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High thermoelectric power factor in Ni-Fe alloy for active cooling 
applications 

Shuai Li,a Sree Sourav Das,b† Haobo Wang,a† Kacper Pryga,c Sujit Bati,d Bartlomiej Wiendlocha,c 
Junichiro Shiomi,e Jerrold A. Floro,a Prasanna V. Balachandran,a and Mona Zebarjadi a,b 

Metallic thermoelectric materials are promising candidates for active cooling applications, where high thermal conductivity 

and a high thermoelectric power factor are essential to maximize effective thermal conductivity. While metals inherently 

possess high thermal and electrical conductivities, they typically exhibit low Seebeck coefficients. In this work, we create a 

database of the Seebeck coefficient of binary metallic alloys and apply machine-learning techniques to identify alloys with 

large Seebeck coefficients. Specifically, we identify Ni-Fe as a promising candidate for active cooling around room 

temperature. We then fabricate Ni-Fe ingots and demonstrate thermoelectric power factor values as high as 120 μW/cm·K² 

at 200 K for these stable alloys, which are composed of cost-effective and abundant elements. Furthermore, we show that 

the effective thermal conductivity of these alloys, under small temperature differences, can exceed that of pure copper at 

250-400 K temperature range.  

 

1. Introduction 

With the increasing density of transistors and operating 

frequencies in integrated circuits (ICs), driven by rapid 

advancements in semiconductor technologies, efficient heat 

dissipation has become an increasingly critical challenge. 

Inadequate heat management impairs the performance of 

these densely packed circuits and jeopardizes their reliability.  

Conventional cooling techniques, such as passive heat sinks and 

fluid-based cooling systems, often struggle to meet the 

efficiency, size, and design requirements of ICs. In response, 

novel approaches—such as active cooling based on the 

thermoelectric (TE) effect—have emerged as promising 

solutions for thermal management. 
TE materials, known for their ability to convert thermal 
gradients into electrical energy and vice versa, offer versatile 
applications through both the Seebeck and Peltier effects. 
These materials have long been studied for power generation 
and refrigeration, with the performance of TE devices governed 

by the dimensionless figure of merit, 𝑧𝑇 =
𝜎𝛼2

𝜅
𝑇, where σ is the 

electrical conductivity, α is the Seebeck coefficient, T is the 
temperature, and 𝜅 is thermal conductivity. We note that 𝜅 is 
the passive thermal conductivity in the absence of electric 
current. Improvement of 𝑧𝑇 requires strategies to increase the 
TE power factor ( 𝑃𝐹 = 𝜎𝛼2 ) and/or to decrease the 𝜅 .1–5 
However, recent advances have expanded the role of TE 
materials to include active cooling modes6–9, where the Peltier 
current can actively enhance the passive heat transfer. Under 
optimum current conditions, and when a TE module with a 
length L is placed between a hot object characterized by 𝑇𝐻  and 
a cold heat sink at 𝑇𝐶 , Peltier cooling (flux) can be expressed as 

𝐽𝑝𝑒𝑙𝑡𝑖𝑒𝑟 =
𝜎𝛼2𝑇𝐻

2

2𝐿
. One can therefore combine passive and active 

heat flux, where this unique mode of operation is characterized 
by the concept of effective thermal conductivity 𝜅𝑒𝑓𝑓 =

(𝜅 +
𝜎𝛼2𝑇𝐻

2

2𝛥𝑇
) , combines the passive ( 𝜅)  and active (Peltier) 

components to maximize the heat flux, opening new 
opportunities for TE application in thermal management. In our 
prior work, we have demonstrated cooling devices working 
based on a large 𝜅𝑒𝑓𝑓.6 

Traditional TE materials with low 𝜅 are not suitable for active 
cooling. Instead, metallic TE materials are promising due to their 
inherently high electrical and thermal conductivities, originating 
from the high concentration of free electrons, n. The main 
disadvantage of metals is their generally lower Seebeck 
coefficient compared to semiconductors. This trend can be 
explained by the Mott Formula. 
 

