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past decades. However, high-fidelity two-dimensional numerical methods are typically time-consuming.
Machine learning methods have gained popularity in recent years, but generating a flood map directly with a
small sample of boundary conditions remains challenging and largely unexplored. In this paper, we have devel-
oped a machine learning framework capable of directly predicting the maximum flood inundation map from
boundary conditions. In our model, time-series boundary conditions are embedded into a higher-dimensional
shape and then processed by a transformer encoder. The feature maps, post-processed by the transformer en-
coder, will be coupled with geophysical information such as a digital elevation map and Manning's coefficient
map before being passed to the U-Net structure to obtain the final results. Our proposed model demonstrated no-
tably high accuracy when tested with historical hurricane events. The mean absolute error of our proposed
method on all test sets is 0.00717 ft., and the root mean squared error is 0.03974 ft. Furthermore, we conducted
parametric studies on the model architecture and observed that they are not as sensitive as input features. Lastly,
we provided explanations on why some certain geophysical features are necessary to accurately predict flood
inundation maps in this paper.
© 2024 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction the past five years (Bevacqua et al., 2019; Kam et al., 2021). Many recent

studies suggest that global warming will result in more destructive

Floods are not only one of the most frequent natural disasters (Parhi,
2018), but they also cause more annual damage than any other
weather-related natural hazards in the United States (NOAA, 2016).
Between 1998 and 2017, flood events affected two billion people in
some reports (Cred, 2018). Extreme floods not only endanger human
lives (Haltas et al., 2021) but also result in substantial economic losses
and environmental issues (Gu et al,, 2022; Chen et al., 2023). For exam-
ple, Hurricane Harvey led to economic losses exceeding $125 billion in
2017 (Kousky et al., 2020). In July 2021, Henan, China, experienced a
record-breaking rainstorm that claimed 398 lives and resulted in an
economic setback of $17.8 billion (He et al., 2023). More recently, in
August 2023, Typhoon Doksuri struck northeast China, causing a severe
flood that displaced over a million people. Also in November 2021, an
atmospheric river brought unprecedented heavy rainfall to parts of
southern British Columbia in Canada and northwestern Washington
State in the United States, leading to a historic and tragic flooding
event. As global warming intensifies hydrological cycles, there is a
growing number of reports of unprecedented flooding worldwide in
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flooding events in the near future (Gu et al., 2022; Voosen, 2022).
Therefore, the development of early flood warning systems and flood
emergency evacuation plans is becoming increasingly significant and
urgent to preserve lives and minimize economic damage. Since these
decision-making systems typically rely on the outputs of flood predic-
tion models, the accuracy and speed of these flood prediction models
become critical.

As of now, numerical hydrodynamic models remain the mainstream
approach in engineering for forecasting two-dimensional flood hazard
maps. Prominent and widely used hydrodynamic models, such as
HEC-RAS (USACE, 2018), FLO-2D (FLO-2D, 2018), and SRH-2D (Lai,
2010), are developed to numerically solve the two-dimensional shallow
water equations. Numerous researchers have widely employed these
models to simulate various flood scenarios across different floodplains
in the past years (Ongdas et al., 2020; Pathan et al., 2022; Shaikh et al.,
2023). Even though the accuracy and reliability of the numerical
method has been widely verified, conducting high-fidelity two-
dimensional hydrodynamic simulations remains a time-consuming
task (He et al., 2023). In terms of emergency evacuation, every second
matters as shorter decision-making time could save more lives and re-
duce the associated economic losses. In terms of optimal flood control,
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Nomenclature

Abbreviation Definition

SWEs shallow water equations

H water surface elevation

h water depth

q flux term (e.g. lateral flow flux)

t time

u horizontal direction velocity in Cartesian
directions

v vertical direction velocity in Cartesian directions

g acceleration due to gravity

Ve eddy viscosity

o bottom friction coefficient

f Coriolis parameter

BC boundary conditions

DEM digital elevation model

X horizontal direction in Cartesian directions

y vertical direction in Cartesian directions

D surface's smoothness dimensionless constant

n spatial Manning's coefficient

GIS Geographic Information System

MLP multi-layer perceptron

CNN convolutional neural network

RNN recurrent neural network

GRU gated recurrent unit

LSTM long short-term memory

MAE mean absolute error

RMSE root mean square error

using numerical model as predictive model (or response surface, or en-
vironment) is very time-consuming because it needs to be executed
over thousands of times to obtain the optimal sequences. Using numer-
ical methods as predictive models will make the entire optimization
process impractical, as it would take over several days. Thus, to keep
balance between accuracy and the total computational time is very
challenging for numerical methods.

With rise of artificial intelligence in recent years, deep learning
models have shown remarkable successes in many hydrology and hy-
draulic fields (Hosseiny et al., 2020; Tamiru and Dinka, 2021; Park
etal., 2022; Shi et al., 2023; Yin et al., 2023). A number of previous stud-
ies have explored the prediction of maximum water depth or stage dur-
ing flood events using a variety of machine learning models, including
MLP/ANN (Berkhahn et al., 2019; Hosseiny et al., 2020; Kim and Han,
2020; Xie et al., 2021), RNN/GRU/LSTM (Pan et al., 2020; Yan et al.,
2023; Zhou and Kang, 2023), CNN/U-Net (Kabir et al., 2020; Hosseiny,
2021), and Conv-RNN/LSTM (Ha et al., 2021; Shi et al., 2023).

