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Abstract: In recent years, many researchers have used machine learning approaches to bridge the relationship between big data and physics
in the practical engineering field. However, the widely used machine learning models are highly dependent on the quality and quantity of data.
These long-term monitoring data usually are expensive to obtain in water system. This paper presents a novel neural network structure, the
physics-informed neural network (PINN), which can implement the shallow-water equations (SWEs) directly so that the training stage is
based fully on physical laws. Similar to numerical models, our PINN model requires the same data as the numerical method, e.g., boundary
conditions, the digital elevation of the terrain, and so forth. Because the SWEs are solved directly in our framework, this framework can be
understood as a data-free method. The PINN was tested using two case studies: a flow spike in a hypothetical trapezoidal channel, and a
historical scenario of downstream Cypress Creek, Houston. The results indicated great agreement with the widely used numerical solver,
HEC-RAS. DOI: 10.1061/JHEND8.HYENG-13572. © 2024 American Society of Civil Engineers.
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Introduction

Shallow-water equations (SWEs) are the most important and only
governing equations for open-channel flow in computational hy-
draulics (Brunner 2002; Zhou 1995; Stansby and Zhou 1998; Toro
1992; Palu and Julien 2020). In the last few decades, numerical so-
lutions have been considered widely as the most effective approach
for solving nonlinear partial differential equations (PDEs), includ-
ing Navier–Stokes equations, SWEs, and so forth (Desrochers et al.
2020; Labuhn et al. 2020; Eivazi et al. 2022; Huang et al. 2022;
Hu and McDaniel 2023). However, the numerical method needs

to balance many aspects in real applications (e.g., order of scheme
accuracy, numerical convergence, and Courant numbers). In recent
years, many researchers have investigated new techniques to
solve the nonlinear PDEs for conventional engineering problems.
Machine learning (ML) is one of the rapidly rising and latest tech-
niques that have been used widely in the engineering field. Deep
learning (DL) models can bridge approximation relations between
input and output variables by conducting multiple elementary op-
erations constructed by artificial neural networks (ANNs). The loss
function normally is constructed to describe the difference between
ANN outputs and observational ground truth [mostly using mean
squared error (MSE) or mean absolute error (MAE)]. By minimizing
the loss function, ideally to zero, through various optimizations, an
ANNmodel can predict results that are very close to the real solutions.

In hydrology and hydraulics, a number of previous studies
achieved great success by using this end-to-end, black-box ML
model (Tamiru and Dinka 2021; Zhao et al. 2019; Sadler et al.
2018; Adnan et al. 2021; Li and Brewer 2020; Bui et al. 2020; Kim
and Kim 2020; Sriram 2021; Wu et al. 2020; Zahura et al. 2020;
Zhang et al. 2020). Shi et al. (2023) evaluated the performance of
five distinct deep learning models in predicting water stages at the
Miami River. The training data set was obtained from the historical
records, and the deep learning models demonstrated superior per-
formance compared with the numerical solver, particularly when
the training data were sufficient. Song et al. (2023) introduced a
model based on point-to-point methodology for predicting flow
patterns around bridge piers within a channel. This approach effec-
tively handles the training data derived from unstructured meshes.

Conventional image-based networks such as convolutional neu-
ral networks (CNNs) used to have difficulties to deal with those
image data from unstructured meshes. However, this end-to-end,
black-box ML model has several drawbacks. Firstly, this type of
ML model requires a large amount of data for training, and this
amount is even higher for DL models. Obtaining such an amount
of data is very difficult, and normally expensive. DL models often
provide low-accuracy results if the training data set is not sufficient.
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Secondly, because this type of ML is a pure black-box model, the
computation process is almost impossible to interpret and transfer
to human knowledge. This situation often is described as data rich,
knowledge poor (Iskhakov and Dinh 2020). Lastly, not all of these
DL models are physics-based or partially physics-based. For non-
physics-based models, the model output cannot reflect the changes
in physical conditions, so the model output is completely uncon-
strained by physics, therefore, the model may provide an inaccurate
or even nonsense output when the physical conditions change. For
partially physics-based models, sufficient physics input variables
are fed to ML models to obtain the outputs. For example, the den-
sity of the fluid, the acceleration of gravity (which sometimes can
be ignored because it is constant in most cases), and the height of
the fluid above the object can be used as input features to feed the
ML model to obtain the hydrostatic pressure. Research shows that
this method is physics-based and its output can reflect the change in
physical conditions. However, machine learning can only partially
fit the physical law constraint in most cases because it is impossible
for the training data set to cover the entire possible domain. These
partially physics-based ML models may perform well if the test
data are within the range of the training domain, but they may pro-
vide a larger error if the test data are far from the training domain
(Willard et al. 2020). This problem is even more obvious when the
physics law is very complex.

