2022 IEEE International Conference on Cluster Computing (CLUSTER) | 978-1-6654-9856-2/22/$31.00 ©2022 IEEE | DOI: 10.1109/CLUSTER51413.2022.00036

2022 IEEE International Conference on Cluster Computing (CLUSTER)

High Performance Adaptive Physics Refinement to
Enable Large-Scale Tracking of Cancer Cell
Trajectory

Daniel F. Puleri*, Sayan Roychowdhury*, Peter Balogh!, John Gounley?, Erik W. Draeger?,
Jeff Ames*, Adebayo Adebiyi*, Simbarashe Chidyagwai*, Benjamin Herndndez!, Seyong Lee?,
Shirley V. Moore’, Jeffrey S. Vetterf, and Amanda Randles*

*Department of Biomedical Engineering
Duke University, Durham, NC, USA
*Mechanical and Industrial Engineering
New Jersey Institute of Technology, Newark, NJ, USA
i{Cornputational Sciences and Engineering, National Center for Computational Sciences, Computer Science and Mathematics}
Oak Ridge National Laboratory, Oak Ridge, TN, USA
§Scientific Computing Group
Lawrence Livermore National Laboratory, Livermore, CA, USA
IDepartment of Computer Science
University of Texas at El Paso, El Paso, TX, USA

Abstract—The ability to track simulated cancer cells through
the circulatory system, important for developing a mechanis-
tic understanding of metastatic spread, pushes the limits of
today’s supercomputers by requiring the simulation of large
fluid volumes at cellular-scale resolution. To overcome this
challenge, we introduce a new adaptive physics refinement
(APR) method that captures cellular-scale interaction across
large domains and leverages a hybrid CPU-GPU approach
to maximize performance. Through algorithmic advances that
integrate multi-physics and multi-resolution models, we establish
a finely resolved window with explicitly modeled cells coupled to
a coarsely resolved bulk fluid domain. In this work we present
multiple validations of the APR framework by comparing against
fully resolved fluid-structure interaction methods and employ
techniques, such as latency hiding and maximizing memory
bandwidth, to effectively utilize heterogeneous node architectures.
Collectively, these computational developments and performance
optimizations provide a robust and scalable framework to enable
system-level simulations of cancer cell transport.

Index Terms—multiphysics, deformable cells, cancer metasta-
sis, immersed boundary, heterogeneous architectures

I. INTRODUCTION

Cancer is the attributed cause of death in one in four cases
in the United States [1] and metastasis, a complex multistep
process leading to the spread of tumors, is responsible for more
than 90% of these deaths [2]. While we know that circulating
tumor cells arrest in non-random patterns and that biophysical
properties influence their movement, the effect of different
mechanical properties of the cell and microenvironment on
preferential arrest remain poorly understood. In silico models
designed to model cellular transport in complex 3D topologies
provide a unique ability to isolate the influence of specific
cell properties and extract a variety of metrics that cannot

be directly measured through in vivo or in vitro methods.
To properly simulate metastatic dissemination, computational
methods need to capture arterial length scales orders of magni-
tude larger than the size of the cell. However, direct numerical
simulation that relies on sub-micron resolution is intractable
for all but the smallest systems.

To effectively model cancer cell transport, we have devel-
oped an adaptive physics refinement (APR) technique. The
APR integrates multiphysics modeling by limiting the region
in which cellular-scale dynamics are realized to the volume
surrounding a cell of interest—termed the “window,” after
initially exploring the concept in [3]. Resolving cell dynamics
only in the window has the benefits of capturing fluid-structure
interaction that could not be explained purely through hemo-
dynamics, reducing the amount of computationally expensive
high-resolution mesh, and limiting the locations in which fluid-
structure interaction is needed. The APR window is required
to adaptively follow the cell of interest because the distances
a cell can meaningfully travel are larger than the window
itself. We tailored the APR algorithm to the problem of
tracking cancer cells because the region requiring a more
refined resolution is defined by a moving location and not
by an error estimation (e.g., [4]) which informs refinement
during the simulation itself. Additional benefits are afforded
because the adaptive window can be defined at the start of the
simulation. Therefore, the APR scheme is designed for modern
heterogeneous systems whereby the window is distributed
on all GPUs and the coarsely-resolved regions can use the
remaining processor cores.

The limited scope of past modeling to small sub-regions
or short time domains is due in part to the computational

2168-9253/22/$31.00 ©2022 IEEE 230
DOI 10.1109/CLUSTERS51413.2022.00036
Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 02:58:45 UTC from IEEE Xplore. Restrictions apply.

Axc

@)
@)
[©)
[©)
[©)

ol |©
ol |©
Ol |©
Ol |©
ol |1©

. orthogonal view

L.

Fig. 1. Left: APR model overview depicting the coupling between the the finely resolved fluid-structure interaction within the window (orange) to a coarsely-
resolved bulk fluid domain (red). Middle: a closer view of the multi-resolution interface between the fine and coarse regions. Right: an orthogonal perspective
of the interface between the fine and coarse lattices, with an example interpolation to the blue square from the support of the yellow squares. Lattice points
for each domain are located at the centroids of the grid made by the black lines, where Az, and Ax ¢ refer to the lattice resolution of the coarse and fine
grids, respectively. The resolution ratio, n = Ax./Axy, between the bulk and the window has been reduced for display purposes.

challenge associated with modeling large-scale cellular be-
havior using conventional modeling frameworks, which we
refer to as explicit fluid-structure interaction models (eFSI).
Current state-of-the-art eFSI (details of which can be found in
[5]) are limited to sub-mm cubed domains when simulating
the resolutions necessary to capture the cell’s viscoelastic
properties, making it impossible to quantify the effects of
individual cell mechanical properties on long-term cell fate and
overall trajectory. To overcome this fundamental limitation, we
introduce the APR technique to provide system scale modeling
at cellular resolution within a localized region of interest.
The state-of-the art eFSI model is built upon and could be
considered a subset of the APR approach. The APR method,
as shown in Figure 1, defines a high-resolution FSI window
that follows an assigned cell as it flows through a target
geometry. The window size and FSI algorithm are chosen to
accurately capture the environment around the target cell, with
the surrounding lower-resolution fluid used to enable accurate
window motion. Compared with eFSI, the APR framework
drastically reduces the overall computational cost, making it
feasible to analyze cell transport over anatomically-relevant
length scales (cm to m).

Building a coupled multiphysics capability to be broadly
used for circulatory modeling requires addressing multiple
algorithmic challenges due to 1) multi-resolution coupling: the
sub-micron resolution fluid in the window must be accurately
coupled to the coarser fluid in the bulk for the proposed
moving window approach to be feasible; 2) adaptive physics
refinement: the posed problem requires not just coupling
varied grid resolutions, but different physics-based models.
Within the window, different explicit cell models may be
used depending on the system and flow, whereas outside
the window we only solve fluid dynamics equations; and 3)

231

resource allocation: in addition to the challenges of efficiently
distributing the 3D geometries across many compute elements,
balancing both compute and memory requirements of the
window and the bulk regions between CPU and GPU requires
careful management.

We address these challenges by introducing a hybrid CPU-
GPU, multiphysics technique innovating upon our previously
established moving window paradigm [3] by 1) introducing a
multi-block scheme to couple the coarse and fine lattices, 2)
creating a framework for splitting scales between a tightly
coupled CPU-based bulk model and a GPU-based window
model, 3) developing algorithms to move the window, and 4)
efficiently distributing work between the host and device on a
heterogeneous accelerator-based machine such as the Summit
supercomputer while maximizing overlap of communication
and computation. As demonstrated in our results, the APR
method we present radically increases the potential domain
sizes for multiphysics modeling to enable new classes of
problems to be tackled with in silico methods.

