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Metallic thermoelectric materials are promising candidates for active cooling applications, where high thermal conductivity

and a high thermoelectric power factor are essential to maximize effective thermal conductivity. While metals inherently

possess high thermal and electrical conductivities, they typically exhibit low Seebeck coefficients. In this work, we create a

database of the Seebeck coefficient of binary metallic alloys and apply machine-learning techniques to identify alloys with

large Seebeck coefficients. Specifically, we identify Ni-Fe as a promising candidate for active cooling around room

temperature. We then fabricate Ni-Fe ingots and demonstrate thermoelectric power factor values as high as 120 uW/cm-K?

at 200 K for these stable alloys, which are composed of cost-effective and abundant elements. Furthermore, we show that

the effective thermal conductivity of these alloys, under small temperature differences, can exceed that of pure copper at

250-400 K temperature range.

1. Introduction

With the increasing density of transistors and operating
(ICs), rapid
advancements in semiconductor technologies, efficient heat

frequencies in integrated circuits driven by
dissipation has become an increasingly critical challenge.
Inadequate heat management impairs the performance of
these densely packed circuits and jeopardizes their reliability.
Conventional cooling techniques, such as passive heat sinks and
often struggle to meet the

efficiency, size, and design requirements of ICs. In response,

fluid-based cooling systems,

novel approaches—such as active cooling based on the
thermoelectric (TE) effect—have emerged as
solutions for thermal management.

TE materials, known for their ability to convert thermal
gradients into electrical energy and vice versa, offer versatile
applications through both the Seebeck and Peltier effects.
These materials have long been studied for power generation
and refrigeration, with the performance of TE devices governed

promising

2
by the dimensionless figure of merit, zT = %T, where o is the
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electrical conductivity, a is the Seebeck coefficient, T is the
temperature, and k is thermal conductivity. We note that k is
the passive thermal conductivity in the absence of electric
current. Improvement of zT requires strategies to increase the
TE power factor (PF = oa?) and/or to decrease the k.15
However, recent advances have expanded the role of TE
materials to include active cooling modes®2, where the Peltier
current can actively enhance the passive heat transfer. Under
optimum current conditions, and when a TE module with a
length L is placed between a hot object characterized by Ty and

a cold heat sink at T¢, Peltier cooling (flux) can be expressed as
oa’Th
]peltier = oL
heat flux, where this unique mode of operation is characterized
by the concept of effective thermal conductivity k.rr =

. One can therefore combine passive and active

22
(K+U;ZA;”), combines the passive (k) and active (Peltier)

components to maximize the heat flux, opening new
opportunities for TE application in thermal management. In our
prior work, we have demonstrated cooling devices working
based on a large r.ff.°

Traditional TE materials with low k are not suitable for active
cooling. Instead, metallic TE materials are promising due to their
inherently high electrical and thermal conductivities, originating
from the high concentration of free electrons, n. The main
disadvantage of metals is their generally lower Seebeck
coefficient compared to semiconductors. This trend can be
explained by the Mott Formula.

_ n?k3T do(E)

S= 3qo(u) dE

|E:y (1)

Where kg is the Boltzmann constant, T is the temperature, q is
the charge of the electron, E is energy, u is the chemical
potential. o is differential conductivity or transport function



and can be expressed as g (E) = ?DOS(E)UZ(E)T(E), DOS is
the density of states, T represents the relaxation time, and v is
the group velocity. A high DOS at the Fermi level leads to an
increased carrier density, which in turn enhances both electrical
and thermal conductivity. However, according to the Mott
formula (Eg. 1), a large DOS is associated with a reduced
Seebeck coefficient, hence the lower Seebeck coefficient of the
metals.

In this work, we lay out a search for binary metallic alloys for
active cooling applications. Since metallic alloys inherently have
a large electrical and thermal conductivity, we focus on finding
alloys with large Seebeck coefficients. Historically, materials
optimization has relied on traditional trial-and-error methods,
guided by physical and chemical insights. However, these
approaches are often time-consuming, inefficient, and costly.10
To accelerate the optimization process, we employ a machine
learning (ML) approach. By utilizing a data-driven model, our
method efficiently explores a broad range of metallic alloys,
focusing on different atomic concentrations, temperatures, and
predicted Seebeck coefficients. In what follows, we present the
material database that we built based on binary solid-solution
metallic alloys. Using this database, we selected and optimized
three alloys and finally, validated the results experimentally for
the Ni-Fe alloy system.

