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Diverse sets of complete human genomes are required to construct a pangenome 
reference and to understand the extent of complex structural variation. Here we 
sequence 65 diverse human genomes and build 130 haplotype-resolved assemblies 
(median continuity of 130!Mb), closing 92% of all previous assembly gaps1,2 and 
reaching telomere-to-telomere status for 39% of the chromosomes. We highlight 
complete sequence continuity of complex loci, including the major histocompatibility 
complex (MHC), SMN1/SMN2, NBPF8 and AMY1/AMY2, and fully resolve 1,852 complex 
structural variants. In addition, we completely assemble and validate 1,246 human 
centromeres. We "nd up to 30-fold variation in #-satellite higher-order repeat array 
length and characterize the pattern of mobile element insertions into #-satellite 
higher-order repeat arrays. Although most centromeres predict a single site  
of kinetochore attachment, epigenetic analysis suggests the presence of two 
hypomethylated regions for 7% of centromeres. Combining our data with the draft 
pangenome reference1 signi"cantly enhances genotyping accuracy from short-read 
data, enabling whole-genome inference3 to a median quality value of 45. Using this 
approach, 26,115 structural variants per individual are detected, substantially 
increasing the number of structural variants now amenable to downstream disease 
association studies.

Long-read sequencing (LRS) technologies were critical to the completion 
of the first human genome4. LRS technologies significantly increase the 
sensitivity to detect structural variants (SVs), defined as variants 50!bp in 
length or longer, and coupling LRS data with Hi-C5, single-cell template 
strand sequencing (Strand-seq)6 or trio data7 provided the necessary 
short-range and long-range phasing data to assemble both haplotypes. 
The high sequence quality and contiguity of such diploid genome assem-
blies have made the first draft human pangenome reference possible1.

Despite these advances, gaps remain, especially at genetically com-
plex loci2. For example, in our previous assembly of 32 human genomes as 
part of the Human Genome Structural Variation Consortium (HGSVC)8, 
we found that most centromeres and more than half of the large, highly 

identical segmental duplications (SDs) were incomplete, resulting in 
missing protein-coding genes2. Closing these gaps in the first complete 
human genome4 required combining the complementary strengths of 
PacBio high-fidelity (HiFi) reads (approximately 18!kb in length and high 
base-level accuracy) and ultra-long Oxford Nanopore Technologies 
(ONT) reads (more than 100!kb in length but with lower base-level accu-
racy). Computational tools such as Verkko9 and hifiasm (ultra-long)10 
have automated this process. Here we present new resources and results 
from the HGSVC (Supplementary Fig.$1), targeting a diverse set of 65 
humans predominantly from the 1000 Genomes Project (1kGP) cohort11 
with the goal of producing a genetically diverse sampling of nearly gap-
less chromosomes, including the centromeres and complex SDs.
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Production of 130 haplotype assemblies
Data production
We selected 65 human lymphoblastoid cell lines representing indi-
viduals spanning five continental groups and 28 population groups 
for sequencing (Fig.$1a and Supplementary Table$1). We generated 
approximately 47-fold coverage of PacBio HiFi and approximately 
56-fold coverage of ONT (approximately 36-fold ultra-long) long reads 
on average per individual (Extended Data Fig.$1a,b and Supplementary 
Table$2; see Methods). In addition, we performed Strand-seq (Supple-
mentary Table$2), Bionano Genomics optical mapping (Supplementary 
Table$3), Hi-C sequencing (Supplementary Tables$4 and 5), isoform 
sequencing (Iso-seq; Supplementary Table$6) and RNA sequencing 
(RNA-seq; Supplementary Table$7).

Assembly
We generated haplotype-resolved assemblies from all 65 diploid indi-
viduals using Verkko9 (Fig.$1a and Supplementary Tables$1 and 2; see 
Methods). The phasing signal was produced with Graphasing12, lev-
eraging Strand-seq to globally phase assembly graphs at a quality on 
par with trio-based workflows12 (Methods). This approach enabled us 
to cover all 26 populations from the 1kGP by including individuals that 
are not part of a family trio. The resulting set of 130 haploid assemblies 
is highly contiguous (median area under the Nx curve (auN) of 137!Mb; 
Fig.$1b and Supplementary Table$8) and accurate at the base-pair level 
(median quality value between 54 and 57; Fig.$1c and Supplementary 
Table$9; see Methods). We estimated the assemblies to be 99% com-
plete (median) for known single-copy genes (Extended Data Fig.$1c 
and Supplementary Table$10) and close to 92% of previously reported 
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Fig. 1 | LRS, assembly and variant calling of 65 diverse humans. a, Continental 
group (inner ring) and population group (outer ring) of the 65 diverse humans 
analysed in this study. AFR, African; AMR, American; EAS, ZZZ; EUR, European; 
SAS, ZZZ. b, Scaffold auN for haplotype 1 (H1) and haplotype 2 (H2) contigs from 
each genome assembly. Data points are colour coded by population and sex. 
The dashed lines indicate the median auN per haplotype. The dotted line indicates 
the unit diagonal. c, Quality value (QV) estimates for each genome assembly 
derived from variant calls or k-mer statistics (Methods). d, The number of 
chromosomes assembled from T2T for each genome assembly, including both 
single contigs and scaffolds (Methods). The median (solid line) and first and 
third quartiles (dotted lines) are shown. e, The number of T2T chromosomes in 

a single contig (dark blue, T2T contig) or in a single scaffold (light blue, T2T 
scaffold). Incomplete chromosomes are labelled as ‘not T2T’ or ‘missing’ if 
missing entirely. Sex chromosomes not present in the respective haploid 
assembly are labelled as ‘NA’. f, Cumulative non-redundant SVs across the diverse 
haplotypes in this study called with respect to the T2T-CHM13 reference 
genome (three trio children excluded). g, Number of SVs detected for each 
haplotype relative to the T2T-CHM13 reference genome, coloured by population. 
Insertions and deletions are balanced when called against the T2T-CHM13 
reference genome but imbalanced when called against the GRCh38 reference 
genome (Extended Data Fig.$1d).

Q14
Q15
Q16
Q17



Nature | www.nature.com | 3

gaps in PacBio HiFi-only assemblies2 (Supplementary Figs.$2 and 3 and 
Supplementary Table$11; see Methods).

We integrated a range of quality control annotations for each assembly 
using established tools such as Flagger, NucFreq, Merqury and Inspector 
(Supplementary Tables$12 and 13 and Figs.$4 and 5) to compute robust 
error estimates for each assembled base (Supplementary Tables$14–17; 
see Methods). We estimated that 99.6% of the phased sequence (median) 
has been assembled correctly (Supplementary Table$18). For the three 
family trios in our dataset (SH032, Y117 and PR05 (ref. 11)), we assessed 
the parental support for the respective haplotypes in the child’s assem-
bly via assembly-to-assembly alignments and found that a median 
of 99.9% of all sequence assembled in contigs of more than 100!kb  
are supported by one parent assembly (Supplementary Table$19; see 
Methods). In total, Verkko assembled 602 chromosomes as a single 
gapless contig from telomere to telomere (T2T; median of 10 per 
genome) and an additional 559 as a single scaffold (median of 8 per 
genome), that is, in a connected sequence containing one or more 
N-gaps (Fig.$1d,e, Supplementary Table$20 and Supplementary Fig.$6;  
see Methods).

Certain regions, such as centromeres or the Yq12 region, remained 
challenging to assemble and evaluate. We therefore complemented 
our assembly efforts by running hifiasm (ultra-long)10 on the same 
dataset (Supplementary Tables$21–23 and Supplementary Figs.$7 and 8;  
see Methods), but restricted the use of the resulting assemblies to 
extending our analysis set for centromeres and the Yq12 region after 
manual curation of the relevant sequences.

Variant calling
From our phased assemblies, we identified 188,500 SVs, 6.3 million 
indels and 23.9 million single-nucleotide variants (SNVs) against the 
T2T-CHM13v2.0 (T2T-CHM13) reference (Fig.$1f). Against GRCh38- 
NoALT (GRCh38), we identified 176,531 SVs, 6.2 million indels and 23.5 
million SNVs (Supplementary Table$24; see Data availability). Callsets 
for both references were led by PAV (v2.4.0.1)8 with orthogonal support 
from 10 other independent callers with sensitivity for SVs, indels and 
SNVs (Supplementary Table$25; see Methods). We found higher sup-
port for PAV calls across all callers (99.7%) than other methods (99.7% 
to 67.9%; Extended Data Fig.$1d and Supplementary Fig.$9), with one 
exception for SVIM-asm, when run using the alignment parameters for 
PAV (99.70% SVIM-asm versus 99.66% PAV; Supplementary Table$26). 
With our current assemblies and this approach, we increased the size 
of the SV callset by 59% and reduced false discovery by 55% on average 
compared with previous callsets8 (Supplementary Tables$27 and 28 and 
Supplementary Methods). With one additional individual, we estimated 
that our callset would increase by 842 SV insertions and deletions with 
a 1.86% enrichment for an African versus a non-African individual (1,117 
versus 599; Supplementary Methods).

Per assembled haplotype, we identified 7,772 SV insertions (12,903 
per genome) and 7,745 SV deletions (12,505 per genome) on average in 
the T2T-CHM13 reference (Fig.$1g). As expected, GRCh38 SVs are unbal-
anced8,13 with 11,275 SV insertions per haplotype (17,458 per genome) 
and 6,972 SV deletions per haplotype (10,868 per genome) on average 
(Extended Data Fig.$1e and Supplementary Tables$29 and 30), with 
excess insertions occurring in high-allele-frequency variants, which 
can be largely explained by reference errors14. As expected, a distinct 
peak for fixed SVs (100% allele frequency) is apparent for GRCh38 SV 
insertions composed of variants in GRCh38 with no representation in 
T2T-CHM13 (Extended Data Fig.$1f).

An improved genomic resource
Mobile element insertions
Mobile element insertions (MEIs)15 constitute 8.2% of all SVs (relative 
to T2T-CHM13). We identified 12,919 putative MEIs from the 130 haplo-
type assemblies (Supplementary Table$31 and Supplementary Fig.$10;  

see Methods; for the GRCh38 union callset, see Supplementary Table$32 
and Supplementary Fig.$11). Comparison with an orthogonal MEI call-
set showed a high concordance of 92.1% (Supplementary Tables$33  
and 34; see Methods). Of note, we found 559 full-length L1 insertions 
(L1HS and L1PA2), with 96.1% possessing at least one intact open reading 
frame (ORF) and 82.3% harbouring two intact ORFs. Therefore, the vast 
majority of full-length L1 MEIs appear to retain the potential to retro-
transpose. Compared with our previous study8 (n!=!9,453 MEIs; 7,738 
for Alu, 1,775 for L1 and 540 for SVA), the total number of MEIs increased 
by 36.65% primarily due to an increase in individuals of African descent 
(Supplementary Fig.$10d). Finally, we screened the PAV deletion call-
set and identified 2,450 polymorphic MEIs present in T2T-CHM13  
(Supplementary Tables$35 and 36 and Supplementary Fig.$12).

