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Abstract— A skyrocketing increase in cyber-attacks signifi-
cantly elevates the importance of secure software development.
Companies launch various bug-bounty programs to reward
ethical hackers for identifying potential vulnerabilities in their
systems before malicious hackers can exploit them. One of the
most difficult decisions in bug-bounty programs is appropriately
rewarding ethical hackers. This paper develops a model of
an inter-temporal reward strategy with endogenous e-hacker
behaviors. We formulate a novel game model to characterize
the interactions between a software vendor and multiple het-
erogeneous ethical hackers. The optimal levels of rewards are
discussed under different reward strategies. The impacts of
ethical hackers’ strategic bug-hoarding and their competitive and
collaborative behaviors on the performance of the program are
also evaluated. We demonstrate the effectiveness of the inter-
temporal reward mechanism in attracting ethical hackers and
encouraging early bug reports. Our results indicate that ignoring
the ethical hackers’ strategic behaviors could result in setting
inappropriate rewards, which may inadvertently encourage them
to hoard bugs for higher rewards. In addition, a more skilled e-
hacker is more likely to delay their reporting and less motivated
to work collaboratively with other e-hackers. Moreover, the
vendor gains more from e-hacker collaboration when it could
significantly increase the speed or probability of uncovering
difficult-to-detect vulnerabilities.

Index Terms— Ethical hacker, vulnerability market, strategic
behavior, bug bounty.

I. INTRODUCTION

E
THICAL hackers commit their time and effort in vul-

nerability markets to uncover and report vulnerabilities

to software developers or vendors. The software vendors then

offer monetary rewards to the ethical hacker (e-hacker)1 for

helping and fixing the bugs, preventing data breaches and

cyber-attacks. Many companies, including Mozilla, Google,

and Microsoft, have relied on e-hackers to discover security
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1For brevity, we will call the ethical hackers e-hackers in this article. We do

not consider the malicious hackers.

vulnerabilities by launching the so-called bug-bounty pro-

grams [1].

Reward pricing is one of the most challenging decisions

companies must make [2]. On the one hand, both the sever-

ity and the difficulty levels of bugs must be considered in

compensating the e-hackers. If the rewards are the same for

the obvious defects and those that are difficult to find, the

e-hackers would only pick the low-hanging fruits and lack

incentives to dig the hard ones continuously. On the other

hand, as the vendor keeps patching the vulnerabilities reported

by the e-hackers, the software gets harder to exploit. For

example, in one of Google’s bounty programs, the rate of

critical bug reports slowed down after the program picked up,

and Google had to add bonuses as the program progressed [3].

Therefore, to induce e-hackers to exert more time on those

hard-to-detect bugs, inter-temporal pricing in which the reward

grows over time has been proposed in the literature and

applied in practice [2], [4]. One famous example is Donald

E. Knuth’s reward of initially 1.28 USD for each bug in

his TEX typesetting system, which grows exponentially with

the number of years the program is in use [5]. Indeed, it’s

quite common for bug bounty programs to increase rewards

to motivate deeper security efforts. For instance, in 2019,

Microsoft raised top award levels from $15K to $50K for the

Windows Insider Preview bounty and from $15K to $20K for

the Microsoft Cloud Bounty program [6].

However, the inter-temporal reward strategy also motivates

strategic e-hackers to withhold their bug submission and wait

for reward enhancement. In reality, it is very common that

e-hackers hoard bugs for higher profits [3]. Yet the vendors

cannot tell whether the e-hackers withhold the reports or

have not discovered the bugs. There is constantly a cat-

and-mouse game between software vendors, who hope to

spend less money and to induce earlier vulnerability reports,

and e-hackers, who wait for a higher reward. Consequently,

companies are continuously enhancing their rewards to attract

as many e-hackers and as early reports as possible, and the

e-hackers are constantly modifying their report plans to earn

as much as possible. Besides, the situation becomes more

intricate for the e-hackers when they may not benefit from

blindly waiting for a higher reward. It is now more likely that

the other e-hackers will discover the same bug before them

if they wait too long. In this case, the e-hackers will not be

rewarded for late reports of soon-to-be-fixed bugs.

Motivated by the interactions between the software vendors

and the e-hackers, this paper studies how inter-temporal reward
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strategy and the e-hackers’ strategic behaviors, and partic-

ularly their interdependence, affect the bug-bounty program

and e-hackers’ utilities. Although the importance of strategic

e-hacker behavior is widely recognized, little research has

studied its implications on the reward strategy in vulnerability

markets. Given this gap in the literature, our research aims to

provide more effective solutions for companies working with

strategic e-hackers to secure and improve their technologies.

We consider one or multiple e-hackers who can participate

in a software vendor’s bug-bounty program and get rewarded

for vulnerability reports. The vendor adopts an inter-temporal

reward strategy, which enhances the reward after a specific

time during the program. Its decisions of p (regular reward)

and s (enhanced reward) influence the e-hackers’ to-report-or-

to-wait decisions. To incorporate strategic e-hacker behavior,

we allow the e-hackers to either submit their report once they

discover the vulnerability or wait for a higher reward. If no one

has reported the same vulnerability before, the e-hackers who

wait may get a high reward; otherwise, they end up without

the reward.

The research questions we are interested in are: (1) How

do hackers of different skill levels react to the companies’

reward strategies? (2) When e-hackers are strategic, i.e., they

tend to withhold bug submission for reward enhancement,

how can firms determine appropriate rewards that discourage

bug hoarding? (3) What are the impacts if the e-hackers’

strategic behaviors exist but are ignored? (4) Does an inter-

temporal reward strategy benefit the vendor or the e-hackers?

(5) How does the number of e-hackers affect the results? and

(6) How do competition and collaboration between e-hackers

influence their participation and report decisions? Addition-

ally, when does the vendor benefit from their competition

or collaboration? The problems are challenging due to the

complex interrelationships among the decisions, the infor-

mation asymmetry, and the uncertain nature of vulnerability

discovery. In particular, the e-hackers’ participation decisions

are determined by their expected utility gain from the program,

which is affected by their to-report-or-to-wait decisions and the

vendors’ reward decisions. The competition among multiple e-

hackers makes these decisions even more complex. From the

software vendor’s perspective, an over-low reward would not

attract potential e-hackers to join or stay in the program, while

an over-high reward might induce a reporting delay. Such

decisions are difficult to make as the existence of a particular

type of bug is uncertain, and the vendor lacks knowledge about

the actual state of e-hackers’ discovery progress. Therefore,

a systematic decision support model is needed to evaluate

the effectiveness of the inter-temporal reward strategy and the

impacts of e-hackers’ strategic behaviors. To capture the inter-

actions among multiple players with information asymmetry,

we will model the game among the e-hackers as Bayesian

games with incomplete information and the vendor’s reward

decisions in a Stackelberg game.

The main contributions of this paper are stated as follows:

• We take the first step towards formulating the software

vendor’s inter-temporal reward decisions when facing

strategic e-hackers who may hoard the vulnerability and

wait for a higher reward. A unified framework is provided

by integrating the Bayesian game and the Stackelberg

game model to account for the competition or collabora-

tion among e-hackers with incomplete information and

the cooperation between the software vendor and the

e-hackers. We find that the vendor benefits more from e-

hacker collaboration when it could significantly enhance

the speed or likelihood of uncovering difficult-to-detect

vulnerabilities.