2. Results and Discussion

2.1. Material Selection using Machine Learning

Near room temperature, a large list of pure metals, including
Ag, Al, Au, Cd, Cs, Cu, Dy, In, Ir, Mg, Nb, Pb, Rh, Sn, Sr, and Ru,
show absolute Seebeck coefficient values below 5 uV /K 11 A
few elemental metals, e.g., Co%12, Fe!3, and Ni* have larger
Seebeck coefficient values (|S| ~ 20uV /K).1! In the case of Ni,
the large Seebeck coefficient can be attributed to the sharp
slope of the DOS at the Fermi energy due to the partially filled
d-orbital?>, which leads to a high Seebeck (Eg. 1). Due to the
inherent magnetization of these elements (Ni, Co & Fe), part of
their Seebeck coefficient has been attributed to the magnon-
drag effect wherein the magnon heat flux drags along the
electronic charge carriers. Watzman et al. ¢ discussed two
magnon-drag contributions to the Seebeck coefficient: the
hydrodynamic contribution and the spin-motive force
contribution. They demonstrated that magnon-drag is the
dominant component of the Seebeck coefficient of iron and
cobalt.

Binary alloys of transition metals are shown to be good
candidates to further increase the TE power factor of metallic
systems. Examples include Cu-Ni&17, Au-Ni'>, Fe-Nil819, Cr-Mn20,
Pd-Ag?!, and Cr-Fe?2. We formed a database of experimentally
reported Seebeck coefficients of binary metallic alloys, the
majority of which are derived from the Landolt-Bornstein
database.?3 A part of this database for temperatures up to 400
Kis shown in Figure 1. In several cases, the Seebeck coefficient
and the power factor of the alloy are larger than both parent
elements, which can be attributed to either changes in the
density of states or modifications of the scattering rates. Here
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we highlight three of the studied solid-solution alloys with large
Seebeck coefficient values, Pd-Ag, Cu-Ni, and Au-Ni. In all three
cases, the alloy demonstrates a higher Seebeck coefficient
compared to both the host and solute. The Pd-Ag alloy exhibits
a peak Seebeck coefficient of approximately 40 uV/K at 300 K,
reaching ~ 80 puV/K at 1300 K with 55% Pd.2! These values are
larger than pure Pd, which has a negative Seebeck coefficient in
the 300K to 1300K range, and pure Ag with positive values
below 10uV/K. However, the limited availability of Pd and the
cost of the elements restricts its widespread use. Constantan
(Cu-Ni) alloy is composed of abundant and low-cost elements
and is easy to synthesize.?* Constantan is reported to have a TE
power factor of 40 uyWcem~'K™2? at 300 K and 102
UW cm~1 K~2 at 873 K.17 Constantan is also studied in the
context of active cooling and using additive manufacturing for
industrial applications.®8 Au-Ni, in contrast, is expensive and
metastable. However, due to its very large TE power factor
worthy of investigation. Garmroundi et al.?®> reported a Seebeck
coefficient of 94uV /K for a quenched, metastable single face-
centered cubic (FCC) Ni-Au alloy at 1000 K, resulting in an ultra-
high peak power factor of 340 uW cm™ K~2in Nio.1Aup o sample
at 560K. This large power factor is hypothesized to arise from
the selective scattering of s-electrons into localized d-states,
which induces strong energy-dependent scattering rates 7(E)
and enhances the slope of o(E) near the Fermi-level, thereby
increasing the Seebeck coefficient (see Eq. 1).

Ni-Fe alloys have also been studied due to their significance in
geology, meteoritics, and material science.?>=33 There are old
and scattered studies reporting the Seebeck coefficient data of
Ni-Fe alloys as a function of composition and temperature
18,1934 showing the peak Seebeck of Ni-Fe alloys can reach -50
UV/K with 53.8 at% at 300 K12 and -46 uV/K with 40 at%!8 of Ni
concentration at 200 K. Figure 2(c-d) highlights that while the
Fe-Ni system has been extensively studied between 300 and
1200 K, only a limited number of compositions have been
investigated below 300 K. Similarly, Cr-Mn and Cr-Fe alloys were
also examined but within a specific compositional range, as
depicted in Figures S2(a) and S2(b), respectively. This research
gap drives our focus on these three binary systems, aiming to
enhance their performance through further
optimization from low temperatures to room temperature

composition

ranges and explore the potential alloys for active cooling
applications.

