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DNA methylation is a crucial epigenetic modification that orchestrates chromatin
remodelers that suppress transcription, and aberrations in DNA methylation result
in a variety of conditions such as cancers and developmental disorders. While it is
understood that methylation occurs at CpG-rich DNA regions, it is less understood
how distinct methylation profiles are established within various cell types. In this
work, we develop a molecular-transport model that depicts the genomic exploration
of DNA methyltransferase within a multiscale DNA environment, incorporating
biologically relevant factors like methylation rate and CpG density to predict how
patterns are established. Our model predicts DNA methylation-state correlation
distributions arising from the transport and kinetic properties that are crucial for the
establishment of unique methylation profiles. We model the methylation correlation
distributions of nine cancerous human cell types to determine how these properties
affect the epigenetic profile. Our theory is capable of recapitulating experimental
methylation patterns, suggesting the importance of DNA methyltransferase transport
in epigenetic regulation. Through this work, we propose a mechanistic description for
the establishment of methylation profiles, capturing the key behavioral characteristics
of methyltransferase that lead to aberrant methylation.
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cell di�erentiation

Within the nucleus of a eukaryotic cell, genomic DNA is organized within a structure
called chromatin whose multiscale behavior includes local wrapping into nucleosomes (1,
2), intermediate-scale looped motifs arising from cohesin function (3–5), and large-scale
compartmentalization (6–8). Chromatin organization plays a pivotal role in determining
cellular identity and function by altering the accessibility of DNA to regulatory proteins
and transcriptional machinery. The large-scale organization of chromatin is determined
by epigenetic modifications—chemical marks on the DNA and histone proteins that
encode for regions to adopt more open or closed chromatin states. Variation in these
chemical modifications results in altered expression of genes, leading to different cell
types and behaviors despite having the exact same DNA sequence.

A key chemicalmodification ismethylation, which has been found to serve as a recruiter
for various chromatin remodelers that condense the DNA and alter transcription (9–13).
DNAmethylation describes a covalent addition of a methyl mark to cytosine nucleotides
at key locations within the genome. In mammals, methylation most prevalently occurs
at cytosine-phosphate guanine dinucleotides, known as CpG sites, that are unevenly
distributed across the genomes (14–18). Most of the genome is sparse in CpG sites
outside of select high-density CpG regions known as CpG islands.

Upon cell replication, DNA methyltransferases (DNMTs) serve to recapitulate and
maintain the methylation pattern across the DNA sequence. There are three classes of
DNMTs (dubbed DNMT1, DNMT2, and DNMT3). While the role of DNMT2 has
not been extensively studied, there is more understanding of the functions of DNMT1
and DNMT3. It is currently held that DNMT3 is responsible for de novo methylation,
which is most prevalent during embryonic development (19–21). In contrast, DNMT1
typically serves asDNA-methylationmaintenance proteins, ensuring that themethylation
pattern of newly synthesized DNA matches that of the parent strand (22–26). The
proper patterning of methyl marks is required to ensure the cells function correctly,
and aberrations in DNMT1 function can result in conditions such as cancers (27–
30), neurodevelopmental disorders (31), and other health conditions (32–34). While
these ideas have been generally accepted, the mechanisms that result in these unique
methylation patterns are less understood.
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There exist several critical questions regarding how DNA
methylation patterns are conserved after cell replication and
the factors that contribute to unique methylation patterns
necessary for cell differentiation. A crucial focus of research on
DNMTs centers around their kinetic behavior, encompassing
their processive tendencies (35, 36), and how this behavior
may impact the protein’s methylation patterning. Some previous
works have focused on elucidating relative contributions of
DNMT1 and DNMT3 on the establishment of a methylation
pattern (37), determining postreplication DNA methylation
rates (38), quantifying the correlation of methylation rates and
states (39, 40), and determining important interactions for
methylation patterning like PCNA-DNMT1 (41). The relation-
ship between methylation patterns and chromatin structure has
been explored in previous works to understand the structural
effects of epigenetic modifications. Namely, methylation profiles
have been measured across genomic sequences to characterize
unique cell types. These studies reveal how methylation patterns
may result in cell differentiation (42–49), reflecting the close
relationship betweenDNAmethylation, chromatin organization,
and gene expression (40). Understanding the complexities of
the dynamic behavior of DNMTs is crucial for understanding
methylation patterning, and, in turn, provides insight into
epigenetic regulation, cell differentiation, chromatin remodeling,
and transcription.

These questions will be explored using a facilitated diffusion
model. Our previous work on facilitated diffusion (50–52)
is extended to capture necessary biological factors relevant to
DNAmethylation.Our facilitated-diffusionmodel was originally
developed to determine the search efficiency of the target-site
search process of DNA-binding proteins, revealing how protein
binding rate can influence the timescale for target localization.
While facilitated diffusion models have been used extensively for
studying the temporal statistics of a DNA search process, the
spatial metrics have been less explored. Specifically, the model
by Díaz de la Rosa et al. (50) can characterize the genomic
positioning of a DNA-binding protein during its search process
by predicting the average amount of time a protein is localized to
a specific genomic position on the DNA, effectively spatially
mapping the protein. This application for this model allows
for prediction of DNA chemical modifications and epigenetic
patterns, like DNA methylation.

