphs.

B. MDC Graphs

For the sake of compactness, we employ the following
notation. Suppose that N = (n1, . . . , nk). Then we’ll write
Zn1

× · · · × Znk
instead as ZN. Furthermore, let t ∈ ZN.

We’ll interpret t mod N as (t1 mod n1, . . . , tk mod nk).

Definition III.1. Following Leighton [7], let N =
(n1, . . . , nk) and let S ⊂ ZN such that S = −S and 0 ̸∈ S.
A multidimensional circulant graph Γ has

V (Γ) := ZN

E(Γ) := {vw : (w − v) mod N ∈ S}

Seneviratne et al. established some properties of MDC
graphs, including properties relating to complements and when
an MDC graph is isomorphic to a circulant graph [5].

C. Toeplitz Graphs

Toeplitz matrices are a generalization of circulant matrices
where all diagonals parallel to the main diagonal of the matrix-
are composed of the same element:
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
c0 c1 . . . cn−1 cn

cn+1 c0 c1 . . . cn−1

cn+2
. . . . . .

...
...

. . . . . . . . .
...

c2n−1 . . . cn+2 cn+1 c0


A matrix can be Toeplitz without being circulant, as shown
here:


1 2 3 4
0 1 2 3
5 0 1 2
2 5 0 1


Just like the circulant graph, a Toeplitz graph is a graph whose
adjacency matrix is Toeplitz, and it can be directly defined as
follows:

Definition III.2. Let A be a subset of Zn and let Tn(A) be
a Toeplitz graph. Then

V (Tn(A)) = ZN

E(Tn(A)) = {{vi, vj} : |vi − vj | mod n ∈ A}

where A = {a1, . . . , ar} ⊆ Zn \ {0} and N = (n1, . . . , nk).

D. MDT Graphs

We define our Multidimensional Toeplitz Graph (MDT) and
explore a few of its properties.

Definition III.3. A Multidimensional Toeplitz Graph Γ over
vertices N = (n1, . . . , nk) with defining set A, denoted by
MDTN(A), is defined as

V (Γ) = ZN

E(Γ) = {xy :

(|x1 − y1| mod n1, . . . , |xk − yk| mod nk) ∈ A}

where A ⊆ ZN \ {0}.

If we take |(v1, . . . , vn)| to be (|v1|, . . . , |vn|), then we can
recast the definition in more compact notation as:

V (Γ) = {v | v ∈ ZN}
E(Γ) = {xy | |x− y| mod N ∈ A}

Definition III.4. A k × k Toeplitz nested block matrix is a
Toeplitz matrix of the form

B1 B2 . . . Bk−1 Bk

Bk+1 B1 B2 . . . Bk−1

...
...

. . .
...

...
B2k−2 . . . . . . B1 B2

B2k−1 B2k−2 . . . . . . B1


where each block B1, B2, . . . , Bk0

, . . . , B2k0
can be recur-

sively partitioned into blocks Bi
1, B

i
2, . . . , B

i
l1

where 1 ≤ i ≤ r
for some r and each matrix is Toeplitz with respect to the block
matrices formed from partitioning.

1

2
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4

5

6
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8

Figure 1. The MDT graph T ([2, 4], {(1, 0), (0, 1)})

To make accessing various blocks of a Toeplitz nested block
matrix easier, we use the following notational conventions.

Suppose Γ = MDTN(A) and let v1 = (a1, . . . , ak),v2 =
(b1, . . . , bk) ∈ V (Γ). Then, the entry of the adjacency matrix
M of Γ corresponding to the edge v1v2 will be denoted
by Mv1

v2
≡ M

(a1,...,ak)
(b1,...,bk)

.Furthermore, M (y1,...,yq,...)

(x1,...,xq,··· ) will refer
to the entire nested matrix with specified indices in the qth
nesting level within the Toeplitz nested matrix M.

Proposition 1. Any MDT has a Toeplitz nested block matrix
as its adjacency matrix.