However, most of these models (e.g. MLP and RNN-based model)
are more suitable on predicting water depth or water stage at one or
several observation points rather than entire flood map in a 2D domain
(Tehrany et al., 2019; Kabir et al., 2021; Rahman et al,, 2021). Even latest
studies are still trying to simplify the problem to predict the flood infor-
mation on pre-selected sample points instead of entire map (Rahman
et al., 2021; Amiri et al., 2024; Fereshtehpour et al., 2024; Hitouri
et al,, 2024). Due to the 2D nature of flood hazard map, the number of
output variables (pixels or cells in a map) is way more than the input
variables (time- series boundary conditions). Another challenge that
hinders the effectiveness of deep learning models in predicting 2D
flood inundation maps from boundary conditions is the nature of the
models themselves. The previously mentioned MLP/ANN, RNN/GRU/
LSTM, Conv-RNN/LSTM models were initially designed for sequence
processes, such as time series forecasting, rather than working with
2D maps. Even though CNN/U-Net was designed for image processing,
it can only accept input data being in a 2D image format. In our problem,
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boundary conditions in riverine systems typically do not provide suffi-
cient information for inputting into the CNN/U-Net model. Thus, using
machine learning models to directly predict flood inundation map with-
out any impractical assumptions remains very challenging. As a result,
there is still a very limited number of previous studies that have utilized
deep learning models to predict 2D flood inundation maps (Bentivoglio
etal, 2022).

To address these challenges, many pervious researches tried to pre-
dict the flood inundation or hazard map in an indirect way or down-
size the problem complexity. For instance, some earlier studies tried
to convert the flood water depth prediction problem to a classification
task (Bui et al., 2020). They utilized Geographic Information System
(GIS) digital elevation data to estimate the probability of flooding for
individual cells or pixels (Bui et al., 2020; Nemni et al., 2020; Mufioz
et al., 2021). While this approach could offer a solution by simplifying
numerical value of output into Boolean value, it also reduces the level
of information to the engineers, operators, and other practitioners.
Another recently developed approach to rapidly generate high-
resolution flood maps by using super-resolution techniques (Fraehr
et al., 2023; He et al., 2023; Yin et al., 2024). This method employs
neural networks to learn the relationship between high-resolution
simulation results and low-resolution results, enabling the rapid
transformation of low-resolution simulations into high-resolution
flood inundation maps. However, this method still needs to take the
advantage of low-fidelity numerical models. One pervious study ini-
tially partitioned the entire domain into several small areas or patches.
Then, they used the neural networks to infer the flood conditions in
other unknown areas based on the information of flood known
areas. (Lowe et al., 2021). Lastly, a number of previous studies have
attempted to forecast 2D flood maps using a set of machine learning
models or neural networks (Esfandiari et al., 2020; Farhadi and
Najafzadeh, 2021; Seydi et al., 2022; Liao et al., 2023). In these ap-
proaches, a single machine learning model or neural network is typi-
cally employed to learn and predict a small distinct sub-area, and
then ensemble together into a large complete 2D map. Even though
this ensemble method can partially solve the challenge, two main
problems persist. Firstly, as each sub-area is independently modeled,
the output features may turn out discontinuous at the interfaces
connecting these sub-areas. Secondly, the number of required machine
learning models is contingent on the study area, making it challenging
to generalize the model across different regions. Therefore, despite
considerable efforts in previous studies, the direct prediction of
water depth and extent across a desired area only based on boundary
conditions remains blank. To fill this research gap, this paper intro-
duces a single-model approach capable of predicting flood maps exclu-
sively through the utilization of boundary conditions.

Considering in the recent advancement of deep learning technology
in computer vision, a few text-to-image frameworks have made re-
markable strides by leveraging Transformer based models (e.g. vision
Transformer, Swin Transformer) (Ding et al., 2021; Dou et al., 2022;
Chang et al., 2023) and Diffusion models (Saharia et al., 2022; Ruiz
et al., 2023). These models exhibit impressive generative capabilities
and have the potential to greatly assist our task. However, simply
adapt the method into water resources filed is still challenging. One rea-
son is that these models are typically trained on large public image
datasets, such as COCO, JFT-300 M or CIFAR-10, which often contain be-
tween 1 and 300 million training examples. Collecting such a large
dataset for training these advanced models is infeasible for our flood
map prediction problem. To overcome this issue, we proposed a novel
framework that combines a Transformer encoder and a U-Net architec-
ture as a decoder. Through this proposed method, our framework can
take the advantages of both a large generative model and a small
image model, enabling the generation of flood maps with high accuracy
while using a smaller training dataset. Furthermore, the proposed
method allows us to incorporate geophysical information, such as eleva-
tion, slope, Manning's coefficient, and more, into the neural networks.
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This geophysical information can help the neural networks in achieving
high accuracy and rapid convergence.