In this work, we consider methylation patterning arising from
the transport behavior and kinetics of DNA methyltransferase.
That is, we determine how the properties related to a DNA
methyltransferase’s exploration of the genome relate to the
resulting methylation patterns. This differs from the approach
of other mathematical models which focus on the kinetics,
rather than the transport (38, 41, 53–55). We develop a model
for a DNA methyltransferase undergoing a facilitated diffusion
process to characterize the exploration behavior of the protein.
Facilitated diffusion models (56–58) have been typically used for
predicting the target search times of DNA-binding proteins like
transcription factors (59–64) and to determine factors that aid in
a DNA-binding protein’s ability to find its target (50–52, 65).
With this framework, we aim to develop a model to describe
the localization of DNA methyltransferase within a complex
DNA environment and to make predictions for the resultant
methylation patterns given the protein’s transport behavior.

To most accurately describe the DNA methyltransferase’s
exploration of the genome, we model the DNA environment in a
way that captures the complex behavior of chromosomal DNA in
vivo. In this model, we adopt a polymer-physics-based statistical
description of theDNA,which has been found to exhibitmultiple

scaling-law behaviors at various length scales (66–70). We utilize
experimentally measured looping probabilities of in vivo DNA
to define a polymer model that captures the multiscale behavior
of DNA (71). This model allows us to predict the transport
of DNA methyltransferase undergoing facilitated diffusion in
this complex DNA environment and to explore the impact
of transport behaviors on the establishment of methyl marks.
With this model, we determine the impact of the structure
and behavior of chromosomal DNA on the transport of DNA
methyltransferase. We then show how we can leverage this
descriptivemodel to predict distinctmethylation state correlation
distributions of a variety of cancerous cell types and determine the
kinetic and transport behavior of DNA methyltransferases that
lead to characteristics of the methylome associated with cancer.

Model

In our study, we develop a model that captures the transport
behavior of DNA methyltransferase undergoing a facilitated
diffusion process throughout a multiscale DNA environment.
The DNA methyltransferase is modeled as a particle that
alternates between a DNA-bound state and an unbound state,
while the DNA is modeled as a polymer chain that exhibits
the biologically relevant behaviors seen in chromosomal DNA
in vivo, specifically the multiscale behavior described by Chan
et al. (71). The bound state of the particle captures the processivity
exhibited by DNA methyltransferase, which allows the protein
to methylate multiple sites while bound (39, 72–74). The details
of modeling each of these components are described in detail
below.

The model defines a diffusing particle which engages in an
alternating process of binding and unbinding to a polymer chain,
illustrated in Fig. 1. The model captures methylation correlation,
governed by the joint probability that a second site at position s is
methylated given that the first site s0 = 0 is methylated. For the
initial site to be methylated, the particle is bound to the polymer

Fig. 1. Schematic of a facilitated di�usion process in which the particle
engages in 1D di�usion along the DNA, described by the function Gon,
and unbinds and di�uses three-dimensionally throughout the nucleoplasm,
described by the function Go� . This schematic only shows two steps of a
process which can contain an infinite number of switches between the bound
and unbound states. The transport of the protein while bound depends on
its bound di�usivity Don and its unbinding rate ku. Similarly, its unbound
transport is dependent on its di�usivity throughout the nucleoplasm Do�
and a binding rate kb.
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chain at position s0 = 0 at time t = 0 as an initial reference
point. This initial reference point indicates the genomic position
of the DNA methyltransferases’ first binding occurrence before
transporting along the chain via a facilitated diffusion process.
From this initial reference point, the particle engages in the one-
dimensional random walk along the chain with a diffusivityDon.

The particle has a rate for unbinding from the chain ku and can
unbind at any location of the polymer chain. When the particle
unbinds, it freely diffuses in three-dimensions throughout the
environment with a diffusivity Doff . While diffusing the particle
can rebind to any segment of the polymer chain that is within a
distance a with a binding rate of kb. The transport of the particle
while bound is governed by the probability function (or Green’s
function) Gon and the transport of the particle while unbound
is governed by Goff . The overall transport process can alternate
between the bound state and the unbound state any number of
times.

