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Background: Personalized hemodynamic models can accurately compute
fractional flow reserve (FFR) from coronary angiograms and clinical
measurements (FFRbaseline), but obtaining patient-specific data could be
challenging and sometimes not feasible. Understanding which
measurements need to be patient-tuned vs. patient-generalized would
inform models with minimal inputs that could expedite data collection and
simulation pipelines.
Aims: To determine the minimum set of patient-specific inputs to compute
FFR using invasive measurement of FFR (FFRinvasive) as gold standard.
Materials and Methods: Personalized coronary geometries (N = 50) were
derived from patient coronary angiograms. A computational fluid dynamics
framework, FFRbaseline, was parameterized with patient-specific inputs:
coronary geometry, stenosis geometry, mean arterial pressure, cardiac
output, heart rate, hematocrit, and distal pressure location. FFRbaseline was
validated against FFRinvasive and used as the baseline to elucidate the impact
of uncertainty on personalized inputs through global uncertainty analysis.
FFRstreamlined was created by only incorporating the most sensitive inputs and
FFRsemi−streamlined additionally included patient-specific distal location.
Results: FFRbaseline was validated against FFRinvasive via correlation (r = 0.714,
p , 0.001), agreement (mean difference: 0.01+ 0.09), and diagnostic
performance (sensitivity: 89.5%, specificity: 93.6%, PPV: 89.5%, NPV: 93.6%,
AUC: 0.95). FFRsemi−streamlined provided identical diagnostic performance with
FFRbaseline. Compared to FFRbaseline vs. FFRinvasive, FFRstreamlined vs. FFRinvasive had
decreased correlation (r = 0.64, p , 0.001), improved agreement (mean
difference: 0.01+ 0.08), and comparable diagnostic performance
(sensitivity: 79.0%, specificity: 90.3%, PPV: 83.3%, NPV: 87.5%, AUC: 0.90).
Conclusion: Streamlined models could match the diagnostic performance of
the baseline with a full gamut of patient-specific measurements. Capturing
coronary hemodynamics depended most on accurate geometry
reconstruction and cardiac output measurement.
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1. Introduction

Computational blood flow models that minimize the
number of patient-tuned parameters required to extract
diagnostic phenomarkers accurately may circumvent clinical
data acquisition challenges and help enable interventional
planning. One particular application is coronary artery
disease—a leading cause of death and disability worldwide,
with 7 million deaths and 129 million disability-adjusted life
years lost annually (1). Invasively-measured fractional flow
reserve (FFRinvasive) is the gold standard for identifying
atherosclerotic lesions requiring intervention (2, 3). In recent
years, computational fluid dynamics (CFD) models that
predict FFR have emerged. These models are either based on
coronary angiography (4, 5) or computed tomography (6, 7).
Some of these models have been used extensively for
research, such as VIRTUHeart (8–12), or have been made
available to market, namely FFRCT (HeartFlow, Mountain
View, CA, USA) (13, 14), FFRangio (CathWorks, Kfar-saba,
Israel) (15–17), CAAS-vFFR (Pie Medical, Maastricht, The
Netherlands) (18, 19), and QFR (Medis Medical Imaging,
Leiden, The Netherlands and Pulse Medical Technology Inc.,
Shanghai, China) (20–22). However, these models require
many clinically-measured inputs to accurately capture the
effect of stenoses. In theory, a CFD model incorporating a
maximum number of patient-tuned inputs would calculate
the most accurate FFR. Requiring large numbers of
invasively-measured parameters is challenging, costly, and
sometimes not feasible. CFD models incorporating extensive
patient-specific measurements have limited use when patients
lack the complete set of necessary parameters for flow
simulation. The pervasiveness of missing data in electronic
health records increases the prevalence of such cases (23–25).
Contrary to intuition, requiring full patient-specificity, which
includes personalizing the computational domain, physical
properties of blood vessels, and boundary conditions that
dictate flow, may not even be required to recover diagnostic
phenomarkers accurately. A low-cost CFD model based on
only a few patient-derived measurements could streamline
costly clinical data acquisition pipelines without
compromising the diagnostic performance of fully
personalized models. Prior sensitivity analysis and
uncertainty quantification studies have attempted to identify
the key anatomic and physiologic parameters contributing to
FFR, but these studies often rely on models that have not
been validated against FFRinvasive measurements and are
limited by small cohort sizes (11, 26–29).