To overcome this problem, a new class of deep learning models,
called physics-informed neural networks (PINNs), have been de-
veloped in recent years (Cai et al. 2021b). Instead of minimizing
mean squared error from training data, PINNs minimize the L1 or
L2 norm of the loss function that is constructed by the governing
equations (which primarily are PDEs). PINNs have achieved great
success in many fields, including computational fluid dynamics
(CFD) (Eivazi et al. 2022; Huang et al. 2022; Hu and McDaniel
2023; Iskhakov and Dinh 2020; Mao et al. 2020; Yang et al. 2019;
Jin et al. 2021), heat transfer (Cai et al. 2021a; Bararnia and
Esmaeilpour 2022), and so forth. Some researchers applied PINNs
to solving SWEs as well. Bihlo and Popovych (2022) applied a
PINN to solve the spheric atmospheric waves problem. De Wolff
et al. (2021) discretized hyperbolic ocean modeling equations using
the finite-element method and solved for ocean systems using a
PINN. Hurler (2021) ignored the digital elevation terrain effect
and solved the one-dimensional (1D) shallow-water equation on
a very small scale.

Despite the rapid growth of the PINN approach in the last 3–
4 years, its application to SWEs, as well as to the broader fields
of hydrology and hydraulics, remains understudied. Although sev-
eral studies have attempted to utilize PINNs to solve PDEs, most of
them have concentrated on solving other PDEs such as the Navier–
Stokes and Burgers equations. Only Hurler (2021) endeavored to
apply PINNs to the SWEs. Unfortunately, Hurler focused on an
ideal microscale scenario, and completely neglected the impact
of terrain and bathymetry changes and friction, which is far from
application level. Moreover, the commonly used flow rate form of
SWEs has never been investigated in PINN-related work. In addi-
tion, many studies could not minimize the loss function to a suffi-
ciently low level, so the PINN error is large, which makes it hard to
use in real applications. Most importantly, rivers, canals, natural
streams, and creeks are naturally open-channel flow, and their water
stages and flow rates are heavily influenced by the terrain. Accord-
ing to authors’ knowledge, there is no existing PINN framework
that can solve these open-channel flow problems with the consid-
eration of the terrain information and friction. This study not only
applies the state-of-the-art PINN approach to the hydraulic field,
but also provides a fundamental and highly extensible framework
for future research to build upon.

To achieve the objective, this paper provides a detailed account
of how to apply the PINN approach to solve open-channel prob-
lems in a riverine system. The PINN can work as a surrogate model
for conventional numerical models (e.g., HEC-RAS). Our PINN
model takes exactly the same input variables as HEC-RAS and
provides the same output variables. The hydraulic parameters are
calculated numerically using the terrain shape data extracted from
the digital elevation model (DEM). The numerical calculation
process is coupled into our code. To overcome the accuracy prob-
lem and training time problem, we improved the original PINN
framework by adding weights to the loss function components
and training neural networks using the multistage method, which
is presented in detail in the “Methodology” section. To better dem-
onstrate the approaches and results, this paper employed some case
studies to explore the effect of different forms of SWEs and differ-
ent study areas. After the construction, the PINN was tested using
two different cases: a hypothetical scenario, and a historical sce-
nario on downstream Cypress Creek, Houston.

Methodology

One-Dimensional Shallow-Water Equations

One-dimensional SWEs (the unidirectional form is called the
Saint-Venant equations) can be derived from Navier–Stokes equa-
tions after a few assumptions. Because it assumes that pressure
distribution is approximately hydrostatic pressure, the classic
pressure–velocity coupling problem does not exist. Due to the ben-
efits of these simplifications, One-dimensional SWEs are used
widely in large-scale hydraulic systems as governing equations.
One-dimensional SWEs consist of the mass conservation equation
and the x-direction momentum equation. According to Chaudhry
(2014), the SWEs for cross-sections of arbitrary shape can be
written

∂U
∂t þ ∂F

∂x ¼ S ð1Þ

where the vector variable U, the flux vector F and the source term
vector S are given by

U ¼
�
A

Q

�
; F ¼

24 Q

Q2

A
þ gI1

35; S ¼
�

0

gAðS0 − SfÞ

�
ð2Þ

where A = cross-sectional wetted area; Q = flow discharge in cross
section; gI1 = hydrostatic thrust; Sf = friction slope; S0 = elevation
slope of terrain; t = time; and x ¼ x-direction coordinate. The
hydrostatic thrust part can be expressed as (Franzini and Soares-
Frazão 2016)

g
∂I1
∂x ¼ gA

∂h
∂x ð3Þ

where h = free surface water elevation.
The friction slope in fluid dynamics cannot be calculated

analytically. In North America, the most common method to obtain
the friction slope is using Manning’s equations. By rearranging
Manning’s equations, we can express the friction slope as Eq. (4).
The elevation slope of the terrain can be calculated based on the
change of riverbed slope based on the DEM and bathymetry data.
The elevation slope of the riverbed can be expressed as Eq. (5)

Sf ¼
�

nv
KR0.667

�
2

ð4Þ
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S0 ¼ − dz
dx

ð5Þ

where n denotes Manning’s roughness coefficient, which is set to
0.013 for the hypothetical case in this paper to represent a concrete
channel (Chow 1959); v = flow velocity in the cross section; K is a
unit conversion factor (1 for SI units, and 1.486 for imperial units);
R = hydraulic radius; and z = bed elevation value from a certain
datum.

