IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 5, OCTOBER 2024

4427

Inter-Temporal Reward Strategies in the Presence of
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Abstract— A skyrocketing increase in cyber-attacks signifi-
cantly elevates the importance of secure software development.
Companies launch various bug-bounty programs to reward
ethical hackers for identifying potential vulnerabilities in their
systems before malicious hackers can exploit them. One of the
most difficult decisions in bug-bounty programs is appropriately
rewarding ethical hackers. This paper develops a model of
an inter-temporal reward strategy with endogenous e-hacker
behaviors. We formulate a novel game model to characterize
the interactions between a software vendor and multiple het-
erogeneous ethical hackers. The optimal levels of rewards are
discussed under different reward strategies. The impacts of
ethical hackers’ strategic bug-hoarding and their competitive and
collaborative behaviors on the performance of the program are
also evaluated. We demonstrate the effectiveness of the inter-
temporal reward mechanism in attracting ethical hackers and
encouraging early bug reports. Our results indicate that ignoring
the ethical hackers’ strategic behaviors could result in setting
inappropriate rewards, which may inadvertently encourage them
to hoard bugs for higher rewards. In addition, a more skilled e-
hacker is more likely to delay their reporting and less motivated
to work collaboratively with other e-hackers. Moreover, the
vendor gains more from e-hacker collaboration when it could
significantly increase the speed or probability of uncovering
difficult-to-detect vulnerabilities.

Index Terms— Ethical hacker, vulnerability market, strategic
behavior, bug bounty.

I. INTRODUCTION

THICAL hackers commit their time and effort in vul-

nerability markets to uncover and report vulnerabilities
to software developers or vendors. The software vendors then
offer monetary rewards to the ethical hacker (e-hacker)! for
helping and fixing the bugs, preventing data breaches and
cyber-attacks. Many companies, including Mozilla, Google,
and Microsoft, have relied on e-hackers to discover security

Manuscript received 17 November 2023; revised 21 May 2024;
accepted 23 June 2024; approved by IEEE/ACM TRANSACTIONS ON NET-
WORKING Editor E. E. Tsiropoulou. Date of publication 8 July 2024; date of
current version 17 October 2024. This work was supported in part by NSF
under Grant CNS-2321763, Grant CNS-2319343, and Grant CNS-2317190.
The work of Jing Hou was supported by California State University San
Marcos. (Corresponding author: Jing Hou.)

Jing Hou is with the Department of Computer Science and Information Sys-
tems, California State University San Marcos, San Marcos, CA 92096 USA
(e-mail: jhou@csusm.edu).

Xuyu Wang is with the School of Computing and Information Sci-
ences, Florida International University, Miami, FL 33199 USA (e-mail:
xuywang @fiu.edu).

Amy Z. Zeng is with the Sawyer Business School, Suffolk University,
Boston, MA 02108 USA (e-mail: azeng@suffolk.edu).

Digital Object Identifier 10.1109/TNET.2024.3422922

IFor brevity, we will call the ethical hackers e-hackers in this article. We do
not consider the malicious hackers.

vulnerabilities by launching the so-called bug-bounty pro-
grams [1].

Reward pricing is one of the most challenging decisions
companies must make [2]. On the one hand, both the sever-
ity and the difficulty levels of bugs must be considered in
compensating the e-hackers. If the rewards are the same for
the obvious defects and those that are difficult to find, the
e-hackers would only pick the low-hanging fruits and lack
incentives to dig the hard ones continuously. On the other
hand, as the vendor keeps patching the vulnerabilities reported
by the e-hackers, the software gets harder to exploit. For
example, in one of Google’s bounty programs, the rate of
critical bug reports slowed down after the program picked up,
and Google had to add bonuses as the program progressed [3].
Therefore, to induce e-hackers to exert more time on those
hard-to-detect bugs, inter-temporal pricing in which the reward
grows over time has been proposed in the literature and
applied in practice [2], [4]. One famous example is Donald
E. Knuth’s reward of initially 1.28 USD for each bug in
his TEX typesetting system, which grows exponentially with
the number of years the program is in use [5]. Indeed, it’s
quite common for bug bounty programs to increase rewards
to motivate deeper security efforts. For instance, in 2019,
Microsoft raised top award levels from $15K to $50K for the
Windows Insider Preview bounty and from $15K to $20K for
the Microsoft Cloud Bounty program [6].

However, the inter-temporal reward strategy also motivates
strategic e-hackers to withhold their bug submission and wait
for reward enhancement. In reality, it is very common that
e-hackers hoard bugs for higher profits [3]. Yet the vendors
cannot tell whether the e-hackers withhold the reports or
have not discovered the bugs. There is constantly a cat-
and-mouse game between software vendors, who hope to
spend less money and to induce earlier vulnerability reports,
and e-hackers, who wait for a higher reward. Consequently,
companies are continuously enhancing their rewards to attract
as many e-hackers and as early reports as possible, and the
e-hackers are constantly modifying their report plans to earn
as much as possible. Besides, the situation becomes more
intricate for the e-hackers when they may not benefit from
blindly waiting for a higher reward. It is now more likely that
the other e-hackers will discover the same bug before them
if they wait too long. In this case, the e-hackers will not be
rewarded for late reports of soon-to-be-fixed bugs.

Motivated by the interactions between the software vendors
and the e-hackers, this paper studies how inter-temporal reward
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strategy and the e-hackers’ strategic behaviors, and partic-
ularly their interdependence, affect the bug-bounty program
and e-hackers’ utilities. Although the importance of strategic
e-hacker behavior is widely recognized, little research has
studied its implications on the reward strategy in vulnerability
markets. Given this gap in the literature, our research aims to
provide more effective solutions for companies working with
strategic e-hackers to secure and improve their technologies.

We consider one or multiple e-hackers who can participate
in a software vendor’s bug-bounty program and get rewarded
for vulnerability reports. The vendor adopts an inter-temporal
reward strategy, which enhances the reward after a specific
time during the program. Its decisions of p (regular reward)
and s (enhanced reward) influence the e-hackers’ to-report-or-
to-wait decisions. To incorporate strategic e-hacker behavior,
we allow the e-hackers to either submit their report once they
discover the vulnerability or wait for a higher reward. If no one
has reported the same vulnerability before, the e-hackers who
wait may get a high reward; otherwise, they end up without
the reward.

The research questions we are interested in are: (1) How
do hackers of different skill levels react to the companies’
reward strategies? (2) When e-hackers are strategic, i.e., they
tend to withhold bug submission for reward enhancement,
how can firms determine appropriate rewards that discourage
bug hoarding? (3) What are the impacts if the e-hackers’
strategic behaviors exist but are ignored? (4) Does an inter-
temporal reward strategy benefit the vendor or the e-hackers?
(5) How does the number of e-hackers affect the results? and
(6) How do competition and collaboration between e-hackers
influence their participation and report decisions? Addition-
ally, when does the vendor benefit from their competition
or collaboration? The problems are challenging due to the
complex interrelationships among the decisions, the infor-
mation asymmetry, and the uncertain nature of vulnerability
discovery. In particular, the e-hackers’ participation decisions
are determined by their expected utility gain from the program,
which is affected by their to-report-or-to-wait decisions and the
vendors’ reward decisions. The competition among multiple e-
hackers makes these decisions even more complex. From the
software vendor’s perspective, an over-low reward would not
attract potential e-hackers to join or stay in the program, while
an over-high reward might induce a reporting delay. Such
decisions are difficult to make as the existence of a particular
type of bug is uncertain, and the vendor lacks knowledge about
the actual state of e-hackers’ discovery progress. Therefore,
a systematic decision support model is needed to evaluate
the effectiveness of the inter-temporal reward strategy and the
impacts of e-hackers’ strategic behaviors. To capture the inter-
actions among multiple players with information asymmetry,
we will model the game among the e-hackers as Bayesian
games with incomplete information and the vendor’s reward
decisions in a Stackelberg game.