• Although it is intuitively clear that e-hackers’ strategic

behaviors of hoarding bugs have negative effects on bug-

bounty programs, the economic mechanisms underlying

these effects are still unexplored. In contrast to most

recent work, which presumes myopic e-hacker behavior,

our work evaluates the impacts of strategic e-hacker

behavior and the competition between them. We show

that ignoring the e-hackers’ strategic behaviors might lead

to inappropriate rewards, which encourages them to hoard

bugs for higher rewards.

• To investigate the behavior and decision-making of

e-hackers with different skill levels, we incorporated the

heterogeneity between e-hackers into our model. The

equilibrium outcomes (i.e., rewards, e-hackers’ partici-

pation and report decisions) and the conditions for the

existence of the equilibrium are characterized. We find

that less experienced hackers tend to report vulnerabilities

immediately and have a stronger incentive to collaborate

with peers. The impact of reward strategies on the differ-

ences between their expected utilities is also explored.

• Finally, we discuss three different reward strategies —

static, increasing, and decreasing — to evaluate the

effectiveness of an inter-temporal reward strategy. Our

results indicate that if the vendor does not plan to enhance

the reward afterward, it is advisable to set a higher initial

reward. Overall, an inter-temporal reward strategy could

save costs for the vendor in bug-bounty programs.

The remainder of this paper is organized as follows.

Section II provides a literature review. Section III introduces

the model setups. In Section IV, we analyze the game

models and derive the equilibrium solutions with two com-

peting e-hackers. Section V discusses the results of different

reward strategies. In Section VI, the collaboration between the

e-hackers is modeled, and Section VII extends the model to

the case of multiple e-hackers. Finally, we briefly conclude in

Section VIII.

II. LITERATURE REVIEW

As bug bounty programs enter the mainstream security prac-

tice in organizations [7], researchers are increasingly interested

in the vulnerability markets. Existing studies have shown that

one primary motivation of e-hackers is to receive rewards

(others include making the product secure, helping users

and developers, and receiving reputation) [8]. However, firms

lack rigorous principles and explicit rules for setting bounty

amounts in rewarding the e-hackers [9], [10]. Market incentive

mechanisms are needed to change hackers’ motivations and

eventually give firms more control over the disclosure pro-

cess [11]. To this end, literature and industrial practice have
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proposed different rewarding policies and incentive mecha-

nisms. The objectives include reducing the number of invalid

reports [12], preventing adversarial copying and resubmission

of bugs [10], incentivizing deep fixes instead of suppressing

the symptoms [13], and fairness guarantees [14]. One of the

most related works is [4] which proposes a dynamic reward

strategy such that the reward increases continuously with time

to free the firm from any need to understand the e-hackers’

costs in order to set prices and maximize value.

To assess the effectiveness of the proposed reward strategies,

we need a better understanding of the e-hackers’ responses and

behaviors. Therefore, a large body of empirical studies has

been taken to investigate the behaviors of the e-hackers, such

as competition [4] and switching programs [15]. However,

a quantitative framework or decision-making model is lacking

to support firms’ inter-temporal reward decisions and evaluate

the impacts of e-hackers’ strategic behaviors. Although some

quantitative studies have been conducted to analyze malicious

hackers’ attack behaviors, such as their hacking strategies [16],

[17], [18] and information sharing strategies [19], their results

cannot be applied to the bug-bounty programs as different

types of hackers are motivated differently. Our work differs

from the aforementioned literature in several ways. First,

our focus is to quantitatively measure the effectiveness of

software vendors’ employing inter-temporal reward strategies

in attracting e-hackers. Second, we explore the impact of the e-

hackers’ bug-hoarding behaviors on the bug-bounty programs,

which is neglected in the literature. Finally, we explicitly

examine how the vendors could make use of the competition

and/or collaboration between the e-hackers to regulate their

behaviors by optimizing the reward decision.

We have also reviewed papers on dynamic pricing in the

presence of strategic customer behaviors in the marketing and

operations research field. This stream of literature is devoted

to modeling firms’ optimal product pricing decisions when

customers can choose to wait for a sale instead of purchasing

the product at a regular price [20], [21], [22], [23]. The

results of these studies cannot be applied to reward pricing

decisions due to the uncertainty in bug hunting and the changes

in the value of a bug report: First, all the customers make

the to-purchase-or-to-wait decision, while only the e-hackers

who have found the bug need to make the to-report-or-to-

wait decision. Second, it is assumed that each customer is

infinitesimally small, meaning that one customer’s decision

won’t affect the others [22], while normally, there would not

be many e-hackers that could find the same bug. Even if there

are, as long as one successful e-hacker reports the bug, then

the other e-hackers who report the same vulnerability later will

not receive any reward. That being said, a single e-hacker’s

decision would affect all the other e-hackers’ utilities. To sup-

port decision-making in vulnerability market practices, our

research explains the underlying economics for the collabo-

ration between software vendors and e-hackers. We optimize

the vendors’ reward decisions by exploring their interactions

with multiple strategic e-hackers who compete with each other.

Our results offer new insights into the role of e-hackers’

behaviors in bug-bounty programs and provide guidelines for

effective reward strategies in bug-bounty programs toward a

safer software development environment.

Part of the work has been presented at the IEEE CNS

2023 conference in Orlando, FL. Compared to the confer-

ence version [24], this paper significantly extends the models

and provides more insightful results, including incorporating

the heterogeneity among e-hackers, a new model discussing

collaboration between e-hackers, a framework for multiple

e-hackers scenarios, and the analysis of different reward

strategies.

III. PROBLEM FORMULATION AND MODEL SETUP

A. Bug-Bounty Program

We consider a single software vendor that offers a bug-

bounty program to e-hackers to discover and resolve critical

vulnerabilities in its system. The bug-bounty program is oper-

ated over a finite time horizon before the software system’s

release time. After this period, no bug reports will be accepted

or rewarded, though the vendor may initiate another bug-

bounty program post-launch. This time-bound bug bounty

helps identify issues early in the development lifecycle of new

products and features, facilitating the implementation of archi-

tecture and design changes that would be more challenging

later. For instance, Microsoft has offered a one-month pilot

program to pay e-hackers to scour beta (preview) versions

of Internet Explorer and Windows upgrades [3]. Similarly,

the “Hack DHS” program launched by the Department of

Homeland Security in 2021 had two initial phases of vul-

nerability identification and ethical hacking in select external

systems, followed by a phase where lessons learned were

identified [25]. This allowed the Department to address vul-

nerabilities not surfaced through other means. In compensating

for the e-hackers’ continuous effort, the vendor gradually

enhances the bounty or reward over time, which at least

covers the e-hacker’s cost [2], [4]. We normalize the total

length of the time horizon to one (time unit) and consider

a two-period reward pricing policy [26], [27], [28]. During

Period I, i.e., in t ∈ [0, t0] with t0 ∈ (0, 1) predetermined

by the vendor, the reward for a valid vulnerability report is

initialized at a low level p. If no valid report is submitted, the

reward will be increased to s (0 < p < s) after t0. However,

if a particular vulnerability has been reported in Period I,

no further report will be rewarded on that vulnerability in

Period II. This pricing strategy is reasonable because if a bug

takes the e-hackers more time or effort, the vendor shall reward

more to compensate the e-hackers.

The model’s timing proceeds as follows:

Step 1. The vendor launches a bug-hunting program over a

finite time horizon, which is divided into two periods. At the

beginning of Period I, the vendor decides and broadcasts the

reward p for any valid report submitted in Period I and reward

s for the report submitted in Period II. The vendor aims to

attract as many e-hackers as possible to participate in the

program.

This assumption of pre-announced pricing at the beginning

of the marketing season has also been widely discussed in the
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economics and operations management literature [21], [22].

