
Optimizing Cloud Computing Resource Usage for
Hemodynamic Simulation

William Ladd
Biomedical Engineering

Duke University
Durham, NC, USA

william.ladd@duke.edu

Christopher Jensen
Biomedical Engineering

Duke University
Durham, NC, USA

christopher.w.jensen@duke.edu

Madhurima Vardhan
Biomedical Engineering

Duke University
Durham, NC, USA

mv82@duke.edu

Jeff Ames
Biomedical Engineering

Duke University
Durham, NC, USA
jeff.ames@duke.edu

Jeff R. Hammond
HPC Software

NVIDIA Helsinki Oy
Helsinki, Finland

jeff_hammond@acm.org

Erik W. Draeger
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA, USA
draeger1@llnl.gov

Amanda Randles
Biomedical Engineering

Duke University
Durham, NC, USA

amanda.randles@duke.edu

Abstract—Cloud computing resources are becoming an in-
creasingly attractive option for simulation workflows but require
users to assess a wider variety of hardware options and associated
costs than required by traditional in-house hardware or fixed
allocations at leadership computing facilities. The pay-as-you-
go model used by cloud providers gives users the opportunity
to make more nuanced cost-benefit decisions at runtime by
choosing hardware that best matches a given workload, but
creates the risk of suboptimal allocation strategies or inadvertent
cost overruns. In this work, we propose the use of an iteratively-
refined performance model to optimize cloud simulation cam-
paigns against overall cost, throughput, or maximum time to
solution. Hemodynamic simulations represent an excellent use
case for these assessments, as the relative costs and dominant
terms in the performance model can vary widely with hardware,
numerical parameters and physics models. Performance and
scaling behavior of hemodynamic simulations on multiple cloud
services as well as a traditional compute cluster are collected
and evaluated, and an initial performance model is proposed
along with a strategy for dynamically refining it with additional
experimental data.

Index Terms—Cloud computing, hemodynamic simulations,
computational fluid dynamics, interconnect, noise variability

I. INTRODUCTION

Non-invasive hemodynamic assessment of cardiovascular
pathologies through high-fidelity simulation holds tremendous
potential to improve patient outcomes and reduce healthcare
costs [1], [2]. State-of-the-art computational fluid dynamic
(CFD) models have been US Food and Drug Administra-
tion (FDA) approved and are being clinically adopted [3]–
[5]. However, even as hemodynamic simulation continues
to mature as a diagnostic tool, predicting the necessary
computational resources for a given study remains a key
challenge. Factors such as anatomic domain size, physical
phenomena being modeled, and the numerical precision and
spatial resolution required for accurate predictions can vary
significantly, which profoundly impact the computational pro-
file and resulting resource requirements. This variation in

computational cost is a nontrivial challenge on traditional on-
premise high performance computing (HPC) clusters, where
the hardware is well-known and predictable. The recent rise
of cloud computing as a viable resource for HPC applications
introduces additional variables that further necessitate a robust
and predictive performance model.

Cloud platforms offer pragmatic advantages for performing
hemodynamic simulations, mitigating the limitations of infras-
tructure and upfront capital costs:

1) On demand provisioning enabled by a usage-based cost
model that eliminates the problem of under-provisioned
computational resources [6], [7].

2) Flexible architectures customized for a particular work-
load and lower latency to queue a job versus a traditional
HPC center with high utilization [7]–[9].

3) Cloud infrastructures facilitate easy global (location-
independent) access and collaboration, enabling stan-
dardization of healthcare-compliance approaches [10].

4) Virtualization and application programming interfaces
(APIs) for streamlined workload management and in-
teraction [8], [11].

With HIPAA-compliant cloud providers now available, the
barriers to patient-specific hemodynamic simulations in the
cloud are far lower than with traditional supercomputing center
resources [10]. With this accessibility comes the need to
simplify run-time decisions that have traditionally been made
by computational domain experts.

In this work we make several contributions. First, we
assess the suitability of cloud computing infrastructures for
performing hemodynamic simulations with real workloads at
a scale relevant to practical use cases. We then establish
and validate a performance model to accurately guide usage
decisions. We determine how cloud hardware features affect
HPC performance by comparing benchmark applications to
real workloads using massively-parallel CFD code across

568

2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/23/$31.00 ©2023 IEEE
DOI 10.1109/IPDPS54959.2023.00063

20
23

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
is

tri
bu

te
d

Pr
oc

es
si

ng
 S

ym
po

si
um

 (I
PD

PS
) |

 9
79

-8
-3

50
3-

37
66

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
IP

D
PS

54
95

9.
20

23
.0

00
63

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 03:01:39 UTC from IEEE Xplore. Restrictions apply.

�"�!��������
������+$��������������������������
�
������+$��� ��	����
������+$��� ��	����
������+$��� �������
������+$��� �����	�

����"���
�
���!������ �������!�
������!�������������������#����"!
���!��$

��������!�
�
�����!$�� �����!����!�� �!�
������������������
�������������!����

��
��"� ��� ���!��!��

��$�	�������#)��
$%����'����# �%�&$�"'

	���"�� ��"��!����
#�!��������������!

�����������'��'#��!$%#)��$�%�#%!�"���!#��

�#%������"�*�����'+$���
��%��'�!#�� ��%("��
��
���"��!�"����"��!�%�&
��"�%� �!#�� ��%("�!�"����"��!�%�&�#%�(&�� �'�%�'(%����'��

���
�����!���%����#����"!
���!��$�

�����
������	����������
����
�

��
������������������
������
���
����������
����������������
������������
����

	��

���

���

����

��� ������+$���

Fig. 1. Overview of proposed framework for performance model-driven optimization of cloud resource usage. In the first phase (top), the Cloud Service
Provider (CSP) Option Dashboard is created by characterizing all CSP instance types. In the second phase (bottom), the performance model is tuned to create
anatomy-specific predictions for the user to drive cloud use decisions.

multiple cloud computing instances. This work also examines
the impact of interconnect speed on HPC instances of cloud
infrastructures and predicts the upper bound of performance
for applications. The relative value of compute time in terms
of raw throughput for different instances is compared and
proposed as a metric for cost comparison analysis. Overall,
we establish a framework (Figure 1) for optimizing cloud
computing resource usage and reducing the risk of inadvertent
cost overruns for blood flow simulations.

II. METHODS

In order to optimize cloud usage and reduce potential
overrun costs, it is critical that we provide the user with
a process for assessing the performance of their targeted
input file for any available cloud instance. The user can then
use an informed performance model to assess key metrics
such as time-to-solution, flops/dollar, or total cost to both
drive their instance choice and actively put in place limits
on the job to bound usage. This framework is laid out in
Figure 1. First, it is necessary to assess the performance of the
targeted algorithm. In the following sections, we introduce the
underlying algorithm and two representative implementations.
We investigate both an open source proxy application and the
production-scale code, HARVEY [12].