The main contributions of this paper are stated as follows:

o We take the first step towards formulating the software
vendor’s inter-temporal reward decisions when facing
strategic e-hackers who may hoard the vulnerability and
wait for a higher reward. A unified framework is provided
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by integrating the Bayesian game and the Stackelberg
game model to account for the competition or collabora-
tion among e-hackers with incomplete information and
the cooperation between the software vendor and the
e-hackers. We find that the vendor benefits more from e-
hacker collaboration when it could significantly enhance
the speed or likelihood of uncovering difficult-to-detect
vulnerabilities.

o Although it is intuitively clear that e-hackers’ strategic
behaviors of hoarding bugs have negative effects on bug-
bounty programs, the economic mechanisms underlying
these effects are still unexplored. In contrast to most
recent work, which presumes myopic e-hacker behavior,
our work evaluates the impacts of strategic e-hacker
behavior and the competition between them. We show
that ignoring the e-hackers’ strategic behaviors might lead
to inappropriate rewards, which encourages them to hoard
bugs for higher rewards.

o To investigate the behavior and decision-making of
e-hackers with different skill levels, we incorporated the
heterogeneity between e-hackers into our model. The
equilibrium outcomes (i.e., rewards, e-hackers’ partici-
pation and report decisions) and the conditions for the
existence of the equilibrium are characterized. We find
that less experienced hackers tend to report vulnerabilities
immediately and have a stronger incentive to collaborate
with peers. The impact of reward strategies on the differ-
ences between their expected utilities is also explored.

o Finally, we discuss three different reward strategies —
static, increasing, and decreasing — to evaluate the
effectiveness of an inter-temporal reward strategy. Our
results indicate that if the vendor does not plan to enhance
the reward afterward, it is advisable to set a higher initial
reward. Overall, an inter-temporal reward strategy could
save costs for the vendor in bug-bounty programs.

The remainder of this paper is organized as follows.
Section II provides a literature review. Section III introduces
the model setups. In Section IV, we analyze the game
models and derive the equilibrium solutions with two com-
peting e-hackers. Section V discusses the results of different
reward strategies. In Section VI, the collaboration between the
e-hackers is modeled, and Section VII extends the model to
the case of multiple e-hackers. Finally, we briefly conclude in
Section VIII.

II. LITERATURE REVIEW

As bug bounty programs enter the mainstream security prac-
tice in organizations [7], researchers are increasingly interested
in the vulnerability markets. Existing studies have shown that
one primary motivation of e-hackers is to receive rewards
(others include making the product secure, helping users
and developers, and receiving reputation) [8]. However, firms
lack rigorous principles and explicit rules for setting bounty
amounts in rewarding the e-hackers [9], [10]. Market incentive
mechanisms are needed to change hackers’ motivations and
eventually give firms more control over the disclosure pro-
cess [11]. To this end, literature and industrial practice have
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proposed different rewarding policies and incentive mecha-
nisms. The objectives include reducing the number of invalid
reports [12], preventing adversarial copying and resubmission
of bugs [10], incentivizing deep fixes instead of suppressing
the symptoms [13], and fairness guarantees [14]. One of the
most related works is [4] which proposes a dynamic reward
strategy such that the reward increases continuously with time
to free the firm from any need to understand the e-hackers’
costs in order to set prices and maximize value.

To assess the effectiveness of the proposed reward strategies,
we need a better understanding of the e-hackers’ responses and
behaviors. Therefore, a large body of empirical studies has
been taken to investigate the behaviors of the e-hackers, such
as competition [4] and switching programs [15]. However,
a quantitative framework or decision-making model is lacking
to support firms’ inter-temporal reward decisions and evaluate
the impacts of e-hackers’ strategic behaviors. Although some
quantitative studies have been conducted to analyze malicious
hackers’ attack behaviors, such as their hacking strategies [16],
[17], [18] and information sharing strategies [19], their results
cannot be applied to the bug-bounty programs as different
types of hackers are motivated differently. Our work differs
from the aforementioned literature in several ways. First,
our focus is to quantitatively measure the effectiveness of
software vendors’ employing inter-temporal reward strategies
in attracting e-hackers. Second, we explore the impact of the e-
hackers’ bug-hoarding behaviors on the bug-bounty programs,
which is neglected in the literature. Finally, we explicitly
examine how the vendors could make use of the competition
and/or collaboration between the e-hackers to regulate their
behaviors by optimizing the reward decision.

We have also reviewed papers on dynamic pricing in the
presence of strategic customer behaviors in the marketing and
operations research field. This stream of literature is devoted
to modeling firms’ optimal product pricing decisions when
customers can choose to wait for a sale instead of purchasing
the product at a regular price [20], [21], [22], [23]. The
results of these studies cannot be applied to reward pricing
decisions due to the uncertainty in bug hunting and the changes
in the value of a bug report: First, all the customers make
the to-purchase-or-to-wait decision, while only the e-hackers
who have found the bug need to make the to-report-or-to-
wait decision. Second, it is assumed that each customer is
infinitesimally small, meaning that one customer’s decision
won’t affect the others [22], while normally, there would not
be many e-hackers that could find the same bug. Even if there
are, as long as one successful e-hacker reports the bug, then
the other e-hackers who report the same vulnerability later will
not receive any reward. That being said, a single e-hacker’s
decision would affect all the other e-hackers’ utilities. To sup-
port decision-making in vulnerability market practices, our
research explains the underlying economics for the collabo-
ration between software vendors and e-hackers. We optimize
the vendors’ reward decisions by exploring their interactions
with multiple strategic e-hackers who compete with each other.
Our results offer new insights into the role of e-hackers’
behaviors in bug-bounty programs and provide guidelines for
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effective reward strategies in bug-bounty programs toward a
safer software development environment.

Part of the work has been presented at the IEEE CNS
2023 conference in Orlando, FL. Compared to the confer-
ence version [24], this paper significantly extends the models
and provides more insightful results, including incorporating
the heterogeneity among e-hackers, a new model discussing
collaboration between e-hackers, a framework for multiple
e-hackers scenarios, and the analysis of different reward
strategies.

III. PROBLEM FORMULATION AND MODEL SETUP
A. Bug-Bounty Program

We consider a single software vendor that offers a bug-
bounty program to e-hackers to discover and resolve critical
vulnerabilities in its system. The bug-bounty program is oper-
ated over a finite time horizon before the software system’s
release time. After this period, no bug reports will be accepted
or rewarded, though the vendor may initiate another bug-
bounty program post-launch. This time-bound bug bounty
helps identify issues early in the development lifecycle of new
products and features, facilitating the implementation of archi-
tecture and design changes that would be more challenging
later. For instance, Microsoft has offered a one-month pilot
program to pay e-hackers to scour beta (preview) versions
of Internet Explorer and Windows upgrades [3]. Similarly,
the “Hack DHS” program launched by the Department of
Homeland Security in 2021 had two initial phases of vul-
nerability identification and ethical hacking in select external
systems, followed by a phase where lessons learned were
identified [25]. This allowed the Department to address vul-
nerabilities not surfaced through other means. In compensating
for the e-hackers’ continuous effort, the vendor gradually
enhances the bounty or reward over time, which at least
covers the e-hacker’s cost [2], [4]. We normalize the total
length of the time horizon to one (time unit) and consider
a two-period reward pricing policy [26], [27], [28]. During
Period 1, i.e., in ¢t € [0,¢] with to € (0,1) predetermined
by the vendor, the reward for a valid vulnerability report is
initialized at a low level p. If no valid report is submitted, the
reward will be increased to s (0 < p < s) after ty. However,
if a particular vulnerability has been reported in Period I,
no further report will be rewarded on that vulnerability in
Period II. This pricing strategy is reasonable because if a bug
takes the e-hackers more time or effort, the vendor shall reward
more to compensate the e-hackers.