There is no analytical approach for the calculation of the
hydraulic parameter because the cross-sectional terrain shape is
mostly highly irregular and complex. The numerical approach to
calculate these hydraulic parameters is discussed in the following
section. However, these hydraulic parameters [wetted cross-
sectional area (A), wetted perimeter (P), hydraulic radius (R), and
top width of river (B)] are dependent only on the cross-sectional
water depth and terrain shape. The terrain shape can be obtained
using the DEM and bathymetry. Thus, if we use DEMx to denote
the raster digital elevation data at all cross sections, we can express
these hydraulic parameters in the form of Eq. (6). Furthermore,
by substituting these hydraulic parameters into 1D SWEs, we
can express the entire SWEs as a form of Eq. (7)

½A;R;P;B� ¼ fðDEMx; hÞ ð6Þ

½v; h� ¼ fðx; t;DEMxÞ ð7Þ

By the nature of the neural networks, a PINN approximates the
unknown function by stacking elementary operations using the in-
put variables X, weights W, and bias b. As the input of the neural
networks, two input variables x and t for solving SWE can be ex-
pressed as a two-dimensional matrix: X ¼ ½x; t�. The output of the

neural networks also is a two-dimensional matrix, Y, which con-
tains the predicted solution to SWEs (transport scalars v̂ and ĥ).
Thus, the entire calculation process can be expressed as a function
of input variables, weights, and bias

½v̂; ĥ� ¼ NNW;b ¼ ΦðWX þ bÞ ð8Þ
where Φ is the activation function of the neural networks.

PINN Framework

Most PINN frameworks have three steps for solving the problem: a
forward step, loss function construction, and a backward step. The
overall PINN framework diagram for 1D SWEs used in this paper
is shown in Fig. 1.

In the forward step, a fully connected neural network is em-
ployed to predict the output, v̂ and ĥ. The ANN used in this frame-
work predicts v̂ and ĥ from input variables x and t exactly as
any other ANN would. However, the key difference between a
PINN and standard methods lies in the subsequent step. When
the equation outputs, v̂ and ĥ, are predicted, automatic differentia-
tion can be used to obtain the partial derivative terms. The detailed
process of automatic differentiation is presented in the “Automatic
Differentiation” section. In addition, with the information of DEM
data, the numerical methods are employed to obtain four hydraulic
parameters: A, R, P, and B. Because all these elements are avail-
able, it is possible to construct the mass and momentum of SWEs as
Eqs. (1) and (2). In this paper, the most frequently used unsteady
flow boundary condition (BC) types are the flow hydrograph
for upstream and the stage hydrograph for downstream. The
boundary conditions are coupled into the framework, which is dis-
cussed in detail in the “Coupling Boundary Conditions” section.

Fig. 1. (Color) Physics-informed neural network framework diagram for 1D shallow-water equations.
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Before constructing the loss function, L2 norm operation is added
on both the shallow-water equations and the boundary conditions
to ensure that the loss value is always positive in this paper. The
L2 norm operation can be expressed as

kXk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiXn
k¼1

X2
k

s
ð9Þ

where X = difference between prediction value and target value;
and n = total number of sample points.

In this paper, the loss function is constructed by the summation
of four components: loss from the mass equation, loss from the
momentum equation, loss from the upstream boundary condition,
and loss from the downstream boundary condition. When the loss
function is constructed, the backward process can be conducted. In
the backward process, the Adam optimizer (Kingma and Ba 2014)
is employed to optimize the loss function. The final loss function
value is sent back to the beginning of the framework to achieve a
closed-loop optimization.

Automatic Differentiation

The differentiation in the conventional numerical methods is calcu-
lated approximately using the discretization, and its accuracy is
highly dependent on the order of the scheme. Furthermore, many
problems can occur during this procedure, such as convergence,
conservativeness, boundedness, and transportiveness. One of the
benefits of neural networks is that the partial derivatives can be
calculated easily using automatic differentiation. Thus, these prob-
lems do not exist in this framework. Automatic differentiation used
in this framework can calculate the partial derivatives of neural
network outputs evaluating their trace of composition. Because
the computations in the neural networks consist of a finite set of
elementary mathematical operations, the values in each elementary
operation are known, and the derivatives can be calculated. Thus,
the partial derivatives of the neural network outputs can be calcu-
lated by forward propagating the derivatives of each elementary
mathematical operation (Baydin et al. 2018; Verma 2000). Auto-
matic differentiation is used to compute the derivatives of con-
structed variables, which are then applied in the backward
optimization process.

Numerical Calculations on Hydraulic Parameters

The hydraulic parameters at each cross section are needed in order
to construct the SWEs. These hydraulic parameters usually are dif-
ficult to obtain analytically because the shape of the cross sections
usually is highly irregular and complex. To overcome this problem
and generalize the framework, a numerical method based on DEM
data is used in this work to obtain the hydraulic parameters A, R, P,
and B. From the DEM data, we can obtain a finite number of sam-
ple points depending on the DEM resolution. Each sample point
contains two values, [a, b], where a is the cross-sectional distance
from the start point, and b is the elevation of these sample points.
To simplify the numerical calculation, the x-axis is transformed
from the original position to the predicted water depth by sub-
tracting the entire elevation value from the predicted water depth.
The transformation for numerical calculations is presented in
Fig. 2.