II. METHODS AND ALGORITHMIC DEVELOPMENTS

After decades of innovation [4], [6]-[8], there are now many
numerical approaches one can use to design a multiphysics
code with varying degrees of sophistication. The APR method
presented in this paper represents one such approach that
is tailored to the specific needs of circulatory modeling. A
key feature is the use of a single, moving region of interest
in which the numerical accuracy required remains constant
throughout the simulation. Such specialization has several
advantages. For example, this numerical decomposition creates
two well-contained domains (see Fig. 1) with a sharp interface,
thereby creating a natural decomposition of computationally-
intense window tasks mapped onto GPUs and lower-resolution

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 02:58:45 UTC from IEEE Xplore. Restrictions apply.

fluid tasks mapped onto CPUs with manageable communica-
tion across the fully-coupled interface. High GPU utilization
can be maintained throughout the simulation thanks to the
fixed window size. As the simulation evolves, the cell of
interest can accurately traverse a large branching geometry
without a priori assumptions about its ultimate destination.

We have previously established the window paradigm in
Herschlag et al., whereby the modeling of cell-resolved flow
is restricted to a small region around the cell [3]. The focus
on that work was on maintaining the requisite hematocrit
(red blood cell volume fraction) for biological blood flow
and partitioning the simulation domain into regions where
different physics are resolved so as to reduce the total number
of cells explicitly modeled. In this manuscript, we significantly
advance the adaptive window method by developing a multi-
resolution scheme which adapts to the motion of the tracked
cancer cell. Our scheme uses the nature of the problem itself,
tracking deformable cells of interest, to drive the adaptive
resolution as the level of detail is not driven by the fluid itself,
but by the cells within the fluid. This new expression of the
problem brings with it challenges, which we have overcome,
regarding the distribution of work between the finely-resolved
window domain, the two-way coupling of physics, and the
methods required to move the window as the cell’s trajectory
evolves. An additional computational difference is which do-
main is accelerated on GPUs.

Within the following subsections we outline the components
of the APR method. A diagram providing a depiction of the
overall algorithm is shown in Fig. 2. The coupled multiphysics
model is developed within a lattice Boltzmann method (LBM)-
based massively parallel computational fluid dynamics solver
[51, [9]-[11]. The existing GPU-accelerated FSI model was
further optimized for Summit, a 200 petaFLOPS heteroge-
neous supercomputer at the Oak Ridge Leadership Computing
Facility [12]. We additionally augmented the adaptive multi-
physics algorithm pioneered in [3] with the layer of the multi-
block/multi-resolution interface between the cell-resolved do-
main and the bulk flow domain. To integrate the fine-window
simulation with the coarse-bulk, we implemented and extended
a multi-resolution algorithm previously developed in the lit-
erature [13]-[16]. In those previous multi-block approaches,
the finely-resolved domain was primarily static and here we
show a novel way of changing the domain as the transient
system simulated advances. The details of these components,
as well as new algorithmic developments, optimizations, and
our process for validating the implementation are described in
the subsections below.

A. Lattice Boltzmann Method

The LBM is a mesoscopic approach for numerically solving
the Navier-Stokes equations, in which the fluid is represented
as set of particles moving between lattice nodes in discrete
time steps [17]. The lattice Boltzmann equation governs the
evolution of a particle distribution function f;(x,t¢), which
gives the probability of particles residing at lattice point x
and time ¢t with a discrete velocity c;. Using the Bhatna-

232

3D Bulk
Flow .

Cell-Reso
WindowAX

Multi-Resolution
Coupling I

xc

LBM Comm.

Spatial
Bulk to ~. | Interpolation
LBM on Border |.-¥(Window Comm.|

Forjin1..n

LBM Comm.

LBM

Temporal
Interpolation

LBM for
Entire Domain

P

Re-init window
if moved

Resources
types:

g
S
5
=

Window to

Boundary Bulk Comm.

Conditions

"X (‘Move window
» if needed

)

Ceru) (Lcru)

Fig. 2. Diagrammatic depiction of the overall algorithm for one bulk time
step. Operations have been batched into a single category for simplicity.
The shown structure reflects optimizations to best overlap compute-intensive
simulation time steps on the GPU/window with the CPU/bulk. The only
synchronization points between the window and bulk parts of the APR
model are the bulk-to-window, window-to-bulk communication routines, and
checking/re-initialization if the window moves.

gar—Gross—Krook (BGK) collision operator, this equation in
the presence of an external force field is:

fZ(X+ Ci,t+ 1) = <1 — %) fi(x7 t) =+ %ffq(x t) + FZ‘(X, t)
M

for an external force distribution Fj, equilibrium distribution
f{%, and relaxation time . This equation encapsulates the
two core components of the LBM time step — collision and
streaming — which are implemented as a single unified kernel
in code. We employ the D3Q19 velocity discretization model,
as well as the method of Guo et al. [18] to incorporate the
external force field into the distribution. No-slip conditions
on rigid walls are enforced using the halfway bounce-back
boundary conditions at the vessel walls.

B. Cell Finite Element Model

Cancer cells are represented as fluid-filled membranes dis-
cretized by a Lagrangian surface mesh of triangular elements.
The membrane model includes both elasticity and bending
stiffness [19]. The shear and dilational elastic responses
of the membrane are governed by the Skalak constitutive

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 02:58:45 UTC from IEEE Xplore. Restrictions apply.

law, where the elastic energy W is computed as: Wy =
Cff (I + 2 — 21, + CI3) for strain invariants Iy, I, shear
elastic modulus G, and area preservation constant C' [20].
Loop subdivision [21] provides the basis for the finite element
method (FEM) membrane force calculations, which determine
elemental strains based on 12 surrounding elements. Details
on the finite element method used can be found in previous
works, such as [22] and [23]. The Helfrich formulation [24]
is used to model resistance to bending based on membrane
curvature following: W, = 2 [(2k — co)’ dS, where Ej is
the bending modulus, x and ¢ are the mean and spontaneous
curvatures, respectively, and S is the entire surface area
of the cell. The resultant membrane forces are calculated
every timestep in the same simulation code and used for the
spreading routine in the immersed boundary coupling. Overall,
this method has been shown to accurately resolve complex
non-linear 3D deformations of biological cells [25] and was
recently accelerated on GPUs [5].

C. Immersed Boundary Method

The immersed boundary method (IBM) [26] is used to
couple the FEM-calculated forces in cell membranes to the
background fluid with which they flow and has been previously
demonstrated to capture cancer cell trajectory (e.g., [27]). First,
a cell vertex’s velocity V is interpolated from the velocities
v of surrounding fluid points x using:

V(X,t) =Y v(x,1)d(x - X(t))

X

(@)

We use a cosine-approximated 3D discrete delta function (0)
with four-point support in each dimension, as described in
[11]. Using these velocities, the positions of the cell vertices
are updated using Euler integration,

X(t+1) = X(t) + V(t)At 3)

a process referred to in the subsequent sections as advection.
The elemental deformation associated with these position
changes are determined with the FEM as above, and the
resulting forces G at each cell vertex X are spread back to
the surrounding fluid points x as:

g(x,t) =Y G(X,t)d(x — X(1)) “)
X

In the subsequent sections, the algorithms and operations
associated with equations 2 and 4 are respectively referred
to as interpolation and spreading.

D. Innovations and Implementation of APR Algorithm

When modeling biological cells in the circulatory system,
one of the main computational expenses comes from the
fluid resolution needed to accurately recapitulate the flows of
deformable cells within the circulatory system. As the required
resolution drives computational cost, there is a motivation to
limit it to targeted regions of interest. Moreover, the relation-
ship between the resolution and time step in the LBM (further
detailed in Sec. II-D1) leads to a greater computational burden

233

and inherent complexity as multiple time steps are needed
within the window for every bulk fluid time step. Therefore,
it was paramount that the bulk and window domains of the
simulation be concurrently advancing and that the window be
accelerated by the high bandwidth and computational power
available on GPUs in modern heterogeneous systems (see
Sec. II-E). Our solution to address these challenges is the
APR method. The originality of the overall concept presented
herein is a moving, finely-resolved domain centered on the
cell of interest which is fully coupled to the surrounding
lower-resolution environment. The combination of the multi-
resolution scheme presented in Sec. II-D1 coupled with an en-
hanced version of the window tracking algorithm (Sec. II-D2)
provides a tailored multi-physics adaptive model to track cells
across a range of vessel sizes.