A. Lattice Boltzmann Method for modeling fluid mechanics
In this work, we focus on blood flow models using the lattice

Bolzmann method (LBM) to efficiently model hemodynamics
in complex, patient-specific anatomies. LBM, an alternative
solver of the Navier-Stokes equations, [13] is a stencil-based
code that is highly amenable to large-scale parallelization [14].
Derived from the Boltzmann equation of kinetic theory, the
LBM models a given fluid as a probability distribution function
fi of particles moving on a regular lattice x with discrete
velocities ci. Macroscopic fluid variables, such as pressure p

and velocity u, are computed locally as moments of fi(x, t).
The time evolution of the distribution fi(x, t) for timestep ∆t
is governed by the lattice Boltzmann equation:

fi(x+ci∆t, t+∆t)−fi(x, t) = −Ω(fi(x, t)−feq
i (x, t)) (1)

wherein the collision operator is Ω(fi(x, t)) and Maxwell-
Boltzmann equilibrium distribution is feq

i (x, t). A compre-
hensive explanation of LBM may be found in [15]. The
LBM representation uses a discretized approach and overall
performance of the algorithm is typically reported in millions
of fluid point updates per second (MFLUPS), which quantifies
the work done per unit of time. This metric is ideally suited for
our purposes, as it is independent of domain size and number
of timesteps [12].

B. LBM Proxy Application

We use the open source LBM proxy application
lbm-proxy-app [16] to test our hypotheses and perfor-
mance models. lbm-proxy-app runs fluid-only LBM in
a simple cylindrical geometry, an idealized case designed to
isolate and capture the performance of the most common
LBM kernels. This can be compared against the benchmark
predictions to confirm or rule out the presence of other
performance losses for a given LBM code. lbm-proxy-app
offers both array of structures (AOS) and structure of arrays
(SOA) data structures, shown to be faster for LBM on CPUs
and GPUs, respectively [17].

C. HARVEY

HARVEY is a massively-parallel circulatory modeling code
designed for scalability using realistic arterial geometries [12],
[14]. The HARVEY implementation of the LBM uses a stan-
dard D3Q19 velocity discretization and the single relaxation
time Bhatnagar–Gross–Krook (BGK) collision kernel. While

569

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 03:01:39 UTC from IEEE Xplore. Restrictions apply.

the LBM proxy application is hardcoded for a cylinder geom-
etry, HARVEY provides accurate flow simulation in complex
anatomies. The code has previously been shown to accurately
capture hemodynamic flow in cerebral [18], femoral [19], and
coronary arterial domains [20]. In this study, velocity boundary
conditions were imposed as a Poiseuille profile at the inlets and
a zero-pressure boundary condition was applied at the outlets
[21]. Though not used in this study, HARVEY also supports
both rigid and deformable walls as well as explicit deformable
cells modeled with the Immersed Boundary Method and can
be run on both CPUs and GPUs at scale.

D. Establishing the performance model
As these fluid dynamics models are meant to be robust and

flexible tools for circulatory modeling, predicting performance
requires accurately characterizing numerous terms, each of
which may change significantly depending on the numerical
parameters, parallel decomposition and compute hardware,
e.g. a full model of fluid (LBM), cells, and vessel walls
in HARVEY running on multiple GPUs would consist of
time required for each algorithm (tLBM

stream, tLBM
collide, tcellsforces,

tcellspos , twalls
forces, twalls

pos), halo exchanges for parallelism of each
algorithm (tLBM

halo , tcellshalo , twalls
halo), and CPU-GPU data transfer

(tCPU−GPU) [22] thus total runtime can be written as:

Tfull =tLBM
stream + tLBM

collide + tLBM
halo + tcellsforces+

tcellspos + tcellshalo + twalls
forces + twalls

pos + (2)
twalls
halo + tCPU−GPU

Rather than attempting to describe all possible scenarios with
a complex model using Eq. 2, we propose to start from
the simplest possible use case of pure LBM fluid on CPUs,
eliminating cells runtime, walls runtime, and CPU-GPU data
transfer from Eq. 2 giving us Eq. 3 as our starting performance
model. Additional terms will be added once the validation
of the performance model via iterative refinement is well-
established.

T = tLBM
stream + tLBM

collide + tLBM
halo (3)

Because LBM is known to be bandwidth-bound in most use
cases [12], [23], we will replace Eq. 3 with estimates of the
time required to access each task’s data from memory and
communicate each task’s halo region to its neighbors hence:

tmem
j = tLBM

stream-j + tLBM
collide-j (4)

tcomm
j = tLBM

halo-j (5)

T ≈ max
j

(tmem
j) + max

j
(tcomm

j) (6)

where tmem
j is the estimated time to access all local fluid

data on task j and tcomm
j is estimated time to communicate

the halo region of task j to its neighbors. This latter estimate
necessarily requires some knowledge or estimate of the par-
allel decomposition that will be used. LBM being a stencil
application also leaves this model open to being generalized
to other memory-bound stencil applications, specifically ones

that consist of memory accesses for each point on the stencil,
halo exchanges between tasks, and summing them together as
in Eqns. 4, 5, and 6 respectively; however, this generalization
would not hold if the stencil application has high computing
intensity which would need to be considered as a runtime cost
and as a factor in memory bandwidth competition. The other
elements to HARVEY described in Eq. 2 can also be added
with this framework however CPU-GPU communication time
must be considered. This consideration could be implemented
by assuming the node’s memory bandwidth is saturated (or is
at some proportion of saturation) and the amount of memory
bandwidth is divided evenly among the cores in use. For
the experiments described in the next section, performance
was estimated in two ways: directly using the data sizes
corresponding to the parallel decomposition used by HARVEY
and lbm-proxy-app as well as from a general model of
the predicted data and halo sizes. The two models are shown
together to separate out the error in the underlying perfor-
mance model form from the error associated with estimating
the parallel decomposition.