Inversions
Identifying inversions is challenging due to the frequent location of 
their boundaries in long, highly identical repeat sequences. We iden-
tified 276 T2T-CHM13-based and 298 GRCh38-based inversions in the 
main callset and performed quality control by re-genotyping these calls 
using ArbiGent on Strand-seq data16 (Supplementary Tables$37 and 38 
and Supplementary Methods) as well as manual inspection (Supple-
mentary Table$37, Supplementary Figs.$13 and 14 and Supplementary 
Methods). Of note, we found 21 novel inversions in the PAV callset, of 
which 18 were detected among 24 new individuals added in the current 
study. These include a large (1.8!Mb) inversion at chromosome 5q35 
that overlaps with the Sotos syndrome critical region17.

Segmental duplications
SDs are defined independently for each haplotype as segments occur-
ing more than once with more than 1!kb in length and more than 90% 
identity. Owing to their propensity to undergo non-allelic homologous 
recombination, they are enriched tenfold for copy number variation 
and are the source of some of the most complex forms of genic struc-
tural polymorphism in the human genome18,19. Overall, we found an aver-
age of 168.1!Mb (s.d. of 9.2!Mb) of SDs per human genome and observed 
an improved representation of interchromosomal SDs (Supplementary 
Figs.$15 and 16) when compared with the Human Pangenome Reference 
Consortium (HPRC) release1. Using T2T-CHM13 as a gauge of complete-
ness (193.7!Mb), we estimated that 25.6!Mb of SDs (193.7–168.1!Mb) still 
remain unresolved per haploid genome (Extended Data Fig.$2a). Most 
of these unresolved SDs (21.2!Mb) correspond to the acrocentric short 
arms of chromosomes 13, 14, 15, 21 and 22 (refs. 4,20). We found that 
80–90% of SDs are accurately assembled depending on the genome 
(Supplementary Figs.$17 and 18; see Methods).

When analysing SDs outside of acrocentric regions and where the 
copy number was supported by fastCN (Supplementary Fig.$19; see 
Methods), we classified at least 92.8!Mb of the SDs as shared among 
most humans (present in at least 90% of individuals) and 61.0!Mb as 
variable across the human population (Extended Data Fig.$2b). In addi-
tion, we identified 33!Mb of the SD sequence present in a single copy 
or not annotated as SDs in T2T-CHM13 (Extended Data Fig.$2c,d). The 
majority of these (23.6!Mb, including 2.4!Mb of X chromosome SDs) are 
novel when compared with a recent analysis of 170 human genomes21 
and completely or partially overlap with 167 protein-coding genes 
(Supplementary Fig.$20). Of note, 31 loci (0.4!Mb) are shared among 
most humans but not classified as duplicated in the T2T-CHM13 human 
genome, suggesting that this unique status in the reference represents 
the minor allele in the human population, a cell line artefact or, less 
likely, an error in the assembly. Examining genomes by continental 
group, both the absolute SD content21 (Supplementary Figs.$21 and 22) 
and the number of new SDs added per genome is highest for African 
individuals (3.97!Mb per individual) when compared with genomes of 
non-African individuals (2.88!Mb per individual).

Genomes with African ancestry have, on average, 468 additional par-
alogous genes (n!=!21,595 total genes) when compared with genomes of 
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non-African individuals (n!=!21,127 total genes; Methods). We identified 
a total of 727 multi-copy genes that have SDs spanning at least 90% of 
the gene body, with a large proportion corresponding to shared (n!=!335 
or 46.1%) and variable (n!=!292 or 40.2%) SDs (Supplementary Table$39). 
Comparing the copy numbers to the HPRC assemblies1, we discovered 
a similar distribution of genes (Supplementary Fig.$23). Among copy 
number polymorphic genes, we identified 16 gene families in which 
the distribution significantly differs between the HPRC and our data 
(Supplementary Fig.$23; adjusted P!<!0.05, two-sided Welch’s t-test); 
however, the contiguity for copy number variant genes was consider-
ably greater in our assemblies versus HPRC; 5.88% of duplicated genes 
in our assemblies are within 200!kb of a contig break or unknown base 
(‘N’) compared with 13.95% of duplicated genes in HPRC assemblies 
(Supplementary Fig.$24).

Y chromosome variation
The Y chromosome remains among the most challenging of human 
chromosomes to fully assemble due to its highly repetitive sequence 
composition20 (Fig.$2a). Our resource provides highly contiguous  
Y assemblies for 30 male individuals. Seven of these (23%) assembled 
without breaks across the male-specific Y region (excluding the pseu-
doautosomal regions, six assembled as T2T scaffolds and one that has a 
break in the pseudoautosomal region 1; Supplementary Figs.$25 and 26). 
Of these seven, four are novel fully assembled human Y chromosomes 
representing E1b1a, R2a and R1b1a Y lineages prevalent in populations 
of African, Asian and European descent22–24 (Supplementary Fig.$27).

Our assemblies enable the investigation of the largest heterochro-
matic region in the human genome, Yq12, mostly composed of highly 
similar (but size variable) alternating arrays of DYZ1 (HSat3A6, approxi-
mately 3.5-kb unit size) and DYZ2 (HSat1B, approximately 2.4-kb unit 
size) repeats (Fig.$2a). The Yq12 regions across 16 individuals (9 novel 
and 7 previously published) range from 17.85 to 37.39!Mb (mean of 
27.25!Mb, median of 25.62!Mb), with high levels of variation in the num-
ber (34–86 arrays; mean of 60, median of 58) and length of DYZ1 (24.4!kb 
to 3.59!Mb; mean of 525.7!kb, median of 455.0!kb) and DYZ2 (11.2!kb to 
2.20!Mb; mean of 358.0!kb, median of 273.3!kb) repeat arrays23,24 (Sup-
plementary Table$40 and Supplementary Fig.$28). Investigating the 
dynamics of Yq12 remains challenging25; however, using the duplication 
and deletion patterns of four unique Alu insertions, we can examine 
this genomic region over time (Fig.$2a and Supplementary Fig.$28). For 
example, in NA19239, the presence of retrotransposon insertions (one 
AluY and five AluYm sequences) allows clear visualization of a tandem 
duplication in the region.

Functional effects of SVs
To identify SVs disrupting protein-coding genes under selective con-
straint26, we intersected all 176,531 GRCh38-based SVs with coding exons 
from GENCODE V45. We found 1,535 SVs, including 938 deletions, 80 
inversions, 504 insertions and 13 MEIs, that disrupt 985 unique genes 
(Supplementary Table$41). A mean of 368 genes per genome have an SV 
breakpoint altering the coding sequence. On average, only 11.7 genes 
(3.2%) were disrupted by a singleton variant unique to that individual, 
whereas 96.8% of genes were disrupted by polymorphic SVs, and 27.8% 
were disrupted by major-allele SVs (more than 50% allele frequency). 
Of the 1,535 genes affected by SVs, only 37 were predicted to be intol-
erant to loss of function in humans (LOEUF!<!0.35)27. Polymorphic SVs 
altered 16 constrained genes, suggesting that the SVs did not result in 
loss of function. Indeed, we found that tandem repeat unit variants in 
coding sequences of four constrained genes were in frame (MUC5B, 
ACAN, FMN2 and ARMCX4). Deletion of one or more 59-bp VNTR units 
overlapping the last 8!bp of MUC5B exon 37 left coding sequences and 
splice sites intact.

To assess isoform differences and detect imprinted genes, we gener-
ated long-read Iso-seq data for 12 of the 65 individuals (EBV-transformed 
lymphoblastoid B cell lines) and aligned these to donor-matched 
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haplotype assemblies (Fig.$2b, Extended Data Fig.$3a and Supple-
mentary Methods). Using our SV callset (Methods), we identified 136 
structurally variable protein-coding gene sequences (Supplemen-
tary Table$42 and Supplementary Methods). Of these 136 genes, 58% 
(n!=!79) contained a common SV (allele frequency!>!0.05; Extended Data 
Fig.$3b). One example, ZNF718, creates nine unique isoforms (Fig.$2c) 
due to a common (allele frequency!=!0.55) 6,142-bp polymorphic dele-
tion that removes exons 2 and 3 from the canonical transcript as well 
as the 3& part of an exon annotated as an alternate first exon (Extended 
Data Fig.$3b). Across the 14 wild-type ZNF718 haplotypes, we found three 
known isoforms and four previously unreported isoforms (Methods). In 
contrast to other protein-coding genes with a single SV (Extended Data 
Fig.$3c), we found greater transcript diversity among the variant hap-
lotypes of ZNF718 than wild-type haplotypes. We also searched for SVs 
affecting nearby gene expression (RNA-seq) and identified 122 unique 
SVs proximal (less than 50!kb) to 98 differentially expressed genes 
across the 12 individuals, representing an enrichment compared with 
randomly permuted SVs (Extended Data Fig.$3d; empirical P!=!0.001; 
Supplementary Table$43 and Supplementary Fig.$29; see Methods). 
Genome-wide, SVs were depleted across protein-coding genes and 
regulatory regions in the genome, as expected28 (Extended Data Fig.$3e,f 
and Supplementary Fig.$30). By intersecting these 122 SVs with Hi-C 
data from the same individuals, we found that 29 of the SVs (associated 
with 24 genes) correspond to contact density changes in chromatin 
conformation regions (Extended Data Fig.$3g, Supplementary Table$44 
and Supplementary Methods). Finally, we identified 3,818 SVs in high 
linkage disequilibrium with single-nucleotide polymorphism (SNP) 
loci from genome-wide association studies (GWAS) of human disease 
(Extended Data Fig.$3h and Supplementary Table$45; see Methods).

Genotyping and integrated reference panel
Genome-wide genotyping with PanGenie
Pangenome references have enabled genome inference, a process 
leveraging haplotype structures to genotype all variation encoded 
within a pangenome in a new individual from short-read whole-genome 
sequencing data3. We therefore constructed a pangenome graph con-
taining all 65 genomes assembled here as well as 42 HPRC genome 
assemblies1 with Minigraph-Cactus and detected variants by identifying 
graph bubbles relative to T2T-CHM13 (Methods). We used PanGenie 
to genotype bubbles across all 3,202 individuals from the 1kGP cohort 
based on Illumina data29 and decomposed the 30,490,169 bubbles into 
28,343,728 SNPs, 10,421,787 indels and 547,663 SV alleles1 (Supplemen-
tary Fig.$31; see Methods). Leave-one-out experiments confirmed high 
genotype concordance of up to approximately 94% for biallelic SVs 
(Supplementary Figs.$32–34), and filtering the genotypes1,8 resulted 
in a set of reliably genotypable variants comprising 25,695,951 SNPs, 
5,774,201 indels and 478,587 SV alleles (Supplementary Table$46, Sup-
plementary Figs.$35 and 36 and Supplementary Methods). We note 
that this set of SV alleles is larger than our main PAV callset (188,500 
SVs) because it includes the HPRC genome assemblies and at the same 
time retains all SV alleles at multi-allelic sites (Supplementary Fig.$37 
and Supplementary Methods).