1) Multi-Resolution Lattice Boltzmann: To simultaneously
model both macro- and micro-scale blood flows present in the
body, we implemented a multi-block LBM (multi-resolution)
scheme for efficient computation. Specifically, we extended a
scheme developed in 2D [13], [14] and adapt it to 3D similar
to Yu et al. and others [15], [16]. However, one of the main
differences between our implementation of the ‘traditional’
multi-resolution LBM algorithms and previous literature is that
we maintain the underlying physics of the static multi-block
methods previously described and significantly expand this
approach to derive an adaptive algorithm through the coupling
with the adaptive multi-physics moving window algorithm so
that the model adapts over time given the transient nature of
the problem being studied.

Following Peng et al. [14], we consider a multi-block
scheme which couples a coarse lattice to a fine lattice. Given
the continuity in density and momentum between the coarse
and fine grids, the equilibrium distribution functions of each
lattice are equal [13]:

fO¢ = ot = fra)

. For the non-equilibrium part of the distribution functions
[= f; — f{, the stress continuity is maintained across the
interface by the relation:

Te
n-<

neq,c __
f o

K3

fiet ©)

where the subscripts ¢ and f refer to the coarse and fine lattices,
respectively, and n gives the ratio of coarse to fine lattice
spacing. Following this, the relaxation times of the coarse and
fine lattices are related by:

1 1
+n<TC7§)

5)

Tr =
In contrast to the relationship between the fine and coarse
grid used by [28] and [14], which scales the post-collision
distribution functions, we use the method developed by [29]
which scales the “incoming” LBM distribution functions.
Combining Egs. 5 and 6, we are able to express a direct rela-
tionship between the coarse and fine lattice LBM distributions.

Specifically, the coarse-to-fine and fine-to-coarse transfers at

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 02:58:45 UTC from IEEE Xplore. Restrictions apply.

coincident lattice points between the two resolutions can be
written as:

nte neq,f

—<

c_ fea
fl fl + Tf 3

f eq Tf
P—fay —
=g

fncq c (8)

For points on the fine lattice that are not coincident with
the coarse lattice, a spatial interpolation is required; we use a
Catmull-Rom spline to maintain C'* continuity [30]:

fi(x) = a; + bjx + ¢;x* + d;x3)

with coefficients determined based on derivative continuity.
Similarly, a bicubic spline interpolation is used where a fine
lattice point is not aligned with two dimensions of the coarse
lattice—an illustration of which is shown on the right-hand
side of Fig. 1.

A consequence of the different spatial resolutions is a
discrepancy in the physical time step size, related by At. =
nAt¢. Therefore, the window and bulk parts of the simulation
must synchronize every bulk time step, which corresponds to
n window time steps (see Fig. 2 for an overview). The data
transferred at the synchronization from the coarse grid is then
advanced via temporal interpolation to the same fractional time
step (from the coarse perspective) upon which the fine grid
operates. To achieve the temporal interpolation at the interface
points, we employ a Lagrange interpolating polynomial [14]:

w2l

j=1

The multi-resolution interface coupling the bulk domain to
the window domain with cells is shown in Fig. 1 along with
a representative interpolation stencil. To enable the parallel
implementation of this algorithm, when an unaligned lattice
point on the edge of the fine grid attempts to interpolate from
the coarse grid, an overlap of one point into the coarse grid
must be available to the MPI rank for a given part of the fine
lattice. The interface between the fine and coarse lattice is
spread across MPI ranks with multiple fine MPI ranks being
neighbors of coarse tasks and multiple coarse MPI ranks being
neighbors with fine MPI ranks.

2) Moving the Window: As the cell traverses the window
and reaches a prescribed distance from the boundary, the
window is moved to a new location centered on the cell.
For the present work, we trigger a window move when the
cell centroid crosses into a designated region near the edge of
the window domain which can be controlled by the user. The
objective is to move the window prior to the cell experiencing
any possible edge-effects as it nears the boundaries between
domains. The communication scheme between fine and coarse
lattice tasks must be re-initialized every time the window
moves as the fine lattice points will then border new coarse
lattice points.

When the window moves, the Eulerian data within the
window must be updated to represent the fluid dynamics

X~ Xk (10)
Xj — Xk

234

Fig. 3. Depiction of the parts of the window to be updated with the red and
green bounding boxes showing the pre- and post-move bounding boxes. The
shaded white area shows points which exist in both window locations, while
the shaded pink area shows the non pre-existing points which are interpolated
from the bulk domain. The arrow indicates the direction of window movement.

of the new window location. This window shifting and re-
connection to the bulk-simulation requires a combination of
two newly devised steps which have not previously been
developed in literature. Indeed, the work of [3] did not need
to consider the differences in momentum between the window
and bulk domains. First, lattice data at the intersection between
both the pre- and post-move window bounding boxes must
be translated, highlighted in white in Fig. 3. The lattice or
fluid data referenced includes not only the latice Boltzmann
distribution values, but also the body force values present
at each location in the domain. Fluid data in this white-
shaded volume only need to be moved to their new relative
location in the window and therefore are communicated via
MPI to tasks which manage the respective section of the
finely-resolved domain. Next, we need to account for new
fluid points in the non-overlapping portion of the post-move
window that did not exist in the pre-move window, highlighted
in red in Fig. 3. We generate these fine grid fluid points by
interpolating from the coarsely resolved bulk domain using tri-
cubic interpolation. This new interpolation step is required as
the lattice distribution functions in the bulk domain at a coarser
resolution are essentially in a different unit space from the fine
domain. Therefore, the Eulerian data must first be transformed
using Eq. 8 and then interpolated onto all of the new lattice
points on the finely resolved grid.

E. Computational Design for Heterogeneous Architectures

To maximize use of heterogeneous CPU-GPU supercomput-
ing architectures, we assigned the bulk fluid computation to
the CPU and the window computation to the GPU, synchro-
nizing the execution between the two, as necessary. The bulk
fluid computation has characteristics such as a comparatively
smaller workload when compared to the window and irregular
control flow that make it a good fit for the CPU. The window
computation, where the 3D deformation and dynamics of
the tracked cell are fully resolved, has characteristics such
as fine-grained parallelism, regular control flow, and limited

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 02:58:45 UTC from IEEE Xplore. Restrictions apply.

data dependency between kernel launches that match well
with the GPU. Additionally, as the window maintains its size
during each move, the data arrays allocated on the GPU at
the beginning of the simulation can be maintained throughout
with only arrays representing the multi-resolution interface
needing to be updated during each move. By partitioning the
computation in this way, we also reduce the cost of data
reorganization and data transfers among the CPUs and GPUs.
More details can be found in Sec. II-E3.

Here, we divided the workload such that the the window
computations were distributed among all GPUs while the bulk
fluid used the remaining CPU resources. This is in contrast to
previous work, where in [3] there was a uniform resolution
between the bulk and window domains and, naturally, it
followed to put the larger fraction of the computational load on
GPUs. However, as one of the major advances in our work is
the multi-block aspect which allows for a resolution difference
between the bulk and the window, a similarly sized window
would have n® more fluid points, making the GPU more
effective for window computations. Moreover, given the time
scaling outlined in Sec. II-D1 (At; = nAt.), there is more
work given the additional timesteps needed in the window
when compared to the bulk—even if the number of simulated
points in both domains were the same. The window also has
the added burden of calculating the IBM and FEM updates
for the cell(s) in the window. In this work we focused on a
single cell in the window in order to emphasize the multiscale
physics and balance the computational workload.

Simulations for performance analysis were performed on
the Summit supercomputer at Oak Ridge National Laboratory,
the second fastest supercomputer on the TOPS500 list (as
of November 2021), and implementation details provided in
the subsequent sections (II-E1, II-E2). Other development
simulations were performed on the Lassen supercomputer at
Lawrence Livermore National Laboratory. Both systems utilize
a heterogeneous architecture with powerful nodes accelerated
by dual CPU sockets and four to six GPUs. The same CPU
and GPU architectures are used on both systems.