An alternate rationale for this pricing policy is that the vendor

sets the compensation to the e-hacker based on the duration of

their search for vulnerabilities. Our model depicts the reward

function as a step-wise function, with a value of p if the

time spent is less than t0 and a value of s if the e-hacker

spends more than t0. It is natural to specify the values of

the parameters (p, s) at the commencement of the bug-bounty

program.

Step 2. The e-hackers then decide whether to participate

or not. The vendor will provide the participants access to its

bug-hunting system.

Step 3. Upon finding a bug in Period I, the e-hacker decides

whether or not to report it immediately to the vendor. After

collecting the report, the vendor will assess them and publicize

their validity at the end of Period I. If the report is valid, the

e-hacker gets a reward of p, and no further report of this bug

is accepted in Period II.

Step 4. In Period II, if an e-hacker reports a bug that has

not been reported in Period I, it will get a reward s.

B. Strategic E-Hackers

Our model departs from the classic reward model setup

by introducing strategic e-hackers. Specifically, if e-hackers

discover a bug during Period I and realize that a greater reward

could be offered after time t0, they may opt to delay reporting

the bug and wait for the reward to increase to maximize their

individual expected surplus. However, there is a risk that the

bug will be found by other e-hackers and reported in Period I.

In this situation, no reward will be given to the e-hacker who

submits the report afterward.

We assume that the probability of an e-hacker finding out

the bug is Q, and the probability of early detection, i.e., finding

out the bug in Period I, is q1. Denote q2 = Q − q1 as the

detection probability in Period II. It is possible that a specific

type of bug does not exist or the e-hacker could not find it

during the given period, the probability of which is 1−Q. The

values of q1 and Q depend on several factors, including the

time allocated for bug hunting (t0 and the overall duration),

the e-hackers’ skills, the system’s characteristics, and the type

of bug being addressed. Estimations for these values can be

derived from data about similar systems’ reliability, the bug

types under investigation, and the vendor’s assessment of e-

hackers’ skills and familiarity with the system based on their

previous work experience. Similar assumptions regarding the

presumed probability of discovering the vulnerability can also

be found in literature such as [29].

For an e-hacker who participates in the bounty program, its

utility depends on its to-report-or-to-wait decision. Its expected

reward can be written as

U =

{

γQs wait

q1p submit
, (1)

where γ is the probability that no other e-hackers submit a

report on the bug in Period I, which is determined by the

possibility that the other e-hackers find the bug and their to-

report-or-to-wait decisions.

We use the amount of time an e-hacker spends on the bug-

hunting process as a measure of their cost (as in [12]). For

illustration purposes, we’ll adopt a step function to delineate

the cost associated with each of these periods2

C =

{

c1 t ≤ t0

c2 t > t0
, (2)

where t is the time the e-hacker spent on vulnerability dis-

covery and c2 > c1. That being said, if the e-hacker finds

the bug in Period I, its expected cost will be c1; otherwise,

if it continues searching into Period II, its total expected cost,

including the one during Period I, will rise to c2 (c2 > c1).

Note that if one e-hacker finds and reports the bug in Period I,

the other e-hackers would stop working on this bug in Period

II, and thus its total cost would be c1. Therefore, measured in

the probability of finding the bug, the expected reward, and the

cost, the total expected utility of an e-hacker can be written

as

f = U − q1c1 − (1 − q1)(1 − γ)c1 − γ(1 − q1)c2. (3)

We would like to examine how their participation and report

decisions could be made facing the competition and uncer-

tainty about the other e-hackers’ bug-hunting results.

C. Software Vendor

For the software vendor, we are interested in the effec-

tiveness of employing an inter-temporal reward strategy in

attracting e-hackers to the bug-bounty program. The vendor

needs to decide the values of the reward p and s with a multi-

level objective: First, the vendor would like to attract as many

e-hackers as possible to participate in the bug-bounty program

as more participation contributes to higher productivity of the

vulnerability discovery process [30]; Second, the vendor wants

the e-hackers to report immediately once they find the bug

rather than waiting for a higher reward later so that it could

have more time to fix the bug before releasing the system;

Finally, the objective is to maximize its expected utility:

π = (r + R) · Prob1 + r · Prob2−p · N1−s · N2, (4)

where r is the monetary benefit from discovering and fixing

the bug for the vendor before the system is released into the

market and R is the extra benefit of early detection (i.e.,

in Period I) as the effort and money required to resolve

the issue is significantly lower during the earlier stages of

development; Prob1 and Prob2 are the probabilities of getting

bug reported in Period I and Period II respectively; and N1 and

2This assumption of a simple step-wise cost function allows us to con-
centrate on the differences between two distinct periods without further
subdividing the time. It is valid when each period is sufficiently short or
differentiating the e-hacker’s cost or discovery probability within each period
is either unnecessary or impractical. If the periods are long enough, we can
calculate the expected time cost in the following way: As we distinguish
between q1 and q2 to account for difficulty differences of finding bugs early
(in Period I) versus late (in Period II), we assume a uniform probability
of discovering a bug within each period (similar assumption of uniform
distribution can be found in [2]). With a linear cost C = ct where c represents
the monetary value per unit time or the opportunity cost of the e-hacker’s
time, given t0 as the point dividing the timeline into Period I (before t0) and
Period II (after t0), the average cost for an e-hacker who discovers the bug in
different periods is calculated as c1 = ct0

2
and c2 = c(t0+ 1−t0

2
) = c

1+t0
2

,
which are independent of q1 and q2.
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Fig. 1. Three-stage Stackelberg game between the vendor and the e-hackers.

N2 are the numbers of valid reports in Period I and Period II,

respectively.

IV. COMPETITION MODELS OF E-HACKERS

In this section, we consider a scenario in which two poten-

tial e-hackers (H and L) would participate in the bug-bounty

program and make decisions independently. The e-hackers are

heterogeneous in terms of their levels of expertise, and con-

sequently, their chances of finding vulnerabilities within the

same timeframe differ. Without loss of generality, we assume

e-hacker H is more experienced than e-hacker L with q1H >
q1L and QH > QL. These skill levels or expertise can often be

inferred from their public profiles. For instance, on platforms

like HackerOne, white hackers are awarded badges, which

symbolize their accomplishments and skills [31]. Suppose

the communication between the vendor and the e-hackers is

managed through a platform on which information about the

reward values, the report validation results, and the profiles of

e-hackers are available to everyone. It is worth noting that we

consider the scenario in which the vendor discloses the profiles

of participating e-hackers to leverage the potential benefits of

their competition. However, the true identities of the e-hackers

are confidential information to themselves.

The interactions between the vendor and the e-hackers are

formulated in a three-stage hierarchical order of decision-

making as shown in Fig. 1: In Stage I, the vendor, as the

leader in the Stackelberg game, determines the rewards (p, s)
and post them on the platform. In Stage II, the e-hackers, as the

followers, play a simultaneous game of participating. In Stage

III, whenever a participating e-hacker finds a bug in Period I,

it needs to determine whether or not to submit the report or

wait for a higher reward in Period II. Adopting the backward

induction, we first obtain the subgame-perfect Nash equilib-

rium of the e-hacker’s decision on report submission and then

analyze their participation decisions. Finally, we obtain the

optimal reward decisions for the vendor.

A. Equilibrium Analysis of Participating E-hackers’ Report

Decisions

In the following analysis, we will focus on the case when

both e-hackers participate in the bug-bounty program and first

examine whether a pure-strategy equilibrium exists in their

report decisions in Period I.