To predict the Seebeck coefficient, we used the database with
selected features (see methods) to train several ML models. We
employed three distinct types of ML models: a linear model
based on Least Absolute Shrinkage and Selection Operator
(LASSO)3>regression, tree-based models (Extreme Gradient
Boosting (XGBoost)3® and Random Forest (RF)37, and a kernel-
based model (Support Vector Regression (SVR)38. Based on the
accuracy-interpretability trade-off3?, linear models offer higher
interpretability, while kernel-based models provide greater
accuracy at the cost of interpretability. Tree-based models fall
between these two extremes, balancing accuracy and
interpretability.

Figure 3 presents a comparative analysis of the predicted vs.
actual Seebeck coefficients across different models. The low R?

This journal is © The Royal Society of Chemistry 20xx



and high MSE values in both the training and test sets for LASSO
indicate that the linear model failed to capture the complex
relationships between the input features and Seebeck
coefficients. In contrast, XGB, RF, and SVR demonstrated a
strong predictive performance, achieving an R? of 0.99 on both
training and independent test sets, highlighting their ability to
model the non-linear dependencies. After successfully
evaluating the prediction performance of the models on the
test data, we applied the optimized models (XGB, RF, and SVR)
to predict the Seebeck coefficients of many binary alloys and
identified Ni-Fe, Cr-Mn, and Cr-Fe alloys as our focus across the
entire compositional range and from 50 to 305 K. The final
Seebeck coefficient values were determined by averaging the
predictions from all three models, with detailed predictions
provided in Table S3. Based on these averaged results, the Ni-
Fe system exhibited the highest Seebeck coefficient of 42.3
UV/K at 59 at% Ni and 305 K. Similarly, the Cr-Mn system
reached a peak Seebeck coefficient of 34.6 uV/K at 10 at% Mn
and 305 K, while the Cr-Fe system achieved 36.4 pV/K at 2 at%
Fe and 155 K. Heat maps illustrating the Seebeck coefficients of
the Cr-Mn and Cr-Fe systems are shown in Figure S5. Among
these three systems, Ni-Fe presents the highest Seebeck
coefficient. In addition, experimental validation of Cr-based
systems presents challenges due to chromium’s high reactivity
with steel milling jars, which can alter the sample composition
and degrade the performance.4%51 Therefore, in this study, we
focus on the Ni-Fe binary alloy system, given its high Seebeck
coefficient near room temperature as predicted by the ML
models. Additionally, this system is notable for its low cost,
scalability for industrial applications, ease of synthesis, and
exceptional mechanical durability.*%4? These characteristics
make Ni-Fe alloys highly suitable for practical TE device
applications. According to the heat map of the predicted
Seebeck coefficients (Figure 4), while the peak composition is
NisgFess, the alloy retains a Seebeck coefficient above -40 uVv/K
within the 48—62 atomic % Ni range around from 250 K to room
temperature. This indicates a compositional window where the
material could exhibit high TE performance. By identifying the
peak Seebeck coefficient and compositional range, the ML
model focused direction for
exploration, minimizing the need for testing across all possible

provides a experimental

compositions.

2. 2. Experimental Validation

Next, we present our experimental approach to the power
factor and effective thermal conductivity characterization of the
Ni-Fe alloys in the 50-400K temperature range inspired by the
ML predictions. Further, we present the microstructure of the
as-arc-melted sample and the homogeneity of the solid-
solution alloy at microscales for active cooling applications.

NixFei1.x samples with x atomic percentage ranging from 30-70
were prepared using arc-melting, see methods. According to
the phase diagram, Ni-Fe alloys form an FCC Ni-Fe solid solution
within the probed composition range at elevated temperatures.
Due to slow diffusion 263143, decomposition of y to o + FeNis is
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unlikely under our experimental conditions, resulting in y phase
solid-solution.