After the transformation, all sample points with positive eleva-
tion values can be ignored. The remaining sample points, from Nk
to Nm (Fig. 2), are used for the numerical calculation. By applying
the trapezoidal rule, the cross-sectional wetted area can be ex-
pressed as Eq. (10). The wetted perimeter can be written as the

summation of the truncated length of all neighboring points
[Eq. (11)]. The hydraulic radius [Eq. (12)], is obtained simply
by dividing the cross-sectional wetted area by the wetted parame-
ters. Because the water free-surface always is parallel to the x-axis,
the top width can be calculated by subtracting the first point from
the last point [Eq. (13)]

A ¼ −Xm−1

i¼k

ðbiþ1 þ biÞ � ðaiþ1 − aiÞ
2

ð10Þ

P ¼
Xm−1

i¼k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaiþ1 − aiÞ2 þ ðbiþ1 − biÞ2

q
ð11Þ

R ¼ A
P

ð12Þ

B ¼ am − ak ð13Þ

Coupling Boundary Conditions

Two major approaches can be used in coupling boundaries into the
framework: hard-written, and soft-optimization. The hard-written
approach can help obtain rapid convergence during the optimiza-
tion stage because the framework only needs to optimize the loss
functions based on two sets of equations: loss from the mass and
momentum equations. However, this hard-written approach gener-
ates restrictions on the computation domain, which significantly
influences the extrapolations. Therefore, to better generalize the
framework, the soft-optimization approach is used in this paper.
The framework of the soft coupling approach is shown in Fig. 3.

During one iteration of optimization, the predicted free-surface
water elevation, ĥ, and velocity, v̂, are treated separately based on
their origins. For internal nodes, predicted free-surface water eleva-
tion, ĥ, and velocity, v̂, are used to construct the SWEs, and then
used to calculate the loss from SWEs. For boundary nodes,
upstream predicted velocity, cvbc, and downstream predicted

free-surface water elevation, chbc, are used for the L2 norm opera-
tion with the given boundary conditions rather than constructing the
SWEs. By minimizing the mean squared error of two boundary
nodes, the boundary condition is coupled softly into the framework.

Fig. 2. (Color) Transformation for numerical method to calculate
hydraulic parameters.
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Improvements in PINN Framework to Solve
Large-Scale Problems

Dealing with large numbers always is an issue in deep learning.
All previous PINN frameworks were tested only at the small
scale—most tested domains ranged from −1 to 1. However, in real
hydraulic applications, the computation domain of the variables
usually has a large scale, ranging from 103 to 105 m. In addition,
the input hydrograph often contains large numbers, especially
when using flow rates as input. These situations may result in lack
of convergence, dead neurons, and gradient vanishing problems. To
overcome these problems, the linear activation function exponential
linear unit (ELU) is used in this paper, and two improvements are
added to the PINN framework: adding weights, and using multi-
stage training.

Adding Weights to Loss Function Components
According to the methodology of this framework, the loss function
for this framework consists of four components: loss value of up-
stream boundary conditions, loss value of downstream boundary
conditions, loss value of SWEs mass equation, and loss value of
the SWEs momentum equation. Ideally, these components should
be summed together to construct the loss function. However, this
will cause convergence and accuracy problems during the training
phase because some terms may be significantly greater than others.
For example, the loss value of downstream boundary conditions is
dependent on the magnitude of water elevation, h, whereas the loss
value of the SWEs mass equation is dependent on ∂h=∂t and
∂v=∂x. However, for all common cases, the values of ∂h=∂t, which
usually are 10−3 − 10−8, are significantly less than the value of
h (which usually is 100 − 102). In addition, the magnitude of
the upstream boundary (flow rate, Q) also will be significantly
greater than the magnitude of the downstream boundary (water
elevation, h) if the flow rate–based PINN in the section “Flow
Rate–Based 1D Shallow-Water Equations” is used. This different
order of magnitude problem will make the neural network biased
on certain components, which will heavily influence the output ac-
curacy. Normal ML and DL models solve this problem by using
normalization approach; however, the normalization approach tech-
nically cannot be added to this framework due to its nature.

To overcome this problem, we introduce and couple a weights
estimation method into this framework (Fig. 4). The idea of this
method is simple. We can manually multiply each loss function
component by four different weights to ensure that the orders of
the components are close before summing them together. The order

of output variables u and h can be estimated using the known boun-
dary conditions. Furthermore, Δx and Δt are dependent only on
how the cross section is divided and on the chosen timestep; there-
fore, the order of the partial differential elements in the SWEs also
can be estimated. The weight value is determined by the inverse
order of the estimated values of the four loss terms. This estimation
method is simple and intuitive, and it can be conducted easily in
Python.

There is no need to distribute the final weights of the four com-
ponents evenly, and it is undoable because the v and h are unknown
before the neural network is trained. The concept of this method is
to solve the large order of magnitude differences problem, and the
small order difference on each component of order difference
(within 104) will not influence the output at all after testing.

Multistage Training Strategy
SWEs have infinite sets of solutions if they are not constrained by
boundary conditions. Finding the final solution of SWEs is not time
efficient in PINNs when trying to optimize four components at the
same time, because the linear combination of SWEs always has
major changes when the boundary condition is changed during
the optimization. Ideally, it is better to optimize boundaries first,
then optimize two SWEs components. However, this is almost
impossible in a single neural network framework. To accelerate
the optimization during the training stage, we use a multistage
training strategy in this framework.

Fig. 3. (Color) Soft-optimization approach for coupling boundary conditions.