1) GPU Acceleration Within Window: All compute-
intensive operations of the window simulation (i.e., LBM,
IBM, and FEM) are executed on the GPUs, which for sim-
ulations performed on the Summit supercomputer use all six
NVIDIA V100s per node. Device code was implemented in
CUDA. Work related to inter-node communication and the
multi-resolution coupling such as the coarse to fine spatial
interpolation, fine to coarse communication, and temporal
interpolation (see Sec. II-D1) is performed on the host as
the data is received from neighboring MPI ranks.

For the fluid component of the cell-resolved simulation,
kernels are launched with each thread acting upon a single
LBM point. The thread computes the collision update for
the given LBM point and then writes the streamed particle
distributions to its neighboring LBM points. The collide and
stream operations are performed in a fused kernel so as to
decrease reads and writes to main memory [31].

For the deformable cell component of the simulation, ker-

235

nels are launched on either cell vertices or elements. The
immersed boundary interpolation, spreading, and advection
kernels are launched with each thread working on a particular
vertex residing on the current MPI task. The finite element
force calculation kernel is launched on all elements ‘owned’
by an MPI rank with the updated force being written to
the constitutive vertices of a given element. To optimize
performance on the GPU, all buffers relating to the fluid and
the deformable cells have been arranged in the structure of
arrays (SoA) format. This memory layout enables overlapped
memory accesses of data buffers such as the LBM distribution
data, fluid body forces, cell positions, cell velocities, and
cell forces. As the amount of memory available on GPUs is
significantly less than CPUs, we aimed to store the minimum
amount of data needed to perform updates. At a minimum,
each fluid point requires 408 bytes to store two copies of the
19 discrete velocities, a force vector, the indirect streaming
stencil consisting of 19 ints, and its indirect array location.
IBM cells are discretized by 642 vertices comprising 1,280
elements per cell. Therefore, each cell requires a minimum of
51 kilobytes to store vectors of forces, velocities, positions,
and other supporting data.

Details on optimizations made such as buffer packing to
enable contiguous memory transfers and partial updates to
overlap communication and computation are in Sec. II-F.

2) Per-Node Resource Allocation: The bulk fluid is where
inter-task communication, the systemic-scale bulk LBM sim-
ulation, and the window-to-bulk coupling are implemented.
For all performance results reported, the code makes use of
all 42 cores across the dual sockets of POWER9 CPUs on
Summit. Specifically, 42 MPI ranks per node were used, with
36 tasks assigned to the bulk fluid region and 6 MPI ranks
to the window region. Code was implemented in C++ and
compiled on Summit using the IBM XL compiler (v16.1.1),
Spectrum MPI (v10.4.0.3), and CUDA 11.

3) MPI Rank Decomposition of APR Method: When de-
veloping the paradigm for allocation of resources, the main
parallelization choice was whether to have the window and
bulk threads be within a parent MPI rank or whether MPI ranks
would be decomposed into window and bulk MPI ranks. There
would be very little shared information between a window and
bulk process residing on the same socket or node due to the
fact that the smaller real dimensions of the window and the
movement of the window mean that processes of the window
that are spatially adjacent to a bulk process would be spread
across the entirety of the simulation. Therefore, in practice,
depending on the problem size, a relatively small portion of
the bulk simulation will be required to communicate with the
window simulation tasks. Here, we implement the latter design
choice of using MPI subcommunicators to decompose the
window and bulk tasks. This MPI-based decomposition allows
for more flexibility when allocating computational resources
on a fractional basis between the window and bulk versus an
on-node parallelization that decomposes the two simulations
among threads within a given process. To determine the
division of resources, the user must specify the fraction of

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 02:58:45 UTC from IEEE Xplore. Restrictions apply.

MPI ranks to devote to the window.

The bulk fluid part of the simulation is set up by first
voxelizing its domain given an input triangular mesh de-
scribing the surface of the geometry to be modeled. The
window part of the simulation is set up by defining a high
resolution rectangular box, corresponding to a desired window
size, within the bulk domain. Since the window part of the
simulation is always shaped as a rectangular prism, we use
a simple geometrical algorithm to break down the window
evenly into equally sized subproblems based on the proportion
of total MPI ranks devoted to the window in the simulation.
The window is initially divided into three pieces and then
subsequently divided in half on the longest dimensions so that
the window is as close to ideally balanced as possible to the
three GPUs available per socket on Summit. It is assumed
that work is evenly spatially distributed across all window MPI
ranks. This assumption is justified for the simulation due to the
uniform resolution of the Cartesian LBM grid. The bulk part
of the simulation is separately load balanced on its respective
MPI subcommunicator using a recursive bisection algorithm
described in [32].

To determine which tasks communicate across the boundary
between the coarsely-resolved bulk and the finely-resolved
window MPI ranks we communicate the bounds of the window
at the start of the simulation and every time the window
moves. Checks for window moves are done at a user-controlled
frequency to amortize collective operations. Once the window
and bulk tasks have determined neighbor relations, tasks that
are adjacent to the multi-resolution boundary update their
communication partners and the window MPI ranks re-use
the same initially allocated CPU and GPU buffers to execute
the multi-resolution operations. Synchronization between bulk
and window MPI ranks spatially adjacent to each other occurs
during the coarse to fine and fine to coarse multi-resolution
coupling operations as illustrated in Fig. 2.

F. Concurrency and Buffer Packing for Optimal Performance

1) Overlap Between Bulk and Window time steps: A dia-
grammatic depiction of the overall algorithm for our method
over one bulk time step is provided in Fig. 2. Due to the nature
of LBM and the relationship between physical time step size
and physical spacing between lattice points, n = At./Ats
window time steps correspond to one bulk time step. Thus,
care must be taken in designing this overall algorithm to
optimally balance the window/bulk components. We therefore
optimized our algorithm to best overlap compute-intensive
simulation time steps on the GPU/window with the CPU/bulk.

As shown in Fig. 2, we first execute the LBM in the
region encapsulating the border between window and bulk.
Essentially, this setup splits part of the time step so that the
streaming discrete velocities from the bulk to the window are
transmitted at the beginning of the bulk time step. By partially
updating the domain, the rest of the fluid in the bulk domain
can be updated simultaneously while the window completes its
operations to finally compute the requisite discrete velocities
in the other direction to complete the two-way coupling

236

between the window and bulk domains. The communication
from coarse to fine prior to updating the majority of the
bulk domain aligns the barrier between window and bulk
so that they only need to synchronize every time step for
the bulk and every n time steps for the window, thereby
facilitating overlapping window/bulk computations. Without
the partial update of points that the window task depends
upon, the overall time for a time step would be the sum of
the bulk and window, rather than the maximum. The bulk and
window calculations subsequently proceed in parallel, at the
end of which distribution functions are transferred from the
fine window grid to inform the bulk simulation at the end of
the time step.

2) Optimizing Communication Through Buffer Packing:
Communication between MPI ranks requires first moving data
between the host and device. Inefficient device-host transfers
are significant potential bottlenecks as even modern intercon-
nects such as NVLink have low bandwidth relative to HBM2
and DDR. In our case, communicated data is not coalesced and
is laid out differently on the host and device. The host uses
an array of structures (AoS) layout for ease of development
while utilizing the sophisticated caching and lower latency
on cache misses available on CPUs. The device uses an
SoA format described above as it facilitates adjacent threads
operating on contiguous data. Our communication routines
transfer a high volume of data on the order of hundreds of
MB per node and thus achieving high bandwidth is crucial to
application performance. A naive solution of making many
small transfers results in low transfer bandwidth and high
latency. Asynchronous small data transfers launched in parallel
are also costly because they cannot be overlapped easily with
computation, they stall dependent intranode communication,
and they compete for DDR bandwidth with the memory bound
CPU bulk simulation.