The X-ray diffraction (XRD) data of all Ni-Fe alloy samples are
shown in Figure 5. The bulk XRD measurements are performed
on the vertical cross-section of the as-arc-melted ingots. Going
from bottom to top, Ni concentration in the samples increases.
All samples exhibit a consistent series of diffraction peaks,
corresponding to the (111), (200), (220), and (311)
crystallographic planes of the FCC structure. The variation of
intensities of peaks among samples can be attributed to non-
random distributions of grain orientations at the section
surface, which is confirmed by the SEM results. The orange and
black lines at the bottom indicate the reference peak positions
for pure Ni and Fe in the FCC structure. The peaks of the alloys
are positioned between the reference peaks for pure Ni and Fe,
indicative of solution formation. As the Ni concentration
increases, the peaks shift to higher 28 values, indicating smaller
lattice parameters.** The XRD results confirmed that the
prepared Ni-Fe samples are single-phase polycrystalline.

Figure 6 presents the backscattered electron image of the
vertical cross-section of the as-arc-melted NissFess sample. The
different greyscale regions represent the varying crystal
orientations of the grains, demonstrating the polycrystalline
nature of the sample. At the top of the sample, a prominent
needle-shaped bubble is observed, likely formed from the
degassing of the powders during the melting process. Several
smaller bubbles can also be seen in the upper section of the
cross-section. To avoid these bubbles, subsequent transport
measurements were performed on samples cut from the center
of the lower portion, where grains are more uniform.

The SEM image clearly illustrates the distribution of grain size
and shape across the sample. The bottom of the sample, which
was in contact with the water-cooled copper plate of the arc-
melter, experienced a higher cooling rate, resulting in smaller
grains (~ 100 um). In contrast, the upper section contains large,
elongated grains measuring up to several millimeters in length.
Further EDS mapping of the highlighted area was conducted to
characterize the composition of different grains. The black dots
visible in the enlarged image are colloidal silica residues from
the sample polishing process. The atomic composition data in
Figure 6 b's summary table confirms the homogeneous
composition the with  the
stoichiometric ratio of the starting powders. As shown in Figure
6c, the line scan reveals that the composition remains uniform
both within and across grains. Additional SEM/EDS
characterizations (Supplementary) performed on different
samples and in different areas and orientations support that the
samples are homogeneous and consistent with the measured
composition. Due to anisotropic alignment of the grains, for the
TE measurements, we only used the central-bottom part of the
arc-melted sample, which is visually isotropic. However, due to
the large grain sizes, we expect a minimal grain boundary effect
on transport properties.

Figure 7 summarizes the TE measurements performed on the
arc-melted Ni-Fe alloy samples.

across grains, consistent
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Alloys with a composition range of 45 to 70 atomic % Ni have
an absolute value of the Seebeck coefficient which is up to 2.5
times greater than that of pure Ni or Fe.ll The peak Seebeck
coefficient varies with composition, with the highest values
observed in NissFess and NissFess, both reaching -52 puV/K. This
is consistent with the ML prediction presented earlier, where
45-55% Ni was identified as the composition with the highest
Seebeck value. The Seebeck coefficient's dependence on
composition changes with temperature: at lower temperatures
(<200K), the absolute value of the Seebeck -coefficient
decreases with increasing Ni content. However, this trend does
not hold at intermediate temperatures (200K to 400K).

A previous work!® observed a similar concentration
dependence of the Seebeck coefficient. They attributed the
trend at the higher temperatures to the concentration
fluctuation within their samples, which is not supported by the
SEMY/EDS results in this paper.

While ML predictions are consistent with experimental data,
they cannot explain the origin of the large observed Seebeck
coefficient. To understand this, we have computed the band
structure using the first-principles methods. The details of DOS
calculations for one unit cell of NisoFesg are shown in the
supplementary materials, wherein we have shown that the
slope of the DOS at the Fermi level (application of the Mott
formula) does not correctly predict the sign of the Seebeck
coefficient. We have further expanded our calculations to the
full-potential Korringa—Kohn—Rostoker method combined with
the coherent potential approximation (KKR-CPA)*>46, ensuring
the correct description of alloy band structure, magnetism, and
the disorder-induced scattering in the system. Densities of
states and Bloch spectral density functions, which describe the
electronic dispersion relations smeared due to electron
scattering, are shown and discussed in the supplementary
Further the properties
determined by computing the energy-dependent conductivity
function o(E) from the Kubo-Greenwood formalism.47-50 As
experimentally determined®! this alloy is ferromagnetic with a
high Curie temperature of 789 K, thus, calculations were done
in a ferromagnetic state. Based on the computed o(E) function,
the thermopower was calculated (see supplementary materials
for further details). What is important to underline here is that
this method has successfully predicted the Seebeck coefficient
of other metallic alloys, including Ni-Au>2, Ni-Cu>354, and Pd-
Ag>3, scattering effects important.
However, as shown in Figure 7c, in the case of NisgFeso alloy,
while the KKR-CPA method predicts the Seebeck coefficient sign
correctly for magnetic calculations, the absolute value is much
smaller than the experimentally measured values. Hence, the
sole electronic structure and electron scattering on the atomic
potentials do not explain the large thermopower values, and
other energy-dependent scattering rates are needed along with
magnon-drag contributions to fully understand the Seebeck
values of this alloy system. The fact that additional scattering
mechanisms (beyond electron-phonon) are present in this
system is also confirmed by the difference in calculated and
experimental residual resistivities. The calculated value at zero
Kelvin is equal to about 3.3 pQ:cm, whereas the experimental