The model’s timing proceeds as follows:

Step 1. The vendor launches a bug-hunting program over a
finite time horizon, which is divided into two periods. At the
beginning of Period I, the vendor decides and broadcasts the
reward p for any valid report submitted in Period I and reward
s for the report submitted in Period II. The vendor aims to
attract as many e-hackers as possible to participate in the
program.

This assumption of pre-announced pricing at the beginning
of the marketing season has also been widely discussed in the
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economics and operations management literature [21], [22].
An alternate rationale for this pricing policy is that the vendor
sets the compensation to the e-hacker based on the duration of
their search for vulnerabilities. Our model depicts the reward
function as a step-wise function, with a value of p if the
time spent is less than tg and a value of s if the e-hacker
spends more than ¢y. It is natural to specify the values of
the parameters (p, s) at the commencement of the bug-bounty
program.

Step 2. The e-hackers then decide whether to participate
or not. The vendor will provide the participants access to its
bug-hunting system.

Step 3. Upon finding a bug in Period I, the e-hacker decides
whether or not to report it immediately to the vendor. After
collecting the report, the vendor will assess them and publicize
their validity at the end of Period I. If the report is valid, the
e-hacker gets a reward of p, and no further report of this bug
is accepted in Period II.

Step 4. In Period 11, if an e-hacker reports a bug that has
not been reported in Period I, it will get a reward s.

B. Strategic E-Hackers

Our model departs from the classic reward model setup
by introducing strategic e-hackers. Specifically, if e-hackers
discover a bug during Period I and realize that a greater reward
could be offered after time ¢y, they may opt to delay reporting
the bug and wait for the reward to increase to maximize their
individual expected surplus. However, there is a risk that the
bug will be found by other e-hackers and reported in Period I.
In this situation, no reward will be given to the e-hacker who
submits the report afterward.

We assume that the probability of an e-hacker finding out
the bug is (), and the probability of early detection, i.e., finding
out the bug in Period I, is ¢;. Denote ¢ = @ — ¢; as the
detection probability in Period II. It is possible that a specific
type of bug does not exist or the e-hacker could not find it
during the given period, the probability of which is 1 — ). The
values of ¢; and ) depend on several factors, including the
time allocated for bug hunting (o and the overall duration),
the e-hackers’ skills, the system’s characteristics, and the type
of bug being addressed. Estimations for these values can be
derived from data about similar systems’ reliability, the bug
types under investigation, and the vendor’s assessment of e-
hackers’ skills and familiarity with the system based on their
previous work experience. Similar assumptions regarding the
presumed probability of discovering the vulnerability can also
be found in literature such as [29].

For an e-hacker who participates in the bounty program, its
utility depends on its to-report-or-to-wait decision. Its expected

reward can be written as
wait

7Qs
qp

U= (1)

submit

where ~ is the probability that no other e-hackers submit a
report on the bug in Period I, which is determined by the
possibility that the other e-hackers find the bug and their to-
report-or-to-wait decisions.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 5, OCTOBER 2024

We use the amount of time an e-hacker spends on the bug-
hunting process as a measure of their cost (as in [12]). For
illustration purposes, we’ll adopt a step function to delineate
the cost associated with each of these periods’

C1 tSto
C2 t >ty

C= (2)
where t is the time the e-hacker spent on vulnerability dis-
covery and co > c;. That being said, if the e-hacker finds
the bug in Period I, its expected cost will be c;1; otherwise,
if it continues searching into Period II, its total expected cost,
including the one during Period I, will rise to ¢y (ca > ¢1).
Note that if one e-hacker finds and reports the bug in Period I,
the other e-hackers would stop working on this bug in Period
II, and thus its total cost would be c¢;. Therefore, measured in
the probability of finding the bug, the expected reward, and the
cost, the total expected utility of an e-hacker can be written
as

f=U—-qa—1-q)l—=7c—y(1—-q)cz.  (3)

We would like to examine how their participation and report
decisions could be made facing the competition and uncer-
tainty about the other e-hackers’ bug-hunting results.

C. Software Vendor

For the software vendor, we are interested in the effec-
tiveness of employing an inter-temporal reward strategy in
attracting e-hackers to the bug-bounty program. The vendor
needs to decide the values of the reward p and s with a multi-
level objective: First, the vendor would like to attract as many
e-hackers as possible to participate in the bug-bounty program
as more participation contributes to higher productivity of the
vulnerability discovery process [30]; Second, the vendor wants
the e-hackers to report immediately once they find the bug
rather than waiting for a higher reward later so that it could
have more time to fix the bug before releasing the system:;
Finally, the objective is to maximize its expected utility:

(r+ R) - Proby + 1 - Proby—p- Ni—s-Na, (4)

where r is the monetary benefit from discovering and fixing
the bug for the vendor before the system is released into the
market and R is the extra benefit of early detection (i.e.,
in Period I) as the effort and money required to resolve
the issue is significantly lower during the earlier stages of
development; Prob; and Probs are the probabilities of getting
bug reported in Period I and Period II respectively; and /N and

m =

2This assumption of a simple step-wise cost function allows us to con-
centrate on the differences between two distinct periods without further
subdividing the time. It is valid when each period is sufficiently short or
differentiating the e-hacker’s cost or discovery probability within each period
is either unnecessary or impractical. If the periods are long enough, we can
calculate the expected time cost in the following way: As we distinguish
between g1 and g2 to account for difficulty differences of finding bugs early
(in Period I) versus late (in Period II), we assume a uniform probability
of discovering a bug within each period (similar assumption of uniform
distribution can be found in [2]). With a linear cost C' = ct where c represents
the monetary value per unit time or the opportunity cost of the e-hacker’s
time, given tq as the point dividing the timeline into Period I (before to) and
Period II (after ¢p), the average cost for an e-hacker who discovers the bug in
different periods is calculated as ¢ = CtT" and c2 = c(to+ 17%) = CH%,
which are independent of g1 and ga.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on July 16,2025 at 21:44:24 UTC from IEEE Xplore. Restrictions apply.



HOU et al.: INTER-TEMPORAL REWARD STRATEGIES IN THE PRESENCE OF STRATEGIC ETHICAL HACKERS

| Software vendor making reward decisions |

| Potential hackers making participating decisions |

1 |
1 I
| I
I if participate and find the bug l :
1

1 I
| I

| Participating hackers making report decisions |

Fig. 1. Three-stage Stackelberg game between the vendor and the e-hackers.

Nj are the numbers of valid reports in Period I and Period II,
respectively.

IV. COMPETITION MODELS OF E-HACKERS

In this section, we consider a scenario in which two poten-
tial e-hackers (H and L) would participate in the bug-bounty
program and make decisions independently. The e-hackers are
heterogeneous in terms of their levels of expertise, and con-
sequently, their chances of finding vulnerabilities within the
same timeframe differ. Without loss of generality, we assume
e-hacker H is more experienced than e-hacker L with ¢4 >
g1z and Qg > Q. These skill levels or expertise can often be
inferred from their public profiles. For instance, on platforms
like HackerOne, white hackers are awarded badges, which
symbolize their accomplishments and skills [31]. Suppose
the communication between the vendor and the e-hackers is
managed through a platform on which information about the
reward values, the report validation results, and the profiles of
e-hackers are available to everyone. It is worth noting that we
consider the scenario in which the vendor discloses the profiles
of participating e-hackers to leverage the potential benefits of
their competition. However, the true identities of the e-hackers
are confidential information to themselves.