𝑆 = −
𝜋2𝑘𝐵

2 𝑇

3𝑞𝜎(𝜇)

𝑑𝜎(𝐸)

𝑑𝐸
 |𝐸=𝜇                            (1) 

 
Where 𝑘𝐵  is the Boltzmann constant, T is the temperature, q is 
the charge of the electron, E is energy, 𝜇  is the chemical 
potential. 𝜎  is differential conductivity or transport function 
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and can be expressed as 𝜎(𝐸) =
𝑞2

3
𝐷𝑂𝑆(𝐸)𝑣2(𝐸)𝜏(𝐸), 𝐷𝑂𝑆 is 

the density of states, 𝜏 represents the relaxation time, and 𝑣 is 
the group velocity.  A high DOS at the Fermi level leads to an 
increased carrier density, which in turn enhances both electrical 
and thermal conductivity. However, according to the Mott 
formula (Eq. 1), a large DOS is associated with a reduced 
Seebeck coefficient, hence the lower Seebeck coefficient of the 
metals. 
In this work, we lay out a search for binary metallic alloys for 
active cooling applications. Since metallic alloys inherently have 
a large electrical and thermal conductivity, we focus on finding 
alloys with large Seebeck coefficients. Historically, materials 
optimization has relied on traditional trial-and-error methods, 
guided by physical and chemical insights. However, these 
approaches are often time-consuming, inefficient, and costly.10 

To accelerate the optimization process, we employ a machine 
learning (ML) approach. By utilizing a data-driven model, our 
method efficiently explores a broad range of metallic alloys, 
focusing on different atomic concentrations, temperatures, and 
predicted Seebeck coefficients. In what follows, we present the 
material database that we built based on binary solid-solution 
metallic alloys. Using this database, we selected and optimized 
three alloys and finally, validated the results experimentally for 
the Ni-Fe alloy system. 

2. Results and Discussion 

2.1. Material Selection using Machine Learning 

Near room temperature, a large list of pure metals, including 

Ag, Al, Au, Cd, Cs, Cu, Dy, In, Ir, Mg, Nb, Pb, Rh, Sn, Sr, and Ru, 

show absolute Seebeck coefficient values below 5 𝜇𝑉/𝐾 . 
11 A 

few elemental metals, e.g., Co6,12, Fe13, and Ni14 have larger 

Seebeck coefficient values (|S| ~ 20𝜇𝑉/𝐾).11  In the case of Ni, 

the large Seebeck coefficient can be attributed to the sharp 

slope of the DOS at the Fermi energy due to the partially filled 

d-orbital15, which leads to a high Seebeck (Eq. 1). Due to the 

inherent magnetization of these elements (Ni, Co & Fe), part of 

their Seebeck coefficient has been attributed to the magnon-

drag effect wherein the magnon heat flux drags along the 

electronic charge carriers. Watzman et al. 16  discussed two 

magnon-drag contributions to the Seebeck coefficient: the 

hydrodynamic contribution and the spin-motive force 

contribution. They demonstrated that magnon-drag is the 

dominant component of the Seebeck coefficient of iron and 

cobalt. 