To optimize transfer performance, we pack data into con-
tiguous buffers before copying between the device and host—
an approach shown to dramatically reduce data movement in
GPU accelerated MPI applications [33]. Custom GPU kernels
pack data to enable large, contiguous high bandwidth copies
to page-locked CPU memory. Similarly, data received from
MPI communication is packed before a host-device copy and
unpacked with a GPU kernel. One trade-off of this approach
is the additional memory on the device-side required for the
packed buffer, though the buffer size is small in comparison
to other data structures as communicated data is proportional
to surface area while owned data is proportional to volume.
Another trade-off is the overhead associated with packing
and unpacking; however, this overhead is far outweighed
by improved achieved transfer bandwidths that cut overall
application run time in half.

The data vectors that are on device were allocated using
CUDA’s unified memory which aided in the ease of develop-
ment and in reducing the complexity of initialization routines.
However, we found that manually triggering host-device trans-
fers prior to inter-node communication using cudaMemcpy
resulted in faster performance for computational routines. We

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 02:58:45 UTC from IEEE Xplore. Restrictions apply.

hypothesize that this performance improvement is due to the
manual memory transfers obviating the need for any latency in
computational kernels while waiting for hardware to migrate
the required data.

III. RESULTS AND DISCUSSION

We systematically establish the accuracy of our method by
validating the individual components of the algorithm. Then,
we present scaling results for the APR model on the Summit
supercomputer. Finally, we choose a realistic microvessel
network as an example and provide a memory cost breakdown,
focusing on the bandwidth saving due to the APR algorithm.

A. Validation of Multi-Resolution and Multi-Physics

To validate the APR algorithm, we first focused on a fluid-
only simulation and compare against an analytical solution for
the velocity field within a complex geometry to isolate and
validate the multi-resolution component. We then demonstrate
that the mapped out trajectories of a circulating tumor cell
(CTC) through an expanding microchannel using both APR
and eFSI are consistent. These experiments confirm the ability
of the APR method to accurately capture both the fluid profile
and the path of a single cell without requiring the resources of
a fully cell-resolved simulation, thereby enabling simulations
that would not be tractable without our APR approach.

(a)

Fig. 4. Demonstration of multi-resolution validation using flow through a
helix of circular cross-section. (a) General schematic of the helix geometry
with an inset of simulation results for depicting fluid streamlines through the
bulk region and the finely resolved window. (b) Analytical solution [34] for
the secondary flow field. (c) Simulation streamlines for the secondary flow
field, through both the bulk and window regions, with contours giving the
axial velocity component in this plane. The yellow box depicts the region of
the window with a 10:1 resolution ratio and a 2 um bulk resolution. (d) A
zoomed-in version of subfigure (c) showing the smooth secondary flow field
between the window in the yellow box and the bulk outside of the box. The
differences in resolution are visible through the node size in the bulk domain.

1) Validating Fluid dynamics Component of APR Simu-
lation: To first validate the coupling of different resolution
grids, we considered flow through a helical tube of circular
cross-section within which a finely resolved window is placed.
The helix geometry facilitates comparison with an analytical

237

TABLE I
SIMULATION L2 ERROR NORMS e FOR FLOW THROUGH A HELIX BASED
ON COMPARISON TO ANALYTICAL SOLUTIONS.

Resolution ratio (n) e bulk e wind
2 0.0288 0.01013
5 0.0288 0.00993
10 0.0288 0.00997
20 0.0288 0.00995

solution and, importantly, one in which all three velocity
components are non-zero—thus providing a sufficiently robust
validation. Furthermore, such a circuitous vessel is represen-
tative of the vascular geometric complexity which occurs in
physiology. We have also conducted comparisons of the APR
algorithm with analytical solutions for Poiseuille flow and
Womersley flow, representing both steady state and oscillatory
flow states common in the vasculature. In contrast to [3],
fluid dynamics validation is required as the APR method
uses multiple resolutions. Previous multi-block methods have
typically used resolution ratios of n = 2 or 4 at the sharp
interface between grids (e.g., [13], [14], [35]), while we tested
up to n = 20 across the interface in the following section.

Fig. 4a provides a general schematic of the helix geometry.
A helix with geometric parameters e v = 0.05 and an
axial length traversing one turn was used, where € is the
dimensionless curvature and 7 is the dimensionless torsion.
The flow was characterized by Re = Upa/v = 50, and the
helix cross-section is set to have radius ¢ = 50 ym. We
imposed an inlet flow rate corresponding to a Poiseuille flow
with Uy = 2 m/s and a kinematic viscosity of 2.0 x 10% m/s2.
These parameters were chosen to result in a cross-sectional
secondary flow field with non-negligible asymmetry to amplify
the 3D nature of the flow. For the finely resolved window, we
used resolution ratios n = 2, 5, 10, and 20 for a fixed bulk
resolution. The window has a side length of 30 um, and was
placed on the helix centerline midway across the axial distance
spanned by the geometry. For the LBM simulation parameters,
we used a coarse grid relaxation time (t.) of 0.525 and a
corresponding fine-grid relaxation time (T;) determined from
Eq. 7 for each of the resolution ratios. This T. value was
chosen such that Ty < 1, maintaining LBM’s accuracy [36].

Simulation results are provided in Fig. 4 and Table I for
each of the cases. The inset in Fig. 4a provides streamlines
through the geometry and illustrates the placement of the
window within the helix and the general flow configuration.
Fig. 4c depicts the secondary flow field at a cross-section
which intersects the window for a representative case, with
streamlines shown within both the bulk and window regions to
illustrate the recirculation patterns predicted by the simulation.
Both the contours of the axial velocity component in this plane
and the streamlines are in good qualitative agreement with the
analytical result shown in Fig. 4a.

We quantified the simulation accuracy for each case by
computing the Ly norms based on comparison to published

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 02:58:45 UTC from IEEE Xplore. Restrictions apply.

]
L]

—
O
~

€
5
{ __ < >0
9]
" Velocity magnitude (m/s) IS
z 00 002 0.04 006 008 0.1 g
(b)y = — — B 40
5 o
& 0.100 o
s Expansion start 9 Expansion start
5 00759 — eFsl S 30 —— eFsl
Eoo0s0d4 /[o e APR g | A e APR
L \-w—-—...... T T T T T
& 0.025 1 200 400 600 800 1000
_i 0.000 +—— T T r : CTC Z Position (um)
e

200 400 600 800

CTC Z Position (um)

1000

Fig. 5. (a) Visualization consisting of time series where the cell in the window is moving across the expansion channel. The background pseudocolor represents
an instantaneous velocity profile in the center of the geometry as computed by the coarsely resolved bulk domain part of the simulation. (b) A comparison
of the deformation measured in the CTC as computed by the APR and eFSI models. The Taylor deformation parameter calculated as a the following ratio
D =(A—-B)/(A+ B), where A and B are the major and minor axis lengths, respectively. (c) A comparison of CTC trajectory in an expansion geometry
using the APR vs eFSI models. The radial displacement of the cell with respect to the centerline using the APR model is within 1% of the displacement
using the eFSI model. The vertical yellow line in both (b) and (c) represents the axial location of the expansion in the channel.

analytical solutions for helical flow [34]. We defined our L2
norm in Eq. 11, with the error e across points 7 in the slice.
Where u, (i) is the simulated velocity vector at location 4,
and u,(4) is the analytical velocity vector at location ¢, and
Q2 represents the domain of a slice. All vector squares were
taken as dot products (e.g., u?> = u - u).

ZieQ (us(4) — ua(i))z
>ico ug

These values are provided in Table I, broken out in terms
of the bulk and window regions, with good overall agreement
demonstrated by values ranging from approximately 1-3%. As
bulk resolution is fixed and the accuracy within the window
domain is gated by the accuracy of the bulk simulation,
convergence with increasing n is not expected. Rather, these
error values remaining consistent indicates that the multi-block
coupling scheme remains both accurate and stable even for
large resolution ratios between the window and bulk. This
accuracy and stability persists despite large n. Overall, we
demonstrated that the APR model falls within 3% of the ana-
lytical solution for multiple resolution ratios, which validates
accurate fluid dynamics modeling in complex geometries using
the APR algorithm.