We compared our genotyped set to other SV sets for the 1kGP cohort, 
including the HPRC PanGenie genotypes that we produced previously1, 
as well as the 1kGP short-read high-coverage SV callset (1kGP-HC)29 
(Supplementary Figs.$38 and 39). On average, we found 26,115 SVs per 
genome, whereas this number was 18,462 for the HPRC genotypes 
and 9,596 for the 1kGP-HC SV calls. We specifically observed increases 
for rare variants (allele frequency!<!1%; Fig.$2d). Although the average 
number of rare SVs per genome was 87 for non-African individuals in 
the HPRC set and 169 in the 1kGP-HC set, we can now access on average 
362 rare alleles. For African individuals, we detected 1,490 rare SVs per 
genome, whereas there were 382 previously for the HPRC and 477 for 
the 1kGP-HC set.
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Personal genome reconstruction
Next, we asked to what extent our improved genotyping abilities allow 
us to reconstruct the full haplotypic sequences of genomes sequenced 
with short reads. To this end, we combined our filtered PanGenie geno-
types with rare SNP and indel calls obtained from Illumina reads for all 
3,202 1kGP individuals (Methods) and phased this combined set using 

SHAPEIT5 (Supplementary Fig.$31, step 3, and Supplementary Figs.$40 
and 41; see Methods).

We produced consensus haplotype sequences for all 3,202 individuals 
(6,404 haplotypes) by implanting the phased variants into T2T-CHM13 
(only chromosomes 1–22 and X chromosome) and compared with con-
sensus haplotypes produced from the GRCh38-based phased 1kGP-HC 
panel29. Although the median k-mer-based quality value of the long-read 
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assemblies was 53, we observed a median k-mer-based quality value of 
45 for the consensus haplotypes computed from our short-read-based 
phased genotypes (Fig.$2e and Supplementary Fig.$42). To enable a fair 
comparison with the GRCh38-based 1kGP-HC consensus haplotypes, 
we additionally computed our k-mer-based quality value estimates 
restricted to regions shared between T2T-CHM13 and GRCh38 (‘CHM13- 
syntenic’). For these regions, we observed a median quality value of 
48, whereas the quality value for the 1kGP-HC set was lower (median 
of 43; Fig.$2e and Supplementary Fig.$42). In addition, we observed 
higher k-mer completeness values (median of 97.4%) than for the 
1kGP-HC-phased set (median of 97.1%; Extended Data Fig.$4a and Sup-
plementary Fig.$42). Because k-mer-based quality value estimates do 
not fully capture structural sequence correctness, we additionally 
used PAV to compute variant-calling-based quality value estimates 
for each 1-Mb genomic window (Methods). This expectedly resulted 
in lower quality value estimates (median quality value for 1kGP-HC 
of 26.7; median quality value for PanGenie of 34.2), but confirms the 
gain of PanGenie over standard short-read pipelines (Supplementary 
Figs.$43–45). Of note, PanGenie enables an accurate genome reconstruc-
tion of quality value!>!30 routinely (78% of all 1-Mb windows), whereas 
that is rarely achieved for the 1kGP-HC callset (24% of all 1-Mb windows).

Targeted genotyping of complex loci
Although PanGenie performed well in this genome-wide setting, its 
use of k-mer information could make it difficult to genotype complex, 
repeat-rich loci with few unique k-mers. We therefore used the targeted 
method Locityper30 to genotype the 1kGP cohort across 347 polymor-
phic targets covering 18.2!Mb and 494 protein-coding genes (Methods), 
including 268 challenging medically relevant genes31. For this challeng-
ing set of regions, the 1kGP-HC callset reaches a variant-based quality 
value of 30 for only 34.5% and a variant-based quality value of 40 for 
only 12.8% of predictions30.

The performance of Locityper is constrained by the haplotypes avail-
able in the reference set. Therefore, we first evaluated haplotype avail-
ability by comparing sequences of the unrelated assembled haplotypes. 
Across all target loci, 51.5% of our assembled haplotypes were similar 
(variant-based quality value!(!40) to some other haplotype from the 
full reference panel described above, compared with only 39.6% of 
haplotypes when restricting to an HPRC-only reference panel1 (Fig.$2f).

The increased haplotype availability translates into improved geno-
typing of polymorphic loci and we observed 80.0% haplotypes to be 
predicted with variant-based quality value!(!30 using a leave-one-out 
experiment compared with 74.6% haplotypes for the HPRC-only panel 
(Methods). These global improvements are mirrored by improvements 
of individual genes (Extended Data Fig.$4b), including HLA-DRB5, 
HLA-DPA1 and HLA-B (Extended Data Fig.$4c). Finally, we asked what 
performance could potentially be achieved for growing reference pan-
els and therefore used the full reference panel, including samples to be 
genotyped. Here Locityper predicts haplotypes with average quality 
value of 45.8, suggesting that sequence resolution of more reference 
haplotypes will aid future re-genotyping of challenging medically rel-
evant genes, with applications to disease cohorts.

Major histocompatibility complex
Given the disease relevance and complexity of the 5-Mb MHC region32–34 
(Fig.$3a), we annotated 27–33 human leukocyte antigen (HLA) genes 
and 140–146 non-HLA genes or pseudogenes along with the associated 
repeat content of the 130 complete or near-complete MHC haplotypes 
(Supplementary Table$47). Although 99.2% (357 of 360) of the HLA 
alleles agree with classical typing results35 (Supplementary Tables$48 
and 49), we resolved a total of 826 incomplete HLA allele annotations 
in the IPD-IMGT/HLA reference database36 (Supplementary Table$50), 
including 112 sequences from the HLA-DRB loci, important for vaccine 
response and autoimmune disease37,38. We detected 170 SVs absent from 

reported reference haplotypes39,40 (Supplementary Table$51), including 
a deletion of HLA-DPA2 (HG03807, haplotype 1).

The observed MHC class II haplotypes reflect the established DR 
group system (Fig.$3b and Supplementary Table$52) and comprise rep-
resentatives of DR5, DR8 and DR9, which have not previously been 
analysed in detail39,40. In this system, the functional DRB3, DRB4 and 
DRB5 genes differentially associate across the DR groups, with DR1 and 
DR8 groups uniquely lacking either of them. Repeat element analyses 
(Supplementary Figs.$46–48; see Methods) suggest that DR8 arose 
from an intrachromosomal deletion mediated by 150!bp of sequence 
homology between HLA-DRB1 and HLA-DRB3 on the DR3/5/6 haplotype, 
as previously reported41 (Fig.$3c). DR1 is most likely derived by recombi-
nation between DR2 and DR4/7/9 (Fig.$3c and Supplementary Figs.$46 
and 49). Finally, our catalogue of solitary HLA-DRB exon sequences42 
includes refined copy number estimates (for example, three solitary 
HLA-DRB exon 1 sequences instead of one in the HLA-DRB9 region of 
DR1), as well as identification of a polymorphic, solitary exon 10!kb 3& 
of HLA-DRB1 (Fig.$3b; see Methods).

Similarly, we characterized the RCCX (STK19 (R), C4 (C), CYP21 (C) 
and TNX (X)) multi-allelic cluster (Fig.$3d, Supplementary Table$53 and 
Supplementary Fig.$50), in which phasing and variant classification 
has been challenging due to extensive sequence homology43. Tandem 
duplications (aka RCCX bi-modules) are the most abundant (74.6% or 
n!=!97), with mono-modules and tri-modules comparable in frequency 
(13.1% (n!=!17) and 12.3% (n!=!16), respectively; Supplementary Fig.$50). 
Resolved haplotypes also facilitate the detection of interlocus gene 
conversion events critical for RCCX evolution44, such as two haplo-
types with a tri-modular RCCX with two functional CYP21A2 copies, 
one mono-modular and one bi-modular haplotype with no functional 
CYP21A2 genes; and one tri-modular haplotype with a unique configura-
tion where C4B precedes C4A and carries two CYP21A2 copies, one of 
which being non-functional (Fig.$3d). We suggest that the latter hap-
lotype was generated by introduction of a nonsense mutation and 
two gene conversion events, converting CYP21A1P into CYP21A2 and 
C4A into a C4B that now unusually encodes the Rodgers blood group 
epitope. We also identified seven novel C4 amino acid variants (Sup-
plementary Figs.$51 and 52).

Next, we evaluated the performance of Locityper across 19 MHC 
protein-coding genes and 14 pseudogenes. Across all 33 loci, Locityper 
correctly predicted gene alleles in 81.0% cases when restricting to a 
limited HPRC-only reference panel (45 individuals)1. Inclusion of our 
assemblies (n!=!107 individuals or 214 phased haplotypes) increased 
accuracy to 86.3% (leave-one-out experiment) and 97.1% (full panel 
leveraging all 214 phased haplotypes; Extended Data Fig.$4c), under-
scoring the value of accurate phased assemblies for the interpretation 
of short-read data.

Finally, we tested whether the established HLA class II DR group 
nomenclature could be recapitulated using unbiased, sequence-based 
analysis. Applying a pangenomic multiscale approach, PGR-TK45 
(Fig.$3e), to a subset of our genomes (n!=!55) as well as T2T-CHM13 (ref. 4),  
we identified 63 conserved blocks greater than 6!kb. Multiscale hier-
archical clustering of the haplotypes perfectly reconstituted the tra-
ditional DR group system in the region around HLA-DRB1 (Fig.$3e). 
However, we also observed additional diversified subgroups indicating 
the possibility for a more fine-grained future classification of HLA-DR 
haplotypes or utility in the context of GWAS, especially when coupled 
with the improved targeted genotyping ability (Extended Data Fig.$4c).