Binary alloys of transition metals are shown to be good 

candidates to further increase the TE power factor of metallic 

systems. Examples include Cu-Ni8,17, Au-Ni15, Fe-Ni18,19, Cr-Mn20, 

Pd-Ag21, and Cr-Fe22. We formed a database of experimentally 

reported Seebeck coefficients of binary metallic alloys, the 

majority of which are derived from the Landolt-Bornstein 

database.23  A part of this database for temperatures up to 400 

K is shown in Figure 1.  In several cases, the Seebeck coefficient 

and the power factor of the alloy are larger than both parent 

elements, which can be attributed to either changes in the 

density of states or modifications of the scattering rates. Here 

we highlight three of the studied solid-solution alloys with large 

Seebeck coefficient values, Pd-Ag, Cu-Ni, and Au-Ni. In all three 

cases, the alloy demonstrates a higher Seebeck coefficient 

compared to both the host and solute. The Pd-Ag alloy exhibits 

a peak Seebeck coefficient of approximately 40 μV/K at 300 K, 

reaching ~ 80 μV/K at 1300 K with 55% Pd.21  These values are 

larger than pure Pd, which has a negative Seebeck coefficient in 

the 300K to 1300K range, and pure Ag with positive values 

below 10μV/K. However, the limited availability of Pd and the 

cost of the elements restricts its widespread use. Constantan 

(Cu-Ni) alloy is composed of abundant and low-cost elements 

and is easy to synthesize.24 Constantan is reported to have a TE 

power factor of 40 𝜇W cm−1 K−2  at 300 K and 102 

𝜇W cm−1 K−2  at 873 K.17   Constantan is also studied in the 

context of active cooling and using additive manufacturing for 

industrial applications.8  Au-Ni, in contrast, is expensive and 

metastable. However, due to its very large TE power factor 

worthy of investigation. Garmroundi et al.15 reported a Seebeck 

coefficient of 94𝜇𝑉/𝐾 for a quenched, metastable single face-

centered cubic (FCC) Ni-Au alloy at 1000 K, resulting in an ultra-

high peak power factor of 340 𝜇W cm−1 K−2in Ni0.1Au0.9 sample 

at 560K. This large power factor is hypothesized to arise from 

the selective scattering of s-electrons into localized d-states, 

which induces strong energy-dependent scattering rates 𝜏(𝐸) 

and enhances the slope of 𝜎(𝐸) near the Fermi-level, thereby 

increasing the Seebeck coefficient (see Eq. 1).  

Ni-Fe alloys have also been studied due to their significance in 

geology, meteoritics, and material science.25–33 There are old 

and scattered studies reporting the Seebeck coefficient data of 

Ni-Fe alloys as a function of composition and temperature 

18,19,34, showing the peak Seebeck of Ni-Fe alloys can reach -50 

μV/K with 53.8 at% at 300 K 19 and -46 μV/K  with 40 at%18  of Ni 

concentration at 200 K. Figure 2(c-d) highlights that while the 

Fe-Ni system has been extensively studied between 300 and 

1200 K, only a limited number of compositions have been 

investigated below 300 K. Similarly, Cr-Mn and Cr-Fe alloys were 

also examined but within a specific compositional range, as 

depicted in Figures S2(a) and S2(b), respectively. This research 

gap drives our focus on these three binary systems, aiming to 

enhance their performance through further composition 

optimization from low temperatures to room temperature 

ranges and explore the potential alloys for active cooling 

applications.  

To predict the Seebeck coefficient, we used the database with 

selected features (see methods) to train several ML models. We 

employed three distinct types of ML models: a linear model 

based on Least Absolute Shrinkage and Selection Operator 

(LASSO)35regression, tree-based models (Extreme Gradient 

Boosting (XGBoost)36 and Random Forest (RF)37, and a kernel-

based model (Support Vector Regression (SVR)38. Based on the 

accuracy-interpretability trade-off39, linear models offer higher 

interpretability, while kernel-based models provide greater 

accuracy at the cost of interpretability. Tree-based models fall 

between these two extremes, balancing accuracy and 

interpretability.  

Figure 3 presents a comparative analysis of the predicted vs. 

actual Seebeck coefficients across different models. The low R² 
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and high MSE values in both the training and test sets for LASSO 

indicate that the linear model failed to capture the complex 

relationships between the input features and Seebeck 

coefficients. In contrast, XGB, RF, and SVR demonstrated a 

strong predictive performance, achieving an R² of 0.99 on both 

training and independent test sets, highlighting their ability to 

model the non-linear dependencies. After successfully 

evaluating the prediction performance of the models on the 

test data, we applied the optimized models (XGB, RF, and SVR) 