Direct predicting flood hazard map from only boundary conditions is
highly challenging and has not been achieved by previous research. The
major objective of this paper is to introduce a novel method capable of
achieving this goal. The main contributions of this paper are listed as
follows:

* We proposed a novel framework that can directly predict flood hazard
map by incorporating geophysical information and boundary condi-
tions. This method does not require massive training data, and it can
work accurately with very small training dataset.

This framework employs relative and position embedding to trans-
form time-series data into a 2D map format. It then utilizes a trans-
former encoder to enhance the model's generative capability.
Finally, the information is integrated with geophysical data in the
U-net architecture to ensure accuracy when training data is limited.
We evaluated the model's performance across four historical flood
events and conducted a study of the model architecture to validate
our hypothesis.

2. Methodology
2.1. Overview of mathematics in our neural network model

The riverine flood problem is governed by two-dimensional shallow
water equations (SWEs), which can be derived from Navier-Stokes
equations after a few assumptions (Martinez-Aranda et al., 2022). 2D
SWEs consist of the mass conservation equation, the x-direction mo-
mentum equation, and the y-direction momentum equation, which is
shown in Eq. 1 to Eq. 3 respectively.
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where H stands for the water surface elevation, h represents the water
depth, q is a flux term, t is time, u and v represent velocity in Cartesian
directions, g represents acceleration due to gravity, v, denotes the
eddy viscosity, ¢ represents the bottom friction coefficient, and f
denotes the Coriolis parameter.

The water surface elevation and the water depth at each pixel or cell
can be mutually converted if the elevation information for those pixels
or cells is available. As a result, our neural network model is anticipated
to have three output variables: h, u, v. For the input side, adding bound-
ary conditions is also mandatory because the shallow water equation it-
self is a partial differential equation (PDE). If the boundary conditions
are uncertain, it can lead to an infinite number of solutions.
Consequently, the 2D Shallow Water Equations (SWEs) can be
summarized in Eq. 4.

(h,u,v] = F(t,x,y,q,V, ¢, f,BC,DEM) (4)
where BC represents boundary conditions, and DEM represents digital
elevation model.

In deep learning framework, the temporal variable, t, can be replaced
by an initial positional embedding process (Liu et al., 2021), and the 2D
image's position naturally represents the spatial variables: x and y. Thus,
both the temporal and spatial index variables can be eliminated from
the input variable list before entering the neural network. The flux
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term, q, is usually neglected in most cases by assuming no infiltration
or evaporation because that is less important in riverine flooding com-
pared to inland flooding. Also, to better convey our main objective and
idea, we decided not to complicate the demonstration case too much.
The turbulence viscosity term in the hydrodynamic model is typically
calculated by using an empirical equation that involves a dimensionless
constant: D. This dimensionless constant, D, is determined by the
surface's smoothness and is commonly presented as spatial informa-
tion, which could be added as an additional feature map at the start of
the U-Net. However, in this study, we have omitted the consideration
of turbulence effects because they only become significantly influential
in large-scale coastal regions. The bottom friction, c; is usually
determined by Manning's coefficient, n, which is a spatial geophysical
parameter. The Coriolis parameter, f, can be directly calculated based
on the latitude. Since latitude maintains a fixed linear relationship
with the spatial variable, y, when the computational domain stays
same, the coefficient can be safely neglected in the regression models.
On the output side, all outputs depend solely on the input variables
rather than on other output variables. Moreover, the water depth at
peak time is a subset of the spatiotemporal set of h. As a result, we can
further simplify the 2D Shallow Water Equations (SWEs) into a final
approximate form, presented as Eq. 5.

[hm] = F(BC,DEM, n) (5)
where h,,, stands for the water depth at maximum flood inundation
area, n represents the spatial Manning's coefficient.

2.2. Neural network model architecture

Three input variables, BC, DEM, and n, differ in dimensionality. The
DEM, and n, are spatial data, whereas BC is spatiotemporal data. There-
fore, it is necessary to employ different neural network architectures to
handle them separately to achieve maximum performance. An
overview of the proposed framework is shown in Fig. 1.

Our proposed method processes the flow hydrograph and water
stage hydrograph separately, given their distinct properties. The initial
step in our method involves embedding the hydrographs with posi-
tional information and reshaping them into a spatial format that
matches the dimensions of DEM and n. The details of reshaping and po-
sitional embedding can be found in original vision transformer paper
(Dosovitskiy et al., 2020) and our open-source code in Open Research
section. Then, a standard vision transformer encoder process is em-
ployed to further extract deep features from the hydrographs. The de-
tails of the vision transformer encoder process could refer to the
original paper (Dosovitskiy et al., 2020). In this study, the transformer
encoder is executed in three steps: linear projection, adaptive positional
embedding, and the transformer itself. Linear projection divides the en-
tire feature map into smaller patches: 16 x 16. Adaptive positional em-
bedding step is to add a set of learnable parameters on each patch to
retain the positional information, as the subsequent MLP network
does not naturally contain positional information. The detailed illustra-
tion of the self-attention mechanism in transformer encoder is shown
on the left in Fig. 2. The transformer encoder, following the architecture
of Vaswani et al. (2017), consists of alternating layers of multi-head self-
attention and MLP block. Differ from original transformer encoder, we
observed that achieving better performance in this study can be done
without employing residual connections after the multi-head self-
attention layer and without introducing layer normalization before
the MLP block. We hypothesize that many well-known large models
typically have very deep encoder structures, often consisting of 8 to 12
layers. In such cases, short residual connections can be beneficial in mit-
igating gradient vanishing. However, in our experiments, where the en-
coder layers were not as deep in most test scenarios, omitting residual
connections yielded better results. It's also worth noting that
reintroducing residual connections and applying layer normalization
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Fig. 1. Overview of the proposed method.