Complex structural polymorphisms
Long-read-assembled genomes significantly enhance the detection 
and characterization of complex structural variants (CSVs) defined 
here as a single event composed of simple SVs spanning more than 
one repair junction. Because CSV breakpoints are often located in 
repetitive sequences, including SDs and MEIs46–49, we recently updated 
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PAV8 to identify CSVs embedded in large complex repeats such as SDs  
(Methods). Using this method against the T2T-CHM13 reference 
genome, we found on average 72 CSVs per genome50 (range of 51–91; 
Supplementary Table$54; see Data availability). Across all genomes, we 
identified 1,247 CSVs with 128 distinct complex reference signatures50, 
consistent with known CSVs derived from diverse individuals51. We 
found that 27% of CSVs have locally duplicated sequences, and 38% 
have local inversions. Many of the complex structures that we identi-
fied are mediated by SDs, such as INVDUP-INV-DEL (174 CSVs and 92% 
SDs), DEL-INV-DEL (34 CSVs and 21% SDs) and INVDUP-INV-INVDUP (8 
CSVs and 75% SDs) where DEL is a reference deletion, INV is an inverted 

sequence that is not duplicated and INVDUP is a duplicated inversion 
(one copy in each orientation)50. As an example, we highlight two CSVs 
involving NOTCH2NL and NBPF, genes implicated in the expansion of 
the human brain during evolution8, as well as a core duplicon associated 
with genomic instability52. Although the full structures could not be 
resolved by previous optical mapping or sequencing experiments, we 
can distinguish three distinct haplotype structures, including a refer-
ence haplotype (13.7% allele frequency), a 930-kb CSV (DEL-INV-DEL) 
inverting NBPF8 and deleting NOTCH2NLR and NBPF26 (35.9% allele fre-
quency; Fig.$4a), and a 513-kb CSV with a distal template switch replacing 
NBPF8 with NBPF9 (50.8% allele frequency; Supplementary Fig.$53).
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As a second example, the structurally complex region containing 
SMN1 and SMN2 gene copies is associated with muscular atrophy, and 
successful ASO-mediated gene therapies involve SMN2 (refs. 53,54). 
The genes are embedded in a large SD region (approximately 1.5!Mb) 
that has been almost impossible to fully sequence resolve despite 
the advances of the past two decades1,2,8 (Supplementary Fig.$54). We 

successfully assembled, validated and characterized 101 haplotypes 
to fully resolve the structure and copy number of SMN1/2, SERF1A/B, 
NAIP and GTF2H2/C (Methods). We found that 48% (n!=!48) of haplo-
types carry exactly two copies of SMN1/2, SERF1A/B and GTF2H2/C, 
whereas NAIP is present mostly in a single copy. We highlight 11 
human haplotypes showing increasing complexity (Fig.$4b–d). We 
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show their relative proportions in continental groups. The asterisks show 
haplotypes with only SMN2 gene copies. f, The structure of the human amylase 
locus shows amylase genes (coloured arrows) and alignments between 
haplotypes (99–100% sequence identity). The H3r.4 haplotype represents the 
most common haplotype, H5.15 and H7.2 are haplotypes previously unresolved 
at the base-pair level, and H11.1 is a previously unknown haplotype. Amylase 
gene annotations are displayed above each haplotype structure. The structure 
of each amylase haplotype, composed of amylase segments, is indicated by  
the coloured arrows. Sequence similarity between haplotypes ranges from 99% 
to 100%.
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specifically distinguished functional SMN1 and SMN2 copies based 
on our assemblies (Supplementary Fig.$55) and compared them with 
the short-read-based geno typing methods Parascopy and SMNCopy-
NumberCaller (Methods). For individuals with two fully assembled 
haplotypes (n!=!31), predicted SMN1/2 copy numbers matched perfectly 
among the three methods (Supplementary Fig.$56). Our analysis shows 
that 98 haplotypes carry the ancestral SMN1 copy but three do not 
and are potentially disease-risk loci that may have arisen as a result of 
interlocus gene conversion (Fig.$4e and Supplementary Fig.$57).

Finally, we analysed the complex amylase locus spanning 212.5!kb 
on chromosome 1 (GRCh38; chr. 1: 103554220–103766732) and con-
taining genes AMY2B, AMY2A, AMY1A, AMY1B and AMY1C55 (Fig.$4f). 
From 65 sequence-resolved genomes, we identified 39 distinct amylase 
haplotypes, capturing approximately 83% of the haplotypes in the 
population (Supplementary Table$55 and Supplementary Figs.$58 and 
59), 35 of which were supported by both Verkko and optical genome 
mapping de$novo assemblies. The length of these amylase haplotypes 
ranges from 111!kb (H1a.1 and H1a.2) to 582!kb (H11.1; Fig.$4f), includ-
ing those that are structurally identical to the GRCh38 (H3r.1) and 
T2T-CHM13 (H7.3) assemblies. Among these, four are common: H1a.1 
(n!=!14), H3r.1 (n!=!13), H3r.2 (n!=!19) and H3r.4 (n!=!22; constituting 57% 
of all genomes), whereas 23 are singletons. We identified nine haplo-
types previously supported only by optical genome mapping data and 
fully sequence resolved the largest haplotype (H11.1; 11 AMY1 (8.8!kb)  
copies)55–57 (Fig.$4f).

Centromeres
Human centromeres are among the most mutable genomic regions 
and are composed of tandemly repeating #-satellite DNA organized 
into higher-order repeats (HORs) spanning up to several megabases 
on each chromosome58. It has been estimated that approximately 22% 
of centromeres vary by over 1.5-fold in length, and approximately 30% 
of them vary in their structure59. To understand the genetic and epige-
netic centromeric variation in these 65 individuals, we first assessed 
contiguity and accuracy using two assembly algorithms (Methods). 
We identified 822 Verkko centromeres and 777 hifiasm centromeres 
that were completely and accurately assembled. Only 28.3% were cor-
rectly assembled by both assemblers, with Verkko and hifiasm uniquely 
resolving a similar subset (37.7% and 34.1%, respectively). We combined 
these two datasets into a non-redundant set of 1,246 completely and 
accurately assembled centromeres (approximately 52 centromeres 
per chromosome and approximately 19.5 centromeres per genome, on 
average; Extended Data Fig.$5a and Supplementary Tables$56 and 57).

We first measured the variation in the length of the centromeric 
#-satellite HOR array (or arrays) on each chromosome. Although active 
centromeric #-satellite HOR arrays are, on average, 2.3!Mb in length, 
there is considerable variation, including outliers (Fig.$5a, Supplemen-
tary Table$57 and Supplementary Figs.$60 and 61). For example, the active 
#-satellite HOR arrays from chromosomes 3, 4, 10, 13–16, 21 and the  
Y chromosome are consistently smaller, whereas those on chromosomes 
1, 11 and 18 are larger than average (Supplementary Fig.$61). Among the 
1,246 centromeres, we identified 4,153 new #-satellite HOR variants and 
novel active #-satellite HOR array organizations (Fig.$5b and Supplemen-
tary Figs.$62 and 63). On chromosome 1, for example, we identified an 
insertion of monomeric #-satellite into the D1Z7 #-satellite HOR array, 
effectively splitting the #-satellite into two distinct HOR arrays (Fig.$5b). 
A similar bifurcation event also occurred on the centromeres of chromo-
somes 12 and 19, generating two #-satellite HOR arrays where there typi-
cally is only one (Fig.$5b,c). In addition, we found novel #-satellite HOR 
array organizations for chromosomes 6 and 10 that differ from the CHM1 
and CHM13 arrays on those chromosomes59 (Fig.$5b and Supplementary 
Fig.$62b,c). These array organizations, which are the most common in our 
dataset, are primarily composed of either 18-monomer #-satellite HORs 
(chromosome 6) or 6-monomer #-satellite HORs (chromosome 10).

To determine how variation in centromeric sequence and structure 
affects their epigenetic landscape, we assessed the CpG methylation 
pattern along each centromere using native ONT data. We found that 
all centromeres contain at least one region of hypomethylation (termed 
the ‘centromere dip region’ (CDR))58,60, which is thought to mark the site 
of the kinetochore. However, in many cases, such as on chromosomes 
6, 15 and 19, there were at least two CDRs more than 80!kb apart (Fig.$5b, 
Extended Data Fig.$5b–d and Supplementary Fig.$64). This suggests the 
presence of a ‘di-kinetochore’, which may form a dicentric chromosome 
on approximately 7% of chromosomes, but additional analyses that 
assess the location of the centromeric histone H3 variant, CENP-A, will 
need to be performed to confirm these putative kinetochore sites. We 
generated sequence identity heatmaps of each centromere and found 
that the CDR often resides within the most highly identical regions of 
the #-satellite HOR arrays (Fig.$5c and Extended Data Fig.$5d). Even when 
the #-satellite HOR array is split into two arrays, such as on chromo-
some 19, the CDR associates with the array containing some of the most 
highly identical #-satellite HORs (Extended Data Fig.$5d). This suggests 
that the kinetochore may track with actively homogenizing #-satellite 
HOR sequences in response to a co-evolution between centromeric 
DNA and proteins61.

MEI investigation in many of the #-satellite HOR arrays (Methods) 
revealed that approximately 30% contained at least one MEI. In total, 
we identified 89 unique polymorphic insertions with varying allele 
frequencies (Supplementary Table$58), with L1HS being the most preva-
lent (58%), followed by Alu elements (41%) and SVAs (1%). The D2Z1 
#-satellite HOR array on chromosome 2 was highly enriched with MEIs 
(Fig.$5d), with at least one L1HS and/or Alu insertion in 80% of haplotypes 
(Supplementary Fig.$65). Although L1HS insertions or duplications 
were the most common, occurring on average three times per array, 
three unique Alu insertions (two AluYb8 and one AluYa5) were also 
present, albeit with low allele frequency. Nearly all insertions, as well 
as their duplications, were located outside of the CDRs and typically 
towards the periphery. However, one AluYb8 insertion (NA20509 (H1)) 
was located between two CDRs and appeared to ‘break’ a single CDR 
into two, whereas a pair of L1HSs were found on either side of a CDR 
in two haplotypes (NA19331 (H1) and NA19650 (H1)), possibly acting 
as boundaries that restrict CDR and CENP-A chromatin movement, as 
previously suggested62.

Discussion
LRS and assembly have enabled both the full resolution of a human 
genome sequence4 and fundamentally deepened our understanding of 
human genetic diversity1,8,13,63. The development of a human pangenome 
reference1,64 requires ideally completely phased and assembled diverse 
genomes. Although hundreds of genomes are being assembled as part 
of international efforts65, practically, few are yet truly T2T. Meanwhile, 
pangenome augmentation methods based on shallow long-read data 
have been used to capture variants with lower allele frequencies66. Nev-
ertheless, algorithms and technology have advanced significantly, and 
we have demonstrated that more than 99% of the human genome can 
be accurately phased and assembled by focusing on 65 diverse humans 
(130 haplotypes). We characterized regions previously excluded or col-
lapsed1,2, including centromeres, biomedically complex regions such 
as SMN1/SMN2, the MHC and thousands of more complex SV patterns.

Combining our assemblies with previous HPRC assemblies to cre-
ate a reference set, we were able to reconstruct a genome from short 
reads to an average base error of about 0.00158% (quality value of 48). 
This process detects 26,115 SVs per genome on average from short- 
read sequence data and notably now recovers more rare SVs (allele 
frequency!<!1%) than direct variant discovery from short reads. This 
advance was made possible by improvements in assembly quality, 
the larger sample size, improved versions of the Minigraph-Cactus 
and PanGenie applications, and the switch to the more complete 
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T2T-CHM13 reference genome. As the number of HPRC genomes 
increases to several hundreds and become completed, T2T65 geno-
typing accuracy will probably improve further. This, in turn, will make 
disease-association studies from short reads considerably more power-
ful for complex variation.