To measure simulation throughput, we use a standard
LBM metric of millions of fluid point updates per second
(MFLUPS), defined as:

MFLUPS =
ntimesteps · npoints

T · 106 (7)

1) Quantifying memory accesses for kernel fluid point up-
dates: Since LBM algorithms are memory-bound on nearly all
general-purpose hardware [24]–[26], we can estimate the time
to update all of the fluid points on a task tmem

j as the number
of bytes accessed to update all fluid points on that task divided
by the sustained memory bandwidth. HARVEY operates in a
memory regime where cache effects are negligible due to the
amount of memory accessed each timestep. As demonstrated
previously [26], runtime of HARVEY is predominately influ-
enced by memory bandwidth. The STREAM benchmark [27]
is the canonical method for measuring memory bandwidth on
HPC systems. It consists of Copy, Scale, Add and Triad, which
access one or two input arrays and write one output array
after performing zero, one or two arithmetic operations per
element. Despite their simplicity, these kernels are sufficient
to understand the behavior of complex HPC workloads, many
of which are limited by memory bandwidth and have similar
ratios of read and write operations. Even when the read-
write ratio is heavily skewed (as in the case of the HPCG
benchmark), there is a near-perfect correlation with STREAM,
due to the way most memory systems are implemented. We
use measurements from the Copy function, as it best reflects
the bandwidth achievable by LBM kernels [23].

We observed that the available memory bandwidth on a
given node scales with the number of cores in use in two
regimes as follows. Each core has inherent memory access
speed limits thus adding cores increases memory access speed;
however, once a certain number of cores are in use, the
memory access speed limit of the node’s memory subsystem
is reached thus cores compete for memory accesses and the

570

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 03:01:39 UTC from IEEE Xplore. Restrictions apply.

node’s bandwidth (the bandwidth used by the cores on the
node) plateaus, increasing much less with further additional
cores. Consequently, a node’s memory access bandwidth
BNODE over a number of cores n, as measured by STREAM
over a sweep of OpenMP threads with one thread per core, can
be fit to a two-line model (Eq. 8) by adjusting the parameters
a1, a2, and a3 to minimize the sum of square errors (SSE)
between the curve and the points. The two-line model captures
the slope of the bandwidth in each regime one being limited by
core speed for n < a3 and the other being limited by memory
subsystem speed where n > a3 but still increasing due to the
cores competing for memory access.

BNODE(n) =

{
a1n forn < a3
a2n+ a3(a1 − a2) forn ≥ a3

(8)

Memory bandwidth available to a single task will depend on
how many tasks and cores are currently accessing memory
on that core and node respectively. For simplicity, we assume
that the available memory bandwidth is linearly dependent on
the number of tasks per node, but this may require a more
sophisticated model on hardware where memory locality and
resource contention significantly impacts performance.

For the direct performance model, where the parallel de-
composition of each code is used to determine the relative
memory sizes on each task, the total memory accesses for
each task are computed using:

nbytes-j =

Nj−1∑

i=0

nk−1∑

k=0

(nvectors-j,i,k · naccesses-k · dsize) (9)

wherein:
• nvectors-j,i,k = the number of vectors in point i of task j

that are updated by operation k
• nk = the number of different fluid point operations
• naccesses-k = the number of data accesses per vector

required by operation k
• dsize = data size of each vector in bytes (4 for single pre-

cision float, 8 for double precision float, 16 for quadruple
precision float)

It must be noted that different types of fluid points (e.g. bulk
vs. wall) have different memory requirements which must be
taken into account. Different kernel layouts (e.g. AB vs. AA)
can also affect the memory layout and data sizes.

For the general performance model, where the data sizes on
each task are estimated a priori for a given number of tasks
ntasks, the maximum memory on a single task is approximated
as:

max
j

(nbytes-j) ≈ z · nbytes-serial

ntasks
(10)

z = c1 · ln(c2(ntasks − 1) + 1) + 1 (11)

where z is the deviation from perfect load balance and c1
and c2 are empirical parameters derived from fits of Eq. 11
to prior HARVEY decomposition data using Eq. 10 wherein
each task’s memory accesses were counted for a sweep of

task counts then the maximum for each task count was
divided by nbytes-serial

ntasks
, the number of byte accesses required

in the ideal load balancing case wherein the number of bytes
accesses required for the single task in a serial run to update
the entire simulation domain nbytes-serial is divided evenly
among all tasks ntasks, to get an actual increase factor that z
approximates.

2) Quantifying communication time for halo exchanges:
The second largest contributor to our performance model is
the time to communicate the halo region from one task to
its neighbors. While communication costs for LBM codes are
often relatively modest due to high surface-to-volume ratios
between the local data volume and the surrounding halo,
they can become significant at the strong-scaling limit. This
effect may be further magnified on some cloud computing
instances, where high-end interconnect hardware is less reli-
ably available. This potential variability makes highlights the
need for a quantitative performance estimate in order to assess
the impact of different hardware options on performance for
specific simulation inputs.

We model the inter-node data exchange time using a linear
communication model:

tcomm-event =
m

b
+ l (12)

wherein:
• tcomm-event = runtime of the single communication event
• m = size, in bytes, of the message communicated
• b = bandwidth of the communication
• l = latency of the communication
A linear function has been shown to be a reasonable model

for communication time over the ranges addressed here [28].
We measure the communication bandwidth and latency

using standard benchmark tools such as the Intel MPI Bench-
mark [29], which generates scaling reports for sustainable
bandwidth for most MPI operations when sharing bandwidth
over a network. We use its implementation of the PingPong
benchmark to measure MPI communication time between
pairs of ranks for both in-node (intranodal) communication,
where both the ranks are in the same node, and out-of-
node (internodal) communication, where each rank is located
in a different node and communication must go through
an interconnect between nodes. Results are reported for a
range of message sizes to show the effects of latency and
bandwidth on communication time to measure the limits of
the hardware. The bandwidth is determined from a linear fit
using Eq. 12. This is done separately for in-node (intranodal)
communication and out-of-node (internodal) communication.

The data derived from the PingPong benchmark were then
used to estimate halo communication costs within LBM im-
plementations. Consider a cubic simulation domain containing
N fluid points subdivided among ntasks tasks. After domain
decomposition, the sub-cube assigned to each task has N

ntasks

points and the amount of points each task has that neighbor
points contained by another task is proportional the sub-
cube’s surface area. Adding in the previously estimated load

571

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 03:01:39 UTC from IEEE Xplore. Restrictions apply.

imbalance z from Eq. 11, we approximate the halo data size
as:

mmax-total =
w

6
·
(
z · N

ntasks

) 2
3

· 2 · npoint-comm-bytes (13)

where npoint-comm-bytes is the amount of data to be communi-
cated for each boundary point in bytes and w is the maximum
number of neighbors a given task in the cubic domain and
subdomains case can have:

w = min(log2(ntasks), 6) (14)

The additional factor of two in Eq. 13 accounts for the fact
that data is both sent and received in an LBM halo exchange.
In practice, the maximum number of messages a given task
sends and receives will depend on the domain decomposition,
the simulation geometry and the total number of tasks, so we
also do an empirical fit using:

nmax-events = 4 · log2((k1n−1
n +k2) ·(ntasks−nn)+1) (15)

We combine these to estimate the maximum time spent in
communication:

tcomm-max =
mmax-total

b
+ nmax-events · l (16)

III. EXPERIMENTS

A. Representative use cases
In order to assess performance for realistic workloads, we

selected three increasingly complex geometries: 1) an idealized
cylindrical vessel, 2) an aorta, and 3) a cerebral vasculature
(Figure 2). The cylinder geometry represents an idealized
vessel domain that is easily divided for parallel simulation,
but has high communication cost. The aorta and cerebral
models were obtained from the Open Source Medical Software
repository [30] and represent anatomically accurate geometries
with domains that are challenging to divide evenly but contain
more wall points, thus requiring less communication as the do-
main is spread out with small cross-sections so communication
surfaces are small. Identical, high-resolution steady bulk flow
simulations were performed in each geometry with the same
number of cores on all computational platforms.