could improve performance in other case studies. We encourage further
research to test and verify this hypothesis, especially in water resource
engineering application domain. Technically, vision transformers utilize
every pixel for embedding on every medium-sized image patch
(Dosovitskiy et al., 2020). However, this method requires significant
memory capacity and long computation time (Liu et al., 2021). To ad-
dress this issue, we employed an embedding switch mechanism, as de-
tailed in a recent study by Liu et al. (2023). The illustration of the
embedding switch method is shown on the right side in Fig. 2. This
method computes attention in horizontal and vertical directions in
turns, effectively reducing the required GPU memory.

Once the transformer encoder step is completed, the small patches
will be reassembled into a complete feature map. The feature maps of
the flow and stage hydrographs are then concatenated with spatial geo-
physical information in the channel dimension and input into the U-Net
(Ronneberger et al., 2015). An overview of the U-Net architecture is il-
lustrated in Fig. 3. The U-Net architecture consists of three core
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elements: the contracting path on the left side, the expansive path on
the right side, and skip connections between the contracting and expan-
sive paths. Throughout this process, the model can extract more com-
prehensive, higher-level features and reconstruct full-resolution
segmentations based on these higher-level features. In this paper, we
employ the Res-U-Net structure, which incorporates residual blocks to
provide the alternative information flow to address the issue of gradient
vanishing (He et al., 2016). Due to GPU memory constraints, a small
batch size is utilized in this study, therefore, we removed the batch nor-
malization process inside the ResBlock.

3. Case study
3.1. Study area

The Miami River originates in the Everglades and flows through
Downtown Miami before joining with the Biscayne Bay in the south

Vertical l

Variables

Fig. 2. The illustration of transformer encoder in our proposed method: (left) self-attention mechanism; (right) embedding switch mechanism.
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Florida. A large number of residential areas, businesses and industries sit
along the river and its tributaries, resulting in a densely populated urban
waterway network. This study area, located in the coastal zone, is sus-
ceptible to severe hurricanes events with heavy rainfall and flooding
(Azzi et al., 2020). Given its substantial economic significance, dense
population, and heightened vulnerability to hurricane impacts, it serves
as an ideal case study for this paper. Fig. 4 shows the location of the
study area.

Fig. 5 shows the elevation layout of the study area. The elevation
data is derived from the digital elevation model (DEM), crafted by the

Florida Geographic Information Office. Within our study area,
highlighted within the red box, elevations range from —2 ft to 40 ft.
Bathymetric data is sourced from the South Florida Water Management
District (SFWMD). Our study area contains 5.6 miles of the downstream
Miami River and two tributaries: C4 (upper) and C6 (lower). Five water
monitoring stations, marked by red triangles, are located at the bound-
ary of our study area. These stations serve as both boundary conditions
and validation points for our numerical model.

Upstream water stations, namely S25A, S25B, and S26, have various
hydraulic structures, including spillway gates, culverts, and pumps.
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Fig. 4. Geographic map of downstream Miami River.
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Fig. 5. Schematics and elevation information of the study area.

Flow data regulated by these structures is recorded at three-minute
intervals and is employed as boundary conditions in our HEC-RAS
model. The water station S4, records the downstream tide information,
which is used as downstream stage boundary conditions in this
study. Furthermore, water station S1, located at the center of the
study area, is used for recording water stage data, which serves as a val-
idation point for our HEC-RAS model. Our HEC-RAS model exhibited
Mean Absolute Error ranging from 0.065 to 0.087 ft., and Root mean
square error ranging from 0.142 to 0.182 ft. across three validation
events.

3.2. Data preparation

The training dataset for our proposed method can be collected either
from historical observations, such as satellite maps during flood events,
or from numerical models. In practice, using historical observations for
training typically provides better prediction performance. However,
for demonstration purposes, all the training and test data utilized in
this study are generated by a numerical model: HEC-RAS. The mesh
size used in this study is 40 ft, and a full momentum equation solver is
used due to study domain is influenced by the tidal conditions. The 7-
day unsteady event are simulated at both training and test dataset.
The original boundary condition data were obtained from DBHYDRO,
provided by the South Florida Water Management District (SFWMD).
The training data spans a 25-year period from 1990 to 2015. However,
due to the low frequency of flood events during these 25 years, the col-
lected training dataset is insufficient for training purposes. Therefore,
we augmented the existing historical data by adding noise, generated
from a Gaussian distribution, to create additional training data. In
total, we have 41 sets of training data. In this study, four test scenarios
were employed: Hurricane Irma from 2017, Tropical Storm Isaias from
2020, Hurricane Ian from 2022, and an amplified Hurricane Ian. The am-
plified Hurricane Ian is a hypothetical scenario created by doubling the
flow rate and increasing downstream stage by 1 ft at each time step
under Hurricane lan condition.
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4. Results
4.1. Prediction results and visualization

The predicted and simulated water depth under different hurricane
events is shown in Fig. 6. The background map represents elevation
data, and the water depth is visualized using a Black-Blue linear scheme
after clipping values below 0.1 ft. As Fig. 6 shows, our method demon-
strates strong performance, accurately predicting the majority of inun-
dated areas in both intense flooding and non-flooding scenarios.
Notably, our proposed method can successfully capture the intricate de-
tails of flood depths at the street level, making it feasible to identify
which streets are affected by flooding.