Prior studies have demonstrated that accurately capturing
stenosis geometry (in terms of minimal luminal radius and
stenosis length) through imaging and prescribing flow
distribution down the coronary tree (27) are the most
sensitive inputs. Controlling flow distribution throughout the
coronary tree is a function of terminal branch geometry as

determined by Murray’s Law, which may indicate that
coronary anatomy is the overriding input (30). Ensuring
accurate coronary anatomy could allow some leeway for the
variance of other parameters. When patient-tuned values do
not drastically deviate from patient averages, patient-
generalized inputs could result in the same FFR calculation.
As the focus has been on identifying sensitive inputs, it is
unknown which parameters are insensitive to FFR and could
be relegated to patient averages, or patient-generalized
parameters, without sacrificing diagnostic performance (31).
We hypothesized that on top of accurately segmenting the
overall coronary tree, an accurate model with minimized
inputs would require prescribing flow distribution parameters
and capturing the geometric severity of stenoses on a per-
patient level. In this work, we present a patient-specific CFD
FFR model (FFRbaseline) and validated the model in a cohort
of 50 patients. Sobol decomposition techniques were used to
derive optimized, low-cost models (FFRsemi!streamlined and
FFRstreamlined) with minimal patient-specific clinical inputs
without sacrificing diagnostic performance and agreement
compared to FFRinvasive.

2. Materials and methods

2.1. Patient data

This study did not involve human tissue samples, direct
patient experimentation, or interaction. The protocol was
approved by the Massachusetts General Brigham Institutional
Review Board (IRB Protocol #2015P001084). The IRB did not
require individual patients to sign informed consent since the
study was not prospective and there was no patient
interaction or intervention performed. Patient data, consisting
of coronary angiograms and clinical measurements, were
acquired from 50 patients who underwent a clinically
indicated coronary angiogram and were found to have
angiographically-documented coronary artery disease at
Brigham and Women’s Hospital, Boston, MA, USA. Exclusion
criteria were prior coronary artery bypass graft surgery, ST-
elevation myocardial infarction, chronic total occlusion, and
ostial lesions. The 50 patients were randomly selected.
Angiograms included at least 4 standard orthogonal views of
the left coronary circulation and 2 standard orthogonal views
of the right coronary circulation (Figure 1A). Clinical
measurements were collected during coronary angiography to
inform personalized blood flow simulations, including aortic
blood pressure, cardiac output, heart rate, and hematocrit.
Routine FFR measurements were performed by administering
intravenous adenosine (140mcg=kg=min" 120 s) to induce
hyperemic conditions. A coronary guidewire pressure sensor
(Volcano Corporation, San Diego, CA) was placed distal to
the coronary stenosis for in vivo FFR computation. An
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experienced interventional cardiologist selected the location of
distal pressure measurement, ranging 5–65 mm with respect
to the distal-end of the stenosis. FFR # 0:80 was considered
ischemic and FFR . 0:80 was considered non-ischemic. The
researchers performing the coronary reconstructions and CFD
simulations were blinded to clinically measured FFR values
until CFD validations were completed.

2.2. Coronary geometry reconstruction

Three-dimensional (3D) full coronary tree models
(Figure 1B) were reconstructed from pairs of coronary
angiograms using a semi-automated algorithm described in
(32, 33). The algorithm first computed two-dimensional
vessel centerlines with corresponding cross-sectional

FIGURE 1

Computational fluid dynamics modeling pipeline. (A) Coronary angiograms were acquired for each patient. At least 4 or 2 standard orthogonal views
were collected for left and right coronary trees, respectively. (B) A three-dimensional (3D) arterial tree model was semi-automatically reconstructed
using a pair of coronary angiograms. (C) Vessel centerlines were extracted from the 3D reconstructed geometry for one-dimensional (1D) simulation.
Pulsatile flow rate was used at the inlet boundary condition and 2-element Windkessel models were used at the outlet boundary conditions. The
lumped parameter models consisted of resistance-compliance components, where resistances were related to terminal vessel anatomy. (D) FFR
results mapped on a left coronary vessel. The distal location (LDistal) was labeled by an expert physician and was situated 55mm downstream to
the distal-end of the stenosis. FFRbaseline and FFRinvasive resulted in the same FFR classification with minimal discrepancy.
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diameters semi-automatically on the pair of images.
Afterward, a fully automated computation was used to
generate the 3D coronary tree models in stereolithography
(STL). Reconstructions were validated topologically and
anatomically by an expert interventional cardiologist using
ImageJ v1.52k (NIH, Bethesda, MD, USA) via comparing the
minimal luminal diameter of the stenotic lesion segment in
3D models with the minimal diameter of the same diseased
arterial segment in angiograms, which were additional cine
runs acquired different from the pair of images (or the 3rd
view) as used for 3D reconstruction. All identifiable (>1 mm)
main and side branch vessels were reconstructed from 2D
coronary angiography data. To create one-dimensional (1D)
geometries (Figure 1C), vessel centerlines with
corresponding hydraulic diameters were extracted from the
reconstructed STL models using Mimics (Materialise,
Leuven, BE). Vessel lengths were computed from centerline
outputs at a resolution of 100 micrometers. The centerline
data was validated by comparing the minimal luminal
diameter between the 1D model with physician-measured
ground truths on angiograms. These 1D full coronary tree
models were used as inputs to personalized CFD
simulations. Coronary anatomy was used to define the
computational domain and was required to be reconstructed
accurately on a per-patient level.