B. Targeted infrastructures
We evaluated configurations provided by two cloud service

providers (CSPs) with differing interconnects and a traditional
compute cluster (TRC).

1) Cloud infrastructures: Each CSP uses units of virtual
CPUs (vCPUs); however, there can be multiple vCPUs per
physical core, so both units are provided for each cloud
instance. CSP-1 was a dedicated cloud instance wherein we
used three 16-core nodes and an InfiniBand interconnect.
CSP-2 was an on demand service where we used multiple
instances with nodes of different sizes and with different
interconnects. For nodes, from CSP-2 we used large nodes
that have 36 cores totaling 72 vCPUs and small nodes that
have 8 cores totaling 16 vCPUs. For interconnects, CSP-2 has
unnamed interconnects that are slower and a proprietary, faster

node interconnect that will be referred to here as Enhanced
Communicator (EC). We used 2 instances from CSP-2: one
which used 4 large nodes and the slow interconnect (CSP-2);
and one which used 4 large nodes and the EC interconnect
(CSP-2 EC). Hardware details of each instance are described
in Table I.

2) Traditional cluster: We compared our CSPs to a tradi-
tional Intel HPC cluster with dual-socket compute nodes con-
nected with 56Gb/s InfiniBand interconnects (Table I). Each
node has two Intel Xeon E5-2695v4 ‘Broadwell’ processors
with 40 CPU cores exposed to the job scheduler and a shared
55 MB L3 cache. Our application was compiled with the 2018
versions of the Intel C++ compiler and MPI library.

C. Evaluating different cloud features

We tested the impact of noise variability, memory access
speed, and interconnect speed on cloud platforms on the
performance of hemodynamic simulations using HARVEY,
lbm-proxy-app, and the microbenchmarks described in
section II. Noise variability was tested by conducting sim-
ulations with HARVEY using a complex geometry as input
test set, and for the microbenchmarks on different numbers
of nodes over the span of 7 days at intervals of 6 hours.
Differences in performance were assessed and variability was
calculated as mean and standard deviation. The effect of
interconnect was also evaluated as some cloud providers use
proprietary interconnects, such as CSP-2 with EC, for intern-
odal communication, as compared to traditional HPC systems
which mainly rely on InfiniBand [31]. The use of CSP-2
without EC (CSP-2) and CSP-2 with EC (CSP-2 EC), both
described in Table I, are to test specifically the interconnect
differences.

D. Performance of LBM on Different Cloud Instances

The performance of LBM-based hemodynamic simulations,
measured in MFLUPS, is shown in Figure 3. As shown, strong
scaling of HARVEY’s performance was nearly the same across
all investigated geometries.

Figure 3a shows some slight noise or drifting effects where
the smoothness of the strong scaling curve is less than that
shown in Figures 3b and 3c which is likely due to the high
communication load of the idealized cylindrical geometry.
Communication load in the cylinder is higher because of the
cylinder having a high bulk fluid point to wall fluid point ratio
(it being efficiently packed into a space) compared to other
geometries therefore when the domain is decomposed there
is much greater communication surface area thus more fluid
points must be exchanged and more communication events are
required. The cerebral vasculature in Figure 3c performs the
best of the geometries as updates for wall fluid points require
fewer memory accesses to update than bulk fluid points in
HARVEY.

572

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 03:01:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Arterial geometries used for assessing hemodynamic simulation performance: (A) Idealized cylindrical vessel, a case with high communication but
good load balancing, (B) Aorta, a case with typical communication and load balancing, (C) Cerebral vasculature, a case with low communication, many wall
points, and typical load balancing.

TABLE I
HARDWARE DETAILS FOR ALL TESTED INSTANCES. (NOTE: THE CSP-2 AND CSP-2 EC INSTANCES ARE REPORTED AS 3.0 GHZ FOR EACH HARDWARE

HYPERTHREAD AND 3.4 GHZ ON A SINGLE CORE USING INTEL TURBOBOOST)

System Traditional Compute Cluster Cloud 1 - Dedicated Cloud 2 - Small Cloud 2 - With EC Cloud 2 - No EC
Abbreviation TRC CSP-1 CSP-2 Small CSP-2 EC CSP-2

CPU Intel Xeon E5-2699 v4 Intel Xeon E5-2667 v3 Intel Xeon E5-2666 v3 Intel Xeon Platinum 8124M Intel Xeon Platinum 8124M
CPU Clock (GHz) 2.19 3.19 2.42 3.40 3.41

Core Count 2000 48 128 144 144
Cores per Node 40 16 8 36 36

Memory per Node (GB) 471 16 30 192 144
Interconnect (Gbit/s) 56 10 10 100 25

20 22 24 26 28 210 212
4

8

16

32

64

128

256

512

1024

2048
(a)

MPI Ranks

M
FL

U
PS

20 22 24 26 28 210 212
4

8

16

32

64

128

256

512

1024

2048
(b)

MPI Ranks

M
FL

U
PS

20 22 24 26 28 210 212
4

8

16

32

64

128

256

512

1024

2048
(c)

MPI Ranks

M
FL

U
PS

TRC CSP-1 CSP-2 CSP-2 EC

Fig. 3. Strong scaling plots of HARVEY performance for each of the geometries from Figure 2: (a) Idealized cylindrical vessel, (b) Aorta, (c) Cerebral
vasculature.

20 22 24 26 28 210 212
4
8

16
32
64

128
256
512

1024
2048
4096

(a)

MPI Ranks

M
FL

U
PS

20 22 24 26 28 210 212
4
8

16
32
64

128
256
512

1024
2048
4096

(b)

MPI Ranks

M
FL

U
PS

TRC AOS CSP-2 AOS CSP-2 EC AOS
TRC SOA CSP-2 SOA CSP-2 EC SOA

Fig. 4. Strong scaling plots of lbm-proxy-app performance for both SOA
(with kernel internal for loops unrolled) and AOS data access patterns on each
infrastructure for each of the LBM propagation patterns: (a) AA, (b) AB.