to predict the Seebeck coefficients of many binary alloys and 

identified Ni-Fe, Cr-Mn, and Cr-Fe alloys as our focus across the 

entire compositional range and from 50 to 305 K. The final 

Seebeck coefficient values were determined by averaging the 

predictions from all three models, with detailed predictions 

provided in Table S3. Based on these averaged results, the Ni-

Fe system exhibited the highest Seebeck coefficient of 42.3 

μV/K at 59 at% Ni and 305 K. Similarly, the Cr-Mn system 

reached a peak Seebeck coefficient of 34.6 μV/K at 10 at% Mn 

and 305 K, while the Cr-Fe system achieved 36.4 μV/K at 2 at% 

Fe and 155 K. Heat maps illustrating the Seebeck coefficients of 

the Cr-Mn and Cr-Fe systems are shown in Figure S5. Among 

these three systems, Ni-Fe presents the highest Seebeck 

coefficient. In addition, experimental validation of Cr-based 

systems presents challenges due to chromium’s high reactivity 

with steel milling jars, which can alter the sample composition 

and degrade the performance.40,51 Therefore, in this study, we 

focus on the Ni-Fe binary alloy system, given its high Seebeck 

coefficient near room temperature as predicted by the ML 

models. Additionally, this system is notable for its low cost, 

scalability for industrial applications, ease of synthesis, and 

exceptional mechanical durability.41,42 These characteristics 

make Ni-Fe alloys highly suitable for practical TE device 

applications. According to the heat map of the predicted 

Seebeck coefficients (Figure 4), while the peak composition is 

Ni56Fe44, the alloy retains a Seebeck coefficient above -40 μV/K 

within the 48–62 atomic % Ni range around from 250 K to room 

temperature. This indicates a compositional window where the 

material could exhibit high TE performance. By identifying the 

peak Seebeck coefficient and compositional range, the ML 

model provides a focused direction for experimental 

exploration, minimizing the need for testing across all possible 

compositions. 

2. 2. Experimental Validation 

Next, we present our experimental approach to the power 

factor and effective thermal conductivity characterization of the 

Ni-Fe alloys in the 50-400K temperature range inspired by the 

ML predictions. Further, we present the microstructure of the 

as-arc-melted sample and the homogeneity of the solid-

solution alloy at microscales for active cooling applications.   

NixFe1-x samples with x atomic percentage ranging from 30-70 

were prepared using arc-melting, see methods. According to 

the phase diagram, Ni-Fe alloys form an FCC Ni-Fe solid solution 

within the probed composition range at elevated temperatures. 

Due to slow diffusion 28–31,43, decomposition of  to  + FeNi3 is 

unlikely under our experimental conditions, resulting in  phase 

solid-solution.  

The X-ray diffraction (XRD) data of all Ni-Fe alloy samples are 

shown in Figure 5. The bulk XRD measurements are performed 

on the vertical cross-section of the as-arc-melted ingots. Going 

from bottom to top, Ni concentration in the samples increases.  

All samples exhibit a consistent series of diffraction peaks, 

corresponding to the (111), (200), (220), and (311) 

crystallographic planes of the FCC structure. The variation of 

intensities of peaks among samples can be attributed to non-

random distributions of grain orientations at the section 

surface, which is confirmed by the SEM results. The orange and 

black lines at the bottom indicate the reference peak positions 

for pure Ni and Fe in the FCC structure. The peaks of the alloys 

are positioned between the reference peaks for pure Ni and Fe, 

indicative of solution formation. As the Ni concentration 

increases, the peaks shift to higher 2θ values, indicating smaller 

lattice parameters.44 The XRD results confirmed that the 

prepared Ni-Fe samples are single-phase polycrystalline. 

Figure 6 presents the backscattered electron image of the 

vertical cross-section of the as-arc-melted Ni55Fe45 sample. The 

different greyscale regions represent the varying crystal 

orientations of the grains, demonstrating the polycrystalline 

nature of the sample. At the top of the sample, a prominent 

needle-shaped bubble is observed, likely formed from the 

degassing of the powders during the melting process. Several 

smaller bubbles can also be seen in the upper section of the 

cross-section. To avoid these bubbles, subsequent transport 

measurements were performed on samples cut from the center 

of the lower portion, where grains are more uniform. 

 

The SEM image clearly illustrates the distribution of grain size 

and shape across the sample. The bottom of the sample, which 

was in contact with the water-cooled copper plate of the arc-

melter, experienced a higher cooling rate, resulting in smaller 

grains (~ 100 μm). In contrast, the upper section contains large, 

elongated grains measuring up to several millimeters in length. 

Further EDS mapping of the highlighted area was conducted to 

characterize the composition of different grains. The black dots 

visible in the enlarged image are colloidal silica residues from 

the sample polishing process. The atomic composition data in 

Figure 6 b's summary table confirms the homogeneous 

composition across the grains, consistent with the 

stoichiometric ratio of the starting powders. As shown in Figure 

6c, the line scan reveals that the composition remains uniform 

both within and across grains. Additional SEM/EDS 

characterizations (Supplementary) performed on different 

samples and in different areas and orientations support that the 

samples are homogeneous and consistent with the measured 

composition. Due to anisotropic alignment of the grains, for the 

TE measurements, we only used the central-bottom part of the 

arc-melted sample, which is visually isotropic. However, due to 

the large grain sizes, we expect a minimal grain boundary effect 

on transport properties.  