The interactions between the vendor and the e-hackers are
formulated in a three-stage hierarchical order of decision-
making as shown in Fig. 1: In Stage I, the vendor, as the
leader in the Stackelberg game, determines the rewards (p, s)
and post them on the platform. In Stage II, the e-hackers, as the
followers, play a simultaneous game of participating. In Stage
III, whenever a participating e-hacker finds a bug in Period I,
it needs to determine whether or not to submit the report or
wait for a higher reward in Period II. Adopting the backward
induction, we first obtain the subgame-perfect Nash equilib-
rium of the e-hacker’s decision on report submission and then
analyze their participation decisions. Finally, we obtain the
optimal reward decisions for the vendor.

A. Equilibrium Analysis of Participating E-hackers’ Report
Decisions

In the following analysis, we will focus on the case when
both e-hackers participate in the bug-bounty program and first
examine whether a pure-strategy equilibrium exists in their
report decisions in Period L.

1) Existence of Pure-Strategy Equilibrium: Suppose
e-hacker L has found the bug in Period I and needs to decide
whether to report it immediately. Since e-hacker L does not
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TABLE I

UTILITY TABLE FOR THE GAME OF REPORTING WHEN BOTH H AND L
FIND THE BUG IN PERIOD I

report | wait
report | p, p | p, O
wait 0, p S, S

know whether e-hacker H can find the bug in Period I or not,
and only the probability distribution is commonly known, the
game of reporting can be formulated as a Bayesian game with
incomplete information [32]. If e-hacker H does not find the
bug in Period I, the optimal action for e-hacker L is to wait.
Otherwise, the utility matrix of the game faced by e-hacker
L is illustrated in Table I (with e-hacker H’s strategies listed
in rows and e-hacker L’s strategies listed in columns). The
table lists the rewards but omits the costs already incurred,
as these sunk costs do not influence their decisions.

(1) If e-hacker H believes that e-hacker L prefers to wait,
then e-hacker H will also wait for a higher reward. Similarly,
if e-hacker L knows e-hacker H will wait, e-hacker L will also
wait.

(2) If e-hacker H believes that e-hacker L will report
immediately once it finds the bug, e-hacker H faces two
choices: report immediately to secure the reward p, and wait.
Given e-hacker L’s probability of discovering the bug is ¢ir,
the likelihood of e-hacker H getting the reward s if is 1 — ¢y ..
Therefore, the expected reward of e-hacker H if it chooses to
wait is (1 — q11.)s.

Case 1: p < (1 —qip)s

E-hacker H always waits since the likelihood of e-hacker L
finding the bug is sufficiently low that q;, < 1— 2. Therefore,
the only pure-strategy Nash equilibrium is both e-hacker H and
e-hacker L choose to wait.

Case 2: p > (1 —qir)s

In this case, since p > (1 — q1)s > (1 — q1g)s, both
e-hackers choose to report if they believe the other one reports
immediately. Hence, there are two pure-strategy Nash equilib-
ria: (report, report) and (wait, wait). Next, we will discuss the
mixed-strategy equilibrium [33] regarding the probability of
an immediate report for each e-hacker.

2) Analysis of Mixed Strategy Equilibrium: When p > (1—
q11)$, in the mixed-strategy Nash equilibrium solution, each
e-hacker assigns a positive probability to every pure strategy.
We suppose e-hacker H submits the report immediately w.p.
myr once it finds the bug, and e-hacker L reports w.p. mp.

If e-hacker L finds the bug, the expected utility of e-hacker L
if it decides to submit the report immediately is [ (report) =
p, and if it decides to wait, we have fr(wait) = ¢g(my -
0+ (1 —mpmg)s) + (1 — qg)s. As in mixed-strategy Nash
equilibrium, fr,(report) = fr(wait), and a similar equation
holds for e-hacker H, we have

meg = (1— g)/%H, )
mr = (1 — g)/QIL- (6)

We can see that e-hacker H, which has a higher chance
of discovering the bug, is less likely to submit the report
immediately than e-hacker L: my < my. This result is
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Fig. 2. The equilibrium report probability m in Period I vs. Ap = s — p.

consistent with our intuition that weaker hackers are more
inclined to submit immediately because they face a higher
risk of zero rewards if they choose to wait. Fig. 2 illustrates
an example of how the values of my and mjy change with
the gap between the rewards Ap = s — p when p = 200,
gig = 0.35, and q1;, = 0.2.

If f(report) = f(wait), ie., the expected utilities of
reporting and waiting are identical, it is presumed that the
e-hacker would prefer to report rather than wait. When Ap <
1_7; — =D it is interesting to find that both e-hackers are
more likely to report immediately under a higher reward s
due to the competition between the e-hackers. The intuition
behind this behavior is that as the enhancement in reward
Ap or the reward s in Period II increases, the potential gains
from waiting increase. To maintain indifference between the
strategies (reporting and waiting) for another e-hacker, the
probability assigned to waiting is decreased to be mpy =
(1 = 2)/qim. Otherwise, if my < (1 — 2)/qip, e-hacker
L always chooses to wait, and so does e-hacker H; on the
other hand, if mg > (1 — 2)/q1m, both e-hackers choose
to report immediately. When the increase in potential reward
Ap is significant enough such that Ap > 17{’1 — — p, waiting
becomes always superior to reporting immediately, irrespective
of the other e-hacker’s choice to report immediately or wait.
This decision is based on the justification that the potential
for a larger future reward outweighs the risks of waiting and
possibly receiving nothing. Therefore, in this scenario, both
e-hackers choose to wait.

3) Equilibrium Utility Analysis: Fig. 3 represents differ-
ent utility outcomes and the corresponding possibilities for
e-hacker H in a decision-tree model, according to which we
can write the following expected utility for e-hacker H:

fo=qumup+ (1 —mg)(l —qrmr)s —ci]
+(Qu — )1 —qizmp)(s — c2) — qrrmpca)

+ (1 —-Qu)[—crqirmr — (1 — qirmpr)ca). @)

Case 1: p> (1 —qi1)s

By incorporating (5) into (7), we have e-hacker H’s expected
utility as: fg = pQu +2(1—q1m)(c1 —c2) —c1 and similarly
fo =pQrL + E(1 —qir)(c1 — ca) — 1. When (5) and (6)
hold, by setting c; = ca = 0, we can derive the expected
revenue for the e-hacker as pQ;(i € {H,L}). That is, the
expected cost for the vendor is p(Qm + Q). It is interesting
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Fig. 3. Decision tree for e-hacker H.

TABLE 11
UTILITY TABLE FOR THE GAME OF PARTICIPATING

in out
in fu, fL sQH —c1q1H — c2q2H, 0
out | 0, sQr —c1q1L — C2q2L 0,0

to notice that, due to the competition between the e-hackers
and their strategic behaviors, the value of s does not affect the
e-hackers’ total expected reward or the cost for the vendor in
the equilibrium solutions. As Qr, < Qg, and q11, < q1H, it is
easy to deduce that f; < fp, meaning that a more skilled
e-hacker is anticipated to gain more from participating in the
bug bounty program. Besides, the gap between their expected
utilities Af = fy—fL = p(Qu—QL)+2(q1m—q1L)(ca—c1)
increases with p while decreases with s.

Case 2: p < (1 —q11)s

Both e-hackers always choose to wait, and their expected
utilities can be written as fg = sQy — c1q1g — c2g2y and
fr =3sQL — c1q11, — caqar, with their gap, Af = s* (Qu —
Qr)—c1* (1w —q11) — c2* (q2m — q21.), remains unchanged
with p and grows as s increases.