Polymer Model Description.We first introduce the polymer-
physics model used to describe the DNA. To capture a
biologically relevant DNA environment, we develop a polymer-
physics model that captures the multiscale behavior observed in
experiments.We use the description discussed byChan et al. (71),
which identifies three different behavioral regimes at varying
length scales of chromosomal DNA (71), illustrated in Fig. 2.
These three behavioral regimes were determined by analyzing the
DNA’s looping probability at different genomic lengths. It was
noted that at short lengths (less than 30 kb), the DNA exhibited
the power-law scaling for looping probabilities akin to a Gaussian
chain. At an intermediate length scale (approximately 30 to 400
kb), chromosomal DNA behaves as a fractal globule attributed to
the presence of cohesin, which actively form loops in the genome.
At large length scales (greater than 400 kb), the DNA returns to

Fig. 2. Schematic depicting the multiscale nature of chromosomal DNA.
DNA behaves as a random walk at short length scales but behaves like a
fractal globule in intermediate length scales due to the function of cohesin.
Chromosomal DNA returns to behaving like a random walk at large length
scales. The plot shows average end-to-end distance squared hR2i versus s,
showing the three scaling behaviors: �1 = 1, �2 = 2/3, �3 = 1. For
comparison, the mean squared end-to-end distance is shown as a dashed
line for a pure Gaussian chain.

behaving like a Gaussian chain. From these looping probabilities,
we determine the scaling behavior of the mean square end-to-end
distance of the DNA hR2i with varying length, shown in Fig. 2.
This is determined through the relationship Pl / hR2i�3/2.

With the average end-to-end distance, we describe the DNA’s
average conformation through the Fourier-transformed Green’s
function

ĜD(Ek; s) = exp
✓

�
1
6
Ek2hR2

i

◆
, [1]

which describes the segmental density of the chain in space. Here,
Ek is the Fourier-transformed variable for a spatial position ER. The
end-to-end distance of polymer hR2i is dependent on the polymer
length s, such that

hR2
i =

8
>>>><

>>>>:

R2
1

⇣
s
s1

⌘�1
for s < s1

R2
1

⇣
s
s1

⌘�2
for s1  s < s2

R2
2

⇣
s
s2

⌘�3
for s � s3

, [2]

Here, s1 and s2 are the genomic lengths associated with transitions
in scaling behavior and are found to be 30 kb and 400 kb,
respectively. The scaling exponents �1 and �3 are 1 the Gaussian
chain behavior, and the intermediate scaling exponent �2 is 2/3
for the fractal globule regime. To ensure continuity of hR2i
between behavioral regimes, we assert

R2
2 = R2

1

✓
s2
s1

◆�2
. [3]

Transport Model Description.We now define the protein’s
transport along the chain. Evaluating the overall transport of the
protein requires defining the probability of binding or unbinding
at a given time t as dictated by the binding and unbinding rates.
From the unbinding rate, we define the probability that the
particle will remain bound to the polymer at time t as

Pon(t) = exp (�kut) . [4]

As the protein spends more time bound, it becomes more likely
to unbind. We define the rate of unbinding to be its negative
derivative over time

Son(t) = �
dPon(t)

dt
. [5]

The description for the transport of the protein can be broken
into two parts: transport while bound and transport while
unbound to the chromosomalDNA.The transport of the particle
bound to the chain can be defined by a Green’s function Gon,
which describes the probability of a particle beginning at position
s0, and diffusing to position s in time t. The Green’s function
Gon is governed by 1D-diffusion and is given by

Gon(s|s0; t) =
1

p
4⇡Dont

exp

�

(s � s0)2

4Dont

�
. [6]

Notably, the transport in the bound state is not dependent on the
polymer configuration and only depends on the bound diffusivity
of the particle. Once the particle unbinds and is diffusing
throughout the nucleoplasm, its probability of rebinding to
the polymer is dependent on its binding rate but additionally
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the chromosomal DNA conformation. That is, the protein is
more likely to rebind to the polymer if it remains in close
spatial proximity to the surrounding DNA. Therefore, the
unbound transport is dependent on both the DNA conformation
(governed by GD) and the protein’s diffusion (governed by Gp),
resulting in the off-state transport equation

Goff (s|s0; t) =
1

M(t)

Z
d ER1

Z
d ER2GD(ER1; s � s0)

⇥ Gp(ER2; t)H(a � |ER1 � ER2|). [7]

The off-state Green’s function Goff (s|s0; t) gives the joint
probability of a polymer segment and the protein being found
within a binding distance a at time t at genomic position s
given that the particle leaves the polymer at s0 at time t = 0.
The Heaviside function restricts the off-state trajectories of the
particle to be within the binding distance of the polymer segment
s at time t. In other words, this equation describes the transport
of a particle diffusing throughout the nucleoplasm until it comes
to some spatial position ER1 that is within binding distance a of
a segment of the DNA, characterized by its genomic position
s and spatial position ER2. In this equation, M(t) serves as a
normalization constant and gives the total length of polymer
within the binding distance a of the particle at time t.Gp describes
the spatial probability density for the proteinwhich diffuses three-
dimensionally throughout the nucleoplasm and is written as

Ĝp(Ek; t) = exp
⇣
�Doff Ek2t

⌘
. [8]

From this defined framework, we describe the probability of the
particle rebinding based upon the total length of polymer the
particle comes in contact at a given time t and the binding rate
kb, leading to the differential equation

dPoff
dt

= �kbM(t)Poff . [9]

This equation specifies that the particle becomes less likely to
stay unbound if it encounters more of the polymer during its
diffusion. The solution to this differential equation is