Figure 7 summarizes the TE measurements performed on the 

arc-melted Ni-Fe alloy samples. 



ARTICLE Journal Name 

4 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

 Alloys with a composition range of 45 to 70 atomic % Ni have 

an absolute value of the Seebeck coefficient which is up to 2.5 

times greater than that of pure Ni or Fe.11 The peak Seebeck 

coefficient varies with composition, with the highest values 

observed in Ni55Fe45 and Ni45Fe55, both reaching -52 μV/K. This 

is consistent with the ML prediction presented earlier, where 

45-55% Ni was identified as the composition with the highest 

Seebeck value. The Seebeck coefficient's dependence on 

composition changes with temperature: at lower temperatures 

(<200K), the absolute value of the Seebeck coefficient 

decreases with increasing Ni content. However, this trend does 

not hold at intermediate temperatures (200K to 400K).  

A previous work19 observed a similar concentration 

dependence of the Seebeck coefficient. They attributed the 

trend at the higher temperatures to the concentration 

fluctuation within their samples, which is not supported by the 

SEM/EDS results in this paper.  

While ML predictions are consistent with experimental data, 

they cannot explain the origin of the large observed Seebeck 

coefficient. To understand this, we have computed the band 

structure using the first-principles methods. The details of DOS 

calculations for one unit cell of Ni50Fe50 are shown in the 

supplementary materials, wherein we have shown that the 

slope of the DOS at the Fermi level (application of the Mott 

formula) does not correctly predict the sign of the Seebeck 

coefficient. We have further expanded our calculations to the 

full-potential Korringa–Kohn–Rostoker method combined with 

the coherent potential approximation (KKR-CPA)45,46, ensuring 

the correct description of alloy band structure, magnetism, and 

the disorder-induced scattering in the system. Densities of 

states and Bloch spectral density functions, which describe the 

electronic dispersion relations smeared due to electron 

scattering, are shown and discussed in the supplementary 

materials. Further on, the transport properties were 

determined by computing the energy-dependent conductivity 

function (E) from the Kubo-Greenwood formalism.47–50 As 

experimentally determined51 this alloy is ferromagnetic with a 

high Curie temperature of 789 K, thus, calculations were done 

in a ferromagnetic state. Based on the computed (E) function, 

the thermopower was calculated (see supplementary materials 

for further details). What is important to underline here is that 

this method has successfully predicted the Seebeck coefficient 

of other metallic alloys, including Ni-Au52, Ni-Cu53,54, and Pd-

Ag55, where resonant scattering effects are important. 

However, as shown in Figure 7c, in the case of Ni50Fe50 alloy, 

while the KKR-CPA method predicts the Seebeck coefficient sign 

correctly for magnetic calculations, the absolute value is much 

smaller than the experimentally measured values. Hence, the 

sole electronic structure and electron scattering on the atomic 

potentials do not explain the large thermopower values, and 

other energy-dependent scattering rates are needed along with 

magnon-drag contributions to fully understand the Seebeck 

values of this alloy system. The fact that additional scattering 

mechanisms (beyond electron-phonon) are present in this 

system is also confirmed by the difference in calculated and 

experimental residual resistivities. The calculated value at zero 

Kelvin is equal to about 3.3 µΩ·cm, whereas the experimental 

value extrapolated to zero Kelvin is larger, being about 11.9 

µΩ·cm for Ni50Fe50. 

The resistivity increases with higher Fe content. The resistivities 

of the Ni-Fe alloys range from 5.60 µΩ·cm to 70 µΩ·cm, 

highlighting the highly metallic nature of these alloys. 