materials. on, transport were

where resonant are
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value extrapolated to zero Kelvin is larger, being about 11.9
uQ-cm for NisgFeso.

The resistivity increases with higher Fe content. The resistivities
of the Ni-Fe alloys range from 5.60 puQ-cm to 70 pQ-cm,
highlighting the highly metallic nature of these alloys.
Combining high Seebeck coefficients for these alloys with their
low resistivity, the peak power factor reaches 120 pW/cm-K2 for
both NigoFeso and NissFess. This is larger than both Ni and Fe
parent metals!? and is 20% higher than the peak values reported
at 750K in previous studies on Cu-Ni alloys.87 In Figure 7, we
also compare the power factor to other binary metals with large
power factors including PdAg and PdAu alloys.2136 In
temperature ranges slightly below room temperature (i.e. 200K
to 300K), there are not many candidates with extremely large
TE power factors (i.e., above 100 uW/cm-K?). Commonly used
TE materials in this temperature range include bismuth-
tellurium-antimony-selenium-based materials, which generally,
have power factor values well below 100 uW/cm-K?, with a
recent work highlighting a record high value of 63 pW/cm-K? in
this class of materials.>” Au-Niis reported to have a power factor
slightly below 300 uW/cm-K2.15> However, its cost and instability
are not favorable. Single-crystal YbAIs has a power factor slightly
below 200 uW/cm-K? at room temperature.585° Other examples
include low-dimensional materials such as nm thin FeSe®® and
1D Ta,SiTes samples.6t

At 200K, the power factors of NigoFeso and NissFess are larger
than those of the hot-pressed YbAl; sample>® and are much
larger than that of the Cu-Ni alloyl”. However, the power factor
values decrease rapidly with increasing Fe due to the increase
in resistivity and with Ni concentration due to the reduction in
the Seebeck coefficient. Since the TE power factor is our primary
focus, the Ni-Fe composition range is restricted to 45% to 70%
atomic Ni. In this range, the thermal conductivity generally
increases with Ni content.

The effective thermal conductivity (ket) of the NigoFeso sample
exhibits the best balance between power factor and thermal
conductivity. As shown in Figure 7e ke Of the Ni-Fe samples
under a 1K temperature gradient is 2 to 3 times higher than the
Keff Of pure Fe or Nill62 in the above 200K range. Above room
temperatures, Kesf Of the NiggFesg alloy is still higher than that of
pure copper, and previous studies of high power factor Cu-Ni
alloys®3.64, reaching 600 W/m.K for both NigoFeso and NizgFeso
alloys.

As indicated by SEM, in the arc-melted samples, grains are
significantly larger than the typical electron and phonon mean
free paths in metals®>-%7, eliminating the possibility of grain size
influencing TE properties, especially the Seebeck coefficient.
However, given the limited studies on Ni-Fe alloys as TE
materials, further investigations with improved parameter
control are essential to elucidate the role of microstructure in
the thermoelectric performance of these alloys.