B. Equilibrium Analysis of E-hackers’ Participation
Decisions

In the game of participating, each e-hacker decides whether
or not to participate in the bug-bounty program before the pro-
gram starts. We suppose s@); — ¢1q1; — caq2; > 0 and p > 571
for ¢ € {H, L}; otherwise, there is no incentive for e-hackers
to participate. From Section IV-A, we know that if s > ﬁ,
then both e-hackers benefit from participating in the program,
and both wait until Period II. If s < ﬁ, we obtain the
utility for the e-hackers in the game of participating as shown
in Table II.

(1) If fir > 0 and fr, > 0, (in, in) is the only pure-strategy
equilibrium. That being said, both e-hackers will participate.

) If fg > 0and fr, <0, (in, out) is the only pure-strategy
equilibrium, meaning e-hacker H will choose to participate,
whereas L will opt out.

3) If fg < 0 and thus fr < 0, there will be two pure-
strategy equilibria: (in, out) and (out, in). In this case, under
the mixed-strategy equilibrium, e-hacker H will participate
w.p. eg = sé}?fc_lziilf;;s?fh, and e-hacker L w.p. ef, =

sQH—Cci1q1H—C2q2H
sQu—ciqig—ceqeu—fu"

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on July 16,2025 at 21:44:24 UTC from IEEE Xplore. Restrictions apply.



HOU et al.: INTER-TEMPORAL REWARD STRATEGIES IN THE PRESENCE OF STRATEGIC ETHICAL HACKERS

TABLE III
EQUILIBRIUM RESULTS OF THE E-HACKERS’ DECISIONS

Region | Participation Decisions Report Decisions
I Hin, L in both wait
I participate w.p. efy, er, | report w.p. mpg, mp,
111 Hin, L in both wait
v H in, L out H wait
\ Hin, L in both wait
VI Hin, L in report wW.p. mpg, my,
o
S -
© s=sy
=
S
©
& o
o
=
<
=}
S -
~

200 300 400 500
p

Fig. 4. Regions of e-hackers’ optimal decisions with different reward p and
s (qug = 0.16,92 = 0.18,¢11, = 0.12,¢2r, = 0.15,¢1 = 50, c2 = 80,

p(1—q1pm)(c2—c1) — p=air)(ez=c1) o _ _p )
PQH—c1 pQr—c1 T T 1-qup

SH = ySL

By integrating the equilibrium results of the e-hackers’
participation and report decisions, Fig. 4 plots the regions of
the e-hackers’ optimal decisions with different reward values
p and s, and Table III summarizes the equilibrium results in
these regions. Note that in the scenario where the e-hackers are
homogeneous, i.e., Qg = Qr and ¢1g = q11, then in Fig. 4,
the two curves of s = sy and s = sy, overlap with each other.
This results in only Regions I, II, V, and VI remaining without
affecting the equilibrium outcomes.

C. Vendor’s Reward Decisions

(1) Incentive for the early report. One objective for the
vendor is to encourage the participating e-hackers to submit
their reports immediately instead of waiting for a higher
reward. Two types of incentive compatibility (IC) can be
implemented to induce the e-hackers to behave as the vendor
wishes [22]: weak IC and strong IC.

e In weak IC, “both report immediately” is a possible

outcome. According to Section IV-A, p and s must satisfy

s<s, = L. ®)
I—aqir

e In strong IC, “both report immediately” is the unique
outcome, and the vendor needs to set the reward s so
that myg = myp = 1, which means s = s,.

Hence, to get early report in Period I, there are two options
for the vendor:

e s < min{sy,s,} (Region I in Fig. 4), which indicates
that p < Uzamllee—c)ter Thic condition reflects a
scenario where the initial reward p is minimal, and there
is only a slight increment in the reward for Period II,
with the potential risk that the program may not attract
any participants.
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Fig. 5. The optimal rewards vs. (q1, g2).

e 55, < s < s, (Region VI in Fig. 4), This implies a
substantial initial reward p and a moderate rise in reward
during Period II.

(2) Incentive for participation. The other objective for the
vendor is to attract both e-hackers to participate. To ensure that
both e-hackers have the incentive to participate, it is required
that frr > 0 and fr, > 0 according to the equilibrium of
e-hackers’ participation decisions. That being said, if s <
S, the reward s should be high enough that s > s; =
%. If s = s,., We can obtain the following results
regarding the vendor’s optimal decision on rewards given to
the e-hackers:

Proposition 1: To attract both e-hackers to participate in the
bug-bounty program and maximize the chances of immediate
reporting, the reward decisions for the vendor should satisfy
s* = s, and:

qirer + (1 —qin)( —qg)es + quuer (I — qur)

p*>P=

QL+ q2r i:‘éf ’
©)
1-— 1-— 1—
s> g Dot (I —qi)(X —qum)e2 + qrmen( Q1L).

qr(l—aqr)+ (1 —qn)
(10

In the situation where there are two e-hackers of the same
type, i.e., 1 = iz = qir and g2 = gy = q2r, WE can
obtain Corollary 1 in terms of how the rewards change with
the detection probabilities:

Corollary 1: In the case of two homogeneous e-hackers,
with other parameters unchanged, the lower bound of the ven-
dor’s first-period reward, P, decreases with q;. However, the
lower bound of second-period reward S has a non-monotonic
relationship with ¢;. Besides, both P and S decrease with g5.

2
Proof: Since P = qwﬁ@(l*q% ta(l=ga jTF: < 0, and
c% < 0, P is a decreasing function of ¢; and g2, we can
obtain the results in Corollary 1. (]

Fig. 5 shows an example of how P and S change with
q1 and ga.

Corollary 1 suggests that for bugs easily found in Period
I (indicated by a large q;), the vendor can offer a low initial
reward p and a high subsequent reward s to induce immediate
report as m increases with s. For bugs that are difficult to
identify in Period I but are more likely to be discovered in
Period II (small ¢; and large ¢2), the vendor should increase
the initial reward p moderately and then adjust it to a slightly
higher s in Period II. When the bug is rather challenging to
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TABLE IV
VENDOR’ REWARD DECISIONS WITH TWO HOMOGENEOUS E-HACKERS
Detection Probability small g large q1
small ga high p, high s low p, high s
large g2 medium p, medium s | low p, high s

TABLE V

UTILITY TABLE FOR THE GAME OF PARTICIPATING WHEN E-HACKERS’
STRATEGIC BEHAVIORS ARE IGNORED

in out
in fHigns fLign (s—c2)goar + (P —c1)qim, O
out | 0, (s —c2)gar + (p—c1)qiL 0,0

400 500

300

p

Fig. 6. Regions of vendor’s decisions when e-hackers’ strategic behaviors
are ignored.

detect (with both ¢; and ¢ being small), the vendor should
offer substantial rewards for both p and s to encourage e-
hackers to join and stay in the program. Table IV outlines the
vendor’s reward decisions for different scenarios.

D. Impact of Ignoring the E-hackers’ Strategic Behaviors

To emphasize the importance of considering the e-hackers’
strategic behaviors in reward design, we examine the scenario
where the vendor ignores the e-hackers’ strategic behaviors,
i.e., the vendor believes that the e-hackers will report immedi-
ately whenever they find the bugs. In the following analysis,
we will use the subscript ign to represent the case. Table V
summarizes the vendor’s belief of e-hackers’ utilities in the
participating game, where fr ign = g1 + sqau(1 — q11) —
cilqr+ar—qanr)—c2(l—qu)(1—qr) and fr g, =
pir + 5¢2(1 — quu) — eilqie + i — i) — co(1 —
q12)(1 — qim).