1) Existence of Pure-Strategy Equilibrium: Suppose

e-hacker L has found the bug in Period I and needs to decide

whether to report it immediately. Since e-hacker L does not

TABLE I

UTILITY TABLE FOR THE GAME OF REPORTING WHEN BOTH H AND L
FIND THE BUG IN PERIOD I

know whether e-hacker H can find the bug in Period I or not,

and only the probability distribution is commonly known, the

game of reporting can be formulated as a Bayesian game with

incomplete information [32]. If e-hacker H does not find the

bug in Period I, the optimal action for e-hacker L is to wait.

Otherwise, the utility matrix of the game faced by e-hacker

L is illustrated in Table I (with e-hacker H’s strategies listed

in rows and e-hacker L’s strategies listed in columns). The

table lists the rewards but omits the costs already incurred,

as these sunk costs do not influence their decisions.

(1) If e-hacker H believes that e-hacker L prefers to wait,

then e-hacker H will also wait for a higher reward. Similarly,

if e-hacker L knows e-hacker H will wait, e-hacker L will also

wait.

(2) If e-hacker H believes that e-hacker L will report

immediately once it finds the bug, e-hacker H faces two

choices: report immediately to secure the reward p, and wait.

Given e-hacker L’s probability of discovering the bug is q1L,

the likelihood of e-hacker H getting the reward s if is 1−q1L.

Therefore, the expected reward of e-hacker H if it chooses to

wait is (1 − q1L)s.

Case 1: p < (1 − q1L)s
E-hacker H always waits since the likelihood of e-hacker L

finding the bug is sufficiently low that q1L < 1− p
s

. Therefore,

the only pure-strategy Nash equilibrium is both e-hacker H and

e-hacker L choose to wait.

Case 2: p ≥ (1 − q1L)s
In this case, since p ≥ (1 − q1L)s ≥ (1 − q1H)s, both

e-hackers choose to report if they believe the other one reports

immediately. Hence, there are two pure-strategy Nash equilib-

ria: (report, report) and (wait, wait). Next, we will discuss the

mixed-strategy equilibrium [33] regarding the probability of

an immediate report for each e-hacker.

2) Analysis of Mixed Strategy Equilibrium: When p ≥ (1−
q1L)s, in the mixed-strategy Nash equilibrium solution, each

e-hacker assigns a positive probability to every pure strategy.

We suppose e-hacker H submits the report immediately w.p.

mH once it finds the bug, and e-hacker L reports w.p. mL.

If e-hacker L finds the bug, the expected utility of e-hacker L

if it decides to submit the report immediately is fL(report) =
p, and if it decides to wait, we have fL(wait) = q1H(mH ·
0 + (1 − mH)s) + (1 − q1H)s. As in mixed-strategy Nash

equilibrium, fL(report) = fL(wait), and a similar equation

holds for e-hacker H, we have

mH = (1 −
p

s
)/q1H , (5)

mL = (1 −
p

s
)/q1L. (6)

We can see that e-hacker H, which has a higher chance

of discovering the bug, is less likely to submit the report

immediately than e-hacker L: mH ≤ mL. This result is
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Fig. 2. The equilibrium report probability m in Period I vs. ∆p = s− p.

consistent with our intuition that weaker hackers are more

inclined to submit immediately because they face a higher

risk of zero rewards if they choose to wait. Fig. 2 illustrates

an example of how the values of mH and mL change with

the gap between the rewards ∆p = s − p when p = 200,

q1H = 0.35, and q1L = 0.2.

If f(report) = f(wait), i.e., the expected utilities of

reporting and waiting are identical, it is presumed that the

e-hacker would prefer to report rather than wait. When ∆p ≤
p

1−q1L

− p, it is interesting to find that both e-hackers are

more likely to report immediately under a higher reward s
due to the competition between the e-hackers. The intuition

behind this behavior is that as the enhancement in reward

∆p or the reward s in Period II increases, the potential gains

from waiting increase. To maintain indifference between the

strategies (reporting and waiting) for another e-hacker, the

probability assigned to waiting is decreased to be mH =
(1 − p

s
)/q1H . Otherwise, if mH < (1 − p

s
)/q1H , e-hacker

L always chooses to wait, and so does e-hacker H; on the

other hand, if mH > (1 − p
s
)/q1H , both e-hackers choose

to report immediately. When the increase in potential reward

∆p is significant enough such that ∆p > p
1−q1L

− p, waiting

becomes always superior to reporting immediately, irrespective

of the other e-hacker’s choice to report immediately or wait.

This decision is based on the justification that the potential

for a larger future reward outweighs the risks of waiting and

possibly receiving nothing. Therefore, in this scenario, both

e-hackers choose to wait.

3) Equilibrium Utility Analysis: Fig. 3 represents differ-

ent utility outcomes and the corresponding possibilities for

e-hacker H in a decision-tree model, according to which we

can write the following expected utility for e-hacker H:

fH = q1H [mHp + (1 − mH)(1 − q1LmL)s − c1]

+ (QH − q1H)[(1 − q1LmL)(s − c2) − q1LmLc1]

+ (1 − QH)[−c1q1LmL − (1 − q1LmL)c2]. (7)

Case 1: p ≥ (1 − q1L)s
By incorporating (5) into (7), we have e-hacker H’s expected

utility as: fH = pQH + p
s
(1−q1H)(c1−c2)−c1 and similarly

fL = pQL + p
s
(1 − q1L)(c1 − c2) − c1. When (5) and (6)

hold, by setting c1 = c2 = 0, we can derive the expected

revenue for the e-hacker as pQi(i ∈ {H,L}). That is, the

expected cost for the vendor is p(QH + QL). It is interesting

Fig. 3. Decision tree for e-hacker H.

TABLE II

UTILITY TABLE FOR THE GAME OF PARTICIPATING

to notice that, due to the competition between the e-hackers

and their strategic behaviors, the value of s does not affect the

e-hackers’ total expected reward or the cost for the vendor in

the equilibrium solutions. As QL < QH , and q1L < q1H , it is

easy to deduce that fL < fH , meaning that a more skilled

e-hacker is anticipated to gain more from participating in the

bug bounty program. Besides, the gap between their expected

utilities ∆f = fH−fL = p(QH−QL)+ p
s
(q1H−q1L)(c2−c1)

increases with p while decreases with s.

Case 2: p < (1 − q1L)s
Both e-hackers always choose to wait, and their expected

utilities can be written as fH = sQH − c1q1H − c2q2H and

fL = sQL − c1q1L − c2q2L, with their gap, ∆f = s ∗ (QH −
QL)−c1 ∗ (q1H −q1L)−c2 ∗ (q2H −q2L), remains unchanged

with p and grows as s increases.

B. Equilibrium Analysis of E-hackers’ Participation

Decisions

In the game of participating, each e-hacker decides whether

or not to participate in the bug-bounty program before the pro-

gram starts. We suppose sQi − c1q1i − c2q2i > 0 and p > c1

Qi

for i ∈ {H,L}; otherwise, there is no incentive for e-hackers

to participate. From Section IV-A, we know that if s > p
1−q1L

,

then both e-hackers benefit from participating in the program,

and both wait until Period II. If s ≤ p
1−q1L

, we obtain the

utility for the e-hackers in the game of participating as shown

in Table II.

(1) If fH > 0 and fL > 0, (in, in) is the only pure-strategy

equilibrium. That being said, both e-hackers will participate.

(2) If fH > 0 and fL < 0, (in, out) is the only pure-strategy

equilibrium, meaning e-hacker H will choose to participate,

whereas L will opt out.