Figure 4 shows the strong scaling of four kernels of
lbm-proxy-app on each computing infrastructure. The AA
propagation pattern performance, Figure 4a, is shifted upwards
from the AB propagation pattern performance, Figure 4b. This
performance increase is expected as the amount of memory
accesses is reduced in every other timestep in the AA pattern
compared to the AB pattern as the AA pattern uses a single
array wherein operations applied alternate each timestep, one
timestep applying a single collision operation and the other
applying a combined streaming-collision-streaming operation
[32] hence accesses to the streaming indexing array are only
made every other timestep and only one array of fluid point
data is accessed. It is also expected that for CPUs, the AOS
memory access pattern performs better than the SOA memory
access pattern [17], [33], and this is shown to be true for the

573

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 03:01:39 UTC from IEEE Xplore. Restrictions apply.

AB propagation pattern but not for the AA pattern.

E. Benchmark Performance of Systems

The sustainable memory access bandwidth of each system,
as measured by the STREAM microbenchmark COPY, is
shown in Figure 5.

0 8 16 24 32 40 48 56 64 72
0

20

40

60

80

100

120

140

OpenMP Threads

B
an

dw
id

th
(G

B
/s

)

TRC TRC Fit CSP-1 CSP-1 Fit
CSP-2 CSP-2 Fit CSP-2 EC CSP-2 EC Fit

CSP-2 Hyp. CSP-2 Hyp. Fit

Fig. 5. Memory bandwidth of a single node, as measured by the STREAM
microbenchmark COPY, and two-line curve fits using Eq. 8 for a sweep of
OpenMP thread counts. Each core on the node is assigned a single OpenMP
thread except for CSP-2 Hyperthreaded (Hyp.) which has a thread for each
vCPU (two threads to a core).

Figure 5 shows that the two-line model (Eq. 8) replicates
the two-phase scaling of memory access bandwidth. For small
core numbers, the node memory bandwidth greatly exceeds
the limits of individual cores, so there is a steep increase in
memory bandwidth per thread. However, increasing the core
number will eventually saturate the node’s memory access
bandwidth, as cores are now competing for the node’s limited
bandwidth. Adding additional threads thus leads to a shallower
increase in memory bandwidth. The fit is very good for the
traditional HPC cluster (blue); however, CSP-2 demonstrates
large variance after its inflection point, suggesting that not all
cores on CSP-2 nodes have separate memory access bandwidth
channels, leading to increased competition between cores and
decreased overall memory bandwidth.

Cloud service providers tend to list HPC compute nodes
by their number of vCPUs, which can exceed the number of
physical cores per node via hyperthreading. However, hyper-
threading does not increase the amount of available memory
bandwidth. This was investigated on a hyperthreaded CSP-2
instance with two vCPUs per physical core and one OpenMP
thread per vCPU (CSP-2 Hyp., Figure 5). We observed de-
creased memory bandwidth on this hyperthreaded instance,
with the actual sustainable memory bandwidth, as measured
by the STREAM COPY benchmark, tending to be 20-40%
lower than the published maximum nodal memory bandwidth
(Table II) with the exception of CSP-1.

TABLE II
STREAM COPY BENCHMARK DATA FIT SUSTAINABLE MEMORY

BANDWIDTHS FOR ONE NODE ON EACH SYSTEM WHEREIN THE NUMBER
OF OPENMP THREADS IS MAXED OUT AT ONE THREAD PER PHYSICAL
CORE, PUBLISHED NODE MAXIMUM MEMORY BANDWIDTHS, AND THE

PERCENTAGE DIFFERENCE BETWEEN THE TWO BANDWIDTHS.

Bandwidth Type TRC CSP-1 CSP-2 CSP-2 EC
Published (MB/s) 76,800 68,000 162,720 162,720

STREAM (MB/s) ∼55,625 ∼74,273 ∼104,259 ∼115,413

Difference -27.57% +9.23% -35.92% -29.07%

Traditional HPCs such as TRC have significantly less la-
tency and higher bandwidth in internodal communication than
CSPs, which reuslts in faster communication times (Figure 6
and Table III). As expected, the communication time of
CSP-2 EC was less than CSP-2 without EC, albeit only a
2.65 µs decrease in latency and a 211.93 MB/s increase
in bandwidth (Table III). Measured communication times
demonstrated some nonlinearity, but a linear communication
model was sufficient for an acceptable fit (Figure 6). Defining
latency as the communication time for a message of zero
bytes did underestimate latency at larger message sizes, but
this prevented vast overestimations of communication times
for smaller message sizes.

20 23 26 29 212 215 218 221 224
1

4

16

64

256

1024

4096

Message Size (bytes)

C
om

m
un

ic
at

io
n

Ti
m

e
(µ

s)

TRC Fit CSP-2 Fit CSP-2 EC Fit
TRC CSP-2 CSP-2 EC

Fig. 6. Measurements and curve fits using Eq. 12 for PingPong commu-
nication timings for a large range of message sizes. Curve fits enforce that
latency is the communication time for 0 bytes and bandwidth depends on all
data points.

Microbenchmark curve fit parameters are provided in Ta-
ble III. When comparing the TRC, CSP-2, and CSP-2 EC,
we see that increasing a node’s maximum total memory
bandwidth led to an increase in the nodal saturation point
a3, while increased communication times led to decreased
communication bandwidth b and increased communication
latency l.

574

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 03:01:39 UTC from IEEE Xplore. Restrictions apply.

TABLE III
MICROBENCHMARK CURVE FIT PARAMETERS FOR CURVES IN FIGURES 5
AND 6 USING EQUATIONS 8 AND 12 RESPECTIVELY TO SHOW PROPERTIES
OF STREAM MEMORY BANDWIDTH AND INTERNODAL COMMUNICATION

USING PARAMETERS. UNITS ARE MB/SEC-THREADS FOR a1 AND a2 ,
THREADS FOR a3 , MB/SEC FOR binter , AND MICROSECONDS FOR linter .

THE AMOUNT OF CORES IN A SINGLE NODE OF EACH SYSTEM IS
PROVIDED FOR REFERENCE. *DENOTES HYPERTHREADING.