3. Conclusion

In summary, we built a database of binary metallic alloys and
identified Ni-Fe as a potential candidate for active cooling
applications. We used ML algorithms to identify the best molar

This journal is © The Royal Society of Chemistry 20xx



fraction corresponding to the largest Seebeck values in the 45%-
55% Ni range. We then proceeded with experimental validation
of this prediction. The highest Seebeck values were observed in
NissFess and NissFess samples, consistent with ML prediction.
The power factor and effective thermal conductivity of arc-
melted Ni-Fe alloys with 45 to 70 atomic percent nickel were
investigated over the 50K to 400K temperature range. Notably,
the NissFess and NigoFeso alloys demonstrated a large peak
power factor of 120 uW/cm-K? at 200 K. This metallic binary
alloy is stable and is composed of cost-effective and abundant
elements. The power factor value reported is one of the largest
values reported in this temperature range. The effective
thermal conductivity, Kefr, at a 1K temperature difference was
also calculated using the measured values of passive thermal
conductivity and TE power factor. The largest ks values
exceeding 600 W/K-m at 400K were observed for NigoFeso and
NizoFes alloys, outperforming pure copper, Ni, Fe, and state-of-
the-art Cu-Ni alloys under the same conditions. The
microstructure of the arc-melted Ni-Fe ingots was characterized
using SEM and EDS, providing insights into grain size and
elemental distribution. The abnormal composition dependence
of the absolute Seebeck coefficient at intermediate
temperatures (200 K- 400 K) was also noted. A hypothesis
suggesting that local concentration fluctuations account for this
anomaly was tested using EDS analysis, which invalidated this
explanation. Further research is needed to assess the effects of
grain size, magnetic domains, and defects on the thermoelectric
performance of Ni-Fe alloys. This study reveals the overlooked
potential of Ni-Fe alloys for high-power factor applications,
highlights the promise of magnetic transition metal alloys in the
search for high-power factor metallic materials, and encourages
further research into metallic thermoelectric materials for
active cooling.

4. Methods

4.1. Selection and Optimization Details of Machine Learning:
Dataset:

Our initial dataset was obtained from the Landolt-B&rnstein
database?®* and a recent publication on Au-Ni alloys.®® It
comprises experimental Seebeck coefficient values for various
binary metallic systems, recorded in wide temperature and
atomic concentration ranges. The data was extracted and
digitized manually using the GRABIT MATLAB tool, resulting in a
total of 12,332 data points with 3,103 unique solid solutions.
The Seebeck coefficient values span from 40 to -85 uV/K,
covering a temperature range of 0 to 1500 K as depicted in
Figure 2 and Figure S1(a), respectively. ?

Figure 2(a) demonstrates the distribution of the Seebeck
coefficient in this dataset, revealing that most metals have small
Seebeck values (a few pV/K), which is one of the main reasons
for the TE community to focus on semiconductors instead.
Figure S1(b) provides an overview of the metals included in the
dataset, showing that Ni is the most frequently used material. It
is followed by Pd, Cr, Pt, and Cu. This information is presented
in an alternative format in Figure 2b.

This journal is © The Royal Society of Chemistry 20xx

4.2. Feature Selection

To build generalizable data-driven models, it is important to
include features that not only capture the trend of Seebeck
coefficients across different metallic alloys but also uniquely
represent them. In this regard, a Composition-Based Feature
Vector (CBFV)® technique was used to derive features from the
chemical formula, utilizing the Materials Agnostic Platform for
Informatics and Exploration (Magpie). 7° Furthermore,
temperature and crystallinity information (Single-crystal
/Polycrystalline)by level encoding (1/0) are also added to the
feature list, which results in a total of 156 input features, and
the Seebeck coefficient as the target value. A detailed table
summarizing the input features is provided in Table S1. These
features are commonly used in the field of materials informatics
of TE.”»-75> The correlation analysis, as shown in Figure S3,
indicates that many features exhibit strong statistical
correlation. In most cases, it is advisable to remove one of two
highly correlated features since they convey redundant
information. Such correlations can hinder model convergence,
degrade predictive performance, and affect interpretability.
The dimensionality of the input features was reduced by
applying a correlation coefficient threshold of 0.5.7677 This
means that only those features with an absolute correlation
coefficient less than 0.5 with other features were kept for ML
model building.

This process reduced the number of input features to 19, which
were used to predict the Seebeck values.

4.3. Training and Testing of the Models:

To avoid any perceived bias during training, we employed a
data-driven approach for splitting the dataset. We performed K-
means’8 clustering analysis (using Euclidean distance as the
similarity metric) on the dataset, and the Silhouette score, as
shown in Figure S4, suggests that the dataset contains two
distinct clusters. Each cluster represents a different group of
data points that share common characteristics. Cluster 1
consists of 8,743 data points, while Cluster 2 contains 3,589
data points. To ensure that the models learn from both types of
data distributions, we randomly selected 70% of the data from
each cluster to form the training set (8,632 data points), with
the remaining 30% used as the testing set (3,700 data points).
This approach ensures a more balanced representation of
samples from both clusters in the training and testing sets.