The prediction error maps for four test events are shown in Fig. 7. The
prediction error is computed by subtracting the predicted values from the
simulated values at each pixel or cell. As Fig. 7 shows, the prediction re-
sults from our proposed method exhibit good accuracy, with the majority
of pixels falling within a range of —0.5 to 0.5 ft. However, our proposed
method may lead to overestimation and underestimation at a pair neigh-
boring pixel. This indicates that predicted water surface elevation might
not exhibit the ideal smooth surface as numerical results from computa-
tional physical models. For the test cases involving overland flooding, the
maximum prediction errors for overland flood depths are typically
greater than those for the river channel. However, it's important to note
that these significant prediction errors are limited to specific small areas.

In Fig. 8, we present the predicted water depths alongside the simu-
lated water depths in the main river channel. Our proposed method gen-
erally exhibits a tendency to very slightly underestimate the water depth
of the main channel in three out of four test scenarios. Notably, the predic-
tion errors remain relatively small for real historical events, same as the
prediction of overland flood depths as shown in Fig. 7. However, these er-
rors tend to increase during the last hypothetical amplified test event. This
could be attributed to two possible reasons. Firstly, it is possible that the
manipulated amplified boundary conditions do not align with the natural
patterns in the history record, making it challenging for the model to
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Hurricane Irma

Our Proposed Method

Numerical Model (Truth in this paper)

Tropical Storm Isaias

Our Proposed Method

Numerical Model (Truth in this paper)

Hurricane lan

Our Proposed Method

Numerical Model (Truth in this paper)

Amplified Hurricane lan

Our Proposed Method

Numerical Model (Truth in this paper)

Fig. 6. Predicted water depth (our method) and HEC-RAS simulated water depth (ground truth) at maximum inundation timestep under different hurricane conditions.

provide accurate predictions, as these patterns are not represented in the
training dataset. Alternatively, the issue may be also due to the fact that
the total inundation area and the severity of the flood during the amplified
lan event surpass the extent covered in the training dataset, effectively
transforming the problem into an extrapolation challenge.

4.2. Error metrics

Accuracy, precision, and recall are three commonly used metrics for
assessing flood map predictions (Anbarasan et al., 2020). These metrics
are derived from the values of true negatives (TN), false positives (FP),
true positives (TP), and false negatives (FN). In the context of our
flood map prediction, TN represents the total count of cells that were
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both simulated as covered by water and correctly predicted as covered
by water. FP stands for the total count of cells that were simulated as not
covered but were incorrectly predicted as covered by water. FN denotes
the total count of cells that were simulated as covered by water but
were incorrectly predicted as not covered by water. Lastly, TP value
means the total count of cells that were simulated as not covered by
water areas and were correctly predicted as not covered by water. The
values of these four basic metrics for our proposed method under four
test events are depicted in Fig. 9.

Accuracy is used as an error metric to evaluate the correctness of
flood detection and can be represented by Eq. 6. Precision, on the
other hand, is a metric that assesses the accuracy of attributes in the so-
lution concerning the data. Specifically, it is the ratio of correctly
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(a) (b)
© (d)

Fig. 7. Prediction error map for different test events: (a) Hurricane Irma; (b) Tropical Storm Isaias; (c) Hurricane lan; (d) Amplified Hurricane Ian.

predicted flooding cell numbers to the total predicted flooding cell using Eq. 8. Critical success index (CSI) is used to measure the accuracy
numbers, as defined in Eq. 7. Recall evaluates the effectiveness of the so- of forecasts and the value of warnings, which is calculated using Eq. 9.
lution from the proposed method in retrieving the correct data attri- The F1 score (as shown in Eq. 10) is calculated as the harmonic mean
butes. In simpler terms, recall is the ratio of successfully predicted of precision and recall, providing a balanced representation of both met-
flooding cell numbers to the total flooding cell numbers, calculated rics in a single, unified measure. Additionally, as our proposed method
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Fig. 8. Predicted water depth and HEC-RAS simulated water depth (ground truth) along the main river channel at maximum flood map: (a) Hurricane Irma; (b) Tropical Storm Isaias
(c) Hurricane Ian; (d) Amplified Hurricane lan.

146



Z.Yin and AS. Leon

Hurricane Irma

(@

Hurricane Ian

(©

lan; (d) Amplified Hurricane lan.