2) CTC Tracking Using APR Predicts the Same Trajectory
as a Fully Resolved Simulation: Next, we utilized the APR
method to track the trajectory of a CTC through an expanding
channel and compare it with that of a fully resolved simulation.
Expanding microfluidic channels have been used to study the
motion of cells towards the channel walls [37], aiding in
understanding the role of hemodynamics on the likelihood of
cell margination. The underlying fluid profile in an expansion
leads to a change in radial distance away from the center line

1/2

an

238

of the channel, rather than letting the cell travel in a straight
line down a simple vessel. This validation was used to confirm
whether the APR model can accurately capture the motion of
the cell compared to its eFSI counterpart.

Fig. 5a shows a general schematic of the expanding mi-
crochannel. The channel has a length of 2000 um with a width
that expands from 200 ym to 400 um at the z = 400 ym mark.
For boundary conditions, we input an inlet velocity of 0.1 m/s.
We generated a window with side length 120 yum with the
underlying fluid modeled as blood plasma with a viscosity of
1.2 x 10~%m?2 /s. The window utilized a lattice grid spacing of
Axzy =0.5pum and the CPU-based bulk flow component used
a lattice grid spacing of Az, =2.5um, leading to a lattice
resolution ratio of n = 5. This window resolution is an order of
magnitude smaller than the length scale of an individual cell,
which is important to most accurately capture the fluid flow
field which conveys the CTC and in turn accurately resolve
the complex deformation of the cell.

A visualization of the CTC moving over time and the
corresponding window updating its position are shown at
several timepoints in Fig. 5a. Quantitative results in terms of
CTC deformation and radial displacement from the centerline
of the channel are presented in Fig. 5a and Fig. 5b for the
APR and eFSI models. For reference, the gold line indicates
the location of the sudden expansion in width. The trajectories
from both eFSI and the APR model showed strong agreement
as they overlap for most of the simulation and difference in
the asymptotic trajectories of less than 1%, validating the APR
model’s ability to accurately capture the motion of a single cell
through a geometry.

To determine the comparative computational costs of a large
eFSI model, we measured the time to solution for simulating

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 02:58:45 UTC from IEEE Xplore. Restrictions apply.

CTC traversal in an expansion channel. We found that the APR
and eFSI CTC tracking simulations used 22.7 and 287.9 node-
hours using six GPUs per node on Summit, respectively. Both
simulations were run on 22 nodes and used GPU acceleration
with different configurations specific to the models used. We
extracted times spent calculating the fluid-structure interaction
of the deformable CTC with the surrounding fluid over the
course of the parallel simulation. These results emphasize how
the APR model can significantly decrease the computational
expense of large-scale cell-tracking studies and open new
simulation paradigms for longer length- and time-scale runs.

B. Scaling the APR Model to 512 Nodes (3,072 V100 GPUs)

o 1 \
8 1 *\\‘ e,
) N
c ‘\\ k
S 100 4 S \ @
b~] \® \\\
S 1 \\. N
= E AN \ AN (]
— - N\, [] \\
(] N, N
o B \\ \\
“EJ i \\\ AN
£

wldr—

1 4 16 64 256

Summit node count

Fig. 6. Strong scaling of the coupled window and bulk simulation on Summit,
using simplified geometries. The left curve is for a system with a cubic bulk
domain side length of 7.5 mm and a cubic window domain side length of
0.26 mm—corresponding to 4.2 x 10% and 1.4 x 108 fluid points in the bulk
and window, respectively. The right curve is for a larger system with a cubic
bulk domain side length of 18.9 mm and a cubic window domain side length
of 0.66 mm—corresponding to 6.7 x 109 and 2.3 x 10° fluid points in the
bulk and window, respectively. The dashed line represents ideal scaling and
the shaded area represents the 95% confidence interval of ten repeated runs.

We completed strong and weak scaling tests on the Sum-
mit supercomputer to assess the APR performance. A high-
resolution (0.5 pm) cubic window containing a single circulat-
ing tumor cell centered within a coarse (10 um) cubic domain
was used. This simplified geometry allowed for straightfor-
ward scaling and analysis of the APR implementation free of
load imbalance across a range of system sizes.

For both the strong and weak scaling results, resource
allocation divided each Summit node on a per-CPU and per-
GPU basis. Specifically, we assign one MPI rank per CPU
core, using all cores rather than just one per GPU. For Summit,
with 42 CPU cores across two sockets, this corresponds to 36
cores per node allocated to the bulk (coarse) fluid and 6 cores
along with all 6 V100 GPUs per node allocated to the high-
resolution window. Additionally, we repeated each strong and
weak scaling run ten times to capture variability we observed
in system performance.

The strong scaling results are shown in Figure 6. Two
system sizes were run, starting from inputs designed to maxi-
mize memory usage for 1 and 16 Summit nodes. The smaller
system contained 418M fluid points in the bulk and 141M

239

100 | ===@g-=========—mmmmmmmmmm
80
60
40

20

weak scaling efficiency (%)

0 T T T T
8 32 128

Summit node count

T
512

Fig. 7. Weak scaling of the coupled window and bulk simulation on Summit,
using simplified geometries. The bulk region had 4.2 x 108 fluid points per
node, the window region had 1.4 x 10%® fluid points and one CTC. The
dashed line represents ideal scaling and the shaded area represents the 95%
confidence interval of ten repeated runs.

fluid points in the window, while the larger system contained
6.7B fluid points in the bulk and 2.3B fluid points in the
window. The largest run consisted of 10,752 MPI ranks and
used 1,536 GPUs on 256 nodes of Summit. Both systems
showed reasonable strong scaling performance with a relative
speedup between six and seven times given a 16-fold increase
in resources. This is consistent with previous observations
of memory-bound code on GPUs [38], [39], which are less
sensitive to GPU occupancy than compute-bound applications.
The timing variability increased with job size, but overall were
smaller than seen in the weak scaling results.

Weak scaling results are shown in Figure 7, run with
5.6 x 108 fluid points per node (4.2 x 10® bulk, 1.4 x 108
window), from 1 to 512 Summit nodes. We observed weak
scaling efficiency over 75% out to 64 nodes and above 60%
at 256 and 512 nodes. We also saw significant run-to-run
performance variability emerge, ranging from a coefficient of
variation (standard deviation normalized by the mean) of 0.5%
to up to 19%. Variability was under 12% for runs smaller than
32 nodes and was bigger at nodecounts above 16 nodes. We
attributed this to interference from other jobs’ communication
traffic, as the increased time is observed almost entirely
in communication routines. To minimize the impact of this
contention on our ability to accurately assess the scalability
of our implementation, we executed multiple runs at different
times and present the average results over ten repetitions in
Figure 7. Our approach reflects the reality of running on a
shared resource.

C. Memory Savings Due to Application of APR

To quantify the increase in fluid volume that can be captured
at cellular resolution on a fixed resource provided by APR
over state of the art eFSI models, we compared the maximum
volume that could be captured on a range of node counts, as
shown in Fig. 8. Using 256 nodes of Summit—corresponding
to 24.5TB of GPU memory, the APR method achieves a

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 02:58:45 UTC from IEEE Xplore. Restrictions apply.

TABLE II
ESTIMATED MEMORY USAGE AND RESOURCES ALLOCATED FOR THE DOUBLE BRANCHING MICROVESSEL SHOWS THAT USING THE APR MODEL
SHRINKS THE PROBLEM SIZE FROM 235 NODES TO ONE NODE ON SUMMIT.

Model Fluid Resolution = Num Fluid Pts Memory Resources

APR (window) 0.5um 8.1 x 107 33.0 GB 3 NVIDIA V100 GPUs (fits on 1 node)

APR (bulk) 2.5um 4.4 x 108 183.0 GB 2 IBM Power9 CPUs (fits on 1 node)

eFSI 0.5 pm 5.5 x 1010 22.5 TB 1406 NVIDIA V100 GPUs (fits on 235 nodes)

simulated domain size of > 100 mL, whereas eFSI is limited
to approximately 10~2 mL simulated volume.

Therefore, by using APR we were able to expand the
available volume that can be traversed by the cell of interest
by four orders of magnitude. Through these advancements,
we bring the vessel sizes that can be simulated with cell-
resolved flow from vessels on the order of fractions of microns
to vessels on the order of centimeters.