Using our assembly method, we fully assembled 1,246 centromeres 
— 42% of all possible centromeres in these individuals. As expected, 
we observed considerable variation in the content and length of the 
#-satellite HOR array (up to 37-fold for chromosome 10) consistent 
with its higher mutation rate and more rapid evolutionary turnover2,59. 
We have also documented recent Alu, L1 and SVA retrotransposition 
into the #-satellite HORs and showed that these may be used to tag 

HOR expansions on particular human haplotypes. Using the CDR58,60 
as a marker of kinetochore attachment, we have shown considerable 
variation in the location across human centromeres and remarkably 
that 7% of human chromosomes show evidence of two or more putative 
kinetochores (that is, di-kinetochores) in lymphoblastoid cell lines. 
The significance of both MEIs and di-kinetochore on chromosome 
segregation or missegregation will need to be experimentally assessed, 
and these phased genomes (and their corresponding cell lines) provide 
the foundation for such future work.

Finally, from a technical perspective, application of two independ-
ent assembly algorithms, hifiasm (ultra-long) and Verkko, nearly dou-
bled the number of sequence-resolved centromeres. Although the two 

methods were strongly complementary for centromeres, Verkko was 
clearly superior for the Y chromosome (Supplementary Fig.$26c). As 
the performance of both Verkko and hifiasm has been shown to be 
very similar for large portions of the euchromatin10, there is benefit 
in applying both assembly algorithms to resolve the most structurally 
complex regions of the genome until a tool combining the strengths 
of both methods becomes available.
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methods were strongly complementary for centromeres, Verkko was 
clearly superior for the Y chromosome (Supplementary Fig.$26c). As 
the performance of both Verkko and hifiasm has been shown to be 
very similar for large portions of the euchromatin10, there is benefit 
in applying both assembly algorithms to resolve the most structurally 
complex regions of the genome until a tool combining the strengths 
of both methods becomes available.
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Methods
Sample selection
A total of 65 diverse humans were included in the current study. The 
majority of the individuals (63 of 65) originated from the 1kGP sample 
set11, one (NA21487) from the International HapMap Project67 and one 
(NA24385, also called HG002) commonly used for benchmarking by 
the Genome in a Bottle (GIAB) Consortium68 was included in all analy-
ses with publicly available data from other efforts (Supplementary 
Tables$1–4, 6 and 7). Individuals were selected to maximize genetic 
diversity and Y chromosome lineages (Supplementary Methods).

Data production
In addition to data generated through previous efforts8,23, sequenc-
ing libraries were prepared from high-molecular-weight DNA or RNA 
extracted from lymphoblastoid cell lines (Coriell Institute). PacBio 
HiFi sequencing data were generated on the Sequel II or Revio plat-
forms using 30-h movie times. UL ONT libraries were generated using 
a modified fragmentase protocol and sequenced on R9.4.1 flow cells 
on a PromethION instrument for 96!h. Bionano Genomics optical map-
ping data using DLE-1 tagging were collected on Saphyr 2nd generation 
instruments. Strand-seq data were produced using BrdU incorporation 
and second-strand DNA removal during PCR-based library construc-
tion to generate single-nucleus barcoded libraries sequenced on an 
Illumina NextSeq 500 platform69,70. Hi-C data were collected using 
Proximo Hi-C kits (v4.0; Phase Genomics) and sequenced on an Illu-
mina NovaSeq 6000. RNA-seq libraries were generated using KAPA 
RNA Hyperprep with RiboErase (Roche) and sequenced on an Illumina 
NovaSeq 6000 platform. Iso-seq full-length cDNA libraries were created 
with the Iso-seq Express protocol and sequenced on a PacBio Sequel II 
system. Detailed descriptions of materials and methods are available 
(Supplementary Methods).

Assembly
We produced fully phased hybrid assemblies using Verkko (v1.4.1)9 
as our primary assembler (Supplementary Methods). We addition-
ally created hifiasm (ultra-long; v0.19.6)10 assemblies (Supplemen-
tary Methods), which were used to complement our analysis of the 
most challenging regions (centromeres and Yq12). The phasing sig-
nal for all assemblies was generated using the Graphasing pipeline12 
(v0.3.1-alpha). All assemblies were scanned for contamination with 
NCBI’s Foreign Contamination Screening workflow (v0.4.0)71 and anno-
tated for potential assembly errors using Flagger (v0.3.3)1, Merqury 
(v1.0)72, NucFreq73 (commit #bd080aa) and Inspector (v1.2)74 (Supple-
mentary Methods). Assembly quality was assessed by computing qual-
ity value estimates with Merqury and DeepVariant (v1.6)75 as previously 
described8. Gene completeness of the assemblies was evaluated using 
compleasm (v0.2.5)76 and the primate set of known single-copy genes 
of OrthoDB (v10)77. The T2T status of the assembled chromosomes 
and the closing status of previously reported gaps2 were determined 
relative to the T2T-CHM13 reference genome4 by factoring in the above 
quality control information in the evaluation of the contig-to-reference 
alignment produced with minimap2 (v2.26)78,79 and mashmap (v3.1.3)80 
(Supplementary Methods). The parental support for the assembled 
child haplotypes in the three family trios was computed by evaluating 
the CIGAR operations in the minimap2 contig-to-contig alignments 
between the parents and child.

Variant calling
Genome reference. Callsets were constructed against two references: 
GRCh38 (GRCh38-NoALT) and T2T-CHM13 (T2T-CHM13v2.0)4.

Variant discovery and merging. For assembly-based callsets, we ran 
PAV (v2.4.1)8 with minimap2 (v2.26)78 and LRA (v1.3.7.2)81 alignments, 
DipCall (v0.3)82 and SVIM-asm (v1.0.3)83. SVIM-asm used PAV alignments 
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before PAV applied any alignment trimming, and DipCall produced 
minimap2 alignments for DipCall variants (Supplementary Methods).

For PacBio HiFi callsets, we ran PBSV (https://github.com/Pacific-
Biosciences/pbsv; v2.9.0), Sniffles (v2.0.7)84, Delly (v1.1.6)85, cuteSV  
(v2.0.3)86, DeBreak (v1.0.2)87, SVIM (v2.0.0)88, DeepVariant (v1.5.0)75 
and Clair3 (v1.0.4)89. The same callers and versions were run for ONT 
except for PBSV, and DeepVariant was executed through PEPPER- 
Margin-DeepVariant (r0.8)90. The callset process was the same for both 
references (Supplementary Methods).

SV-Pop8 was used to merge PAV calls from minimap2 alignments and 
generate per-sample support information from all other callers. Calls in 
T2T-CHM13 were filtered if they intersected the UCSC ‘CenSat’ track for 
T2T-CHM13 (UCSC hs1) with monomeric (‘mon’) records excluded or if 
they were in telomere repeats. GRCh38 variants intersecting modelled 
centromeres were removed (Supplementary Methods).

MEIs
MEIs were identified within the 130 haplotype assemblies using two 
separate pipelines and human references (T2T-CHM13 and GRCh38). 
One detection pipeline, L1ME-AID (v1.0.0-beta; L1 Mediated Annota-
tion and Insertion Detector; see Code availability), leverages a local 
RepeatMasker (v4.1.6)91 installation with the Dfam (v3.8) database92 to 
annotate the freeze4 PAV-merged SV insertion callsets (T2T-CHM13 and 
GRCh38). The second pipeline called MEIs directly from the alignment 
of contigs to a reference genome with PALMER2 (Code availability). 
Putative MEIs from both callers were then merged using MEI coordi-
nates, element family (Alu, L1, SVA, HERV-K or snRNA) and sequence 
composition (Supplementary Methods). Next, MEIs were curated to 
distinguish MEIs from deletions (T2T-CHM13 or GRCh38), duplica-
tions or potential artefacts (for example, possible genome assembly 
errors; Supplementary Methods). All MEIs called by a single pipeline 
that passed quality control were manually curated. Finally, both call-
sets were compared against an orthogonal MEI callset produced by 
MELT-LRA (Supplementary Methods; see Code availability). To deter-
mine intact ORFs across LINE-1 elements, we followed a previously 
described method8 to detect intact ORF1p and ORF2p from full-length 
(more than 5,900!bp) LINE-1 insertions.

Separately, MEIs within centromere HOR arrays were identified with 
RepeatMasker (v4.1.6)91 and the Dfam library (v3.8)92, annotation of 
complete and accurately assembled centromeres (see ‘Centromeres’ in 
the Methods). The sequences of Alu elements, L1s and SVAs identified 
by RepeatMasker within the centromere HOR array boundaries were 
retrieved using SAMtools (v1.15.1)93. Element sequences were then 
scrutinized with L1ME-AID (v1.0.0-beta) utilizing the same cut-offs 
applied to the freeze4 PAV-merged SV insertion callset to distinguish 
young MEIs from older mobile element fragments. Sequence of all 
putative MEIs that passed filtering were re-retrieved along with a flank-
ing sequence (±100!bp) using SAMtools (v1.15.1)94, and then aligned 
against one another using MUSCLE (v3.38.31)95 to distinguish unique 
MEIs from duplicated insertions of MEIs residing in centromere regions 
(Supplementary Table$58).

Inversions
We performed validation of the T2T-CHM13-based and GRCh38- 
based PAV inversion callsets, individually, using Strand-seq-based 
re-genotyping of the inversion calls. Before genotyping, we performed 
Strand-seq cell selection using ASHLEYS96. The good-quality Strand-seq 
cells were used as input to perform genotyping by ArbiGent16 (Sup-
plementary Methods).

We evaluated the PAV inversion callset for one candidate carrier per 
region using manual dotplot analysis with NAHRwhals97. NAHRwhals 
was applied to detect the false discovery rate and classify all candidate 
inversion regions larger than 5!kb into distinct inversion classes.

We compared the PAV inversion callset reported with respect to 
T2T-CHM13 to a previously published callset98 based on a subset of 
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genomes reported in this study. Using the 25% reciprocal overlap 
criterion, we defined inversions detected in both callsets as well as 
inversions that are new to the current study. We evaluated all novel 
inversion candidates manually using dotplot analysis of each putative 
novel inversion.

SD and copy number polymorphic genes
Identi!ication of SDs. SD annotation was performed using SEDEF 
(v1.1)99 after masking repeats (TRF (v.4.1.0)100, RepeatMasker (v4.1.5)101 
and Windowmasker (v2.2.22)102; Supplementary Methods). SDs with a 
sequence identity of more than 90%, length of more than 1!kb, satellite 
content of less than 70% and free of putative erroneous regions (see 
Code availability) were retained. In addition, the highly confident SD 
callset was further validated by fastCN103. Comparative analysis of SDs 
was conducted in T2T-CHM13 space. Positions of the SDs in T2T-CHM13 
were mapped as follows: (1) linking SDs within 10-kb distance, (2) iden-
tifying those SD chains that are located in alignment block of at least 
100!kb in size, and (3) projecting the chained SDs onto putative homolo-
gous SD loci containing at least one 10-kb unique flank. In addition, 
syntenic SDs were further assessed for whether they share sequence 
content by aligning SDs with minimap2 (v2.26)78; the following SDs 
were quantified: (1) SDs unobserved by T2T-CHM13, (2) having changed 
sequence content (less than 80% of the sequence conserved), and  
(3) expanded size (at least twofold).