4.4. Hyperparameter Tuning:

Hyperparameter tuning helps improve model performance and
prevents overfitting. To optimize the hyperparameters, we used
BayesSearchCV from the scikit-optimize library?® in Python.
BayesSearchCV employs a Gaussian Process Regression as a
surrogate model for hyperparameter optimization. An
acquisition  function is used to determine which
hyperparameter combinations to evaluate next, with Expected
Improvement (El) as the default acquisition function. The El
function estimates the expected improvement over the current
best result.80 During optimization, 10-fold cross-validation from
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the scikit-learn library 81 was applied, which partitioned the
training set into ten subsets. Each model is trained in nine
subsets and validated on the remaining subset. The testing set
remained unseen by the models during cross-validation. The
lower and upper boundaries for the hyperparameters are
provided in Table S2. The number of iterations for the
optimization process to 50. The optimized
hyperparameters for each model in each case of splitting are
shown in Table S2. The performance of these models was
evaluated by comparing two key metrics, namely the coefficient
of determination (R?) and mean squared error (MSE).

was set

4.5. Experimental Methods

Iron powder with 99.5% purity and nickel powder with 99.996%
purity were weighed to 5 grams per sample and mixed in an
argon-filled glovebox. The powder mixtures were then hot-
pressed into solid bulk samples at 800°C under 56 MPa pressure
for 300 seconds using an OTF-1700X-RHP4 hot-press setup from
MTI Corporation. The solid bulk samples were later arc-melted
in Ar protected chamber to form a Ni-Fe solid solution. Each
sample was melted and flipped twice for homogeneity. Then, it
was melted without flipping, allowing bubbles and voids to
diffuse to the top of the sample, which was then cut out. The
central-bottom part of the arc-melted samples was then
sectioned into approximately 2mmx2mmx10mm bar shape.
Transport properties were measured using the Thermal
Transport Option of Quantum Design PPMS Versalab. A heater
was attached to one side of the sample to create a 3% rise in
temperature. The other side was connected to a heat sink. The
resulting voltage difference and temperature difference under
steady state were measured along the length of the sample to
extract the Seebeck coefficient and the thermal conductivity.
The heater and the heat sink contact (copper coated with gold)
were then used to send current along the sample. The voltage
was measured using side probes, enabling 4-probe electrical
The XRD characterization is
performed using an Empyrean X-ray diffractometer from

conductivity measurements.

Malvern-Panalytical on the sectioned as-arc-melted ingots.
SEM/EDS is performed on an FElI Quanta 650 Scanning Electron
Microscope (SEM).
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Figure 1. Visual representation of part of our database. Seebeck values of less than a few microvolts per Kelvin are eliminated
and the rest are represented here. Each subplot represents the host-solvent binary alloy labelled in the plot. For example, Cu-Ni
means Cu is the host, Ni is the solvent. Each subplot has an x-axis scale of 0 to 1 representing the molar fraction of the solvent.
The y-axis is the measurement temperature from 0-400 K for all subplots. The colour represents the absolute value of the
Seebeck coefficient. Promising yet less-explored candidates are highlighted with red rectangular boxes.
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Figure 7. (a) electrical resistivity, (b) thermal conductivity, (c) Seebeck coefficient, (d) power factor, (e) effective thermal
conductivity of Ni-Fe samples. The lower Legend on the right bottom corner is shared for a-d. Ni and Fe reference data in (c) are
taken from Ref!! . The calculated Seebeck coefficient for 50% Ni-Fe (KKR-CPA) is also shown, the non-magnetic calculations fail to
predict the correct sign of the Seebeck coefficient. The magnetic calculations predicts the sign correctly, however, the absolute
values are much smaller. The difference is contributed by additional scattering processes, most likely associated with the magnon-
drag. The power factor of Ni, Fe!?, CuNi'’, PdAg and PdAu?%5¢ are compared with that of NiFe alloy in d. Effective thermal
conductivity of Ni-Fe alloys compared with pure Cu, pure Fe, pure Ni®2, and Cu-Ni alloys (labeled as Ref 1 and 2)42:43,
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