Fig. 4. (Color) Demonstration of weights estimation method to over-
come the significant order of magnitude difference problem.
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Because we added weights for each loss function component in
the last section, it is feasible to control the optimizer to emphasize
the desired components. The diagram of the multistage training
strategy is shown in Fig. 5. There are three stages for the entire
training process, and each stage has unique weights, W1–W4,
and learning rate, lr. Using superscripts to denote the stage number,
there are a total of 12 weights (W1

1;W
1
2; : : : ;W

4
3;W

4
4) and 3 learn-

ing rates (lr1; lr2; lr3).
During the first training stage, the optimizer is biased on BC by

enlargingW1
1 andW

1
2. This BC-biased training can help neural net-

works rapidly converge to boundaries. After the loss value meets
the first convergence criterion, weights W2

1 and W2
2 need to be de-

creased to balanced values, as stated in the last section, and it is
helpful to decrease lr2 as well to stabilize the convergence.

Optionally, W3
3 and W3

4 can be increased slightly to achieve
more-accurate results in the third stage. However, the third stage
is not mandatory, and it could be compromised if pursuing higher
time efficiency.

Loss Function Expression

The loss function of a PINN is designed to minimize both the data
mismatch at the boundary and the violation of physical laws. The
PDE residual term ensures that the neural network’s predictions
satisfy the underlying physical laws, which, in our case, are the
shallow-water equations. Based on Eqs. (1)–(4), the PDE residual
term is expressed as Eq. (14). Because our upstream boundary con-
dition is the flow rate or flow velocity, and the downstream boun-
dary condition in our study is the water stage, the boundary loss
terms are expressed as Eqs. (15) and (16). The total loss function,
which combines these terms, is expressed as Eq. (17)

Lphysics ¼
1

Nphysics

XNphysics

i¼1

���� ∂U∂t þ ∂F
∂x − S

����2 ð14Þ

Lup bc ¼
1

Nup bc

XNup bc

i¼1

jcvbc − vbcj2 ð15Þ

Ldown bc ¼
1

Ndown bc

XNdown bc

i¼1

jchbc − hbcj2 ð16Þ

Ltotal ¼ W1 × Lup bc þW2 × Ldown bc þ
�
W3

W4

�
× Lphysics ð17Þ

where Nphysics represents all collocation points; Nup bc represents
all upstream boundary points; Ndown bc represents all downstream
boundary points; and W1–W4 = weights that balance the contribu-
tions of each term, as mentioned in the previous section.

Hypermeters for This Study

In this study, a multilayer perceptron with 8 hidden layers, each
containing 80 hidden units, is used as the neural network architec-
ture. The rectified linear unit (ReLU) activation function is applied
to each layer, because neither the input nor the output variables can
be normalized in the PINN framework. The learning rates lr1, lr2,
and lr3 used in this study were 1 × 10−4, 1 × 10−5, and 1 × 10−6,
respectively. The weight decay was set to 1 × 10−16. A total of
9,000 epochs were used for all test cases. The collocation points
correspond to actual cross sections, with one interpolation point
between each neighboring pair of cross sections.

Results and Discussions

Two case studies are presented in this section to demonstrate the
performance of our PINN framework. The first case is a hypo-
thetical terrain with a flow and water stage spike on the boundary
conditions. The second case is a real stormwater event, from
May 24–29, 2014, that occurred on downstream Cypress Greek,
Houston.

Fig. 5. (Color) Diagram of multistage training strategy.
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Hypothetical Sudden Flow and Water Stage Spike in a
Uniform Trapezoidal Channel

The first case is a pure hypothetical test. To simplify the problem
and make it more artificially channel-like, we created a channel
with uniform trapezoidal cross sections [Fig. 6(a)]. To make the
case more realistic, the streamwise channel bed elevation was
nonlinear [Fig. 6(b)]. As the first case to test the model, the main
channel intentionally was 79.25 m (260 ft) long in total. This short
channel distance along with the uniform 3.05 m (10 ft) between
each cross section was used to determine if the PINN framework
can simulate the wave propagation.

Velocity-Based 1D Shallow-Water Equations
Neither term in Eq. (1), ∂A=∂t and ∂ðAvÞ=∂x, can be computed
directly as partial differentials because A lacks an explicit expres-
sion in neural networks. This issue also arises in numerical meth-
ods. Similar to the approach used in numerical methods, we assume
that the change in flow area,ΔA, for a small change in water eleva-
tion, Δh, can be approximated as BΔh. Substituting this into the
continuity equation obtains

∂h
∂t þ

A
B
∂v
∂x þ u

∂h
∂x ¼ 0 ð18Þ

To simulate the sudden flow and water stage spike, we created
upstream velocities and downstream water stages that changed

rapidly in 10 min. The details of both boundary conditions are
shown in Figs. 7(a and b).

To make the comparison more representative, we selected
three cross sections, the 20th, 15th, and10th cross sections down-
stream, to visualize the results. As mentioned, there were a total
of 26 cross sections in our hypothetical cases; therefore, the three
selected cross sections were located in the middle of the stream.
The PINN framework and HEC-RAS output for the velocity-
based shallow-water equation are shown in Fig. 8. Both velocity
and water stage profiles had good agreement. The mean ab-
solute error for all cross-sectional velocities and water stages
were 0.002743 m=s (0.009 ft=s) and 0.001219 m=s (0.004 ft),
respectively.