HydroResearch 8 (2025) 139-151

Tropical Storm Isaias

(b)

Amplified Hurricane Ian

(d)

Fig. 9. True positives (TP), false positives (FP), false negatives (FN), and true negative (TN) values for four different test cases: (a) Hurricane Irma; (b) Tropical Storm Isaias; (c) Hurricane

provides water depth in each cell rather than a Boolean value in previ- g1 — 2+TP (10)
ous research (Bui et al,, 2020; Nemni et al., 2020; Mufioz et al,, 2021), 2«TP+FP+FN
we can implement other commonly used error metrics to measure ac- .
curacy. Mean Absolute Error (MAE, shown in Eq. 11) and Root Mean Z (Yprediction — Yirue)
Square Error (RMSE, shown in Eq. 12) are widely utilized for comparing MAE = =1 (11)
two arrays. MAE calculates the average absolute difference between the n
elements of the two arrays, while RMSE calculates the square root of the .
average squared difference between the elements of the two arrays. Ad- > (Y prediction — y[me)2
ditionally, R-squared (R2, shown in Eq. 13) is a well-known parameter ~ Rp\SE — | =1 (12)
that measures the proportion of the variance in one array that is predict- n
able from the other array. Critical success index (CSI) n
2
Y diction — the)
TP + TN 5 = ( prediction
ACCUracy =15 Fp o FN + TN ©®  R=1-75 (13)
y (Ypredictian - predicn’on)
TP =
Precision = —— (7)
TP+ FP where Ypedicrion represents the proposed model output, Y pregiction Stands
P for the mean value of the model outputs, Y. represents ground truth,
Recall = TP FN (8) Yuue Stands for the mean value of the ground truth, and n means the
number of total sample points.
csI P 9 Table 1 summarizes the aforementioned performance metrics for
" TP+ FP +FN ®) our proposed method across the four test scenarios. Overall, the six
Table 1
Performance metrics of proposed method under test cases.
Hurricane Tropical Storm Hurricane Amplified
Irma [saias lan Hurricane lan
Accuracy 0.99443 0.99974 0.99816 0.98867
Precision 0.95232 0.99197 0.96949 0.99944
Recall 0.99625 0.99971 0.97507 0.91510
csl 0.94892 0.99168 0.94605 0.91463
F1 0.97379 0.99582 0.97228 0.95541
MAE [ft] 0.00498 0.00072 0.00282 0.02475
RMSE [ft] 0.02194 0.00523 0.01789 0.08261
R2 0.99994 0.99999 0.99995 0.99919
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Table 2
Parametric study of transformer encoder layer.
0 layer 1 layer 4 layers 8 layers
MAE [ft] 0.01389 0.01220 0.00717 0.01011
RMSE [ft] 0.07821 0.06444 0.03974 0.05634

metrics indicate strong alignment with the ground truth data, as values
of 0.9 are generally considered a good threshold for accuracy, precision,
and recall, while a threshold of 0.7 is typically regarded as good for the
CSI and F1 score. The test case of Tropical Storm Isaias shows the best
performance because there is no overland flood involved so that
mabkes it a relatively simpler condition. As the area of overland flooding
increases, all performance metrics are observed tend to decrease, indi-
cating overland flood prediction is still a very challenging issue, as illus-
trated in Figs. 6 and 7. Notably, the precision value is lower than other
metrics in the Hurricane Irma event, suggesting that our proposed
method tends to over-predict the flood area under this scenario. Con-
versely, in the Amplified Hurricane lan event, the recall value is signifi-
cantly lower than the others, indicating an overall underestimation of
the total flood area. The prediction for the Hurricane Ian case holds a
general balance between overestimation and underestimation. The Am-
plified Hurricane Ian test case exhibits the worst metric indexes in MAE,
RMSE, and R2, indicating larger prediction errors compared to the other
test cases. This observation aligns with the visual errors depicted in
Fig. 6 and Fig. 7. The larger prediction errors observed in the amplified
Hurricane Ian test case imply a potential need for enrichment of heavy
flooding training cases.

4.3. Model architecture study

The Transformer encoder is designed to transform tabulated time se-
ries data into a 2D feature map, and then the U-Net structure processes
the 2D feature map along with geophysical data to make the final pre-
diction. Both components offer flexibility in determining the depth of
higher-level features. In the Transformer encoder, the multi-head self-
attention and MLP block are typically repeated multiple times, as de-
noted by Nx in Fig. 2, to achieve optimal performance. Therefore, we
conducted a parametric study to determine the number of layers
needed to achieve the best performance, and the results are shown in
Table 2. In this section, we compute error metrics based on the entire
test set to streamline the paper. Consequently, some metrics, such as ac-
curacy, precision, recall, and R2, may no longer be suitable for the com-
bined dataset.

In Table 2, “0 layers” indicate the absence of Transformer encoder
layers in our designed model, resulting in the highest error. As the num-
ber of Transformer encoder layers increases to 4, the proposed model
achieved its optimal performance in our dataset. The MAE and RMSE

Table 3
Parametric study of U-Net depth.
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remain relatively low even without the Transformer encoder layers,
mainly because most data points fall under the TN category in Fig. 9,
meaning the majority of pixels have zero water depth. As a result, the
model's performance without Transformer encoder layers may appear
worse than the error metrics suggest. In such case, small increases in
error are more significant than they may intuitively seem. The Trans-
former encoder layers can reduce the error by half, highlighting their
critical role in improving the model's understanding of time-series
data and generating a more effective feature map for the subsequent
U-Net processing. In previous computer vision studies (Dosovitskiy
etal., 2020; Ding et al., 2021; Dou et al., 2022), employing deeper trans-
former encoder layers, up to 8 or 12 layers, demonstrated improved per-
formance. However, such performance benefits were not observed in
this study. The discrepancy may be due to the fact that those studies
trained on very large datasets, typically with over 10 million samples.
However, in our flood map case, accessing such a large number of train-
ing samples is usually not feasible in practice.