System a1 a2 a3 binter linter Cores
TRC 6768.24 369.16 6.39 5066.57 2.01 40

CSP-2 7790.02 1264.80 9.00 1804.84 23.59 36

CSP-2 EC 7605.85 1269.95 11.00 2016.77 20.94 36

CSP-2 Hyp. 8629.29 -93.43 9.87 N/A N/A 72*

CSP-1 18092.64 -62.79 4.15 N/A N/A 16

F. Noise Variability
Table IV demonstrates that noise variability has little effect

on the final simulation performance and is not significantly
greater on a cloud cluster than a dedicated cluster.

TABLE IV
HARVEY AORTA PERFORMANCE STATISTICS FROM MEASUREMENTS AT

INTERVALS OF 6 HOURS OVER 7 DAYS.

System MPI Mean Standard Variation
Ranks MFLUPS Deviation Coefficient

CSP-1 16 39.04 0.71 0.02

CSP-1 32 54.84 0.51 0.01

CSP-1 48 67.84 0.92 0.01

CSP-2 Small 16 25.53 0.72 0.02

CSP-2 Small 32 42.49 0.85 0.02

CSP-2 Small 64 71.19 0.35 0.004

CSP-2 Small 128 127.99 1.83 0.01

G. Performance Model Predictions

1 4 16 64 256 1024
4

16

64

256

1024

MPI Ranks

M
FL

U
PS

Cylinder Measured Cylinder Direct Prediction Cylinder General Prediction
Aorta Measured Aorta Direct Prediction Aorta General Prediction
Cerebral Measured Cerebral Direct Prediction Cerebral General Prediction

Fig. 7. Performance model predictions and actual performance for all
HARVEY geometries on CSP-2 nodes (without EC).

1 4 16 64 256 1024
4

16

64

256

1024

4096

MPI Ranks

M
FL

U
PS

AA Regular - Measured AA Unrolled - Measured
AA - Direct Prediction AA - General Prediction
AB Regular - Measured AB Unrolled - Measured
AB - Direct Prediction AB - General Prediction

Fig. 8. Performance model predictions and actual performance for
lbm-proxy-app SOA kernels, including AA and AB propagation patterns
and internal for loops with and without unrolling, on CSP-2 nodes (without
EC).

Both performance models overpredicted HARVEY (Fig-
ure 7) and lbm-proxy-app (Figure 8) performances by
a consistent amount in all cases. Direct predictions replicate
the relative performance for HARVEY being worse for the
aorta and cylindrical geometries with the cerebral geometry
being better performing and the relative performance for
lbm-proxy-app being better for AA propagation than AB
propagation. The performance improvement of AA over AB
in lbm-proxy-app is shown to occur only for the unrolled
kernels, indicating that the change in for loop structure either
changed the data accessing or hid the internal for loop over-
heads, thereby causing a performance increase. The general-
ized predictions drift slightly from direct predictions for the
cylinder at higher MPI ranks and overestimate performance.

To study the effect of low quality CSP interconnects with
low bandwidth and high latency we chose to study the
HARVEY cylindrical case on the CSP-2 instance. The high
communication and evenly distributed memory accesses on
this geometry with the low quality interconnect of CSP-2
allows internodal communication to stand out as it does in
a predicted distribution of runtime (Figure 9). To show that
the generalized model correctly approximates what is actually
happening, as shown in the direct model, and to reveal what
attributes of communication, bandwidth and latency, are taking
up time, a generalized predicted runtime distribution is shown
in Figure 10.

A compromise of the generalized model is that it sums the
maximum memory access time and the maximum internodal
communication time out of all of the tasks separately. For
simulations with high rank counts, this approach can overesti-
mate memory accesses and internodal communication events,
while simultaneously underestimating the contribution of in-

575

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 03:01:39 UTC from IEEE Xplore. Restrictions apply.

tranodal communications. However, the direct performance
model (Figure 9) demonstrates that intranodal communications
(green) take up much less runtime than memory accesses
(red) and internodal communications (purple); therefore, this
aspect of the generalized model does not significantly affect
its performance predictions.

1 4 16 64 256 1024
0%

20%

40%

60%

80%

100%

Memory Accesses

In-Node Comm.

Out-of-Node Comm.

MPI Ranks

R
un

tim
e

Pe
rc

en
ta

ge

Fig. 9. Composition of maximum task runtimes per core count as predicted
by the direct model for a strong scaling case of HARVEY using the cylindrical
geometry on CSP-2 without EC.

1 4 16 64 256 1024
0%

20%

40%

60%

80%

100%

Memory Accesses

In-Node Comm. Bandwidth

In-Node Comm. Latency

Out-of-Node Comm. Bandwidth

Out-of-Node Comm. Latency

MPI Ranks

R
un

tim
e

Pe
rc

en
ta

ge

Fig. 10. Composition of maximum task runtimes per core count as predicted
by the generalized model for a strong scaling case of HARVEY using the
cylindrical geometry on CSP-2 without EC.

Given these runtime compositions, the increased perfor-
mance of HARVEY and lbm-proxy-app observed in the
CSP-2 nodes relative to the TRC nodes (Figures 3 and 4
respectively) is likely due to the increased memory bandwidths
in the CSP-2 nodes (Figure 5, Table II). The accelerated drop
in the performance for higher MPI ranks in Figures 7 and
8 is shown to be a consequence of the high communication

time for higher MPI ranks as demonstrated in Figure 9.
Direct modeling here interpolates the communication time
from PingPong measurement raw data however the generalized
performance model uses the linear model for communication
events thus revealing in Figure 10 that the bulk of the
internodal communication time is due to latency and not due
to insufficient bandwidth.

IV. DISCUSSION

These results show that cloud resources can provide compa-
rable or even superior performance than a traditional cluster for
realistic LBM workloads. However, a key factor in using these
resources efficiently is balancing compute power against cost.
In this work, we have laid the groundwork for the framework,
shown in Figure 1, to optimize usage of cloud platforms
for LBM hemodynamic simulations. When considering an
range of different CSPs and instances for each CSP, we
have presented two performance models for characterizing
LBM compute loads. By quantifying the cost for memory
access and halo exchange for a given cloud instance, a CSP
Option Dashboard can be created for any new anatomical
target. This Dashboard enables the user to select the preferred
CSP and Type based on user-defined metrics. Maximizing
time-to-solution may be necessary for situations where rapid
turnaround is essential, but in most cases the trade-offs of cost
and overall throughput must be taken into account. One metric
we propose is to compare the relative throughput of different
hardware configurations for a given simulation workload using
our performance model:

rB,A =
Tsim-A

Tsim-B
=

MFLUPSB

MFLUPSA
(17)

2048 Cores - Aorta TRC CSP-2 CSP-2 EC

TRC 1.0000 0.8115 0.7282

CSP-2 1.2323 1.0000 0.8973

CSP-2 EC 1.3733 1.1144 1.0000

Fig. 11. A heatmap of relative value rB,A of performance of computing
infrastructures using the performance of HARVEY running the aorta geometry
on 2048 cores as predicted by the generalized performance model. B is read
from left side and A from top.