Poff (t) = exp

�kb

Z t

0
dt 0M(t 0)

�
. [10]

We define complete trajectories of the protein using the
component transport terms described above. Individual transport
processes include transport of the particle along the polymer
from position s0 to s1 in time t1, governed by the on-state
Green’s function Gon(s1|s0, t1), the rate of unbinding Son(t1),
and the probability of remaining bound Pon(t1). Similarly, the
transport of the particle while unbound from position s1 to
s2 in time t2 is governed by the off-state Green’s function
Goff (s2|s1, t2), the rate of binding Soff (t2), and the probability
of remaining in the off state Poff (t2). From this framework,
we determine the statistical weight of trajectories containing
any number of transitions between the bound and unbound
states. This involves the enumeration of an infinite number
of genomic trajectories and state trajectories accounting for all
possible paths along the polymer.Defining all trajectories requires
integration over all possible transition times and all possible
polymer positions where the transition may occur. This results
in a convolutional structure that is greatly simplified with the use

of a Fourier–Laplace transform. We define the Fourier–Laplace
on-state Green’s function

ˆ̃G(S)
on (!, ⌫) = Fs!!

�
Lt!⌫ [Gon(s|s0; t)Son(t)]

 
, [11]

where we perform a Fourier transform over the polymer distance
variable s to the Fourier variable ! and a Laplace transform over
the time variable t to the Laplace variable ⌫. Similarly, we define
the terms ˆ̃G(P)

on , ˆ̃G(S)
off , and

ˆ̃G(P)
off . Utilizing this convolutional

structure, we forgo the multiple explicit integrations over s and
t, allowing us to define any possible trajectory as a product of
Fourier–Laplace transformed variables. Therefore, we define the
possible transport of the particle through the infinite summation
of the possible trajectories. Considering the trajectories in which
the methylation ends in an on-state results in the expression

ˆ̃G(!; ⌫) =
ˆ̃G(P)
on

1 �
ˆ̃G(S)
on

ˆ̃G(S)
off

. [12]

We focus our analyses on the long-time and long-length behavior,
which is equivalent to the small ! and ⌫ behavior in Fourier–
Laplace space. In this limit, the on-state functions are found
to be

ˆ̃G(S)
on (!; ⌫) = 1 � ⌧on⌫ � l2on!

2 +O(!4, ⌫2), [13]

and
ˆ̃G(P)
on (!; ⌫) = l2on +O(!4, ⌫2). [14]

Here, lon =
p
1/u, where lon describes the average translocation

distance of the particle during a single binding event. The on-
time ⌧on gives the average time spent in the on-state and is
defined as ⌧on = 1/u. Here, the dimensionless unbinding rate
u = tdiff ku is the unbinding rate ku nondimensionalized by the
on-state diffusion time tdiff = b2/Don.

The off-state Green’s function ˆ̃G(S)
off is calculated through an

expansion for small ! and ⌫. This analysis results in the equation

ˆ̃G(S)
off = 1 � �Dl

1/2
off � ⌫⌧off , [15]

where �D defines the fluctuations over !, which emerge from
the polymer model description ĜD. The complete derivation and
expression for�D is presented in SI Appendix. The term loff is the
average translocation distance of the particle during a single off
state and defined as loff = (b⌧off )2, where b = tdiffbkb is the
binding rate kb nondimensionalized by tdiff = b2/Don and the
Kuhn length b. The off time ⌧off is the average time the particle
spends in the off state and is defined as

⌧off =
Z

1

0
d⌧ exp


�
b
�

Z ⌧�

0
d⌧ 0M(⌧ 0)

�
, [16]

where � = Doff/Don. Replacing these terms in Eq. 12 results in
the final equation

ˆ̃G(!; ⌫) =
⌧on

(⌧on + ⌧off )⌫ + l2on!2 + l1/2off �D
. [17]

The inverse Fourier–Laplace transform of this equation from! to
s and ⌫ to t elicits a probability density describing the probability
of the protein being found at genomic position s at time t.
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Results and Discussion

We determine the average time the DNA methyltransferase
spends on each segment of DNA using Eq. 17. We take the
inverse Fourier–Laplace transform of Eq. 17 and integrate the
resultant equation with respect to t to find the average time T
that the particle resides at position s over the time period t. The
Laplace inversion of ˆ̃T gives the expression

T̂ (!; t) =
⌧on

l2on!2 + l1/2off �D


1 � exp

✓
�t

l2on!2 + l1/2off �D

⌧on + ⌧off

◆�
,

[18]

and a subsequent Fourier inversion from ! to s is performed
numerically. Given a protein that starts at position s = 0 and
time t to engage in the facilitated diffusion process described in
the previous section, this equation describes the total time the
protein spends on a genomic segment s distance away from its
starting position. The average time T is shown in Fig. 3 for
varying time t.