Another key element of our proposed method is the U-Net. There are
no established guidelines on how deep the extraction of high-level fea-
tures should go. Previous research typically extracted features to 4-6
layers with channel counts ranging from 512 to 2048. Therefore, we
conducted a parametric study to explore the number of layers that
would achieve the best performance. We utilized the optimal trans-
former encoder layers of 4 as found above for this investigation. The re-
sults of the parametric study on U-Net depth are presented in Table 3.
The model performs better as the number of layers increases, reaching
its optimal performance at 5 layers (1024 channels) in our dataset.
This suggests that extracting higher-level features indeed contributes
to improved model performance. The potential reason for the sharp per-
formance drop when the number of layers increases to 6 is that highest
level features map may become too small. Since the original resolution
of our flood map is 576 x 384, the highest-level feature map resolution
after 6 layers of condensing would be reduced to 18 x 12. Extracting a
medium-resolution map into a total of 216 elements may lead to the
issue of over-extraction.

In our proposed method, three feature maps, elevation, slope, and
Manning's coefficient, were integrated with processed boundary condi-
tions before entering the U-Net. These three features remain constant
and do not change with boundary conditions or events throughout all
training and test datasets. However, as indicated by Eq. 5, these features
are crucial for predicting the flood map. Thus, we conducted a test on
feature reduction to assess the model's performance with a reduced
universal feature map. The results of this study are presented in Table 4.

As Table 4 shows, the model's performance declined when the slope
information was removed. However, when either elevation or
Manning's coefficient information was removed, the learning curve ini-
tially dropped, but it soon plateaued. The output essentially converged
to the mean value everywhere, indicating that the model struggled to

3 layer (up to 256 channels)

4 layer (up to 512 channels)

5 layer (up to 1024 channels) 6 layer (up to 2048 channels)

MAE [ft] 0.01129 0.00837 0.00717 0.01818
RMSE [ft] 0.061922 0.04405 0.03974 0.091037
Table 4
Coupled feature number study.
Only Manning's coefficient Only elevation Elevation and Manning's All features
MAE [ft] Not learnable Cannot converge 0.02132 0.00717
RSME [ft] Not learnable Cannot converge 0.10062 0.03974
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learn complex patterns without sufficient assistance from geophysical
information. In the absence of elevation or Manning's coefficient infor-
mation, the model struggled to optimize, and the loss remained at a per-
sistently high initial value. Thus, while slope information contributes to
the model's understanding of the dataset, elevation and roughness in-
formation are crucial for the model's regression capabilities. This con-
clusion also matches the information from Eq. 5 as well.

A notable observation based on this entire parametric study section
is that altering the model architecture often leads to only slight modifi-
cations in performance, whereas selecting or providing enough essen-
tial physical information tends to have a much more significant
impact on machine learning models.

5. Discussion
5.1. Benefits and drawbacks of using our proposed method

The primary advantage of our proposed approach lies in its capabil-
ity to integrate speed and high accuracy. With our method, when deal-
ing with the 7-day rainfall event, obtaining the maximum flood map
takes only 5 s when using Nvidia RTX 4070, whereas running a high-
fidelity full-momentum HEC-RAS model averages around 3 h when
using AMD Ryzen 5090x. This significant reduction in computation
time can have a significant impact on decision-making and execution
stage during large stormwater events. In the context of flood emergency
evacuations, where every second matters, this fast prediction could pro-
vide huge value. Another area where a rapid response is highly benefi-
cial is flow optimization problems. Traditionally, researchers and
engineers have to use 1D models as response surfaces, predictive
models, or environments to integrate with optimization algorithms
due to the large time requirements of 2D models. Most optimization al-
gorithms typically require running the response surface or predictive
model thousands of times to obtain the optimal results. However, run-
ning a 2D model once can take hours, making the entire optimization
process significantly less valuable in practical problems. Although
using 1D model are generally faster, they face challenges in accurately
providing overland flood information since both sides of the cross-
section are typically treated as walls in the numerical solvers. Our pro-
posed method can address this issue, making flow optimization on a
2D predictive model feasible.

Another benefit of our proposed model is its simplicity in usage. In
traditional numerical methods, researchers and engineers are required
to generate the mesh, considering many factors such as the Courant
number, mesh refinement, numerical scheme, and instability. Con-
ducting a correct high-fidelity simulation often demands modelers to
have a certain amount of background knowledge in numerical methods,
mathematics, and physics. As a regression model, our proposed
methods are much more user-friendly, particularly for individuals with-
out extensive knowledge of mathematics.

However, our proposed method has certain limitations and draw-
backs compared to conventional methods, as shown in Table 5. Besides,
the advantages, a key limitation or drawback of our proposed method is

Table 5
Pros and Cons comparison between our method and numerical methods.