(3) If fH < 0 and thus fL < 0, there will be two pure-

strategy equilibria: (in, out) and (out, in). In this case, under

the mixed-strategy equilibrium, e-hacker H will participate

w.p. eH = sQH−c1q1H−c2q2H

sQH−c1q1H−c2q2H−fL

, and e-hacker L w.p. eL =
sQH−c1q1H−c2q2H

sQH−c1q1H−c2q2H−fH

.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on July 16,2025 at 21:44:24 UTC from IEEE Xplore.  Restrictions apply. 



HOU et al.: INTER-TEMPORAL REWARD STRATEGIES IN THE PRESENCE OF STRATEGIC ETHICAL HACKERS 4433

TABLE III

EQUILIBRIUM RESULTS OF THE E-HACKERS’ DECISIONS

Fig. 4. Regions of e-hackers’ optimal decisions with different reward p and
s (q1H = 0.16, q2H = 0.18, q1L = 0.12, q2L = 0.15, c1 = 50, c2 = 80,

sH =
p(1−q1H )(c2−c1)

pQH−c1
, sL =

p(1−q1L)(c2−c1)
pQL−c1

, sr = p

1−q1L

).

By integrating the equilibrium results of the e-hackers’

participation and report decisions, Fig. 4 plots the regions of

the e-hackers’ optimal decisions with different reward values

p and s, and Table III summarizes the equilibrium results in

these regions. Note that in the scenario where the e-hackers are

homogeneous, i.e., QH = QL and q1H = q1L, then in Fig. 4,

the two curves of s = sH and s = sL overlap with each other.

This results in only Regions I, II, V, and VI remaining without

affecting the equilibrium outcomes.

C. Vendor’s Reward Decisions

(1) Incentive for the early report. One objective for the

vendor is to encourage the participating e-hackers to submit

their reports immediately instead of waiting for a higher

reward. Two types of incentive compatibility (IC) can be

implemented to induce the e-hackers to behave as the vendor

wishes [22]: weak IC and strong IC.

• In weak IC, “both report immediately” is a possible

outcome. According to Section IV-A, p and s must satisfy

s ≤ sr =
p

1 − q1L

. (8)

• In strong IC, “both report immediately” is the unique

outcome, and the vendor needs to set the reward s so

that mH = mL = 1, which means s = sr.

Hence, to get early report in Period I, there are two options

for the vendor:

• s < min{sH , sr} (Region II in Fig. 4), which indicates

that p < (1−q1H)(c2−c1)+c1

QH

. This condition reflects a

scenario where the initial reward p is minimal, and there

is only a slight increment in the reward for Period II,

with the potential risk that the program may not attract

any participants.

Fig. 5. The optimal rewards vs. (q1, q2).

• sL < s ≤ sr (Region VI in Fig. 4), This implies a

substantial initial reward p and a moderate rise in reward

during Period II.

(2) Incentive for participation. The other objective for the

vendor is to attract both e-hackers to participate. To ensure that

both e-hackers have the incentive to participate, it is required

that fH > 0 and fL > 0 according to the equilibrium of

e-hackers’ participation decisions. That being said, if s <
sr, the reward s should be high enough that s > sL =
p(1−q1L)(c2−c1)

pQL−c1

. If s = sr, We can obtain the following results

regarding the vendor’s optimal decision on rewards given to

the e-hackers:

Proposition 1: To attract both e-hackers to participate in the

bug-bounty program and maximize the chances of immediate

reporting, the reward decisions for the vendor should satisfy

s∗ = sr and:

p∗ > P =
q1Lc1 + (1 − q1L)(1 − q1H)c2 + q1Hc1(1 − q1L)

q1L + q2L
1−q1H

1−q1L

,

(9)

s∗ > S =
q1Lc1 + (1 − q1L)(1 − q1H)c2 + q1Hc1(1 − q1L)

q1L(1 − q1L) + q2L(1 − q1H)
.

(10)

In the situation where there are two e-hackers of the same

type, i.e., q1 = q1H = q1L and q2 = q2H = q2L, we can

obtain Corollary 1 in terms of how the rewards change with

the detection probabilities:

Corollary 1: In the case of two homogeneous e-hackers,

with other parameters unchanged, the lower bound of the ven-

dor’s first-period reward, P , decreases with q1. However, the

lower bound of second-period reward S has a non-monotonic

relationship with q1. Besides, both P and S decrease with q2.

Proof: Since P = q1c1+c2(1−q1)
2+q1(1−q1)c1

Q
, dP

dq1

< 0, and
dP
dq2

< 0, P is a decreasing function of q1 and q2, we can

obtain the results in Corollary 1. □

Fig. 5 shows an example of how P and S change with

q1 and q2.

Corollary 1 suggests that for bugs easily found in Period

I (indicated by a large q1), the vendor can offer a low initial

reward p and a high subsequent reward s to induce immediate

report as m increases with s. For bugs that are difficult to

identify in Period I but are more likely to be discovered in

Period II (small q1 and large q2), the vendor should increase

the initial reward p moderately and then adjust it to a slightly

higher s in Period II. When the bug is rather challenging to
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TABLE IV

VENDOR’ REWARD DECISIONS WITH TWO HOMOGENEOUS E-HACKERS

TABLE V

UTILITY TABLE FOR THE GAME OF PARTICIPATING WHEN E-HACKERS’
STRATEGIC BEHAVIORS ARE IGNORED

Fig. 6. Regions of vendor’s decisions when e-hackers’ strategic behaviors
are ignored.

detect (with both q1 and q2 being small), the vendor should

offer substantial rewards for both p and s to encourage e-

hackers to join and stay in the program. Table IV outlines the

vendor’s reward decisions for different scenarios.

D. Impact of Ignoring the E-hackers’ Strategic Behaviors

To emphasize the importance of considering the e-hackers’

strategic behaviors in reward design, we examine the scenario

where the vendor ignores the e-hackers’ strategic behaviors,

i.e., the vendor believes that the e-hackers will report immedi-

ately whenever they find the bugs. In the following analysis,

we will use the subscript ign to represent the case. Table V

summarizes the vendor’s belief of e-hackers’ utilities in the

participating game, where fH,ign = pq1H + sq2H(1 − q1L) −
c1(q1H + q1L − q1Hq1L)− c2(1− q1H)(1− q1L) and fL,ign =
pq1L + sq2L(1 − q1H) − c1(q1L + q1H − q1Lq1H) − c2(1 −
q1L)(1 − q1H).

The objective for the vendor is to ensure that both e-hackers

are incentivized to participate, i.e., fH,ign > 0 and fL,ign > 0.

Therefore, under the assumption that q1H > q1L and q2H >
q2L the reward s should be high enough that

s > sign (11)

where sign = c1(q1L+q1H−q1Lq1H)+c2(1−q1L)(1−q1H)−pq1L

q2L(1−q1H) .

Using the same input parameters values as in Fig. 4,

we obtain the numerical results for the lower bound of sign

when p increases from 185 to 500, as shown in Fig. 6.

To attract both e-hackers, Regions I, II, and III above the line

s = sign represent the possible reward values (p, s) when

the vendor ignores the e-hackers’ strategic behaviors or views

TABLE VI

UTILITY TABLE FOR THE GAME OF PARTICIPATING

WITH STATIC REWARD STRATEGY

the e-hackers as myopic. The shaded region indicates the area

where the vendor’s decisions fall for weak IC when taking into

account the strategic behaviors of e-hackers. Failure to take

into account the e-hackers’ behaviors has negative impacts as

illustrated in two regions in Fig. 6: In both Regions (I) and

Region (II), even though both e-hackers will participate in the

program, they both choose to wait until Period II to submit

a report. That being said, ignoring the e-hackers’ strategic

behaviors could result in setting the initial incentive p too low

or the subsequent incentive s too high. This might motivate

them to delay reporting the bug until Period II in anticipation

of greater rewards. Therefore, to take the best advantage of a

bug-bounty program, it is essential to incorporate e-hackers’

strategic behaviors into the incentive mechanism.