The average time is characterized by a plateau followed by a
decay that exhibits multiple scaling behaviors associated with the
DNA behavioral regimes described in Eq. 2. Beyond the plateau,
the short length-scale regime exhibits a power-law scaling of
�3/2. The intermediate length-scale regime shows �1 scaling,
followed by a transition back to �3/2 scaling in the large
length-scale regime. These scaling behaviors relate to the polymer
scaling behavior as �3�/2. These scaling behaviors coincide
with the looping probabilities for the polymer in these three
regimes, and the exploration time at short times is restricted to
polymer segments that are looped with the s0 = 0 segment of
polymer.

From Fig. 3, we see that when time increases, the plateau
in the average time extends to further distances as the protein
explores further regions of the polymer. At sufficiently long time,
the average-time plot converges to a distribution describing the
protein’s total time spent at each polymer position at infinite
time. This steady-state exploration time depends on the DNA
methyltransferase transport properties and is predictive of a
steady-state methylation pattern established after cell replication
and maintained during interphase. The steady-state exploration
time distributions can be resolved through integration of G(s; t)

Fig. 3. Average time of genomic exploration of DNA methyltransferase at
time t. This plot shows the total amount of time that a DNAmethyltransferase
spends at each genomic position swhen engaging in the described facilitated
di�usion process over the time t. The plot shows that as the amount of
time increases, the methyltransferase explores further genomic regions. At
su�iciently long time, the distribution saturates, indicative of a steady-state
exploration distribution.

over infinite time or simply by asserting ⌫ = 0 in Eq. 17,
resulting in

T̂ (!; t ! 1) = ˆ̃G(!; ⌫ = 0) =
l2on

l2on!2 + l1/2off �D
, [19]

where we note that ⌧on = l2on in our dimensionless units.
This equation involves the two transport parameters for the
protein: lon and loff . We explore how these two transport
properties impact the protein’s exploration distribution. In doing
so, we characterize how the methyltransferase’s kinetic properties
influence its methylation patterning.

Impact of DNA Methyltransferase Transport Properties on
Genomic Exploration.We assess how the binding distance lon
influences the exploration distribution. In Fig. 4A, we show the
steady-state exploration distributions for a protein with varying
binding distances for the biologically relevant multiscale model
for the chromosome (solid curves) and a Gaussian-chain polymer
(dashed curves) that exhibits a single mean-square end-to-end
distance scaling � = 1. The equations for the exploration
distributions in the pure Gaussian environment are consistent
with the work of Díaz de la Rosa et al. (50).

In both the pure random walk and the multiscale polymer
model, the exploration distributions exhibit plateaus which
extend to further distances when lon increases, illustrating that a
protein which travels further distances while bound will spend
more time exploring proximal regions of the genome before trans-
porting to distal regions through off-state jumps. Additionally,
in both cases, the exploration distributions decline into �1/2
scaling at long distances. This �1/2 scaling behavior relates to
the polymer end-to-end distance scaling behavior � as 3�/2� 2.
However, it is notable that the transition into this �1/2 scaling
differs for the two polymer models. Specifically, the exploration
distributions for the protein in the multiscale environment have
variable transition behaviors into the long-distance scaling. For
example, exploration distributions of proteins with a low lon value
have a plateau which transitions into scaling exponents of �1
and �1/3 before settling into the �1/2 scaling, showing scaling
behavior that transitions nonmonotonically. This contrasts with
the exploration distributions of the proteins in the Gaussian
environment, which has scaling behavior that monotonically
decreases to this �1/2 scaling. In the multiscale environment,
we note that when lon is a large enough value, the exploration
distributions in the multiscale environment do not distinguish
themselves from the exploration distributions of a corresponding
protein in a pure Gaussian chain environment. In these cases,
the plateaus in the exploration distributions extend through
the intermediate behavioral regime and do not exhibit the
nonmonotonic scaling behavior. In these instances, the bound
protein slides along theDNA for distances that are larger than the
length scale of the intermediate fractal globule regime. Because
the protein stays bound through those distances, its genomic
exploration is not affected by the chromatin structures associated
with those scaling behaviors.

Similar observations can be made in the exploration dis-
tributions of proteins with varying hopping distances loff .
Fig. 4B shows that proteins with shorter hopping distance
exhibit exploration distributions with longer plateaus. That is,
loff contributes to an equal but opposite effect of lon. Particularly,
a protein with a hopping distance of loff = 0 does not unbind,
leading to lon ! 1, illustrating their inverse relationship. This
effect reveals that the shape of the exploration distribution is
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BA

Fig. 4. Steady-state exploration distribution of methyltransferases with varying bound translocation distance lon with lo� = 10 (A) and hopping distance lo�
with l2on = 0.1, (B). The solid line is the exploration distributions of the methyltransferase within the multiscale DNA environment, while the dotted lines are
that of corresponding DNA methyltransferase in a DNA environment behaving as a pure Gaussian chain. We see that at large lon values and small lo� values,
the exploration distributions do not di�er for the di�erent DNA environments.

dependent on the ratio of lon and loff . Akin to the lon analysis,
we see that proteins with small loff values have exploration
distributions that are ambivalent to the multiscale environment
and behave indistinguishably from proteins in the Gaussian
chain environment. These proteins are more likely to hop short
genomic distances that are not long enough to span across the
chromatin structural features responsible for the intermediate
behavioral regime.