Flow Rate–Based 1D Shallow-Water Equations
Flow rate–based shallow-water equations are used more frequently
by engineers and researchers in North America. Most software,
including HEC-RAS and SWMM, use flow rate–based shallow-
water equations as their default. The flow rate–based 1D shallow-
water equations can be expressed as

B
∂h
∂t þ

∂Q
∂x ¼ 0 ð19Þ

∂Q
∂t þ ∂ðQ2

A Þ
∂x þ gA

∂h
∂x þ gAðSf − S0Þ ¼ 0 ð20Þ

Fig. 6. (Color) Hypothetical terrain details for the hypothetical spike case: (a) cross-sectional shape; and (b) streamwise bed elevation.

Fig. 7. (Color) Velocity based boundary conditions for the velocity based test case: (a) inlet velocity hydrograph; and (b) outlet water stage
hydrograph.
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The boundary conditions that were used to test the framework
were exactly same as those in the last section, but using flow rate as
the input parameter. Similarly, we chose the same three cross sec-
tions to visualize the results. The PINN framework and HEC-RAS
output for velocity based shallow-water equation is shown in Fig. 9.
Not surprisingly, the PINN can solve the flow rate–based 1D
shallow-water equations with good accuracy. The mean absolute
error for the PINN-predicted water stage was very close to that
of the velocity-based PINN, i.e., 0.0012 m (0.004 ft). The mean
absolute error was much higher for flow rate than for velocity be-
cause flow rate is at a much larger scale than velocity. In addition,
different orders of magnitude for two variables (flow rate and water
stage) without normalization could be another reason that flow rate
prediction was slightly worse.

Both velocity-based and flow rate–based PINNs worked well in
our hypothetical test case. However, in the real application case, the
order of magnitude was much higher than in this small test case.

Downstream Cypress Creek

Cypress Creek, located in Houston, flows from Snake Creek to the
west fork of the San Jacinto River, eventually flowing to the Gulf
of Mexico. The watershed has a drainage area of 691.53 km2

(267 mi2). Cypress Creek experiences two or three recurrent floods
per year on average (Tang et al. 2020), and it also had devastating
floods during Hurricane Harvey in August 2017. The downstream
region of Cypress Creek is a mainly urban area, northern Houston,
which makes the flood prediction valuable. The geographical

Fig. 8. (Color) PINN and HEC-RAS output for the velocity-based test case: (a, c, and e) velocity profile; and (b, d, and f) water stage profile.
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location of the downstream region of Cypress Creek is shown in
Fig. 10. The test rainfall event occurred on May 24–29, 2014,
which was a nearly 3-day rainfall event.

PINN Output
The HEC-RAS modeling of the scenario downstream referred to
Leon et al. (2021). The PINN model employs the exact same
set of parameters for the entire riverine system as the HEC-RAS
model used by Tang et al. (2020) and Leon et al. (2021). The origi-
nal model couples Hydrologic Engineering Center’s Hydrologic
Modeling System (HEC-HMS), so part of calculated runoff can
discharge from the stream at each cross section by lateral inflow.
The original model had a Nash–Sutcliffe efficiency ranging from

0.86 to 0.93, and R2 values ranging from 0.87 to 0.92 across four
validation events. To verify the proposed PINN framework, we
simplified the system by removing these lateral flows. To simplify
the model further, we also reduced the total number of cross
sections. The reference HEC-RAS model has 70 cross sections with
a cross section of about 121.92 m (400 ft). The terrain, bathymetry,
cross-section layout, and boundary conditions were identical in the
PINN and the HEC-RAS model in this paper. The PINN framework
and HEC-RAS output for the downstream Cypress Creek test case
is shown in Fig. 11. The MAE of the flow-rate prediction consis-
tently ranged from 0.0833 to 0.10083 m3=s (2.943–3.561 cfs),
which is very small considering that the actual flow rate scale is
0–11.326 m3=s (0–400 cfs). The MAE of the water stage prediction

Fig. 9. (Color) PINN and HEC-RAS output for the flow rate–based test case: (a, c, and e) flow rate profile; and (b, d, and f) water stage profile.
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ranged from 0.0152 to 0.079 m (0.050–0.259 ft). The PINN output
trend slightly underestimated both flow rate and water stage at the
test locations.

Response Surface
Based on the methodology of the PINN framework, the optimizer
iterates the neurons to fit the algebraic expression of specific 1D
shallow-water equations. Thus, the optimization response surface
is crucial in checking the difficulty of finding global minima for
the optimizer. In our problem, the optimization variables had high
dimensionality; therefore, it was unfeasible to plot the response
surface directly. To reduce the dimensionality and best visualize
the response surface, we selected an interior cross section and
traced its loss function values in every iteration. One-dimensional
shallow-water equations have only one set of real number solutions
when both boundary conditions are certain; therefore, global min-
ima theoretically must exist in our selected cross section. Because
the optimizer can only have a certain loss function value for each
iteration, the trisurface response surface was the only option for
visualization. The three-dimensional (3D) response surface of the
selected interior cross section is shown in Fig. 12, in which the
z-axis is the loss function value during the training phase. In Fig. 12
it is obvious that global minima exist, even though many local min-
ima appear to exist during the optimization stage. This also proves
that it is theoretically feasible for the PINN framework to obtain the
solution of the 1D shallow-water equations with small residuals.