V. EXTENSION: DIFFERENT REWARD STRATEGIES

In our previous model, we analyzed the vendor’s optimal

reward decisions under p < s, i.e., an increasing reward

strategy is used to compensate the e-hackers’ continuous work

for two periods. In this section, we discuss and compare the

results under two different reward strategies: static reward

strategy and decreasing reward strategies.

A. Static Reward Strategy

We first consider a static reward strategy scenario, where the

vendor does not enhance the reward during the whole period,

i.e., s = p. The e-hackers will have no incentive to wait until

Period II if they discover the vulnerability in Period I. Table VI

lists the e-hackers’ utilities in the participating game,

fH = q1H [p + (c2 − c1)(1 − q1L)] + q2Hp(1 − q1L)

− c1q1L − (1 − q1L)c2, (12)

fL = q1L[p + (c2 − c1)(1 − q1H)] + q2Lp(1 − q1H)

− c1q1H − (1 − q1H)c2. (13)

To attract both e-hackers into the program, we have fH >
0 and fL > 0, or

p > Ps =
q1Lc1 + (1 − q1L)(1 − q1H)c2 + q1Hc1(1 − q1L)

q1L + q2L(1 − q1H)
.

(14)

If we compare the value of Ps with the lower bounds P and

S in (9) for the inter-temporal pricing strategy, it is interesting

to find that P < Ps < S. That means if the vendor does

not plan to enhance the reward afterward, the reward should

be higher initially to attract the e-hackers. In this case, the

vendor’s expected utility under a static reward strategy is lower

than that under an inter-temporal pricing strategy if the reward

is set as s = p
1−q1L

.
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B. Decreasing Reward Strategy

Noticing that under an increasing reward strategy with

p ≤ s, the participating e-hackers might hoard bugs for higher

rewards, one might wonder whether a decreasing reward

strategy works to encourage early reports. In this section,

we explore the scenario of decreasing reward strategy: the

vendor declares at the beginning of the program that a reward

of s will be provided for each valid bug report. Additionally,

if the report is submitted during an early phase (Period I),

a bonus is added, raising the reward to p, where p > s.

In this scenario, if a bug is discovered during Period I,

it would be reported right away, eliminating the game of

reporting among the e-hackers in Period I. However, if the bug

remains undiscovered by the end of Period I, the e-hackers will

decide whether to proceed into Period II, taking into account

the decrease in the reward. For example, given that e-hacker

H didn’t find the bug in Period I, the probability of it finding

the bug in Period II is q2H

1−q1H

. It will only choose to continue

working into Period II if the condition s q2H

1−q1H

− (c2 − c1) >
0 is satisfied. Therefore, to motivate both e-hackers to keep

working through Period II, the vendor must set the value of s
such that s > sm = max{∆c 1−q1H

q2H

,∆c 1−q1L

q2L

}.

Next we consider the e-hackers’ participation decisions.

If the vendor would like to attract both e-hackers to participate

in the program, we need fH = q1H(p − c1) + q2H [(1 −
q1L)(s−c2)−q1Lc1]−(1−QH)[q1Lc1+(1−q1L)c2] > 0 and

fL = q1L(p − c1) + q2L[(1 − q1H)(s − c2) − q1Hc1] − (1 −
QL)[q1Hc1 + (1 − q1H)c2] > 0, or

s > sf

= max{
(1 − QH)(q1Lc1 + (1 − q1L)c2) − q1H(p − c1)

q2H(1 − q1L)

+
q1Lc1

1 − q1L

,

(1 − QL)(q1Hc1 + (1 − q1H)c2) − q1L(p − c1)

q2L(1 − q1H)

+
q1Hc1

1 − q1H

} + c2. (15)

Fig. 7 illustrates the regions of e-hackers’ decisions under

different values of p and s with the same parameters value

as in Section IV-B: In Region I, s is not large enough, which

leads to the situation that e-hackers lose motivation to continue

working in Period II. In Region II, not all e-hackers are willing

to participate in the program. The shaded Region III indicates

the area where the vendor’s decisions should fall if they want

to attract both e-hackers to the program and ensure they are

committed to working through both periods. By comparing this

area with the vendor’s decision under p < s in Proposition 1,

it can be found that the lowest value of p under decreasing

reward strategy is higher than that under increasing reward

strategy, indicating that if the vendor would like to reduce the

reward s for Period II, it needs to enhance the reward p for

Period I.

VI. COLLABORATION MODEL

In this section, we discuss the collaboration between two

e-hackers when they could share resources and expertise as

Fig. 7. Regions of vendor’s decisions under decreasing reward strategy.

they work together to uncover vulnerabilities. In reality, com-

panies encourage e-hackers to collaborate. For example, on the

HackerOne platform, the e-hackers can set their collaboration

preferences to invite collaborators and view all other hackers

open to collaborating [34].

As “two heads are better than one”, when the two e-hackers

collaborate, the bugs will be more likely and earlier to be

detected. If the e-hackers’ skills complement each other very

well, then the vulnerability discovery probability will be

largely enhanced; otherwise, if they embrace similar skills

or expertise, the probability might be slightly enhanced by

collaboration. Therefore, we assume that the probability of

finding the bug in Period I under collaboration is q1c which is

not smaller than the probability qi when the e-hackers work

independently: q1c ≥ qi. Similarly, the likelihood of finding

the bug in two periods will be enhanced, i.e., Qi ≤ Qc =
q1c + q2c. Besides, the collaborating e-hackers will need to

split the rewards they receive. As our work focuses on the

impacts of collaboration on the bug bounty programs, we will

not discuss the bounty splitting rules in this paper, and the

reward will be equally shared between the two e-hackers in

our model.

In the case of collaboration, given the rewards p for Period

I and s for Period II, if p ≤ s, the e-hackers will always

submit their report in Period II as competition does not exist,

with an expected utility of fi = 1
2Qcs − q1cc1 − q2cc2.

Therefore, to encourage early reports, we consider an incentive

mechanism in which the vendor would give out a larger

reward, denoted by pc (pc > s > p), for the two collaborating

e-hackers if they submit their report in Period I. The new

timeline of the process is as follows:

• The vendor announces the rewards: p for individual

reports in Period I, pc for the collaborative report in

Period I, and s for any report in Period II.

• The e-hackers then decide whether or not to collaborate

in the bug bounty program. They can set up the collabo-

ration channel through the vendor’s platform. If they do

not collaborate, each e-hacker will decide whether or not

to participate by itself.

• The e-hackers submit their report once they find the bugs

and get the rewards. If they collaborate, the reward will

be split.

With the consideration of cooperative behavior, the

e-hackers would evaluate the benefits of cooperation, and the
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vendor needs to identify under what conditions to incentivize

the e-hackers to collaborate instead of taking advantage of their

competition as well as how to set pc to facilitate collaboration.