Interestingly, we note that the proteins in the multiscale
environment have elevated exploration times at distances close
to the starting position in comparison to the proteins in the
Gaussian chain environment. This is because the fractal globule
intermediate scaling results in DNA structures that have a
larger average density than that of a pure Gaussian chain. The
probability of protein binding to the polymer Soff captures the
increased likelihood for protein binding with increasing DNA
length M(t) with which the protein encounters. Therefore,
we hypothesize that the increased time at short distances may
be a result of increased binding due to a more DNA-dense
environment. Additionally, this denser DNA environment also
describes structures in which far genomic regions are spatially
closer. This closer spatial proximity and increased binding
is predicted to cause the protein to be more likely to re-
explore genomic segments in its immediate spatial region, rather
than hopping sufficiently large spatial distances that pulls it
away from its starting position. This increases the likelihood
that the protein stays spatially close to its starting position,
encouraging re-exploration of nearby genomic regions and larger
exploration times at short distances. Through this observation,
we hypothesize that spatial regions that are more dense in
DNA may localize the protein. Fluorescent microscopy exper-
iments have shown DNA-binding proteins involved in RNA
transcription become localized in denser DNA regions within
the nucleus (75), though this has not yet been explored in DNA
methyltransferase. This theoretical observation provides some
physical intuition on how the interactions between a DNA en-
vironment and a DNA-binding protein may lead to localization
behaviors.

Predicting Fraction of Methylation from DNA Methyltrans-
ferase Transport and Kinetics. The mathematical description of
our model describes the transport of the DNAmethyltransferase,
which allows us to calculate the total time the protein spends on
each DNA segment. However, it does not specify the establish-
ment of methyl marks based on methyltransferase activity. This
can be incorporated into the model by defining a methylation
rate km. We describe a protein which deposits a methyl mark at

some rate km while bound. Whether a site becomes methylated
is dependent on the amount of time the protein spends on a site.
From this, we define the fraction of methylation fm, which is
given by

fm(s) = 1 � exp [�mT (s; t ! 1)] , [20]

wherewe define the dimensionlessmethylation ratem = tdiff km.
This equation describes the fraction of methylation at a specific
genomic site. We present the methylation fraction with varying
m in Fig. 5. The shape of the distribution is consistent with
that of the exploration time distribution, shown in a dotted line.
We see that increasing methylation rate corresponds with an
overall increase in methylation across the genome, showing that
a DNA methyltransferase that catalyzes methylation at faster
rates will methylate more of the genome. The methylation
fraction saturates at 1, describing complete methylation or
certainty of methylation. Large methylation rates cause the
methylation fraction distribution to have an extended plateau at
the saturated methylation fraction of 1, showing the significant
effect that methylation rate has on establishment of a methylation
pattern.

Assuming that the genomic position at s = 0 is methylated
(i.e., a methylation fraction of 1), these distributions depict
the spatial correlation of methylation states across the genome.
Methylation correlation has been experimentally measured in a
range of cells and has been distinguished as distinct between
cell types (39, 40). As is, this methylation-state correlation

Fig. 5. Steady-statemethylation fractiondistributiondeterminedusing total
exploration time distributions and variable methylation rates m. The total
exploration time of the protein is shown in the black-dotted line to illustrate
its relationship to the methylation fraction. Methylation fraction saturates to
1 with high methylation rates, showing the impact of methylation rate on
establishing methylation pattern.
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is predicted exclusively from DNA conformational structure
and the protein’s transport and kinetic properties. However, to
develop a more biologically accurate model for methylation, we
expand our model to include genetic information. Specifically,
we consider the presence of CpG sites and CpG islands, the
predominant genomic regions for DNA methylation. While
it is understood that DNA methylation does not exclusively
occur at CpG sites, CpG sites make up a significant portion
of methylation targets, accounting for approximately 98% of
methylated regions (76). For this reason, we expand our model
to consider this significant factor in methylation patterning. In
doing so, our model is representative of the biological system
when predicting methylation correlation distributions. These
predictions are then comparedwithmethylation state correlations
that have been experimentally measured through whole genome
bisulfite sequencing.