Duplicated genes. Protein-coding transcripts from GENCODE v44 
(Liftoff to T2T-CHM13) were aligned to the genome assemblies (exclud-
ing NA19650, NA19434 and NA21487) using minimap2 (‘-cx asm20 -f 
5000 -k15 -w10 -p 0.05 -N 200 -m200 -s200 -z10000 --secondary=yes 
--eqx’). The mapped genes were further filtered to exclude alignments 
due to nested repeats, keeping minimum length of 2!kb, percent identity 
of more than 90% and coverage of more than 80%. Multi-copy genes 
were determined by maximum gene counts greater than one. Variable 
copy number genes were defined by assessing the copy number across 
the population (at least one of the genome assemblies with different 
copy number; Supplementary Methods).

Y chromosome variation
Construction and dating of Y phylogeny. The construction and dat-
ing of Y-chromosomal phylogeny combining the 30 males from the 
current study plus two males (HG01106 and HG01952 from the HPRC 
year 1 dataset for which contiguous Yq12 assemblies were used from23) 
were done as previously described23. Detailed descriptions of methods 
are available (Supplementary Methods). Please note that the male 
individual HG03456 appears to have a XYY karyotype as previously 
reported29.

Identi!ication of sex-chromosome contigs. Contigs containing 
Y-chromosomal sequences from the whole-genome assemblies were 
identified and extracted for the 30 males as previously described23.  
Y assemblies for the two HPRC individuals, HG01106 and HG01952, 
were used from ref. 23.

Y chromosome annotation and analysis. The annotation of 
Y-chromosomal subregions was performed as previously described 
using both the GRCh38 and T2T-CHM13 Y reference sequences23. The 
centromeric #-satellite repeats for the purpose of Y subregion annota-
tion were identified using RepeatMasker (v4.1.2-p1)91. The Yq12 repeat 
annotations were generated using HMMER (v.3.3.2dev)104, and identi-
fication of Alu insertions was performed as previously described23. To 
maximize the number of contiguously assembled Yq12 subregions, 
hifiasm assemblies of this subregion were analysed from four indi-
viduals (NA19239, HG03065, NA19347 and HG00358) following manual 
inspection of repeat unit orientation and distance from each other in 
the assembled sequences (Supplementary Table$40).

Dotplots to compare Y-chromosomal sequences were generated 
using Gepard (v2.0)105. Although we also assembled the T2T (NA24385/
HG002) Y as a single contig (Supplementary Table$40), all analyses 
conducted here used the existing published T2T assembly24.

Visualization of eight completely assembled Y chromosomes (Sup-
plementary Fig.$27) was based on pairwise alignments generated using 
minimap2 (v2.26)78,79 with the following options: ‘-x asm20 -c -p 0.95 
--cap-kalloc!=!1!g -K4g -I8g -L --MD --eqx’. For visualization, alignments 
of less than 10!kb in length were filtered out. In addition, alignments 
were broken at SVs of more than 50!bp or more in size and then binned 
in 50-kb bins.

SVs affecting genes
We annotated the potential effect of long-read SVs on genes using 
the coding transcripts and exons defined in GENCODE (v45)106, as per 
Ensembl VEP (v111)107. Long-read deletions or insertions are classified 
as coding overlapping events if at least one breakpoint falls within the 
coding exons of a gene. We considered genes that have a LOEUF score 
under 0.35 as intolerant to loss-of-function variants27. To specifically 
analyse the potential effect of MEIs on genes, the merged GRCh38 MEI 
callset was intersected with the findings from Ensembl108 (release 111) 
VEP107 (see transcriptional effect of SVs below). The MEIs were cat-
egorized by insertion location (for example, protein-coding exons, 
untranslated regions of protein-coding transcripts and non-coding 
exons), and within each category, the number of MEIs present, genes 
disrupted and transcripts affected were quantified. The Ensembl VEP 
nonsense-mediated decay (NMD) plugin (https://github.com/Ensembl/
VEP_plugins/blob/release/112/NMD.pm) was utilized to predict which 
protein-coding transcripts with MEI-induced premature stop codons 
would escape NMD. Transcripts were further scrutinized by manually 
comparing the MEI location within the transcript sequence using the 
UCSC Genome Browser109. To ensure that the premature stop codon 
met one of the four requirements for NMD escape according to the 
exon-junction complex model110. Allele frequencies were then calcu-
lated (children of trios excluded) for the exon-disrupting MEIs. In the 
event of a ‘.’ (indicating misassembly) in the genotyping information, 
the haplotype was excluded from the calculation.

Functional effect of SVs
Effects on exons and isoform. We used the Ensembl108 (release 111) 
Variant Effect Predictor107 with the NMD plugin (https://github.com/
Ensembl/VEP_plugins/blob/release/112/NMD.pm) to screen the PAV 
freeze 4 callset for SVs that disrupt gene loci in the merged GRCh38 
annotation (NCBI RefSeq GCF_000001405.40-RS_2023_03, Ensembl 
111, GENCODE v45). Protein-coding genes impacted by putative exon 
disruptions were evaluated for evidence of Iso-seq expression (in more 
than 1 individual) across the 12 individuals. Isoforms associated with 
these SV-containing genes were screened for the presence of unre-
ported splice variants using SQANTI3 (v5.1.2)111. All isoforms of these 
candidate genes were aligned to GRCh38p14 using pbmm2 (https://
github.com/PacificBiosciences/pbmm2; v1.5.0) and visualized with 
IGV112 to identify variant-specific patterns. We compared all isoforms 
phased to variant haplotypes to known transcripts represented in Ref-
Seq113, CHESS114 and GENCODE106 gene annotation databases to identify 
novel splice products and isoforms. MUSCLE (v3.8.425)95 and Aliview115 
were used to perform a multiple sequence alignment and visualize the 
multiple sequence alignment, respectively, between wild-type and 
variant haplotype assemblies to identify SV breakpoints.

Effects on gene expression. We next assessed SVs for enrichment near 
genes with altered expression in the 12 individuals with Iso-seq data. 
Using gene expression quantifications from short-read RNA-seq data, 
we performed differential expression analysis using DESeq2 (v1.38.3)116 
between individuals who carried and did not carry each SV, supplement-
ed with outlier expression analysis for singleton SVs (Supplementary 
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Methods). We assessed SV overlap with multiple GENCODE v45-derived 
genomic elements, such as protein-coding and pseudogene classes106, 
and ENCODE-derived candidate cis-regulatory elements117, using per-
mutation tests to find enrichment or depletion of SVs for each annota-
tion (Supplementary Methods).

Effects on chromatin structure and colocalization with GWAS hits. 
Among the 128 SV gene pairs (122 unique SVs associated with 98 genes) 
that exhibit significant differential gene expression changes in the 12 
individuals with Iso-seq data, we first filtered out SVs with missing 
genotypes in 6 or more out of 12 individuals. For each remaining SV, we 
extracted the 50!kb upstream and downstream of the annotated tran-
scription start site position for each paired gene with corresponding 
insulation scores under 10-kb resolution (Supplementary Methods). 
For those insulated regions intersecting with more than one SV, we 
applied a local multi-test correction. A false discovery rate!<!0.05 from 
the two-sided Wilcoxon rank-sum test was considered significant. We 
investigated the association between variants and human phenotypes 
or traits by intersecting SNVs, indels and SVs with SNPs identified in 
GWAS (GWAS summary statistics; gwas_catalog_v1.0.2-associations_
e111_r2024-04-16.tsv)118. We used Plink (v1.90b6.10)119 to examine the 
linkage disequilibrium between SNVs, indels and SVs with GWAS SNPs 
within 1-Mb window size.

Genome-wide genotyping with PanGenie
We built a pangenome graph containing 214 haplotypes with 
Minigraph-Cactus (v2.7.2)120 from the haplotype-resolved assemblies 
of 65 HGSVC individuals and 42 individuals from the HPRC1 and pro-
duced a CHM13-based VCF representation of the top-level bubbles 
of the graph that can be used as input for genotyping with PanGenie 
(Supplementary Methods). This was done by converted genotypes 
of male sex chromosomes to a homozygous representation, filtering 
out records for which at least 20% of haplotypes carry a missing allele 
(‘.’) and running our previously developed decomposition approach 
to detect and annotate variant alleles nested inside of graph bubbles 
(Supplementary Methods). We genotyped all 30,490,169 bubbles (rep-
resenting 28,343,728 SNPs, 10,421,787 indels and 547,663 SVs) across all 
3,202 1kGP individuals based on short reads29 using PanGenie (v3.1.0)3 
with additional parameter -a 108. We filtered the resulting genotypes 
based on a support vector regression approach1,8, resulting in 25,695,951 
SNPs, 5,774,201 indels and 478,587 SVs that are reliably genotypable 
(Supplementary Methods).

Personal genome reconstruction
Reference panel and personal genome construction. We used our 
filtered genotypes across all 3,202 individuals and added 70,174,243  
additional rare SNPs and indels from an external short-read-based 
callset for the same 3,202 1kGP individuals (obtained from https:// 
s3-us-west-2.amazonaws.com/human-pangenomics/index.html? 
prefix=T2T/CHM13/assemblies/variants/1000_Genomes_Project/
chm13v2.0/all_samples_3202/; Supplementary Methods). We fil-
tered out variants reported with a genotype quality below 10 and ran  
SHAPEIT5 (v5.1.1)121 phase_common to phase this joint callset. We used 
the resulting reference panel to reconstruct personal genomes for all 
3,202 individuals by implanting phased variants into the CHM13 refer-
ence genome with BCFtools93 to create the 6,404 consensus haplotype 
sequences of all 1kGP individuals (Supplementary Methods).

Evaluation. For the evaluation of the consensus haplotypes produced 
from 1kGP and PG-SHAPEIT phased genotypes, PAV was run with one of 
the consensus haplotypes as a reference and the other one as a query 
sequence, together with the respective haplotype assemblies for the 
same individual. We analysed the resulting variant calls to determine 
all variant positions with conflicting genotypes between the consen-
sus and assembly haplotypes. For such erroneous variant positions, 

we then counted the number of base-pair changes in both consen-
sus haplotypes within windows of 1!Mb in length along the reference 
haplotype and computed a quality value estimate as: '10!%!log10(bp_
changes/(2!%!window_size)). In addition, we also counted the number 
of erroneous variants more than 20!bp in each window. We then plot-
ted the distributions of these two metrics and computed the median 
(Supplementary Figs.$43–45b,c). We evaluated consensus sequences 
for a second individual (HG01114) to verify consistency of results across 
individuals. For each individual, we ran the experiment twice, using 
either haplotype as a reference sequence. In addition to evaluating the 
consensus haplotypes, we repeated the same experiment for HG002, 
using the Q100 assemblies (https://github.com/marbl/HG002) as ref-
erence sequences to align to, and our HGSVC3 assemblies as queries 
(Supplementary Figs.$44 and 45d). To get a baseline estimate, we also ran 
the experiment using CHM13 as a reference and two copies of GRCh38 
as well as another copy of CHM13 as query sequences (Supplementary 
Fig.$45a).