Proof. Let Γ = MDTN(A) with nested adjacency matrix M
and A ⊆ ZN \ {0}, N = (n1, . . . , nk) where ni ∈ Zi. Take
two arbitrary vertices x = (x1, . . . ,xk),y = (y1, . . . ,yk) ∈
ZN where xy ∈ E(Γ). Then, by definition of MDT, it follows
that |x − y| mod N ∈ A. We take êi to be the unit vector
with all zeroes except for a 1 as its i-th entry. By assumption
that |x − y| mod N ∈ A, it follows then that for any q ∈
{1, . . . , k}, |(x± êq)− (y± êq)| mod N ∈ A. Thus, for any
nesting level q, we may make the following claim:

My
x = M

(x1,...,xq,...,xk)

(y1,...,yq,...,yk)
= M

(x1,...,xq,...,xk)±êq
(y1,...,yq,...,yk)±êq

Thus, along any diagonal parallel to the main diagonal at any
nesting level q, the entries will always match, making it a
nested block Toeplitz matrix.

Proposition 2. The graph complement of a MDT is itself an
MDT.

Proof. Let G = MDTN(A) be a multidimensional Toeplitz
graph with vertices V (G)\{0} and edges E(G). Define G to
be the complement to G. Let A be the set such that A∪A =
V (G) \ {0} and A ∩ A is the empty set. Let x,y ∈ V (G)
with x = (x1, x2, . . . , xN ) and y = (y1, y2, . . . , yN ), x ̸= y.
An edge is present between two vertices of G if and only if
|x− y| ∈ A; thus, if |x− y| /∈ A, (x,y) ∈ E(G). Therefore,
G = MDTN(A).

Example 3. The MDT graph T ([2, 4], {(1, 0), (0, 1)}) and
its complement T ([2, 4], {(0, 2), (0, 3, (1, 1), (1, 2), (1, 3)}).

Proposition 4. Each possible edge is unique to a single
defining element of ZN
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Figure 2. Compliment of T ([2, 4], {(1, 0), (0, 1)})

Proof. Consider the edge xy ∈ ZN for N = (n1, . . . , nk).
xy ∈ E(Γ) for Γ = MDTN(A) iff |x − y| ∈ A. Since
|x−y| = |y−x|, we may define a new vector Q as follows:

|y − x| = Q =
∑

i∈{1,...,k}

êi

{
xi − yi : xi ≥ yi

yi − xi : xi ≤ yi

Thus, we’ve found a unique Q ∈ ZN such that xy,yx ∈
E(Γ) ⇐⇒ Q ∈ A.

Proposition 5. For every MDT T , there exists an MDC C
such that T is a spanning subgraph of C.

Proof. Define T = MDTN(A) and C = MDTN(S) such
that S = V (T )\{0}. Since S = Zn1

×· · ·×Znk
\{(0, . . . , 0)}

and for all 0 < i ≤ k, Zni is a group under modular addition,
it follows that S contains all of its inverses. Thus, S = −S,
and C is a multidimensional circulant graph. Since S is the
set of all vertices except for the zero vector, it follows that
A ⊆ S. By Proposition 7, every element of N will create
unique edges between vertices, so all edges added by A will
also be added by elements in S; thus, E(T ) ⊆ E(C) and T is
a spanning subgraph of C. Therefore, for any MDT T , there
exists an MDC for which T is a spanning subgraph.

E. Generalized Toeplitz (GT) Graphs

In this section we outline the definition of generalized
toeplitz graphs [6] and a few of their properties.

Definition III.5. Let S be the semigroup (X, ·), A be the
defining set, and V be the vertex set such that A ⊂ V ⊆ S
where V is finite. Then, the Generalized Toeplitz Graph,
Γ = TV (A), is defined as:

V (Γ) = V

E(Γ) = {(v, av) : a ∈ A, av ∈ V }

In this work, we will only consider generalized Toeplitz
graphs where 1 /∈ A and A = A−1. These two restrictions
ensure that TV (A) is both simple and undirected.

F. Future Directions
Following Seneviratne et al.’s generalization of circulant

graphs [5], we outline our generalizations of the Toeplitz
graph and some of their properties.