The objective for the vendor is to ensure that both e-hackers
are incentivized to participate, i.e., fr ign > 0 and fr, ;gn > 0.
Therefore, under the assumption that ¢1 7 > ¢17, and gofp >
q21, the reward s should be high enough that

Y

8§ > Sign

o _ alactas—qrqaua)tee(-—qr)(l-qu)—pgL
where s;4, = wrUarm) .

Using the same input parameters values as in Fig. 4,
we obtain the numerical results for the lower bound of s;4,
when p increases from 185 to 500, as shown in Fig. 6.
To attract both e-hackers, Regions I, I, and III above the line
s = s;gn represent the possible reward values (p, s) when
the vendor ignores the e-hackers’ strategic behaviors or views
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TABLE VI

UTILITY TABLE FOR THE GAME OF PARTICIPATING
WITH STATIC REWARD STRATEGY

in out

in fu, fL (p—c2)ga2+(p—c1)q1, 0
out | 0, (p—ca2)g2+ (p—c1)q1 0,0

the e-hackers as myopic. The shaded region indicates the area
where the vendor’s decisions fall for weak IC when taking into
account the strategic behaviors of e-hackers. Failure to take
into account the e-hackers’ behaviors has negative impacts as
illustrated in two regions in Fig. 6: In both Regions (I) and
Region (II), even though both e-hackers will participate in the
program, they both choose to wait until Period II to submit
a report. That being said, ignoring the e-hackers’ strategic
behaviors could result in setting the initial incentive p too low
or the subsequent incentive s too high. This might motivate
them to delay reporting the bug until Period II in anticipation
of greater rewards. Therefore, to take the best advantage of a
bug-bounty program, it is essential to incorporate e-hackers’
strategic behaviors into the incentive mechanism.

V. EXTENSION: DIFFERENT REWARD STRATEGIES

In our previous model, we analyzed the vendor’s optimal
reward decisions under p < s, i.e., an increasing reward
strategy is used to compensate the e-hackers’ continuous work
for two periods. In this section, we discuss and compare the
results under two different reward strategies: static reward
strategy and decreasing reward strategies.

A. Static Reward Strategy

We first consider a static reward strategy scenario, where the
vendor does not enhance the reward during the whole period,
i.e., s = p. The e-hackers will have no incentive to wait until
Period II if they discover the vulnerability in Period 1. Table VI
lists the e-hackers’ utilities in the participating game,

Jo=aqulp+ (c2—c1)(1 —qir)] + @2up(l — q1)

—caqr— (1 —aqr)es, (12)
fr=aqrlp+ (c2—c1)(1 — qm)] + @2op(1 — q1m)
—ciqia — (1 — qum)co. (13)

To attract both e-hackers into the program, we have fy >
0 and fr >0, or
qier + (1 —q)( —qum)ez + auer(1 — qir)
oz + (1 — qm)

p>Ps:
(14)

If we compare the value of P with the lower bounds P and
S in (9) for the inter-temporal pricing strategy, it is interesting
to find that P < P, < S. That means if the vendor does
not plan to enhance the reward afterward, the reward should
be higher initially to attract the e-hackers. In this case, the
vendor’s expected utility under a static reward strategy is lower
than that under an inter-temporal pricing strategy if the reward

is set as s = £—.
—qiL
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B. Decreasing Reward Strategy

Noticing that under an increasing reward strategy with
p < s, the participating e-hackers might hoard bugs for higher
rewards, one might wonder whether a decreasing reward
strategy works to encourage early reports. In this section,
we explore the scenario of decreasing reward strategy: the
vendor declares at the beginning of the program that a reward
of s will be provided for each valid bug report. Additionally,
if the report is submitted during an early phase (Period I),
a bonus is added, raising the reward to p, where p > s.

In this scenario, if a bug is discovered during Period I,
it would be reported right away, eliminating the game of
reporting among the e-hackers in Period I. However, if the bug
remains undiscovered by the end of Period I, the e-hackers will
decide whether to proceed into Period II, taking into account
the decrease in the reward. For example, given that e-hacker
H didn’t find the bug in Period I, the probability of it finding
the bug in Period 1II is ‘”HH It will only choose to continue
working into Period II 1f the condition s — (c3 —¢1) >
0 is satisfied. Therefore, to motivate both e-hackers to keep
working through Period II, the vendor must set the value of s

1— 1
such that s > s,, = max{Ac QIH ,Ac q;];L}

Next we consider the e- hackers participation decisions.
If the vendor would like to attract both e-hackers to participate
in the program, we need fyg = qug(p — c1) + ¢u[(1 —
qir)(s—c2)—qirel] = (1-Qu)lqirer +(1—qir)ez] > 0 and
fr=qa1p—ca)+aqrll-qun)(s——c)—que]—(1-
Qu)lgircr + (1 — qim)ee]) > 0, or

s > St
1- 1— _ _
= max{( QH)(QlLCI + ( qlL)Cg) qu(p Cl)
q2r(l —qr)
e
1 —(]1L7
(1-Qr)(qrecr + (1 —qiu)ee) — qin(p—c1)
q2r(1 — q1m)
L owme s
1—qm

Fig. 7 illustrates the regions of e-hackers’ decisions under
different values of p and s with the same parameters value
as in Section I'V-B: In Region I, s is not large enough, which
leads to the situation that e-hackers lose motivation to continue
working in Period II. In Region II, not all e-hackers are willing
to participate in the program. The shaded Region III indicates
the area where the vendor’s decisions should fall if they want
to attract both e-hackers to the program and ensure they are
committed to working through both periods. By comparing this
area with the vendor’s decision under p < s in Proposition 1,
it can be found that the lowest value of p under decreasing
reward strategy is higher than that under increasing reward
strategy, indicating that if the vendor would like to reduce the
reward s for Period II, it needs to enhance the reward p for
Period L.

VI. COLLABORATION MODEL

In this section, we discuss the collaboration between two
e-hackers when they could share resources and expertise as
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Fig. 7. Regions of vendor’s decisions under decreasing reward strategy.

they work together to uncover vulnerabilities. In reality, com-
panies encourage e-hackers to collaborate. For example, on the
HackerOne platform, the e-hackers can set their collaboration
preferences to invite collaborators and view all other hackers
open to collaborating [34].

As “two heads are better than one”, when the two e-hackers
collaborate, the bugs will be more likely and earlier to be
detected. If the e-hackers’ skills complement each other very
well, then the vulnerability discovery probability will be
largely enhanced; otherwise, if they embrace similar skills
or expertise, the probability might be slightly enhanced by
collaboration. Therefore, we assume that the probability of
finding the bug in Period I under collaboration is ¢;. which is
not smaller than the probability ¢g; when the e-hackers work
independently: g1, > ¢;. Similarly, the likelihood of finding
the bug in two periods will be enhanced, i.e., Q; < Q. =
q1c + qo2.. Besides, the collaborating e-hackers will need to
split the rewards they receive. As our work focuses on the
impacts of collaboration on the bug bounty programs, we will
not discuss the bounty splitting rules in this paper, and the
reward will be equally shared between the two e-hackers in
our model.

In the case of collaboration, given the rewards p for Period
I and s for Period II, if p < s, the e-hackers will always
submit their report in Period II as competition does not exist,
with an expected utility of f;, = %ch — 1cC1 — Q2cCa-
Therefore, to encourage early reports, we consider an incentive
mechanism in which the vendor would give out a larger
reward, denoted by p. (p. > s > p), for the two collaborating
e-hackers if they submit their report in Period I. The new
timeline of the process is as follows:

e The vendor announces the rewards: p for individual
reports in Period I, p. for the collaborative report in
Period I, and s for any report in Period II.

o The e-hackers then decide whether or not to collaborate
in the bug bounty program. They can set up the collabo-
ration channel through the vendor’s platform. If they do
not collaborate, each e-hacker will decide whether or not
to participate by itself.

o The e-hackers submit their report once they find the bugs
and get the rewards. If they collaborate, the reward will
be split.