Combining high Seebeck coefficients for these alloys with their 

low resistivity, the peak power factor reaches 120 μW/cm·K² for 

both Ni60Fe40 and Ni55Fe45. This is larger than both Ni and Fe 

parent metals12 and is 20% higher than the peak values reported 

at 750K in previous studies on Cu-Ni alloys.8,17 In Figure 7, we 

also compare the power factor to other binary metals with large 

power factors including PdAg and PdAu alloys.21,56 In 

temperature ranges slightly below room temperature (i.e. 200K 

to 300K), there are not many candidates with extremely large 

TE power factors (i.e., above 100 μW/cm·K²). Commonly used 

TE materials in this temperature range include bismuth-

tellurium-antimony-selenium-based materials, which generally, 

have power factor values well below 100 μW/cm·K², with a 

recent work highlighting a record high value of 63 μW/cm·K² in 

this class of materials.57 Au-Ni is reported to have a power factor 

slightly below 300 μW/cm·K².15 However, its cost and instability 

are not favorable. Single-crystal YbAl3 has a power factor slightly 

below 200 μW/cm·K² at room temperature.58,59 Other examples 

include low-dimensional materials such as nm thin FeSe60 and 

1D Ta4SiTe4 samples.61 

 At 200K, the power factors of Ni60Fe40 and Ni55Fe45 are larger 

than those of the hot-pressed YbAl₃ sample58 and are much 

larger than that of the Cu-Ni alloy17. However, the power factor 

values decrease rapidly with increasing Fe due to the increase 

in resistivity and with Ni concentration due to the reduction in 

the Seebeck coefficient. Since the TE power factor is our primary 

focus, the Ni-Fe composition range is restricted to 45% to 70% 

atomic Ni. In this range, the thermal conductivity generally 

increases with Ni content.  

The effective thermal conductivity (κeff) of the Ni60Fe40 sample 

exhibits the best balance between power factor and thermal 

conductivity. As shown in Figure 7e κeff of the Ni-Fe samples 

under a 1K temperature gradient is 2 to 3 times higher than the 

κeff of pure Fe or Ni11,62 in the above 200K range. Above room 

temperatures, κeff of the Ni60Fe40 alloy is still higher than that of 

pure copper, and previous studies of high power factor Cu-Ni 

alloys63,64, reaching 600 W/m.K for both Ni60Fe40 and Ni70Fe30 

alloys. 

As indicated by SEM, in the arc-melted samples, grains are 

significantly larger than the typical electron and phonon mean 

free paths in metals65–67, eliminating the possibility of grain size 

influencing TE properties, especially the Seebeck coefficient. 

However, given the limited studies on Ni-Fe alloys as TE 

materials, further investigations with improved parameter 

control are essential to elucidate the role of microstructure in 

the thermoelectric performance of these alloys. 

3. Conclusion 

In summary, we built a database of binary metallic alloys and 

identified Ni-Fe as a potential candidate for active cooling 

applications. We used ML algorithms to identify the best molar 
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fraction corresponding to the largest Seebeck values in the 45%-

55% Ni range. We then proceeded with experimental validation 

of this prediction. The highest Seebeck values were observed in 

Ni55Fe45 and Ni45Fe55 samples, consistent with ML prediction.  

The power factor and effective thermal conductivity of arc-

melted Ni-Fe alloys with 45 to 70 atomic percent nickel were 

investigated over the 50K to 400K temperature range. Notably, 

the Ni55Fe45 and Ni60Fe40  alloys demonstrated a large peak 

power factor of 120 μW/cm·K² at 200 K. This metallic binary 

alloy is stable and is composed of cost-effective and abundant 

elements. The power factor value reported is one of the largest 

values reported in this temperature range. The effective 

thermal conductivity, κeff, at a 1K temperature difference was 

also calculated using the measured values of passive thermal 

conductivity and TE power factor. The largest κeff values 

exceeding 600 W/K·m at 400K were observed for Ni60Fe40 and 

Ni70Fe30 alloys, outperforming pure copper, Ni, Fe, and state-of-

the-art Cu-Ni alloys under the same conditions. The 

microstructure of the arc-melted Ni-Fe ingots was characterized 

using SEM and EDS, providing insights into grain size and 

elemental distribution. The abnormal composition dependence 

of the absolute Seebeck coefficient at intermediate 

temperatures (200 K- 400 K) was also noted. A hypothesis 

suggesting that local concentration fluctuations account for this 

anomaly was tested using EDS analysis, which invalidated this 

explanation. Further research is needed to assess the effects of 

grain size, magnetic domains, and defects on the thermoelectric 

performance of Ni-Fe alloys. This study reveals the overlooked 

potential of Ni-Fe alloys for high-power factor applications, 

highlights the promise of magnetic transition metal alloys in the 

search for high-power factor metallic materials, and encourages 

further research into metallic thermoelectric materials for 

active cooling. 