Targeted genotyping of complex polymorphic loci
Targeted genotyping was performed using Locityper (v0.15.1)30 across 
347 complex polymorphic target loci (Supplementary Methods). On 
the basis of the input short-read whole-genome sequencing data, at 
each of the targets, Locityper aims to identify two haplotypes from the 
reference panel that are most similar to the input data. Three reference 
panels were used: HPRC haplotypes (90 haplotypes); HPRC!+!HGSVC3 
haplotypes (216 haplotypes); and leave-one-out HPRC!+!HGSVC3 panel 
(leave-one-out evaluation; 214 haplotypes), where two assemblies 
corresponding to the input dataset were removed. To evaluate predic-
tion accuracy, we constructed sequence alignments between actual 
and predicted haplotypes and estimated variant-based quality values 
(Supplementary Methods). Locityper accuracy is limited by haplotypes 
present in the reference panel; consequently, we evaluated haplotype 
availability quality value as the highest Phred-scaled sequence diver-
gence between actual assembled haplotypes and any haplotype from 
the reference panel (Supplementary Methods).

MHC
Gene annotation. Immuannot-based HLA types were compared in 
two-field resolution to the HLA typing published earlier and obtained 
with PolyPheMe35 (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_col-
lections/HLA_types/20181129_HLA_types_full_1000_Genomes_Pro-
ject_panel.txt). Of the 130 haplotypes, 58 were not in the PolyPheMe 
dataset and were excluded. In addition to Immuannot (MHC reference 
version: IPD-IMGT/HLA-v3.55.0)36, haplotypes were annotated using 
MHC-annotation v0.1 (see Code availability). Cases of overlapping 
genes were resolved after inspection by removing superfluous anno-
tations. Reported gene counts for HLA genes and C4 annotation were 
based on Immuannot.

SV detection. To search for structural variation in the DRB gene  
region, HGSVC MHC haplotypes were cut from (start of DRA) to (end of 
DRB1!+!20!kb). The coordinates were obtained using MHC-annotation 
v0.1. On the basis of their DRB1 allele as determined by Immuannot 
(see above), the sequences were grouped into DR groups. Within each 
group, every sequence was aligned with nucmer122 (v3.1; -nosimplify 
-maxmatch) to the same sequence (arbitrarily selected as the sequence 
with the alphanumerically smallest ID) and plotted with a custom gn-
uplot script based on mummerplots output. Sequences were anno-
tated as follows: (1) repeat elements were masked with RepeatMasker 
(v4.1.2)91; (2) full DRB genes and pseudogenes were searched for with 
minimap 2.26 (‘--secondary=no -c -x --asm10 -s100’) by aligning the 
sequence from against all DRB alleles from IMGT and the larger DRB9 
sequence Z80362.1 (results were highlighted and masked for the next 
step); (3) DRB exons were searched for with BLASTN (2.14.1)123 by align-
ing all DRB exons from IMGT to the sequence and filtering for highest 
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matches (results were highlighted and masked for the next step); and 
(4) as for step 3 but with introns.

For each HGSVC MHC haplotype, SVs were called with PAV8 against 
eight completely resolved MHC reference haplotypes39,40. To determine 
which SVs in the HGSVC haplotypes were not present in any of the eight 
reference haplotypes, for each HGSVC haplotype, the ‘query’ coordi-
nates (that is, the coordinates of the calls relative to the analysed HGSVC 
haplotype) of the PAV calls were padded with 50!bp on each side and the 
intersection of SV calls (based on the padded query coordinates, across 
the eight MHC reference sequences) was computed. Only variants 
longer than 50!bp were included for further analysis, and the smallest 
variant relative to any of the eight MHC references was reported. The 
sequences of the calls so-defined were annotated with RepeatMasker 
(v4.1.2)91. Variants were grouped by starting position on their closest 
MHC reference sequence and, in the case of insertions, repeat content 
was averaged.

Annotation. We applied Immuannot (see above) to all retrieved MHC  
loci for the identification and annotation of protein-coding HLA-DRB  
genes (HLA-DRB1, HLA-DRB3, HLA-DRB4 and HLA-DRB5). Subse-
quently, a custom RepeatMasker (v4.1.2)91 library was constructed  
containing the exonic sequences of HLA-DRB pseudogenes (HLA-DRB2: 
ENSG00000227442.1, HLA-DRB6: ENSG00000229391.8, HLA-DRB7: 
ENSG00000227099.1, HLA-DRB8: ENSG00000233697.2, and HLA- 
DRB9: ENSG00000196301.3) and RCCX genes and pseudogenes (C4: 
ENSG00000244731.10, CYP21A2: ENSG00000231852.9, CYP21A1P:  
ENSG00000204338.9, STK19/RP1: ENSG00000204344.16, STK19B/ 
STK19P/RP2: ENSG00000250535.1, TNXB: ENSG00000168477.21 
and TNXA: ENSG00000248290.1). Canonical exonic sequences were 
sourced from the Ensembl genome browser108 (release 111). The exons  
of HLA-DRB or RCCX genes and pseudogenes within individual hap-
lotype MHC regions were annotated using this custom library. Repe-
titive elements were identified using RepeatMasker (v4.1.2) with the 
Dfam library (v3.4)92. We utilized SAMtools (v1.15.1)93 and MUSCLE 
(v3.8.31)95 for sequence retrieval and alignment, respectively, followed 
by manual annotation to analyse recombination events associated 
with DR subregion haplotypes and within the RCCX modules (Supple-
mentary Methods). Novel C4-coding variants were identified through 
comparison with Ensembl C4A and C4B protein variant tables, as well 
as an additional database of variants obtained from 95 human MHC  
haplotypes33.

Complex structural polymorphisms
CSV detection. CSVs were identified with a development version of 
PAV (methods are available124). In brief, the method identifies candidate 
variant anchors and scores variants between them. A directed acyclic 
graph is constructed with alignment records as nodes and variants 
connecting them as edges, which is solved in O(N!+!E) time with the 
Bellman–Ford algorithm125. Variants on the optimal path were accepted 
into the callset. CSVs intersecting centromeric repeats were eliminated. 
CSVs were merged into a non-redundant callset with SV-Pop by 50%  
reciprocal overlap and 80% sequence identity (SV-Pop merge parameter 
‘nr::ro(0.5):match(0.8)’).

SMN analysis. We evaluated complexity and copy number of SMN 
genes by extracting with FASTA the desired region (chr. 5: 70300000–
72100000) from assemblies reported in this study along with previ-
ously published assemblies1,126 (Supplementary Methods). Among 
these, we identified 101 fully assembled haplotypes. We followed this 
by aligning exon sequences for multicopy genes (SMN1/2, SERF1A/B, 
NAIP and GTF2H2/C) to each assembled haplotype. To assign a spe-
cific SMN copy to each haplotype, we extracted FASTA sequence from 
SMN exon regions for each haplotype and concatenated them into a 
single sequence (Supplementary Methods). We then constructed a 
multiple sequence alignment and calculated the distance among all 

Q25

Q26

haplotypes. We set the orangutan sequence as an outgroup and split 
all human haplotypes into two groups representing SMN1 and SMN2 
gene copies where the SMN1 copy is the one closer to the outgroup. We 
utilized Illumina short-read data from the 1kGP for the same individu-
als, and processed it with Parascopy (v1.16.0)127 and SMNCopyNum-
berCaller (v1.1.2)128 to independently obtain SMN1/2 copy numbers. 
Illumina-based and assembly-based copy number predictions matched 
perfectly across all 31 examined individuals.

Centromeres
Centromere identi!ication and annotation. To identify the centromer-
ic regions within each Verkko and hifiasm (ultra-long) genome assem-
bly, we first aligned the whole-genome assemblies to the T2T-CHM13 
(v2.0) reference genome4 using minimap2 (v2.24)78 with the follow-
ing parameters: -ax asm20 --secondary=no -s 25000 -K 15!G --eqx --cs. 
We filtered the alignments to only those contigs that traversed each  
human centromere, from the p to the q arm, using BEDtools (v2.29.0)129 
intersect. Then, we ran dna-brnn (v0.1)130 on each centromeric contig to 
identify regions containing #-satellite sequences, as indicated by a ‘2’. 
Once we identified the regions containing #-satellite sequences, we ran 
RepeatMasker (v4.1.0)91 to identify all repeat elements and their orga-
nization within the centromeric region. We also ran HumAS-HMMER 
(https://github.com/fedorrik/HumAS-HMMER_for_AnVIL) with the 
AS-HORs-hmmer3.0-170921.hmm model, which was trained on GRCh38 
as previously described58, to determine the #-satellite HOR sequence 
composition and organization. We used the resulting RepeatMasker 
and HumAS-AMMER stv_row.bed files to visualize the organization of 
the #-satellite HOR arrays with R (v1.1.383)131 and the ggplot2 package132.

Validation of centromeric regions. We validated the assembly of each 
centromeric region by first aligning native PacBio HiFi and ONT data 
from the same genome to each relevant whole-genome assembly using 
pbmm2 (v1.1.0; for PacBio HiFi data; https://github.com/PacificBi-
osciences/pbmm2) or minimap2 (v2.28)78 (for ONT data). We then  
assessed the alignments for uniform read depth across the centromeric 
regions via IGV112 and NucFreq73. Centromeres that were found to have 
a collapse in sequence, false duplication of sequence and/or misjoin 
were flagged and removed from our analyses.

Estimation of "-satellite HOR array length. To estimate the length 
of the #-satellite HOR arrays for each human centromere, we first ran 
HumAS-HMMER (https://github.com/fedorrik/HumAS-HMMER_for_
AnVIL) on the centromeric regions using the hmmer-run.sh script and 
the AS-HORs-hmmer3.0-170921.hmm hidden Markov model. Then, we 
used the stv_row.bed file to calculate the length of the #-satellite HOR 
arrays by taking the minimum and maximum coordinate of the ‘live’ 
#-satellite HOR arrays, marked by an ‘L’, and plotting their lengths with 
GraphPad Prism (v9). We note that live or ‘active’ #-satellite HOR arrays 
are those that belong to an array that associates with the kinetochore in 
several individuals58,133. By contrast, ‘dead’ or ‘inactive’ #-satellite HORs 
(denoted with a ‘d’ in the HumAS-HMMER BED file) are those that have 
not been found to be associated with the kinetochore and are usually 
more divergent in sequence than the live or active arrays.

Pairwise sequence identity heatmaps. To generate pairwise seq-
uence identity heatmaps of each centromeric region, we ran Stained-
Glass (v6.7.0)134 with the following parameters: window!=!5,000, 
mm_f!=!30,000 and mm_s!=!1,000. We normalized the colour scale 
across the StainedGlass plots by binning the percent sequence identi-
ties equally and recolouring the data points according to the binning.