Theory Predicts Transport Properties Which Correspond to
Unique Cell Type Methylation Correlation Profiles. To leverage
this theory to predict methylation correlation, we expand the
model to include a description for CpG site correlation.We assert
that methylation is dependent on methyltransferase transport to
a location and the density of CpG at that location, leading to the
probably of methylation to be defined

pm(s) = pc(s)fm(s), [21]

where pc is the probability of a CpG site and fm is the methylation
fraction, presented in the previous section. The presence of CpG
islands, which have been determined to span 300 to 3,000 bp
in length through sequencing experiments, will result in higher
correlations at those length scales. We assume that CpG islands
lead to a correlation such that

hpc(s)pc(0)i � hpci2 = p0(1 � p0) exp(��|s|). [22]

Here, we describe the CpG correlation established within a CpG
island. The average CpG density p0 gives the average CpG
content within a CpG island and ensures that the condition
in which a genomic region is either void of CpG (p0 = 0) or
entirely composed of CpG (p0 = 1).We specify the average CpG
density to be p0 = 0.5, consistent with the threshold used by
Gardiner-Garden for defining CpG islands (77). We define 1/�,
the average CpG island length, to be 1,000 bp as supported by
genomic sequencing (78, 79). Assuming that theCpGprobability
pc and the methylation fraction fm are not correlated, we define
the correlation of methylation to be

Cm(s, 0) = hpc(s)pc(0)i hfm(s)fm(0)i � p20f
2
0

=
p0(1 � p0)f0(1 � f0)

p0f0(1 � p0f0)
C̄cC̄f +

f 20 p0(1 � p0)
p0f0(1 � p0f0)

C̄c

+
p20f0(1 � f0)
p0f0(1 � p0f0)

C̄f . [23]

In this equation, C̄c and C̄f are the normalized correlation
functions for CpG density and methylation fraction, and the
methylation fraction f0 describes the average steady-state methy-
lation fraction of the genome. The value for the average methyla-
tion fraction is dependent on the transportation and methylation
kinetics of DNA methyltransferase but also encompasses the
effect of other possible proteins like TET proteins, which
demethylate or inhibit methylation. In other words, while the

Fig. 6. Theory predicted methylation correlations fitted to methylation
correlation data for chromosome 1 of 9 cancerous cell types and a healthy
colon cell type generated by Zhang et al. (40). Each theoretical correlation
distribution is fitted to the collected data using three parameters: transport
ratio l1/2

o� /l2on, methylation rate m, and fraction of methylation fm. Theory
shows close fits that recapitulate the qualitative and quantitative features of
the experimental data.

model’s description of DNA methyltransferase activity may
predict a specific methylome, other proteins not discretely
modeled in this description can influence themethylome through
modulating methylation or demethylating genomic regions,
resulting in a variable average methylation fraction that cannot
be predicted exclusively from theoretical DNAmethyltransferase
transport and kinetics. This average methylation fraction value
f0 asserts that if the DNA methyltransferase achieved complete
methylation (f0 = 1), methylation correlation would only be
dependent on CpG correlation Cc .

In this model, we specify the average CpG density p0 = 0.5 and
the average CpG island length 1/�= 1,000 bp.We introduce the
transport ratio l1/2off /l2on, the methylation rate km, and the average
methylation fraction f0, which we fit to existing methylation
correlation data for Chromosome 1 of 9 cancerous human
cell types and a healthy colon tissue cell collected from whole
genome bisulfite sequencing experiments, shown in Fig. 6. These
methylation correlation plots were generated by Zhang et al. (40).
We conducted a parameter sweep through 1,000 transport
ratios spanning 10�2 and 10, 100 methylation rates spanning
10�5 and 10�2, and 100 methylation fractions spanning 0
and 1. The best fit was determined through minimizing mean
squared logarithmic error. Through this fitting, we determine the
transport and kinetic parameters of DNA methyltransferase that
result in the distinct methylation correlation distribution for the
unique cell types. These values are shown in Table 1.

The theoretical fits are both qualitatively and quantitatively
representative of the methylation correlation data, describing a
distinct transport behavior, methylation behavior, and average
methylation fraction for each of the cell types. Specifically, the
predicted methylation correlations resemble the experimentally
measured methylation correlations by the characteristic high
methylation correlation at distances less than 3,000 bp, which
can be accounted to CpG islands, and a plateau region which
varies in height and length for the various cell types. Our ability
to recapitulate this methylation correlation data from a DNMT
transport model demonstrates the strong relationship between
methylation profiles andDNAmethyltransferase behavior, show-
ing how different methylation correlation patterns may be due
to variable binding behavior of DNA methyltransferase.
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Table 1. Parameter values for best fit theoretical
methylation correlations for nine cancerous cell types
and one healthy colon cell type

l1/2
o� /l2on m f0 MSLE

luad 0.134 8.59E-04 0.21 2.44E-03
ucec 0.197 9.20E-04 0.18 1.23E-03
lusc 0.047 2.84E-04 0.43 1.33E-01
coad 0.210 8.83E-04 0.02 8.30E-02
stad 0.180 7.28E-04 0.22 1.62E-03
read 0.357 1.22E-03 0.13 1.33E-01
brca 0.149 6.38E-04 0.48 1.23E-03
gbm 0.152 6.21E-04 0.57 5.96E-03
colon 0.404 1.37E-03 0.76 1.07E-02
Healthy colon 1.403 3.42E-03 0.90 4.77E-02

Each cell type has a unique transport ratio, methylation rate, and methylation fraction.