With the consideration of cooperative behavior, the
e-hackers would evaluate the benefits of cooperation, and the
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vendor needs to identify under what conditions to incentivize
the e-hackers to collaborate instead of taking advantage of their
competition as well as how to set p,. to facilitate collaboration.
We assume that the expected cost remains the same for each
e-hacker, and the expected utility for each hacker when they
collaborate can be written as:

1 1
fe= Q1c(*pc - Cl) + QQC(*S — CQ).

16
2 3 (16)
In the case of two heterogeneous e-hackers as in Section IV,
our result shows that the vendor would set s = P to

1-qir
encourage participants to report bugs immediately when the

e-hackers do not collaborate, and e-hacker H has an expected
utility of frr = pQp + 2(1 — qia)(c1 — c2) — c1. Since fr, <
fm, e-hacker L has a stronger collaboration incentive. Suppose
the e-hackers choose to collaborate when f. = f, then the e-
hackers would decide to collaborate if f. > fg. To enable the
collaboration, for e-hacker H, p. should satisfy:

_ 2PQH —Ac(1 —qip)(1 — qiu)

DPec Z PecH = + T7 (17)
qic
where Ac =co—c;, T = 201—2(%&, and s = ﬁ.
Therefore, we have )
Pe :max{s7ch} (18)

The first situation we are interested in is when collaboration
enhances the early detection probability without affecting the
overall detection probability for e-hacker H: ¢1. > q1p, Q. =

Qm - It can be derived that if the increase in speed is substantial
enough that

Aqy = qie — i >
Qu(2p — s+ 2c2) — 2Ac[(1 —qup)(1 — quu) + i) — 21
2Ac ’
(19)

then there is no need for the vendor to offer a reward p, greater
than s to encourage collaboration. For illustration purposes,
we assume that g1y = 0.22, oy = 0.2,¢11 = 0.18,q21, =
0.08,c1 = 50,co = 80, p = 270.9. The values of p. under
different values of Agq; are depicted in Fig. 8 (a) with Q. =
0.42. Tt is interesting to notice that if collaboration could speed
up the bug discovery largely (Ag; > 0.073 in this example),
a static reward strategy with p. = s = 330.3 would be enough
to encourage collaboration between e-hackers; otherwise, the
vendor needs to give out a larger reward to Period I report
than to Period II report to facilitate e-hacker collaboration and
early report: p. > s.

A second situation we investigate is where collaboration
may not expedite the finding of bugs, but it does improve the
chances of success by the end of the two-period timeframe:
Q. > Qp. It is derived that if

AQ = Qc - QH >
Qu(2p — s+ 2c2) —2Ac[(1 — i) (1 — i) + quu] — 21
s — 2¢o

)

(20)
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Fig. 9. Reward p. versus Ag; and AQ.

then a reward of p. = s is adequate to incentivize collabora-
tion. Fig. 8 (b) shows the results when ¢, = 0.22 and @, is
increased, indicating that p. > s if AQ > 0.026.

Next, we consider a more general situation when collab-
oration not only speeds up the bug-hunting process but also
increases the overall success probability, offering dual benefits
in terms of efficiency and effectiveness. Fig. 9 shows the value
of p. under different values of Aq; and AQ. The results
indicate that a smaller reward is needed as collaboration raises
the probability of detection, whether in Period I or Period II.
The reason is that if the collaboration has minor effects on
the bug discovery process, the e-hackers have little incentive
to collaborate since they need to split the reward unless a
larger reward is given. If the e-hackers have a higher chance
of finding the bug or could find it much earlier than when they
work independently, collaborating with others not only saves
them time or cost but also mitigates the competition risk.

For the vendor, if the two e-hackers collaborate, its expected
utility is 7. = q1.(r + R — pc) + goc(r — 8); otherwise, m =
r(1-=(1-Qu)(1-Qr)+R(ein+a —aimai) —plqia +
qlL) — S[QQH(l — q1L) + q2L(1 — qu)} Therefore, if Ar =
m. —m > 0, or the value of Ag and AQ satisfy:

Aq(R+ s —pc) + AQ(r — s) > g(pe),

then the vendor would benefits from their collaboration, where
9(pe) = peqi +1QL(1 = Qu) + Ryn(1 — qum) — p(qim +
qir) — sleer(1 — 1) + q2.(1 — 1) — Qu + qum]. We use
a numerical example to illustrate the benefit of having e-
hackers collaborate: Am = 7. — 7. The shaded area in Fig. 10
shows the conditions under which the vendor could gain from
the collaboration between e-hackers: (1) In Region I, a static

2y
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Fig. 10. Benefits of collaboration for vendor (c1 = 52, c2 = 60, = 350,
R = 120).

reward policy p. = s is sufficient to encourage collaboration;
(2) In Region II, even though the chance of detection barely
improves with collaboration and the vendor has to offer a
reward p. > s, the process of finding vulnerabilities is signif-
icantly faster, providing a benefit to the vendor; (3) In Region
IIT where the collaboration results in only a slight improvement
in either the speed of discovery or the overall detection
probability, the vendor has to offer a reward p. greater than
s to promote cooperation among e-hackers. Therefore, it is
advantageous for the vendor to utilize the competition between
e-hackers to reduce costs; and (4) In Region IV, even though
the vendor doesn’t need to provide a reward p. larger than
s to facilitate collaboration between e-hackers, the vendor
still benefits less from their collaboration than competition as
it doesn’t significantly enhance overall detection probability
or speed. This result shows that the vendor benefits more
from e-hacker collaboration if such joint efforts significantly
enhance the speed of vulnerability detection or the likelihood
of discovering potential bugs. It implies that vendors might
focus on encouraging cooperative efforts to address hard-
to-detect vulnerabilities, where the collective contribution is
expected to have a significant impact.

VII. MODELS OF MULTIPLE E-HACKERS

In this section, we extend the model of two e-hackers to
the case of multiple heterogeneous e-hackers. The research
questions we are interested in include: 1) With the same
amount of rewards (p, s), how does the number of participating
e-hackers impact their to-report-or-to-wait decisions? 2) Does
an increase in the number of competitors decrease expected
utilities for the e-hackers at the equilibrium? 3) For the vendor,
does the possibility of getting an early report (in Period I)
increase with the number of participating e-hackers? and 4)
How would the reward s affect the participating e-hackers’
to-report-or-to-wait decisions? We first construct the expected
utility function of the e-hackers and analyze their equilibrium
decisions. Then, we discuss the impact of the number of
participants and rewards through a set of numerical examples.

A. Equilibrium Analysis of E-hacker’s Decisions

Given p and s, we assume that there are a total of NV par-
ticipating e-hackers. Without loss of generality, we categorize
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these e-hackers into two types: high type (H) and low type
(L), each having a number of n; e-hackers, ¢ € {L, H}. These
types differ in bug detection probabilities, with g1; being the
probability in Period I and ¢o; in Period II. The total number
of e-hackers across both types is ny, +ng = N.