By plotting the results as a heatmap as in Figure 11 one
can quickly see the relative impact of hardware selection
on throughput as well as the optimal hardware for a given
simulation. If maximizing overall throughput is the goal, this
alone could be the decisional metric. If minimizing cost is
most important, one could weight these ratios by the relative
cost of each instance. It is ultimately up to the end user to
determine what is important to them and define an appropriate
cost metric to fit.

The performance model prediction can then be optionally
used to establish a limit on job specifications. For example,

576

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 03:01:39 UTC from IEEE Xplore. Restrictions apply.

the user could allow a 10% tolerance on the prediction and
set a hard stop on the number of CPU hours allowed for that
job or dollars spent or the user could predict the length of
potential jobs then plan according to their budget and needs.
A performance model-driven limit would help flag simulations
that are vastly out of line with the prediction and provide the
user some protection against inadvertent cost overruns. The
performance model driven approach can also be used as a
realistic measure of potential performance for an application
such that one may attempt to optimize their code to achieve
such performance using a combination of hardware limits and
roofline models without aiming for performance bound by a
single hardware limit’s roofline that cannot actually be met.
Our approach to performance modeling can be generalized
to other stencil-based codes by counting memory accesses
and communication events in those stencil codes. Roofline
models for other hardware constraints (such as floating point
operations and storage memory speed) can also be considered
in the overall performance model either by an approximation
such as by adding the theoretical runtime predicted by the
roofline model or by a direct counting such as by tracking
the simultaneous loads on each hardware unit and extracting
runtime based on the roofline for each type of load. Using our
model as a baseline, additional elements of runtime can be
added then checked for their impact on the model’s ability to
predict experimental results. Following the results of this check
the element can be added or discarded and the model can be
deemed a sufficient or insufficient predictor of performance.
Together this system of adding and checking can be used as a
feedback loop system for refining predictions for stencil code
performance.

This performance model’s predictions are not exact however
as with our assumptions we consider memory accesses and
communication but ignore costs including time for floating
point operations, and we model each task as having a constant
share of the node’s memory bandwidth which is not the case
with imperfect load balancing. Further steps for improving this
model would include integrating rooflines for floating point
operations and tracking of concurrency of memory accesses
however the model outlined here sufficiently matches the
actual performance to act as a proof of concept. Our work
included testing on Intel processors and while we expect the
same assumptions to be true for AMD processors, future work
will also need to be done to confirm this. Such a difference
in processor hardware however is not expected to change the
prediction power of our performance model.

The final step in the process is to compare the measured
simulation times against the predictions of the performance
model. There are multiple factors that can result in inaccurate
estimates, from needing additional terms in the performance
model to capture the computational workload of a given sim-
ulation to mismatch between measured hardware performance
within simplified benchmarks and a full simulation workflow.
It was also assumed here that cloud allocations are node based
wherein the user is allocated all cores on a node. We did not
encounter a case where we could not reserve all cores on the

nodes we used; however, for use cases where cores are on
shared nodes, memory bandwidth usage by other users on the
node and the increases in internodal communication must be
considered. Consideration for memory bandwidth sharing may
be an assumption of full or partial usage of the other cores
by other users. Storing all measured performance along with
the estimated performance model prediction will be critical to
iteratively refining the performance models to correctly capture
retrospective values as well as predict future behavior with
sufficient accuracy. Performance monitoring projects such as
SONAR [34] are expected to be extremely useful in helping to
automate and track the measured performance against model
predictions.

V. CONCLUSION

We present a framework for optimizing cloud resource
utilization for large-scale fluid dynamics simulations. We
examined the impact of different cloud instance settings as
compared to a conventional on premise system and presented
both a direct and general performance model for predicting
HPC performance of real workloads. We expect this work
to lay important groundwork for efficient utilization of cloud
infrastructures for production-scale blood flow simulations in
the future.

ACKNOWLEDGMENT

Computing support was provided by the AWS Cloud Credits
for Research program and the Microsoft Azure HPC + AI Col-
laboration Center in partnership with NVIDIA. This work was
supported by the American Heart Association Predoctoral Fel-
lowship 20PRE35211158 (M.V.), American Heart Association
Postdoctoral Fellowship 903995 (C.J.), NSF 1943036 (J.A.),
Microsoft Azure HPC + AI Collaboration Center (W.L.), and
NIH U01CA253511 and 1DP1AG082343 (A.R). This work
was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.

REFERENCES

[1] L. M. Itu, P. Sharma, and C. Suciu, Patient-specific hemodynamic
computations: application to personalized diagnosis of cardiovascular
pathologies. Springer, 2017.

[2] L. Athanasiou, F. R. Nezami, and E. R. Edelman, “Computational
cardiology,” IEEE journal of biomedical and health informatics, vol. 23,
no. 1, pp. 4–11, 2018.

[3] C. A. Taylor, T. A. Fonte, and J. K. Min, “Computational fluid dynamics
applied to cardiac computed tomography for noninvasive quantification
of fractional flow reserve: scientific basis,” Journal of the American
College of Cardiology, vol. 61, no. 22, pp. 2233–2241, 2013.

[4] A. J. Graham, M. Orini, E. Zacur, G. Dhillon, H. Daw, N. T. Srinivasan,
C. Martin, J. Lane, J. S. Mansell, A. Cambridge, et al., “Evaluation of
ecg imaging to map hemodynamically stable and unstable ventricular
arrhythmias,” Circulation: Arrhythmia and Electrophysiology, vol. 13,
no. 2, p. e007377, 2020.

[5] J. E. Betancourt, A. Noheria, D. Cooper, G. Orme, S. Sodhi, C. Steyers,
and P. Cuculich, “Accuracy of cardioinsight noninvasive electrocar-
diographic imaging compared with invasive mapping for determining
location of ventricular arrhythmias,” Journal of the American College
of Cardiology, vol. 73, no. 9S1, pp. 458–458, 2019.

[6] A. Gupta and D. Milojicic, “Evaluation of HPC applications on cloud,”
in 2011 Sixth Open Cirrus Summit, pp. 22–26, IEEE, 2011.

577

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 03:01:39 UTC from IEEE Xplore. Restrictions apply.

[7] C. Evangelinos and C. Hill, “Cloud computing for parallel scientific HPC
applications: Feasibility of running coupled atmosphere-ocean climate
models on Amazons EC2,” ratio, vol. 2, no. 2.40, pp. 2–34, 2008.