From our model, we determine how DNMT behavior might
vary across cell types. In particular, this model predicts that DNA
methyltransferase in healthy cells has a transport ratio that is
approximately a magnitude larger than that in cancerous cells,
suggesting that DNMT remains unbound for larger distances in
the healthy cells in comparison to those in the cancerous cells.
Additionally, our model predicts that DNAmethyltransferases in
the healthy cells have a higher methylation rate than that in the
cancerous cells. This suggests that DNMT in healthy cells diffuse
throughout the nucleoplasm but methylate genomic regions
when bound more readily. This contrasts with the DNMT
behavior predicted for cancerous cells, which can be characterized
by prevalent binding but reduced methylation reactions.

Differences in binding behavior may be accounted to a variety
of biological influences. Variation in DNMT behavior among
cell types is likely to arise from possible mutations in the genes
responsible for encoding DNMTs, which may result in variable
DNMT activity, or due to variable interactions with different
proteins. There has been a variety of proteins which have been
found to interact with DNMT1, regulate DNMT behavior, and
effect recruitment and localization of DNMTs. These include
MBD3 (80), PCNA (81), UHRF1 (82, 83), G9a (84, 85), and
MeCp2 (86). For example, UHRF1 has been found to affect cell
differentiation and the proliferation of cancerous cells through
targeted recruitment of DNMT1 (87, 88). Additionally, it had
been observed that DNMT1 is targeted to retrotransposons—
genetic sequences that can move in the host genome (89).
Therefore, from the predictions of our model, we suggest that
genetic mutations, variability in the levels of different proteins,
and behavior of transposable elements result in varying DNMT
behaviors that may lead to the development of cancerous cells.
We suggest that these factors may result in DNMTs in cancerous
cells having impaired targeting and recruitment.

In addition, our model predicts the average methylation
fraction of the genome for these cell types. We observe that
the healthy cell type has the highest degree of methylation and is
significantly more methylated than many of the cancerous cells.
This agrees with the observation that carcinogenesis results in
an overall global loss of methylation (90–92). More precisely,
cancer cells have been found to be largely hypomethylated with
hypermethylated sections in promoter regions (93–95). Because
our model predicts more prevalent DNMT binding in cancerous
cells, we hypothesize that this behavior causes certain regions to be
wrongly methylated. Overall, our model concludes that DNMT
behavior that presents less specificity in methylation results in
cancerous cells.

Additionally, SI Appendix presents two alternative models
that utilize different assumptions for the biological system.
These alternatives were considered to assess certain biological
influences on methylation but to also explore how the model
may be modified to consider other hypotheses or research
questions. In one of these alternative models, we model DNA
as a pure Gaussian chain to investigate the effect of DNA
organization on methylation. Additionally, we present a model
that assumes DNMT behavior (transport ratio and methylation
rate) is consistent among all cell types and only the methylation
fraction varies across cell types. The resulting model relies on an
assumption that protein interactions or DNMT mutations have
limited variability across cell types or have negligible influence on
the behavior of DNMTs. Both alternative models also resulted
in fits that captured the qualitative features of the experimental
methylation correlation distributions but with overall higher
mean-squared logarithmic errors.

The Gaussian chain methylation model predicts larger average
methylation fractions and transport ratios for the healthy colon
cell, in agreement with the multiscale behavioral model. This
is consistent with our hypothesis that DNMT in cancerous
cells binds more prevalently, resulting in less specificity in
methylation. From both additional models, we recapitulate the
qualitative features of DNA methylation data spanning large
genomic distances from a transport model that describes the
binding, unbinding, and diffusion of DNA methyltransferases.
In doing so, we predict DNMT transport behavior that coincides
with biological observations. We attest that while the correlation
between aberrant methylation and cancer has been observed is
many previous works, this model provides a physical description
for the establishment of methylation patterns and a mathematical
framework for relatingmethylation patterns toDNMTbehavior.

Summary

In this work, we present a model for the transport of a DNA-
binding protein throughout a multiscale DNA environment.
Through the expansion of this theory to include crucial biological
aspects related to methylation (e.g., methylation rate and CpG
density), our model recapitulates the methylation correlation
distributions of various cell types. The quantitative agreement
between the theory and the data suggests that the transport and
kinetic behavior ofDNAmethyltransferasemay be crucial aspects
for methylation patterning. Our model predicts significantly
different transport behavior for methyltransferase in cancerous
cells from that in a healthy cell. This suggests that aberrantmethy-
lation may be a result of heightened activity in DNA binding
and decreased methylation specificity. Our work demonstrates
how transport properties, like bound translocation distance and
hopping distance, and kinetic properties likemethylation rate can
have distinctive effects to a methylation profile. These findings
shed light on the processes of methylome establishment, the
mechanisms for cell differentiation, and potential causes for
aberrant methylation patterns that result in cancer.

Data,Materials, and SoftwareAvailability. Thepython functionsusedas the
basis for our theoretical analyses are available on the Spakowitz group website
(96). All other data are included in the article and/or SI Appendix.
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