4. Methods 

4.1. Selection and Optimization Details of Machine Learning: 

Dataset: 

Our initial dataset was obtained from the Landolt-Börnstein 

database23 and a recent publication on Au-Ni alloys.68 It 

comprises experimental Seebeck coefficient values for various 

binary metallic systems, recorded in wide temperature and 

atomic concentration ranges. The data was extracted and 

digitized manually using the GRABIT MATLAB tool, resulting in a 

total of 12,332 data points with 3,103 unique solid solutions. 

The Seebeck coefficient values span from 40 to -85 μV/K, 

covering a temperature range of 0 to 1500 K as depicted in 

Figure 2 and Figure S1(a), respectively. 9 

Figure 2(a) demonstrates the distribution of the Seebeck 

coefficient in this dataset, revealing that most metals have small 

Seebeck values (a few μV/K), which is one of the main reasons 

for the TE community to focus on semiconductors instead. 

Figure S1(b) provides an overview of the metals included in the 

dataset, showing that Ni is the most frequently used material. It 

is followed by Pd, Cr, Pt, and Cu. This information is presented 

in an alternative format in Figure 2b.  

 

4.2. Feature Selection 

To build generalizable data-driven models, it is important to 

include features that not only capture the trend of Seebeck 

coefficients across different metallic alloys but also uniquely 

represent them. In this regard, a Composition-Based Feature 

Vector (CBFV)69 technique was used to derive features from the 

chemical formula, utilizing the Materials Agnostic Platform for 

Informatics and Exploration (Magpie). 70 Furthermore, 

temperature and crystallinity information (Single-crystal 

/Polycrystalline)by level encoding (1/0) are also added to the 

feature list, which results in a total of 156 input features, and 

the Seebeck coefficient as the target value. A detailed table 

summarizing the input features is provided in Table S1. These 

features are commonly used in the field of materials informatics 

of TE.71–75 The correlation analysis, as shown in Figure S3, 

indicates that many features exhibit strong statistical 

correlation. In most cases, it is advisable to remove one of two 

highly correlated features since they convey redundant 

information. Such correlations can hinder model convergence, 

degrade predictive performance, and affect interpretability.    

The dimensionality of the input features was reduced by 

applying a correlation coefficient threshold of 0.5.76,77 This 

means that only those features with an absolute correlation 

coefficient less than 0.5 with other features were kept for ML 

model building. 

 This process reduced the number of input features to 19, which 

were used to predict the Seebeck values. 

 

4.3. Training and Testing of the Models: 

To avoid any perceived bias during training, we employed a 

data-driven approach for splitting the dataset. We performed K-

means78 clustering analysis (using Euclidean distance as the 

similarity metric) on the dataset, and the Silhouette score, as 

shown in Figure S4, suggests that the dataset contains two 

distinct clusters. Each cluster represents a different group of 

data points that share common characteristics. Cluster 1 

consists of 8,743 data points, while Cluster 2 contains 3,589 

data points. To ensure that the models learn from both types of 

data distributions, we randomly selected 70% of the data from 

each cluster to form the training set (8,632 data points), with 

the remaining 30% used as the testing set (3,700 data points). 

This approach ensures a more balanced representation of 

samples from both clusters in the training and testing sets. 

 

4.4. Hyperparameter Tuning: 

Hyperparameter tuning helps improve model performance and 

prevents overfitting. To optimize the hyperparameters, we used 

BayesSearchCV from the scikit-optimize library79 in Python. 

BayesSearchCV employs a Gaussian Process Regression as a 

surrogate model for hyperparameter optimization. An 

acquisition function is used to determine which 

hyperparameter combinations to evaluate next, with Expected 

Improvement (EI) as the default acquisition function. The EI 

function estimates the expected improvement over the current 

best result.80 During optimization, 10-fold cross-validation from 
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the scikit-learn library 81 was applied, which partitioned the 

training set into ten subsets. Each model is trained in nine 

subsets and validated on the remaining subset. The testing set 

remained unseen by the models during cross-validation. The 

lower and upper boundaries for the hyperparameters are 

provided in Table S2. The number of iterations for the 

optimization process was set to 50. The optimized 

hyperparameters for each model in each case of splitting are 

shown in Table S2. The performance of these models was 

evaluated by comparing two key metrics, namely the coefficient 

of determination (R²) and mean squared error (MSE).  