CpG methylation analysis. To determine the CpG methylation status 
of each centromere, we aligned ONT reads of more than 30!kb in length 
from the same source genome to the relevant whole-genome assembly 
via minimap2 (v2.28)78 and then assessed the CpG methylation status 
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of the centromeric regions with Epi2me modbam2bed (https://github.
com/epi2me-labs/modbam2bed; v0.10.0) and the following param-
eters: -e -m 5mC --cpg. We converted the resulting BED file to a bigWig 
using the bedGraphToBigWig tool (https://www.encodeproject.org/
software/bedgraphtobigwig/) and then visualized the file in IGV. To 
determine the length of the hypomethylated region (termed CDR58,60) 
in each centromere, we used CDR-Finder135. This tool first binned the 
assembly into 5-kb windows, computed the median CpG methylation 
frequency within windows containing #-satellite (as determined by 
RepeatMasker (v4.1.0)91), selected bins that have a lower CpG meth-
ylation frequency than the median frequency in the region, merged 
consecutive bins into a larger bin, filtered for merged bins that are 
more than 50!kb and reported the location of these bins.

Reporting summary
Further information on research design is available in the$Nature Port-
folio Reporting Summary linked to this article.

Data availability
All data produced by the HGSVC and analysed as part of this study are 
available under the following accessions (see Supplementary Tables$2–
4, 6–8 and 23 for details): PRJEB58376, PRJEB75216, PRJEB77558, 
PRJEB75190, PRJNA698480, PRJEB75739, PRJEB36100, PRJNA988114, 
PRJNA339722, PRJEB41778 and ERP159775 for PacBio HiFi and ONT 
LRS data; PRJEB39750 and PRJEB12849 for Strand-seq; PRJNA339722, 
PRJEB41077, PRJEB58376 and PRJEB77842 for Bionano Genomics; 
PRJEB39684, PRJEB75193 and PRJEB58376 for Hi-C; PRJEB75191 for 
PacBio Iso-seq; PRJEB75192 and PRJEB58376 for RNA-seq; PRJEB76276 
for phased genome assemblies generated by Verkko; and PRJEB83624 
for phased genome assemblies generated by hifiasm. Released 
resources, including simple and complex variant calls, genome graphs, 
genotyping results (genome-wide and targeted), and annotations for 
centromeres, MEIs and SDs can be found in the IGSR release directory 
hosted publicly via HTTP and/or FTP (https://ftp.1000genomes.ebi.
ac.uk/vol1/ftp/data_collections/HGSVC3/release) and on the Globus 
end point ‘EMBL-EBI Public Data’ in the directory ‘/1000g/ftp/data_ 
collections/HGSVC3/release’.

Code availability
All software, scripts and workflows used in this project that have not 
been formally published are publicly available via a central GitHub 
repository (https://github.com/hgsvc/phase3-main-pub; section ‘Soft-
ware’) and on Zenodo136 (https://doi.org/10.5281/zenodo.14546729).
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Extended Data Fig. 1 | Statistics of long-read sequencing data and genome 
assemblies generated in this study as well as variant calls for 65 diverse 
human genomes. a) Fold coverage of the Pacific Biosciences (PacBio) high- 
fidelity (HiFi) and Oxford Nanopore Technologies (ONT) long-read sequencing 
data generated for each genome in this study. The median (solid line) and first 
and third quartiles (dotted lines) are shown. b) Read length N50 of the PacBio 
HiFi and ONT data generated for each genome in this study. The median (solid 
line) and first and third quartiles (dotted lines) are shown. c) Gene completeness 
as a percentage of BUSCO single-copy orthologs detected in each haplotype 
from each genome assembly (Methods). d) The number of SVs identified in one 
individual by 14 different SV callers, including PAV (Methods). Each bar is 
divided into four categories as follows: PAV, SVs identified by PAV (black); PAV 
(trimmed), false SVs from other callers in redundantly aligned sequences that 
PAV removes (red); Covered, SVs not called by PAV but within callable loci 

spanned by assembly alignments (dark gray); No assembly, SVs identified in 
locations not callable by PAV (light gray). Before applying caller-based QC, 99.75% 
of PAV calls are supported by at least one other call source. The individual 
evaluated is HG00171. e) Number of SVs called for each haplotype relative to 
the GRCh38 reference genome, colored by population. Insertions and deletions 
are imbalanced when called against the GRCh38 reference genome but balanced 
when called against the T2T-CHM13 reference genome (Fig.$1g). f) Number of 
SV insertions (left) and deletions (right) called against T2T-CHM13, GRCh38,  
or both reference genomes relative to their allele frequency. SVs called against 
both references tend to be rarer because they are less likely to appear in a 
reference genome. A sharp peak for high allele frequency (~1.0) for insertions  
is detected relative to the GRCh38 reference genome but not the T2T-CHM13 
reference genome.
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Extended Data Fig. 2 | Classification and distribution of changes in SD 
content in the 65 genomes. a) Number of segmentally duplicated bases 
assembled in different regions of the genome for each individual in this study, 
excluding sex chromosomes. The dashed line indicates the number of 
segmentally duplicated bases in the T2T-CHM13 genome. b) Segmental 
duplication (SD) accumulation curve. Starting with T2T-CHM13, the SDs 
(excluding those located in acrocentric regions and chrY) of 63 individuals 
(excluding NA19650 and NA19434) were projected onto T2T-CHM13 genome 
space in the continental group order of: EUR, AMR, EAS, SAS and AFR. For each 
bar, the SDs that are singleton, doubleton, polymorphic (>2) and shared (>90%) 
are indicated. The first bar is classified as “shared”, as the assembly is only 

being compared to itself. c) Schematic depicting the four categories of non- 
reference SDs: 1) new (i.e., unique in the reference), 2) expanded copy number,  
3) content or composition changed, and 4) expanded and content changed SDs 
with respect to the SDs in the reference genome, T2T-CHM13. d) Quantification 
in terms of Mbp and predicted protein-coding genes across the four categories 
of new SDs compared to T2T-CHM13. The left panel shows the Mbp by category, 
while flagging those that are singleton (i.e., duplicated in T2T-CHM13 but not  
in other genomes). The right panel quantifies the number of complete (100% 
coverage) and partial overlaps (>50% coverage) with protein-coding genes for 
the respective chromosomes.



Extended Data Fig. 3 | Effects of SVs on gene expression, chromosome 
conformation, and complex traits. a) The percentage of Iso-Seq isoforms 
identified for each individual classified as previously identified in RefSeq 
(present in at least two individuals; blue), novel (present in at least two individuals; 
orange), individual-specific previously identified isoforms (red), or individual- 
specific novel (teal). b) Manhattan plot of the allele frequencies for 256 SVs 
disrupting protein-coding exons of 136 genes with expression present in Iso-Seq. 
Circled in red is the 6,142!bp polymorphic deletion in ZNF718. c) Comparison  
of the average unique isoforms in Iso-Seq phased to wild-type and variant 
haplotypes for 1,471!single SV-containing protein-coding genes. The color 
represents the type of SV [deletion (DEL): blue, insertion (INS): orange] and the 
shape indicates where the SV occurs in relation to the canonical transcript 
[circle: coding sequence (CDS), square: untranslated region (UTR), triangle: 
intron]. d) Proportion of genes located within 50 kbp of SV regions that show 
differential expression (DE; RNA-seq) among individuals who carry the SVs (red 
line), compared with the distribution of DE gene proportions nearby simulated 
SV regions (1,000 permutations). e) Enrichments and depletions of SVs within 

GENCODE v45 protein-coding, long noncoding RNA (lncRNA), and pseudogene 
elements, subdivided into various biotypes. *empirical p!<!0.05 from 1,000 
permutations with Benjamini-Hochberg correction. ns, nonsignificant. Error 
bars indicate ±1!s.d. centered on the mean. p-values are listed in Supplementary 
Table$43. f) Enrichments and depletions of SVs within classes of ENCODE 
candidate cis-regulatory elements (cCREs). *empirical p!<!0.05 from 1,000 
permutations with Benjamini-Hochberg correction. ns, nonsignificant. Error 
bars indicate ±1 s.d. centered on the mean. p-values are listed in Supplementary 
Table$59. g) A differentially insulated region in individuals with chr1-248444872- 
INS-63 SV, located nearby the DE gene OR2T5, suggests an SV-mediated novel 
chromatin domain could lead to increased gene expression. n!=!7 individuals 
with the SV and 5 without the SV. Box plots indicate median and first and third 
quartiles, with whiskers extending to 1.5 times the interquartile range. Two-sided 
Wilcoxon rank-sum test with Benjamini-Hochberg correction. h) Number  
of SVs per chromosome that are in high (r2!>!0.8) or perfect (r2!=!1) linkage 
disequilibrium (LD) with GWAS SNPs significantly associated with diseases and 
human traits.
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Extended Data Fig. 4 | Genotyping from short-read sequencing data.  
a) Completeness statistics for haplotypes produced from the 1kGP-HC phased 
set (GRCh38-based) and by genome inference with Pangenie followed by phasing 
(T2T-CHM13–based). To allow for comparison between the GRCh38- and 
T2T-CHM13-based callsets, we additionally restricted our analysis to “syntenic” 
regions of T2T-CHM13, i.e., excluding regions unique to T2T-CHM13. For both 
phased sets, completeness was computed on a subset of n = 30 individuals.  
The median is marked in yellow, and the lower and upper limits of each box 

represent lower and upper quartiles (Q1 and Q3). Lower and upper whiskers are 
defined as Q1!'!1.5(Q3–Q1) and Q3!+!1.5(Q3–Q1). b) Locityper genotyping accuracy 
for 10 target loci with the highest average variant-based QV improvement.  
c) Locityper genotyping results for HLA genes on 61 Illumina short-read HGSVC 
datasets using three reference panels: HPRC (90 haplotypes), leave-one-out 
HPRC!+!HGSVC (HPRC!+!HGSVC*, 214 haplotypes), and HPRC!+!HGSVC (full, 216 
haplotypes). Accuracy is evaluated as the number of correctly identified allele 
fields in the corresponding gene nomenclature.



Extended Data Fig. 5 | Assembly of 1,246 human centromeres across 65 
diverse human genomes show genetic and epigenetic variation. a) Number 
(left y-axis) and percentage (right y-axis) of centromeres that are completely 
and accurately assembled among 65 diverse human genomes, colored by 
population group. Mean, dashed line. b,c) Examples of di-kinetochores, 
defined as two CDRs located >80 kbp apart from each other, on the b) HG02953 

chromosome 6 centromere and c) HG01573 chromosome 15 centromere. UL 
ONT reads span both CDRs in each case, indicating that the CDRs occur on the 
same chromosome in the cell population. d) Differences in the #-satellite HOR 
array organization and methylation patterns between the CHM13 and NA18989 
(H1) chromosome 19 centromeres. The NA18989 (H1) chromosome 19 centromere 
has two CDRs, indicating the potential presence of a di-kinetochore.
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