We assume that the expected cost remains the same for each

e-hacker, and the expected utility for each hacker when they

collaborate can be written as:

fc = q1c(
1

2
pc − c1) + q2c(

1

2
s − c2). (16)

In the case of two heterogeneous e-hackers as in Section IV,

our result shows that the vendor would set s = p
1−q1L

to

encourage participants to report bugs immediately when the

e-hackers do not collaborate, and e-hacker H has an expected

utility of fH = pQH + p
s
(1− q1H)(c1 − c2)− c1. Since fL ≤

fH , e-hacker L has a stronger collaboration incentive. Suppose

the e-hackers choose to collaborate when fc = f , then the e-

hackers would decide to collaborate if fc ≥ fH . To enable the

collaboration, for e-hacker H, pc should satisfy:

pc ≥ pcH = 2
pQH − ∆c(1 − q1L)(1 − q1H)

q1c

+ T, (17)

where ∆c = c2−c1, T = 2c1−2
c1+q2c(

1

2
s−c2)

q1c

, and s = p
1−q1

.

Therefore, we have

pc = max{s, pcH} (18)

The first situation we are interested in is when collaboration

enhances the early detection probability without affecting the

overall detection probability for e-hacker H: q1c ≥ q1H , Qc =
QH . It can be derived that if the increase in speed is substantial

enough that

∆q1 = q1c − q1H >

QH(2p − s + 2c2) − 2∆c[(1 − q1L)(1 − q1H) + q1H ] − 2c1

2∆c
,

(19)

then there is no need for the vendor to offer a reward pc greater

than s to encourage collaboration. For illustration purposes,

we assume that q1H = 0.22, q2H = 0.2, q1L = 0.18, q2L =
0.08, c1 = 50, c2 = 80, p = 270.9. The values of pc under

different values of ∆q1 are depicted in Fig. 8 (a) with Qc =
0.42. It is interesting to notice that if collaboration could speed

up the bug discovery largely (∆q1 > 0.073 in this example),

a static reward strategy with pc = s = 330.3 would be enough

to encourage collaboration between e-hackers; otherwise, the

vendor needs to give out a larger reward to Period I report

than to Period II report to facilitate e-hacker collaboration and

early report: pc > s.

A second situation we investigate is where collaboration

may not expedite the finding of bugs, but it does improve the

chances of success by the end of the two-period timeframe:

Qc ≥ QH . It is derived that if

∆Q = Qc − QH >

QH(2p − s + 2c2) − 2∆c[(1 − q1L)(1 − q1H) + q1H ] − 2c1

s − 2c2
,

(20)

Fig. 8. Reward pc when collaboration (a) speeds up the detection process
and (b) enhances the overall detection probability.

Fig. 9. Reward pc versus ∆q1 and ∆Q.

then a reward of pc = s is adequate to incentivize collabora-

tion. Fig. 8 (b) shows the results when q1c = 0.22 and Qc is

increased, indicating that pc > s if ∆Q > 0.026.

Next, we consider a more general situation when collab-

oration not only speeds up the bug-hunting process but also

increases the overall success probability, offering dual benefits

in terms of efficiency and effectiveness. Fig. 9 shows the value

of pc under different values of ∆q1 and ∆Q. The results

indicate that a smaller reward is needed as collaboration raises

the probability of detection, whether in Period I or Period II.

The reason is that if the collaboration has minor effects on

the bug discovery process, the e-hackers have little incentive

to collaborate since they need to split the reward unless a

larger reward is given. If the e-hackers have a higher chance

of finding the bug or could find it much earlier than when they

work independently, collaborating with others not only saves

them time or cost but also mitigates the competition risk.

For the vendor, if the two e-hackers collaborate, its expected

utility is πc = q1c(r + R − pc) + q2c(r − s); otherwise, π =
r(1−(1−QH)(1−QL))+R(q1H +q1L−q1Hq1L)−p(q1H +
q1L) − s[q2H(1 − q1L) + q2L(1 − q1H)]. Therefore, if ∆π =
πc − π > 0, or the value of ∆q and ∆Q satisfy:

∆q(R + s − pc) + ∆Q(r − s) > g(pc), (21)

then the vendor would benefits from their collaboration, where

g(pc) = pcq1H + rQL(1−QH) + Rq1L(1− q1H)− p(q1H +
q1L)− s[q2H(1− q1L) + q2L(1− q1H)−QH + q1H ]. We use

a numerical example to illustrate the benefit of having e-

hackers collaborate: ∆π = πc −π. The shaded area in Fig. 10

shows the conditions under which the vendor could gain from

the collaboration between e-hackers: (1) In Region I, a static
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Fig. 10. Benefits of collaboration for vendor (c1 = 52, c2 = 60, r = 350,
R = 120).

reward policy pc = s is sufficient to encourage collaboration;

(2) In Region II, even though the chance of detection barely

improves with collaboration and the vendor has to offer a

reward pc > s, the process of finding vulnerabilities is signif-

icantly faster, providing a benefit to the vendor; (3) In Region

III where the collaboration results in only a slight improvement

in either the speed of discovery or the overall detection

probability, the vendor has to offer a reward pc greater than

s to promote cooperation among e-hackers. Therefore, it is

advantageous for the vendor to utilize the competition between

e-hackers to reduce costs; and (4) In Region IV, even though

the vendor doesn’t need to provide a reward pc larger than

s to facilitate collaboration between e-hackers, the vendor

still benefits less from their collaboration than competition as

it doesn’t significantly enhance overall detection probability

or speed. This result shows that the vendor benefits more

from e-hacker collaboration if such joint efforts significantly

enhance the speed of vulnerability detection or the likelihood

of discovering potential bugs. It implies that vendors might

focus on encouraging cooperative efforts to address hard-

to-detect vulnerabilities, where the collective contribution is

expected to have a significant impact.

VII. MODELS OF MULTIPLE E-HACKERS

In this section, we extend the model of two e-hackers to

the case of multiple heterogeneous e-hackers. The research

questions we are interested in include: 1) With the same

amount of rewards (p, s), how does the number of participating

e-hackers impact their to-report-or-to-wait decisions? 2) Does

an increase in the number of competitors decrease expected

utilities for the e-hackers at the equilibrium? 3) For the vendor,

does the possibility of getting an early report (in Period I)

increase with the number of participating e-hackers? and 4)

How would the reward s affect the participating e-hackers’

to-report-or-to-wait decisions? We first construct the expected

utility function of the e-hackers and analyze their equilibrium

decisions. Then, we discuss the impact of the number of

participants and rewards through a set of numerical examples.

A. Equilibrium Analysis of E-hacker’s Decisions

Given p and s, we assume that there are a total of N par-

ticipating e-hackers. Without loss of generality, we categorize

these e-hackers into two types: high type (H) and low type

(L), each having a number of ni e-hackers, i ∈ {L, H}. These

types differ in bug detection probabilities, with q1i being the

probability in Period I and q2i in Period II. The total number

of e-hackers across both types is nL + nH = N .

If an e-hacker of type i found the bug in Period I,

it would decide whether to report it immediately and get a

reward of p or wait for Period II with an expected utility of

swi − c1, where wi is the probability that none of the other

n − 1 e-hackers submitting a report in Period I. We denote

mi as the probability of an e-hacker of type i submitting the

report immediately and 1 − mi as the probability of waiting

until Period II. For instance, if the e-hacker is of type L, then

wL = (1 − q1LmL)nL−1(1 − q1HmH)nH . The total expected

utility of an e-hacker of type i (i ∈ {L, H}) can be written as

fi = q1i[mip + (1 − mi)wis − c1]

+ q2i[wi(s − c2) − (1 − wi)c1]

− (1 − q1i − q2i)[wic2 + (1 − wi)c1]. (22)

We are interested in the mixed-strategy Nash equilibrium,

where the e-hacker would be indifferent between reporting

immediately and waiting. That being said, at equilibrium, p−
c1 = swi − c1 for both i ∈ {L, H}. Therefore, we can derive

that

mi =
1

q1i

[1 − (
p

s
)

1

N−1 ]. (23)

Which indicates that a more capable e-hacker is more likely

to delay their reporting.3 However, when s is very large such

that s > sd = p

(1−q1L)nL (1−q1H)nH−1 , waiting is the dominant

strategy for everyone. The threshold sd decreases with nL

and nH , indicating that the likelihood of all participating e-

hackers delaying reports until Period II is higher when there

are fewer competitors. When s is small enough to satisfy mi ≤
1 in equation (23), as dmi

dN
= 1

q1i

(p
s
)

1

N−1 ln(p
s
) 1
(N−1)2 < 0,

we observe a decrease in the immediate report probability m as

the number of participants N increases, which may contradict

our initial intuition. An example is shown in Fig. 11(a).