To further explore the impact of the APR memory savings,
we investigated its use for creating “digital twins” of mi-
crofluidic and bioprinted devices. Using an example bioprinted
vascular bed from literature [40], we demonstrated that the
eFSI approach would require 235 nodes on Summit (over 22
TB), while the APR model would require only 1 node (250 GB
of memory). The vessel dimensions are approximately 18 mm
from end-to-end with a volume of 6.9 mm?®. Dimensions for
the finely-resolved grid are 0.45 mm by 0.45 mm by 0.05 mm,
accounting for 0.1% of the total volume.

Comparisons of the theoretical memory and resource usage
for the APR and eFSI models for the bioprinted vascular bed
are shown in Table II. Resources are presented in terms of
DRAM and HBM found on each compute node on the Summit
supercomputer. The number of fluid points were calculated for
the APR window and bulk components at resolutions Az, =
0.5um and Az, = 2.5um, while the eFSI model assumed
a cell-resolved grid spacing of 0.5pum throughout the entire
domain. A lower bound of 408 bytes per fluid point was
utilized for these memory and resource calculations, based on

-

g 102 -0"'.

v e

IS P e

E] U

S 10° A ',,o—’

g -@- work presented here (APR)

s —e— current SOTA (window-only)

= 10—2 —~

3

E

(]

T 1074

.

9]

>

O T T T T TTTTIT T T T TTTTI T T T 17T
10° 10! 102

Summit node count

Fig. 8. Effective simulation volumes enabled through APR technique pre-
sented in this work, compared with state of the art (SOTA). Numbers are
derived from successful weak scaling experimental setups.

240

the breakdown described in Sec. II-E1.

Continuing with the aforementioned asymmetric bioprinted
vessel, we additionally simulated a window within the geom-
etry on 32 nodes of Lassen with a speed of 0.19 seconds
per coarse time step. Fig. 9 shows the fluid streamlines and
starting cell state after the fluid had equilibrated. These results
highlight the length scales within one simulation from a cell
of 12 um in diameter to a vessel on the order of 18 mm.

IV. CONCLUSION AND DISCUSSION

Current eFSI models are computationally limited to model-
ing small sub-regions and brief time domains. The presented
APR method provided an order of magnitude reduction in
compute costs to provide a three-fold benefit: 1) cellular reso-
lution at previously intractable volumes, which will facilitate
new research in the areas of cancer biology and microfluidic
device design, among others; 2) extension of the time domain
that can be modeled by moving the requirement from full
leadership-scale cluster runs to single node resources that can
be more readily dedicated for long simulation durations; and
3) empowering searches of a very large number of cell types
or properties to quantify their impact on cell transport.

In this work, we introduced the APR method and demon-
strated its accuracy at capturing both the fluid and cellular
components. By specifically designing the method to take ad-
vantage of heterogeneous architectures, communication times
were minimized and data movement optimized. To achieve
these goals, we addressed several algorithmic challenges. We
coupled the sub-micron cell-resolved window to the coarser
bulk domain to bridge the disparity in relevant length scales.
The multi-resolution capability was transformed to an adaptive
model which conforms to the problem by tracking, moving,
and updating the fine resolution domain over the course of sim-
ulation. The problem of resource allocation was ameliorated
by balancing the compute and memory requirements of the
fully-coupled APR model with careful splitting of simulation
resources based on the problem sizes encountered.

Designs for next generation microfluidic devices as well as
questions regarding cellular interaction and the role of clusters
in cancer metastasis would benefit from the APR approach
which is designed from the ground up to improve time-to-
solution, volume modeled, resolution captured, and per-node
throughput for fluid-structure interaction models. In order
to establish the validity of the framework, we focused this
work on the introduction of the adaptive physics refinement
itself and systematically tested the multi-resolution coupling,

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 02:58:45 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Simulation of a large, asymmetric bioprinted vascular bed (via [40]) using the APR algorithm. Streamlines in the window at 4.0 x 10° fine time
steps, corresponding to 8.0 x 10 coarse time steps in the bulk are visualized. The cell is also presented at the same time—which is when it was inserted
into the simulation. The two insets progressively zoom to the simulated cell. The top-right inset shows the simulated cell with a cut-away from the nearby

streamlines.

the heterogeneous parallelization scheme, and algorithms to
efficiently move the window without introducing erroneous
forces or momentum under the representative use case of a
single CTC moving in a large complex geometry. We expect
this crucial work to set the stage for future studies leveraging
APR to capture multiple cell interactions at the centimeter or
even meter scale.

ACKNOWLEDGMENT

We would like to thank Cyrus Tanade, Samreen T. Mahmud,
Gregory Herschlag, and Marianna Pepona for their thoughtful
feedback throughout the design and writing stages of this
project.

This manuscript has been authored by UT-Battelle, LLC
under Contract No. DE-ACO05-000R22725 with the U.S. De-
partment of Energy. This work was performed under the
auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-ACS52-
07NA27344. The United States Government retains and the
publisher, by accepting the article for publication, acknowl-
edges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish
or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes. The
Department of Energy will provide public access to these
results of federally sponsored research in accordance with
the DOE Public Access Plan (http://energy.gov/downloads/
doe-public-access-plan). Research reported in this publication
was supported by the National Science Foundation under
Award Number 1943036 and National Institutes of Health
under Award Number UO01-CA253511. Computing support
for this work came from the DOE INCITE program and the

241

Lawrence Livermore National Laboratory (LLNL) Institutional
Computing Grand Challenge program.

REFERENCES

[1] R. Siegel, E. Ward, O. Brawley, and A. Jemal, “Cancer statistics, 2011,”
CA: A Cancer Journal for Clinicians, vol. 61, no. 4, pp. 212-236, 2011.
D. Wirtz, K. Konstantopoulos, and P. C. Searson, “The physics of cancer:
the role of physical interactions and mechanical forces in metastasis,”
Nature Reviews Cancer, vol. 11, no. 7, pp. 512-522, 2011.

G. Herschlag, J. Gounley, S. Roychowdhury, E. W. Draeger, and
A. Randles, “Multi-physics simulations of particle tracking in arterial
geometries with a scalable moving window algorithm,” in 2019 IEEE
International Conference on Cluster Computing (CLUSTER). 1EEE,
2019, pp. 1-11.

M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic
partial differential equations,” Journal of Computational Physics, vol. 53,
no. 3, pp. 484-512, Mar. 1984.

J. Ames, D. F Puleri, P. Balogh, J. Gounley, E. W. Draeger, and
A. Randles, “Multi-GPU immersed boundary method hemodynamics
simulations,” Journal of Computational Science, p. 101153, 2020.

A. Dubey, A. S. Almgren, J. B. Bell, M. Berzins, S. R. Brandt, G. L.
Bryan, P. Colella, D. T. Graves, M. Lijewski, F. Loffler, B. O’Shea,
E. Schnetter, B. van Straalen, and K. Weide, “A survey of high level
frameworks in block-structured adaptive mesh refinement packages,” J.
Parallel Distributed Comput., vol. 74, pp. 3217-3227, 2014.

D. E. Keyes, L. C. Mclnnes, C. Woodward, W. Gropp, E. Myra,
M. Pernice, J. Bell, J. Brown, A. Clo, J. Connors, E. Constantinescu,
D. Estep, K. Evans, C. Farhat, A. Hakim, G. Hammond, G. Hansen,
J. Hill, T. Isaac, X. Jiao, K. Jordan, D. Kaushik, E. Kaxiras, A. Koniges,
K. Lee, A. Lott, Q. Lu, J. Magerlein, R. Maxwell, M. McCourt,
M. Mehl, R. Pawlowski, A. P. Randles, D. Reynolds, B. Riviere,
U. Riide, T. Scheibe, J. Shadid, B. Sheehan, M. Shephard, A. Siegel,
B. Smith, X. Tang, C. Wilson, and B. Wohlmuth, “Multiphysics simula-
tions: Challenges and opportunities,” The International Journal of High
Performance Computing Applications, vol. 27, no. 1, pp. 4-83, Feb.
2013.