Future directions of this research could involve examining
other properties of the MDT graph. Specifically, an area that
could be of interest would be connectivity and regularity of
the MDT graph. We tentatively found properties of a regular
MDT graph, but it would be useful to create a schematic to
determine when an MDT graph is regular, which we were
not able to do. Additionally, Heuberger assigned conditions
under which a Toelitz graph is connected [8] ; it would
be interesting to examine how these conditions connect to
the MDT graph, and if an MDT graph is connected when
Heuberger’s conditions hold true for components of the
vertices.

IV. GT AND CIRCULANT CODE COMPARISON

In this section we list optimal [[n, 0, d]]2 codes generated
by the GT construction and compare them to existing codes
[3]. The following codes were generated from a randomized
search using the MAGMAprogramming language.

In Table I, we display codes of a Type unattainable by
Saito [4], which were constructed using Circulant graphs. We
list their minimum distance, dmin(CΓn), their GroupID in
the SmallGroupDatabase provided by MAGMA, denoted Gn,i,
where n is the order of G, and i is the i-th group of order n
in MAGMA’s SmallGroupDatabase.

In Table II, we display codes of lengths 50-80 generated
by the GT construction, and list some of their properties.
In some cases, the GT construction produces codes absent
from Grassl’s table[3]. In other cases, Grassl’s table produces
codes GT construction does not produce. Note that the codes,
whose automorphism groups are of different orders, are not
isomorphic. Table II displays the orders of the automorphism
of codes produced from the GT construction. Therefore,
the GT codes are distinct from the circulant codes listed in
Grassl’s table [3].

V. CONCLUSION

We presented two constructions inspired by Seneviratne
et al.’s MDC construction [5] as well as GT construction
to generate new self-dual additive codes. Additionally, we
presented future directions to explore the properties of such
graphs. It would be interesting to continue filling out the
table: by constructing longer codes or by examining codes
generated from modifications of the GT construction (such as
puncturing).
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Table II
PROPERTIES OF THE GRAPHS Γn GENERATED BY THE GENERAL TOEPLITZ DIRECT OR BORDERED CONSTRUCTION

Γn dmin(C(Γn)) Construction Group ID A k(Γn) d(Γn) g(Γn) ω(Γn) |Aut(Γn)|

Γ50 14 Direct G50,3 A50 25 2 3 6 50
Γ51 14 Bordered G50,3 A51 - 2 3 6 50
Γ52 14 Direct G52,3 A52 28 2 3 5 52
Γ53 15 - - - - - - - -
Γ54 16 - - - - - - - -
Γ55 14 Direct G55,1 A54 44 2 3 12 55
Γ56 15 Direct G56,11 A56 26 2 3 5 56
Γ57 15 Direct G57,1 A57 28 2 3 6 57
Γ58 16 Direct G58,1 A58 39 2 3 11 58
Γ59 15 Bordered G58,1 A59 - 2 3 13 58
Γ60 16 Direct G60,1 A60 35 2 3 8 60
Γ61 17 - - - - - - - -
Γ62 18 - - - - - - - -
Γ63 16 Direct G63,1 A63 48 2 3 12 63
Γ64 16 Direct G64,71 A64 43 2 3 10 64
Γ65 16 Bordered G64,1 A65 - 2 3 14 128
Γ66 16 Direct G66,1 A66 32 2 3 7 66
Γ67 17 Bordered G66,1 A67 - 2 3 10 66
Γ68 18 Direct G68,3 A68 47 2 3 8 68
Γ69 16 Bordered G68,2 A69 - 2 3 15 136
Γ70 18 Direct G70,1 A70 37 2 3 6 70
Γ71 18 - - - - - - - -
Γ72 18 Direct G72,16 A72 43 2 3 9 72
Γ73 18 - - - - - - - -
Γ74 18 Direct G74,1 A74 18 2 3 12 74
Γ75 18 Bordered G74,1 A74 - 2 3 17 74
Γ76 18 Direct G76,3 A76 17 3 3 4 76
Γ77 19 - - - - - - - -
Γ78 19 Direct G78,3 A78 18 3 3 4 78
Γ79 19 - - - - - - - -
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