Our proposed Numerical methods

method

<10 s

Minimal background
knowledge required
Yes

Not supported yet

~3h

Require certain background
and engineering knowledge
Yes

Can access

Computation Speed
User-friendly

Scalable

Other flood information
(e.g. Flood Wave Arrival
Time; Time to Peak Flood)
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that it is designed specifically for predicting maximum flood hazard
maps and cannot compute other important flood information, such as
peak discharge, flood wave arrival time, and time to peak flood.
Fortunately, this limitation can be easily addressed even within the
same framework we proposed. By generating time series map informa-
tion (a three-dimensional temporal-spatial map) and using it as training
output data, we can create a series of maps that resemble a video like in-
formation, enabling access to this important flood information.
However, this approach will require a GPU with larger memory. Given
the limitations of our available hardware, we are unable to fully realize
this goal. We strongly recommend that future research explore this di-
rection further. To address this issue, we believe that developing dedi-
cated deep learning models for each key metric (flood wave arrival
time, and time to peak flood) might be a practical compromise for
practitioners.

5.2. Is it necessary for the computational domain to be rectangular?

The short answer is partially yes. The only supporting shape for the
domain of interest is rectangular since the Convolutional Neural Net-
work (CNN) inside our U-Net Residual Block, can only operate within
a rectangular shape. However, this does not imply that the watershed
or catchment domain must be rectangular, nor does it mean that the
boundary of the domain of interest needs to be predetermined. As
shown in Fig. 10, the shape of the watershed or catchment can take
any irregular shape, and the boundary conditions are positioned at the
edge of this irregular shape. Many pervious research have proved that
water depth and flow rate in any cross-sections can be trained and in-
ferred as non-flooding 1D scenarios using neural networks (Kabir
et al., 2020; Nguyen, 2020; Pan et al., 2020; Ahmed et al., 2022;
Castangia et al., 2023; Shi et al., 2023). Similarly, in our scenario, I1, 12,
I3, and O1 can be auto-regressed as internal variables based on the wa-
tershed boundary, upstream boundaries 1, 2, 3, and downstream
boundary, respectively. In this case, Eq. 5 still holds as the boundary at
the domain of interest can be internally inferred by the watershed
boundary in neural network model. Thus, the proposed method could
handle almost all types of watersheds and catchments. In the case
study presented in this paper, the catchment is also in an irregular
shape, yet accurate predictions are still achieved since our domain of in-
terest is a rectangular shape.

5.3. Limitations of this work

There are two major limitations found in this study. Firstly, our neu-
ral network model heavily relies on GPU memory. In our proposed
method, the GPU memory requirements depend on the resolution of
the target flood map, which is somewhat equal to the total grid number
in the numerical method. The resolution of our case study is 576 x 384,
equivalent to approximately 221 thousand grid points. This resolution is
still trainable for almost all types of GPUs. However, after testing larger
resolutions, we discovered that an 8GB GPU memory can only handle up
to roughly 300-400 thousand pixels (computational grids) in the train-
ing phase. Thus, applying our proposed method to train and predict very
large watersheds at high resolution could be challenging due to hard-
ware limitations. Handling such large cases would require one or
more industrial-level GPUs to manage the computational demands
effectively.

Secondly, our proposed method falls into the category of a “small
model” in the definition of machine learning. This implies that one
model only works for a specific domain, and retraining is necessary if
we want to predict another domain. Although our method may have
potential to function as a “large general model,” we are unable to test
and prove this because the massive amount of data is usually required
for training larger models, which we currently lack the ability to collect.
How to generate our model to a universal model could be a good topic
for the future research.
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Fig. 10. Illustration of watershed boundary and domain of interest boundary.

6. Conclusion

This paper presents a framework for the direct, rapid, and accurate
prediction of riverine flood maps based on given boundary conditions.
Predicting flood hazard maps with detailed water levels for each geo-
graphical pixel represents a significant advancement, as it offers more
valuable insights for practitioners compared to previous studies focused
on flood susceptibility maps. Our approach requires minimal training
data and can perform accurately even with a small dataset, producing
high-resolution flood maps with depth information in approximately
5's, as opposed to the roughly 3 h required by traditional numerical
methods. This drastic reduction in computational time offers significant
advantages for flood emergency evacuations and flow optimization
problems. The model's performance has also been thoroughly evalu-
ated, demonstrating high accuracy. The key findings are summarized
as follows:

Our approach can accurately predict water depth in both the channel
and overland flood areas. The mean absolute errors range from
0.00072 to 0.02475 ft, while the root mean square errors range from
0.00523 to 0.08261 ft. Additionally, the other three metrics, accuracy,
precision, and recall, also proved the performance of our proposed
model.

Upon testing hyperparameters in our model, we found that using 4
layers of transformer encoder and 5 layers of U-Net can provide the
best performance for our study area.

Choosing or providing sufficient physical input information has a
much more significant impact than altering the model architecture
in our riverine flooding prediction problem.

Open research

All Al codes, script code and all data can be found at [https://github.
com/ZedaYin/Riverine-Flood-Hazard-Map-Prediction-by-Neural-
Networks] for better demonstration and will be permanently available
when the article is eventually accepted. Partial data on which this article
used for modeling are available in Yin et al. (2024).
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