[8] A. Gupta, L. V. Kale, F. Gioachin, V. March, C. H. Suen, B.-S. Lee,
P. Faraboschi, R. Kaufmann, and D. Milojicic, “The who, what, why,
and how of high performance computing in the cloud,” in 2013 IEEE 5th
International Conference on Cloud Computing Technology and Science,
vol. 1, pp. 306–314, IEEE, 2013.

[9] P. Mvelase, H. Sithole, S. Masoka, and M. Bembe, “HPC in the cloud
environment: Challenges, and theoretical analysis,” in Proceedings of the
International Conference on Scientific Computing (CSC), pp. 94–101,
The Steering Committee of The World Congress in Computer Science,
Computer . . . , 2018.

[10] D. Yimam and E. B. Fernandez, “A survey of compliance issues in cloud
computing,” Journal of Internet Services and Applications, vol. 7, no. 1,
p. 5, 2016.

[11] M. A. Netto, R. N. Calheiros, E. R. Rodrigues, R. L. Cunha, and
R. Buyya, “HPC cloud for scientific and business applications: Tax-
onomy, vision, and research challenges,” ACM Computing Surveys
(CSUR), vol. 51, no. 1, p. 8, 2018.

[12] A. P. Randles, V. Kale, J. Hammond, W. Gropp, and E. Kaxiras,
“Performance analysis of the lattice Boltzmann model beyond Navier-
Stokes,” in Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th
International Symposium on, pp. 1063–1074, IEEE, 2013.

[13] S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,”
Annual review of fluid mechanics, vol. 30, no. 1, pp. 329–364, 1998.

[14] A. Randles, E. W. Draeger, T. Oppelstrup, L. Krauss, and J. A.
Gunnels, “Massively parallel models of the human circulatory system,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, p. 1, ACM, 2015.

[15] T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and
E. M. Viggen, “The lattice Boltzmann method,” Springer International
Publishing, vol. 10, pp. 978–3, 2017.

[16] J. Gounley and G. Dube, “LBM-Proxy-App.”
https://code.ornl.gov/j8g/lbm-proxy-app. Accessed: 2022-06-07.

[17] G. Herschlag, S. Lee, J. S. Vetter, and A. Randles, “GPU data access
on complex geometries for D3Q19 Lattice Boltzmann method,” in
2018 IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pp. 825–834, 2018.

[18] M. Dabagh, P. Nair, J. Gounley, D. Frakes, L. F. Gonzalez, and A. Ran-
dles, “Hemodynamic and morphological characteristics of a growing
cerebral aneurysm,” NeurosurgicalFocus, vol. 47, no. 1, p. E13, 2019.

[19] B. Feiger, M. Vardhan, J. Gounley, M. Mortensen, P. Nair, R. Chaudhury,
D. Frakes, and A. Randles, “Suitability of lattice Boltzmann inlet
and outlet boundary conditions for simulating flow in image-derived
vasculature,” International Journal for Numerical Methods in Biomedical
Engineering, vol. 35, no. 6, p. e3198, 2019.

[20] M. Vardhan, J. Gounley, S. J. Chen, E. C. Chi, A. M. Kahn, J. A.
Leopold, and A. Randles, “Non-invasive characterization of complex
coronary lesions,” Scientific reports, vol. 11, no. 1, pp. 1–15, 2021.

[21] J. Latt, B. Chopard, O. Malaspinas, M. Deville, and A. Michler, “Straight
velocity boundaries in the lattice Boltzmann method,” Physical Review
E, vol. 77, no. 5, p. 056703, 2008.

[22] J. Ames, D. F. Puleri, P. Balogh, J. Gounley, E. W. Draeger, and
A. Randles, “Multi-gpu immersed boundary method hemodynamics
simulations,” Journal of Computational Science, vol. 44, July 2020.

[23] J. Habich, C. Feichtinger, H. Köstler, G. Hager, and G. Wellein, “Per-
formance engineering for the lattice Boltzmann method on GPGPUs:
Architectural requirements and performance results,” Computers and
Fluids, 2013.

[24] G. Wellein, T. Zeiser, G. Hager, and S. Donath, “On the single proces-
sor performance of simple lattice Boltzmann kernels,” Computers and
Fluids, vol. 35, no. 8-9, pp. 910–919, 2006.

[25] N. P. Tran, M. Lee, and D. H. Choi, “Memory-efficient parallelization
of 3D lattice Boltzmann flow solver on a GPU,” Proceedings - 22nd
IEEE International Conference on High Performance Computing, HiPC
2015, pp. 315–324, 2016.

[26] A. P. Randles, V. Kale, J. Hammond, W. Gropp, and E. Kaxiras, “Per-
formance analysis of the lattice boltzmann model beyond navier-stokes,”
in IEEE 27th International Symposium on Parallel and Distributed
Processing, pp. 1063–1074, 2013.

[27] J. D. McCalpin et al., “Memory bandwidth and machine balance in
current high performance computers,” IEEE Computer Society Technical

Committee on Computer Architecture (TCCA) Newsletter, vol. 1995,
pp. 19–25, 1995.

[28] “Lawrence Livermore National Lab MPI performance.”
https://computing.llnl.gov/tutorials/mpi_performance/#MessageSize.
Accessed: 2018-12-05.

[29] “Intel MPI benchmarks Github.” https://github.com/intel/mpi-
benchmarks. Accessed: 2018-12-02.

[30] N. M. Wilson, A. K. Ortiz, and A. B. Johnson, “The vascular model
repository: A public resource of medical imaging data and blood flow
simulation results,” Journal of Medical Devices, vol. 7, no. 4, p. 040923,
2013.

[31] J. Xu, H. Fu, W. Shi, L. Gan, Y. Li, W. Luk, and G. Yang, “Perfor-
mance tuning and analysis for stencil-based applications on POWER8
processor,” ACM Transactions on Architecture and Code Optimization,
vol. 15, no. 4, pp. 1–25, 2018.

[32] P. Bailey, J. Myre, S. D. Walsh, D. J. Lilja, and M. O. Saar, “Accelerating
lattice boltzmann fluid flow simulations using graphics processors,” in
International Conference on Parallel Processing, pp. 550–557, 2009.

[33] G. Herschlag, S. Lee, J. S. Vetter, and A. Randles, “Analysis of gpu data
access patterns on complex geometries for the d3q19 lattice boltzmann
algorithm,” IEEE Transactions on Parallel and Distributed Systems,
2021.

[34] “SONAR HPC performance-monitoring software stack.”
https://github.com/LLNL/sonar-driver.

578

Authorized licensed use limited to: Duke University. Downloaded on July 17,2025 at 03:01:39 UTC from IEEE Xplore. Restrictions apply.