F. Palacios, M. R. Colonno, A. C. Aranake, A. Campos, S. R. Copeland,
T. D. Economon, A. K. Lonkar, T. W. Lukaczyk, T. W. Taylor, and
J. J. Alonso, “Stanford University Unstructured (SU2): An open-source
integrated computational environment for multi-physics simulation and
design,” AIAA paper, vol. 287, p. 2013, 2013.

(2]

[3

(71

=

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 02:58:45 UTC from IEEE Xplore. Restrictions apply.

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

A. P. Randles, V. Kale, J. Hammond, W. Gropp, and E. Kaxiras,
“Performance analysis of the lattice Boltzmann model beyond Navier-
Stokes,” in Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th
International Symposium on. 1EEE, 2013, pp. 1063-1074.

A. Randles, E. W. Draeger, and P. E. Bailey, “Massively parallel
simulations of hemodynamics in the primary large arteries of the human
vasculature,” J Comp Sci, vol. 9, pp. 70-75, 2015.

J. Gounley, E. W. Draeger, and A. Randles, “Immersed Boundary
Method Halo Exchange in a Hemodynamics Application,” LNCS, vol.
11536, pp. 441-455, 2019. [Online]. Available: https://doi.org/10.1007/
978-3-030-22734-0{_}32

S. S. Vazhkudai, B. R. de Supinski, A. S. Bland, A. Geist, J. Sexton,
J. Kahle, C. J. Zimmer, S. Atchley, S. Oral, D. E. Maxwell et al., “The
design, deployment, and evaluation of the coral pre-exascale systems,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis. 1EEE Press, 2018,
p. 52.

D. Yu, R. Mei, and W. Shyy, “A multi-block lattice Boltzmann method
for viscous fluid flows,” International journal for numerical methods in
Sluids, vol. 39, no. 2, pp. 99-120, 2002.

Y. Peng, C. Shu, Y.-T. Chew, X. Niu, and X.-Y. Lu, “Application
of multi-block approach in the immersed boundary—lattice Boltzmann
method for viscous fluid flows,” Journal of computational physics, vol.
218, no. 2, pp. 460—478, 2006.

D. Yu and S. S. Girimaji, “Multi-block lattice Boltzmann method:
extension to 3D and validation in turbulence,” Physica A: Statistical
Mechanics and its Applications, vol. 362, no. 1, pp. 118-124, 2006.

Y. Sui, Y. Chew, P. Roy, and H. Low, “A hybrid method to study
flow-induced deformation of three-dimensional capsules,” Journal of
Computational Physics, vol. 227, no. 12, pp. 6351-6371, 2008.

S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,”
Ann Rev Fluid Mech, vol. 30, no. 1, pp. 329-364, 1998.

Z. Guo, C. Zheng, and B. Shi, “Discrete lattice effects on the forcing
term in the lattice Boltzmann method,” Phys Rev E, vol. 65, no. 4, p.
046308, 2002.

J. Gounley, E. W. Draeger, and A. Randles, “Numerical simulation of
a compound capsule in a constricted microchannel,” Procedia Comput
Sci, vol. 108, pp. 175-184, 2017.

J. Walter, A.-V. Salsac, D. Barthés-Biesel, and P. Le Tallec,
“Coupling of finite element and boundary integral methods for
a capsule in a Stokes flow,” International Journal for Numerical
Methods in Engineering, pp. n/a—n/a, 2010. [Online]. Available:
http://doi.wiley.com/10.1002/nme.2859

F. Cirak, M. Ortiz, and P. Schroder, “Subdivision surfaces: a new
paradigm for thin-shell finite-element analysis,” Int J Numer Methods
Eng, vol. 47, no. 12, pp. 2039-2072, 2000.

S. Shrivastava and J. Tang, “Large deformation finite element analysis
of non-linear viscoelastic membranes with reference to thermoforming,”
The Journal of Strain Analysis for Engineering Design, vol. 28, no. 1,
pp. 31-51, 1993.

A. Yazdani and P. Bagchi, “Influence of membrane viscosity on capsule
dynamics in shear flow,” Journal of Fluid Mechanics, vol. 718, p. 569,
2013.

O.-Y. Zhong-Can and W. Helfrich, “Bending energy of vesicle mem-
branes: General expressions for the first, second, and third variation of
the shape energy and applications to spheres and cylinders,” Physical
Review A, vol. 39, no. 10, p. 5280, 1989.

P. Balogh and P. Bagchi, “A computational approach to modeling
cellular-scale blood flow in complex geometry,” J Comp Phys, vol. 334,
pp. 280-307, 2017.

C. S. Peskin, “The immersed boundary method,” Acta Numerica, vol. 11,
pp. 479-517, 2002.

P. Balogh, J. Gounley, S. Roychowdhury, and A. Randles, “A data-driven
approach to modeling cancer cell mechanics during microcirculatory
transport,” Scientific reports, vol. 11, no. 1, pp. 1-18, 2021.

O. Filippova and D. Hinel, “Grid Refinement for Lattice-bgk models,”
Journal of computational Physics, vol. 147, no. 1, pp. 219-228, 1998.
A. Dupuis and B. Chopard, “Theory and applications of an alternative
lattice boltzmann grid refinement algorithm,” Physical Review E, vol. 67,
no. 6, p. 066707, 2003.

E. E. Catmull and R. Rom, “A class of local interpolating splines,”
Computer Aided Geometric Design, pp. 317-326, 1974.

242

[31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

(40]

M. Wittmann, T. Zeiser, G. Hager, and G. Wellein, “Comparison of
different propagation steps for lattice Boltzmann methods,” Computers
& Mathematics with Applications, vol. 65, no. 6, pp. 924-935, 2013.
A. Randles, E. W. Draeger, T. Oppelstrup, L. Krauss, and J. A. Gunnels,
“Massively parallel models of the human circulatory system,” in High
Performance Computing, Networking, Storage and Analysis, 2015 SC-
International Conference for. IEEE, 2015, pp. 1-11.

J. Jenkins, J. Dinan, P. Balaji, T. Peterka, N. F. Samatova, and R. Thakur,
“Processing MPI derived datatypes on noncontiguous GPU-resident
data,” IEEE Transactions on Parallel and Distributed Systems, vol. 25,
no. 10, pp. 2627-2637, 2014.

E. Tuttle, “Laminar flow in twisted pipes,” Journal of Fluid Mechanics,
vol. 219, pp. 545-570, 1990.

D. Lagrava, O. Malaspinas, J. Latt, and B. Chopard, “Advances in multi-
domain lattice boltzmann grid refinement,” Journal of Computational
Physics, vol. 231, no. 14, pp. 4808-4822, 2012.

T. Kriiger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and
E. M. Viggen, “The lattice Boltzmann method,” Springer International
Publishing, vol. 10, no. 978-3, pp. 4-15, 2017.

A. Jain and L. L. Munn, “Determinants of leukocyte margination in
rectangular microchannels,” PloS one, vol. 4, no. 9, p. €7104, 2009.

J. Langguth, X. Cai, and M. Sourouri, “Memory bandwidth contention:
communication vs computation tradeoffs in supercomputers with mul-
ticore architectures,” in 2018 IEEE 24th International Conference on
Parallel and Distributed Systems (ICPADS). 1EEE, 2018, pp. 497-506.
A. Ayala, S. Tomov, X. Luo, H. Shaeik, A. Haidar, G. Bosilca, and
J. Dongarra, “Impacts of multi-GPU MPI collective communications on
large FFT computation,” in 2019 IEEE/ACM Workshop on Exascale MPI
(ExaMPI). 1EEE, 2019, pp. 12-18.

W. F. Hynes, M. Pepona, C. Robertson, J. Alvarado, K. Dubbin,
M. Triplett, J. J. Adorno, A. Randles, and M. L. Moya, “Examining
metastatic behavior within 3D bioprinted vasculature for the validation
of a 3D computational flow model,” Science Advances, vol. 6, no. 35,
p. eabb3308, 2020.

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 02:58:45 UTC from IEEE Xplore. Restrictions apply.