If an e-hacker of type ¢ found the bug in Period I,
it would decide whether to report it immediately and get a
reward of p or wait for Period II with an expected utility of
sw; — c1, where w; is the probability that none of the other
n — 1 e-hackers submitting a report in Period I. We denote
m; as the probability of an e-hacker of type 7 submitting the
report immediately and 1 — m; as the probability of waiting
until Period II. For instance, if the e-hacker is of type L, then
wr, = (1 —qizmp)" =1 (1 — gugmy)™. The total expected
utility of an e-hacker of type i (i € {L, H}) can be written as

fi = quilmip + (1 — my)w;s — 1]
+ goi[wi(s — c2) — (1 — w;)eq)

— (1 —q1i — g2)[wica + (1 — wy) ] (22)

We are interested in the mixed-strategy Nash equilibrium,
where the e-hacker would be indifferent between reporting
immediately and waiting. That being said, at equilibrium, p —
¢1 = sw; — ¢, for both ¢ € {L, H}. Therefore, we can derive
that

1 1
Bys). (23)

m; = —[1— (=

" oqu s

Which indicates that a more capable e-hacker is more likely
to delay their reporting.®> However, when s is very large such
that s > s4 = waiting is the dominant

(1=qi)"L (f—qu)"H* ’
strategy for everyone. The threshold s; decreases with np,
and ng, indicating that the likelihood of all participating e-
hackers delaying reports until Period II is higher when there
are fewer competitors. When s is small enough to satisfy m; <

1 in equation (23), as 4% = qi(f)ﬁln(f)ﬁ < 0,

we observe a decrease in the immediate report probability m as
the number of participants /N increases, which may contradict
our initial intuition. An example is shown in Fig. 11(a).
From a game theoretical perspective, this behavior can be
explained as follows: As the number of e-hackers rises, the
benefits of waiting, represented by the value of sw;, decreases.
This requires a decrease in the value of m, so that other
e-hackers remain indifferent between waiting and reporting
immediately. The intuition behind this phenomenon is that the
existence of more competitors enhances the chance that other
e-hackers will find the bug, thus reducing its expected utility.
Consequently, e-hackers are motivated to delay their report
submission for a larger reward. That being said, at equilibrium,
an increase in the number of participating e-hackers raises the
likelihood of e-hackers choosing to wait for a higher reward to
offset potential losses resulting from competition. This results
in the probability that the vendor gets an early report in Period
I, Prob; =1— HieL,H(l — g1;m;)™, decreasing with n; (as
shown in Fig. 12(a)). But the chance of finding the bug in the

3Note that s should be small enough that s < g P

NI Otherwise,
waiting would be a possible dominant strategy for type H e-hackers.
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(g2 = 0.2,q21, = 0.14).

whole time horizon, Prob; + Proby = 1 — HieL’H(l —q1; —
g2;)™, increases with n; (as shown in Fig. 12(b)). Another
interesting observation is that the expected utility f; of the
e-hackers remains unchanged regardless of the number of
participants N (as illustrated in Fig. 11(b)).

B. Vendor’s Reward Decision

Firstly, we investigate how the value of reward s influences
the participating e-hackers’ to-report-or-to-wait decisions and
their expected utility. Then, we will discuss how to decide the
value of s for the vendor.

We change the value of s from 360 to 560 and show the
equilibrium results in Fig. 13 for the case of n;, = 5and ny =
2. As we can see, as long as s < W, by enhancing
the reward s, both types of e-hackers are more likely to submit
reports immediately. As Prob; = 1 — HieL,H(l — qrim;)™
increases with m;, we can derive that Prob; also increases
with s, indicating that the vendor is expecting a higher chance
of getting an early report. Besides, the participating e-hackers
could also benefit more from the program, i.e., f; increases
with s.

Based on the equilibrium analysis, the number of partici-
pants has little impact on the equilibrium expected utility of
e-hackers, while the value of s does. Our current focus is
on the following question: If potential e-hackers are willing
to participate as long as their expected utility f exceeds a
threshold utility fo, what is the minimum value of s, denoted
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as Smin, to ensure f > fy for both types of e-hackers
and attract them to join the program? Considering different
expectations of different types of e-hackers, we calculate the
value of s,,;, under various values of f, for types H and L by
solving f; = fo with f; in (22) and m; in (23), respectively.
Fig. 14 shows an example of s,,;, under different values of
fo. The result is intuitive that as the willingness-to-participate
fo increases, the vendor needs to provide a larger reward s.
Now we have two limits of s: one lower limit denoted as
Smin to ensure that f > fy, and one upper limit denoted
as sq = (1—q1L)"L(117—q1H)"H*1 above. which all e-hackers
would delay their reports. The vendor aims to attract as many
e-hackers as possible since with more participating e-hackers,
there’s a lower chance they all choose to delay reporting and
a higher chance that the bug can be discovered. Given this
objective, we can examine the vendor’s strategy regarding s
in two scenarios, providing interesting insights into working
with e-hackers in bug bounty programs: (1) If e-hackers are
content with modest expected rewards from the program with
a modest value of fy, i.e., s;min < S4, the vendor can select a
value of s that satisfies s € [s,,in, Sq) to attract all the potential
e-hackers, with early reports expected in Period 1. (2) If the
potential e-hackers are “greedy” and are driven by excessive
profit expectations, by setting s > S;,in > Sq to attract all
the potential e-hackers, the vendor should not anticipate early
reports during Period 1.

VIII. CONCLUSION

This article focuses on the role of e-hackers’ strategic behav-
iors in software vendors’ reward strategies for bug-bounty
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programs. We formulate a novel game model between a soft-
ware vendor and multiple e-hackers. The interaction between
the vendor and the e-hackers is modeled as a Stackelberg
game, and the competition between the e-hackers is mod-
eled as Bayesian games with incomplete information. The
equilibrium solutions are characterized by the e-hackers’ par-
ticipation decisions, bug report decisions, and the vendor’s
reward strategies.

The paper contributes to the existing literature by explor-
ing the impacts of e-hackers’ strategic behaviors, including
hoarding bugs or delaying reports for higher rewards, as well
as the competitive and cooperative interactions among peers.
Furthermore, the study evaluates the benefits of employing an
inter-temporal reward strategy in a bug-bounty program by
comparing three different reward strategies: static, decreasing,
and increasing reward strategies. The results of the study offer
several insights into the vulnerability market. First, enhancing
the final reward does not always induce the e-hackers to wait
due to the uncertainty in bug hunting and the competition
between the e-hackers. If the vendor does not plan to increase
the reward afterward, a higher initial reward should be set to
attract the e-hackers. Second, ignoring the strategic behaviors
of e-hackers may lead to the initial reward being set too low
and the subsequent reward too high, which could cause an
increase in the delay of bug reporting. Finally, by carefully
selecting the reward amounts for an inter-temporal reward
strategy, the vendor can motivate potential e-hackers to engage
in the bug bounty program, encourage timely reporting, and
simultaneously reduces costs. Moreover, the vendor benefits
more from e-hacker collaboration when their collective efforts
significantly enhance the speed of vulnerability detection or
the chances of their discovery.

Future research directions include considering the competi-
tion between multiple software vendors in recruiting e-hackers
and the influence of e-hackers’ irrational behaviors, such
as sunk cost fallacy and risk-seeking behaviors. Consider-
ing the multi-dimensional motivations of e-hackers, which
include financial rewards, self-improvement, and the com-
mitment to defense [35], it would also be interesting to
explore different reward schemes or incentive mechanisms.
These include providing additional bonuses such as “badges”
based on the quantity of previously successful submissions
and using leaderboards to showcase e-hacker rankings [36],
[37]. These strategies would help e-hackers find more effective
collaboration partners and foster a competitive and engaging
community. Besides, our study assumes that the e-hackers
know the number of participants in the program. Such infor-
mation may only be available if the vendor publicizes it.
Therefore, the impact of asymmetric information on the col-
laboration between the vendor and the e-hackers, as well as
the benefit of hiding the information for the vendor, needs to
be studied further.
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