Location-Wise Extrapolation
Although the entire framework of the PINN looks like an optimi-
zation method to determine the solution of 1D shallow-water equa-
tions, it essentially is a neural network. Thus, it is sensible that the
PINN can extrapolate the results. Because two input variables—
spatial parameter x, and temporal parameter t—were used as input
variables, we can extrapolate the results in both location and time
directions.

In the PINN, there is no location limit for extrapolation, which
means that we can extrapolate the result both inside and outside the
original computational domain. Inside computational domain, we
still can use the HEC-RAS XS interpolation function to generate
new cross sections as a reference. In the HEC-RAS XS interpola-
tion function, the model will interpolate the terrain information
from the upper and lower cross sections, instead of taking addi-
tional terrain information from the DEM. Similarly, no additional

terrain information is needed in the PINN extrapolation process
because the weights and biases are trained already. To compare
and visualize the results, we used HEC-RAS to interpolate two ad-
ditional cross sections: 4,906.97 and 8,159.49 m (16,099 and
26,770 ft) from the end of the simulated river. The extrapolation
inside the computational domain in the location-wise direction is
shown in Fig. 13. The location-wise extrapolation inside the com-
putational domain is still accurate. The MAE for the extrapolation
inside the computational domain is even smaller than the MAE
results in the “PINN Output” section.

One of the important features of this PINN framework is that it
can extrapolate even outside the computational domain. In this
case, there is no HEC-RAS reference that can be provided because
it is functionally unfeasible. To verify if the extrapolation outside
the domain is sensible, we tested two new locations: 457.2 m
(1,500 ft) above the original upstream location, and 457.2 m
(1,500 ft) below the original downstream location. As a compari-
son, we plotted the flow rate and water stage profile on the locations
of the original upstream and downstream boundaries (Fig. 14).
There was no significant difference in the results between boundary
locations and 457.2 m (1,500 ft) from the boundary locations. This
makes sense because 457.2 m (1,500 ft) is not long enough to make
a difference.

Time-Wise Extrapolation
Because a temporal parameter, t, also is one of the input variables
in the PINN, the PINN also can extrapolate in the temporal
direction. To verify the accuracy of temporal direction extrapola-
tion, we used the historical data recorded byWater Station 8069000
(Fig. 10) as a reference. To avoid overextrapolation, we extrapo-
lated only the next 30 h to visualize the result, which is sufficiently
long after the end of storm event. The PINN extrapolation andwater
station–recorded data are shown in Fig. 15. The mean absolute
error of the extrapolation results was similar to that of the non-
extrapolation prediction, and the trend fit the historical curve
very well.

Comparison of PINN Method and Other Well-Developed
Methods

The PINN method for solving 1D unsteady SWEs has several ad-
vantages and disadvantages compared with other well-developed
traditional methods.

Fig. 10. (Color) Geographical location of downstream Cypress Creek.
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Compared with numerical models (e.g. HEC-RAS), the PINN
method has the following advantages:
1. Its accuracy does not compromise the choice and order of

scheme accuracy, numerical convergence, or Courant numbers.
2. The PINN method has the ability to forecast the water stage and

flow rate at locations beyond the computational domain. In
HEC-RAS, the computational domain must be extended if a
location of interest falls outside the current domain, which
can be challenging if the next upstream or downstream station
is not readily available or is located far away. In such scenarios,
the PINN method can accurately predict the values at locations

slightly outside the computational domain with reasonable
accuracy.

3. It has the capability to perform timewise extrapolation, enabling
it to predict future timesteps and perform data imputation on the
current time range. Numerical models have no capability for pre-
diction. Prediction requires additional support of predicted rain-
fall data and hydrological models, which is far beyond the scope
of this discussion. In terms of data imputation, the common
methods to fill missing data in a few timesteps use linear regres-
sion or simple statistical models. However, neural networks have
repeatedly demonstrated superior accuracy compared with these

Fig. 11. (Color) PINN and HEC-RAS output for the downstream Cypress Creek test case: (a, c, and e) flow rate profile; and (b, d, and f) water
stage profile.
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Fig. 12. (Color) Response surface of during training.

Fig. 13. (Color) PINN and HEC-RAS inside computation domain extrapolation: (a and c) flow rate profile; and (b and d) water stage profile.
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simple statistical models (Jerez et al 2010; Saad et al. 2020;
Boursalie et al. 2022).
The PINN method also has two major drawbacks compared

with numerical methods. The first major drawback is training time.
The training and extrapolation cost of the PINN and HEC-RAS are
presented in Table 1. Multiple studies have indicated that the train-
ing of a physics-informed neural network is a slower process than
solving the same partial differential equations using numerical
methods (Raissi et al. 2019; Markidis 2021; Cuomo et al. 2022).

Fig. 14. (Color) PINN and HEC-RAS outside computation domain extrapolation: (a and c) flow rate profile; and (b and d) water stage profile.

Fig. 15. (Color) PINN temporal direction extrapolation and Water Station 8069000 recorded: (a) flow rate profile; and (b) water stage profile.