From a game theoretical perspective, this behavior can be

explained as follows: As the number of e-hackers rises, the

benefits of waiting, represented by the value of swi, decreases.

This requires a decrease in the value of m, so that other

e-hackers remain indifferent between waiting and reporting

immediately. The intuition behind this phenomenon is that the

existence of more competitors enhances the chance that other

e-hackers will find the bug, thus reducing its expected utility.

Consequently, e-hackers are motivated to delay their report

submission for a larger reward. That being said, at equilibrium,

an increase in the number of participating e-hackers raises the

likelihood of e-hackers choosing to wait for a higher reward to

offset potential losses resulting from competition. This results

in the probability that the vendor gets an early report in Period

I, Prob1 = 1−
∏

i∈L,H(1− q1imi)
ni , decreasing with ni (as

shown in Fig. 12(a)). But the chance of finding the bug in the

3Note that s should be small enough that s <
p

(1−q1L)N−1
. Otherwise,

waiting would be a possible dominant strategy for type H e-hackers.
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Fig. 11. Impacts of number of participants N (q1H = 0.16, q1L = 0.12,
p = 350, s = 380).

Fig. 12. The impacts of ni on Prob1 and Prob1 + Prob2
(q2H = 0.2, q2L = 0.14).

whole time horizon, Prob1 +Prob2 = 1−
∏

i∈L,H(1− q1i −
q2i)

ni , increases with ni (as shown in Fig. 12(b)). Another

interesting observation is that the expected utility fi of the

e-hackers remains unchanged regardless of the number of

participants N (as illustrated in Fig. 11(b)).

B. Vendor’s Reward Decision

Firstly, we investigate how the value of reward s influences

the participating e-hackers’ to-report-or-to-wait decisions and

their expected utility. Then, we will discuss how to decide the

value of s for the vendor.

We change the value of s from 360 to 560 and show the

equilibrium results in Fig. 13 for the case of nL = 5 and nH =
2. As we can see, as long as s < p

(1−q1L)N−1 , by enhancing

the reward s, both types of e-hackers are more likely to submit

reports immediately. As Prob1 = 1 −
∏

i∈L,H(1 − q1imi)
ni

increases with mi, we can derive that Prob1 also increases

with s, indicating that the vendor is expecting a higher chance

of getting an early report. Besides, the participating e-hackers

could also benefit more from the program, i.e., fi increases

with s.

Based on the equilibrium analysis, the number of partici-

pants has little impact on the equilibrium expected utility of

e-hackers, while the value of s does. Our current focus is

on the following question: If potential e-hackers are willing

to participate as long as their expected utility f exceeds a

threshold utility f0, what is the minimum value of s, denoted

Fig. 13. The impacts of s (p = 350, nL = 5, nH = 2).

Fig. 14. sl vs. f0.

as smin, to ensure f ≥ f0 for both types of e-hackers

and attract them to join the program? Considering different

expectations of different types of e-hackers, we calculate the

value of smin under various values of f0 for types H and L by

solving fi = f0 with fi in (22) and mi in (23), respectively.

Fig. 14 shows an example of smin under different values of

f0. The result is intuitive that as the willingness-to-participate

f0 increases, the vendor needs to provide a larger reward s.

Now we have two limits of s: one lower limit denoted as

smin to ensure that f ≥ f0, and one upper limit denoted

as sd = p

(1−q1L)nL (1−q1H)nH−1 above which all e-hackers

would delay their reports. The vendor aims to attract as many

e-hackers as possible since with more participating e-hackers,

there’s a lower chance they all choose to delay reporting and

a higher chance that the bug can be discovered. Given this

objective, we can examine the vendor’s strategy regarding s
in two scenarios, providing interesting insights into working

with e-hackers in bug bounty programs: (1) If e-hackers are

content with modest expected rewards from the program with

a modest value of f0, i.e., smin < sd, the vendor can select a

value of s that satisfies s ∈ [smin, sd) to attract all the potential

e-hackers, with early reports expected in Period I. (2) If the

potential e-hackers are “greedy” and are driven by excessive

profit expectations, by setting s ≥ smin > sd to attract all

the potential e-hackers, the vendor should not anticipate early

reports during Period I.

VIII. CONCLUSION

This article focuses on the role of e-hackers’ strategic behav-

iors in software vendors’ reward strategies for bug-bounty
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programs. We formulate a novel game model between a soft-

ware vendor and multiple e-hackers. The interaction between

the vendor and the e-hackers is modeled as a Stackelberg

game, and the competition between the e-hackers is mod-

eled as Bayesian games with incomplete information. The

equilibrium solutions are characterized by the e-hackers’ par-

ticipation decisions, bug report decisions, and the vendor’s

reward strategies.

The paper contributes to the existing literature by explor-

ing the impacts of e-hackers’ strategic behaviors, including

hoarding bugs or delaying reports for higher rewards, as well

as the competitive and cooperative interactions among peers.

Furthermore, the study evaluates the benefits of employing an

inter-temporal reward strategy in a bug-bounty program by

comparing three different reward strategies: static, decreasing,

and increasing reward strategies. The results of the study offer

several insights into the vulnerability market. First, enhancing

the final reward does not always induce the e-hackers to wait

due to the uncertainty in bug hunting and the competition

between the e-hackers. If the vendor does not plan to increase

the reward afterward, a higher initial reward should be set to

attract the e-hackers. Second, ignoring the strategic behaviors

of e-hackers may lead to the initial reward being set too low

and the subsequent reward too high, which could cause an

increase in the delay of bug reporting. Finally, by carefully

selecting the reward amounts for an inter-temporal reward

strategy, the vendor can motivate potential e-hackers to engage

in the bug bounty program, encourage timely reporting, and

simultaneously reduces costs. Moreover, the vendor benefits

more from e-hacker collaboration when their collective efforts

significantly enhance the speed of vulnerability detection or

the chances of their discovery.

Future research directions include considering the competi-

tion between multiple software vendors in recruiting e-hackers

and the influence of e-hackers’ irrational behaviors, such

as sunk cost fallacy and risk-seeking behaviors. Consider-

ing the multi-dimensional motivations of e-hackers, which

include financial rewards, self-improvement, and the com-

mitment to defense [35], it would also be interesting to

explore different reward schemes or incentive mechanisms.

These include providing additional bonuses such as “badges”

based on the quantity of previously successful submissions

and using leaderboards to showcase e-hacker rankings [36],

[37]. These strategies would help e-hackers find more effective

collaboration partners and foster a competitive and engaging

community. Besides, our study assumes that the e-hackers

know the number of participants in the program. Such infor-

mation may only be available if the vendor publicizes it.

Therefore, the impact of asymmetric information on the col-

laboration between the vendor and the e-hackers, as well as

the benefit of hiding the information for the vendor, needs to

be studied further.
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