4.5. Experimental Methods  

Iron powder with 99.5% purity and nickel powder with 99.996% 

purity were weighed to 5 grams per sample and mixed in an 

argon-filled glovebox. The powder mixtures were then hot-

pressed into solid bulk samples at 800⁰C under 56 MPa pressure 

for 300 seconds using an OTF-1700X-RHP4 hot-press setup from 

MTI Corporation. The solid bulk samples were later arc-melted 

in Ar protected chamber to form a Ni-Fe solid solution. Each 

sample was melted and flipped twice for homogeneity. Then, it 

was melted without flipping, allowing bubbles and voids to 

diffuse to the top of the sample, which was then cut out. The 

central-bottom part of the arc-melted samples was then 

sectioned into approximately 2mm×2mm×10mm bar shape. 

Transport properties were measured using the Thermal 

Transport Option of Quantum Design PPMS Versalab. A heater 

was attached to one side of the sample to create a 3% rise in 

temperature. The other side was connected to a heat sink. The 

resulting voltage difference and temperature difference under 

steady state were measured along the length of the sample to 

extract the Seebeck coefficient and the thermal conductivity. 

The heater and the heat sink contact (copper coated with gold) 

were then used to send current along the sample. The voltage 

was measured using side probes, enabling 4-probe electrical 

conductivity measurements.  The XRD characterization is 

performed using an Empyrean X-ray diffractometer from 

Malvern-Panalytical on the sectioned as-arc-melted ingots. 

SEM/EDS is performed on an FEI Quanta 650 Scanning Electron 

Microscope (SEM). 
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Figure 1.  Visual representation of part of our database. Seebeck values of less than a few microvolts per Kelvin are eliminated 
and the rest are represented here. Each subplot represents the host-solvent binary alloy labelled in the plot. For example, Cu-Ni 
means Cu is the host, Ni is the solvent. Each subplot has an x-axis scale of 0 to 1 representing the molar fraction of the solvent. 
The y-axis is the measurement temperature from 0-400 K for all subplots. The colour represents the absolute value of the 
Seebeck coefficient. Promising yet less-explored candidates are highlighted with red rectangular boxes. 
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Figure 2. (a) Distribution of Seebeck coefficient in the database, (b) Frequency of the elements in the dataset, for example, Ni and Pd are 
the most frquently used metals, and (c) Temperature dependent Seebeck coefficients of Fe-Ni system upto 1200K with respect to 
different atomic % of Ni, (d) highlighting low temperature region from 50 K to 300 K. 
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Figure 3. Predicted vs Actual Seebeck coefficients from XGB, SVR, RF and Lasso. Tree and Kernel-based models outperformed the 
linear model
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Figure 4 Heat map of Ni-Fe alloy averaging over all predictions from 
all optimized models. 
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Figure 5. XRD results of arc-melted Ni-Fe samples. The black and orange straight lines on the bottom are FCC iron and 
nickel reference peaks. 
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Figure 6.  SEM backscattered electron image on the cross-section of the arc-melted Ni55Fe45 sample(a), the yellow square marked area is the 
chosen EDS mapping area.  This area is enlarged in (b) where the EDS mapping locations on different grains are reported and summarized in the 
table. (c) EDS line scan across the grains over the line scan 1 shown in (b) 
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Figure 7. (a) electrical resistivity, (b) thermal conductivity, (c) Seebeck coefficient, (d) power factor, (e) effective thermal 
conductivity of Ni-Fe samples. The lower Legend on the right bottom corner is shared for a-d. Ni and Fe reference data in (c) are 
taken from Ref11 . The calculated Seebeck coefficient for 50% Ni-Fe (KKR-CPA) is also shown, the non-magnetic calculations fail to 
predict the correct sign of the Seebeck coefficient. The magnetic calculations predicts the sign correctly, however, the absolute 
values are much smaller. The difference is contributed by additional scattering processes, most likely associated with the magnon-
drag. The power factor of Ni, Fe12, CuNi17, PdAg and PdAu21,56 are compared with that of NiFe alloy in d. Effective thermal 
conductivity of Ni-Fe alloys compared with pure Cu, pure Fe, pure Ni62, and Cu-Ni alloys (labeled as Ref 1 and 2)42,43. 

 