Table 1. Training and extrapolation cost

Model
Training and

simulation time
Extrapolation

time (s)

Hypothetical case
HEC-RAS 1 min —
PINN 14 h <0.1

Cypress Creek case
HEC-RAS 3 min —
PINN 29 h <0.1
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The present paper’s use of the PINN approach is no exception. The
second major drawback is that the PINN for solving 1D unsteady
SWEs still is not well-developed compared with numerical models.
To address complex riverine systems involving various hydraulic
structures (such as weirs, dams, reservoirs, and spillway gates),
our current implementation of the PINN model requires additional
theoretical or empirical equations to be incorporated. Despite its
potential, the PINN still requires further development compared
with well-established numerical methods.

Compared with traditional machine and deep learning methods,
the PINN approach offers several advantages
1. As mentioned previously, traditional machine and deep learning

models greatly rely on large quantities of high-quality training
data, which may be difficult or impossible to obtain for many
riverine systems. In contrast, the PINN approach, which is a
data-free approach, does not have this issue.

2. The traditional machine and deep learning methods are not con-
strained by any physical law in mathematics because they only
regress the existing training data. The PINN model incorporates
one or more mathematical expression of physical laws into its
framework. This feature enhances the reliability of the model,
particularly for rare or extreme conditions.
One disadvantage of the PINN approach is that it typically re-

quires more epochs to achieve convergence compared with tradi-
tional deep learning methods. Although this usually does not
mean that the PINN is slower, because it usually has far fewer
training data than traditional deep learning methods, it does means
that the PINN models are more sensitive to hyperparameter
settings.

Limitations of This Proposed Method

There are two major limitations of our proposed method. The first
major problem is training time. The PINN method typically re-
quires a longer training time than other standard data-driven deep
learning models. This extended timeframe is attributed to the opti-
mizer encountering greater challenges in identifying the optimal
solution. The training period typically spans 1.5–18 h depending on
the problem complexity and GPU capability (Hu and McDaniel
2023; Li et al. 2024). However, our proposed method has a slower
training speed than these PINN cases. This is due to the integration
of a numerical method for calculating hydraulic parameters in our
methodology, and GPUs generally perform poorly when handling
numerical computations. Our method required 14 h for the hypo-
thetical case and 29 h for the Cypress Creek case using an NVIDIA
RTX 3070 (Santa Clara, California). Increasing the training speed
could be an important direction for future work.

Another major limitation is generalization. Some may assume
that a PINN could naturally resolve the generalization issue be-
cause it directly fits the equation rather than a specific data set.
However, this assumption does not hold true for PDE problems.
PDEs typically have infinite solutions when boundary and initial
conditions are undetermined, and have a unique solution only when
these conditions are well-defined. Thus, in our study, the PINN can
derive only the approximate form of SWEs under specific boundary
conditions. If different boundary conditions are applied, the model
needs to retrain, like most other deep learning models. A potential
solution to this challenge involves incorporating the boundary con-
ditions as input variables, thereby expanding the approximation
form of SWEs to a more abstract estimation. This more-abstract
estimation can be used to regress the SWEs in a certain range of
boundary conditions. An example applied to the steady case was
presented by Yin et al. (2023).

Conclusion

This paper presents and tested a physics-informed neural network
for solving the 1D unsteady shallow-water equations. Due to its
unique features, it could be used in many water resource engineer-
ing aspects, including rectifying numerical scheme errors, estimat-
ing water stage in unmeasured bathymetry cross-sections, and
deducing external boundary conditions, among others. In this pa-
per, our PINN framework was tested using a hypothetical scenario
and a historical flooding scenario of the downstream of Cypress
Creek, Houston. The PINN framework accurately predicted the
results in both test cases with a very small mean absolute error.
The key conclusions are as follows:
• Our PINN framework can solve both velocity-based and

flow rate–based shallow-water equations with minor different
compared with numerical methods (HEC-RAS). For the hypo-
thetical test case, the mean absolute errors ranged from 0.0024
to 0.0034 m=s (0.008–0.011 ft=s) for velocity prediction, from
0.0113 to 0.0169 m3=s (0.399–0.598 cfs) for flow rate, and
from 0.00091 to 0.00152 m (0.003–0.005 ft) for water stage.

• For the downstream Cypress Creek test case, the PINN worked
well even when there was a huge incoming flow. The mean ab-
solute error for flow rate and water stage prediction ranged from
0.0833 to 0.1033 m3/s (2.943–3.651 cfs) and from 0.0152 to
0.0789 m (0.05–0.259 ft), respectively. This also proves that
the PINN has the capability to provide an accurate prediction
of both flow rate and water stage under a potential flooding
scenario.

• The response surface of the PINN shows the existence of global
minima, which proves that it is theoretically feasible for the
PINN to obtain the solution of the 1D shallow-water equations
with small residuals.

• The PINN can perform location-wise and timewise extrapola-
tion without constraints. The location-wise extrapolation results
were compared with those of the HEC-RAS XS interpolation
function. The timewise extrapolation results were compared
with water stage data recorded by water station. Both extrapo-
lations had excellent agreement with reference data.
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Notation

The following symbols are used in this paper:
A = wetted cross-sectional area;
B = top width of river;
h = free-surface water elevation;
ĥ = predicted free-surface water elevation;
P = wetted perimeter;
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Q = cross-sectional flow rate;
R = hydraulic radius;
v = cross-sectional velocity; and
v̂ = predicted cross-sectional velocity.
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