2.3. 1D computational model

2.3.1. Model assumptions
Blood was modeled as an incompressible Newtonian fluid

with r ¼ 1, 060 kg/m3. Dynamic viscosity was computed per-
patient using an empirical relationship between viscosity and
hematocrit from (34):

m ¼ m0

1! f
(1)

where m is the dynamic viscosity of blood, m0 is the dynamic
viscosity of plasma, and f is hematocrit. We assumed a
constant plasma hematocrit of 1.2 cP (4, 5, 34). The 1D blood
flow simulator inherently uses elastic walls, but we enforced
quasi-rigid walls. We noted area deformations of 0.78% when
averaged across all cases, all vessels, and over all time points.
The area deformations here were comparable to other 1D
models (35) that enforced quasi-rigid walls.

2.3.2. Mathematical formulation
We used a 1D blood flow model described in (36, 37). The

1D blood flow simulator was based on the following governing

equations:

@A
@t

þ @Q
@x

¼ 0 (2)

@Q
@t

þ @

@x
a
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A

! "
þ A
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@P
@x

¼ !Cf
Q
A

(3)

where A is vessel cross-sectional area, Q is flow rate, P is
pressure, r is density of blood, a describes the velocity profile,
and Cf ¼ 22pm is a frictional term. a and Cf were estimated
from experimental data that have been used in 1D models
(36–39). P and A are related by the following constitutive
equation:

P ¼ Pext þ b(
ffiffiffiffi
A

p
!

ffiffiffiffiffiffi
A0

p
), b ¼

ffiffiffiffi
p

p
hE

(1! n2)A0
(4)

where Pext is external pressure exerted on vessels and A0 is the
undeformed cross-sectional area when P ¼ Pext. b describes
arterial stiffness and is a function of A0, wall thickness
(h ¼ 0:945 mm) (40), elastic modulus (E ¼ 1:41MPa) (41),
and Poisson’s ratio (n ¼ 0:5) (42). The conservation of mass
(Equation 2), conservation of momentum (Equation 3), and
pressure-area constitutive relationship (Equation 4) were
solved using a MacCormack finite difference scheme.

To model pressure drop across stenoses, we coupled the 1D
model with an explicit pressure loss term:

DPs ¼
mKv

2pr3u
Qþ rKt

2A2
u

Au

As
! 1

! "2

jQjQþ rKuLs
Au

@Q
@t

(5)

where DPs is pressure drop across a focal stenosis, ru is radius of
an unstenosed artery, Au is cross-sectional area of an
unstenosed artery, As is cross-sectional area of a stenosed
artery, and Ls is stenosis length. The stenosis model
(Equation 5) was coupled to the 1D governing equations via
the continuity of total pressure. The anatomical position of
stenoses were labelled by expert interventional cardiologists. ru
was estimated from physician labeled stenosis degree and
minimal luminal radius (rs), using the following expression:

Stenosis degree ¼ 1! rs
ru

! "
" 100% (6)

As was parameterized using the minimal luminal diameter.
Kv , Kt , and Ku are viscous, “turbulent,” and inertial
coefficients, respectively. The “turbulent” term reflects non-
linear effects of converging or diverging flow patterns, for
example swirling or chaotic flow downstream of the distal
end of a stenosis. These coefficients were parameterized as
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Kv ¼ 32(0:83Ls þ 1:64Ds) " (Au=As)
2=Du, Kt ¼ 1:52, and

Ku ¼ 1:2 based on (36). Du and Ds are unstenosed and
stenosed arterial diameters, respectively.

2.3.3. Personalized boundary conditions
To tune the boundary conditions to each patient, a pulsatile

flow rate waveform was incorporated at the inlet and 2-element
Windkessel models at the outlets (Figure 1C). Left and right
coronary waveforms were derived from (43) and scaled to a
patient-specific level using clinically measured cardiac output,
heart rate, and flow dominance at resting state. Hyperemia
was simulated by scaling up the flow rate based on empirical
observations, where the left and right circulations were scaled
up by 4x and 3x, respectively (44).

A 2-element Windkessel model, consisting of peripheral
resistance (Rp) and compliance (C), was applied to the ends
of each terminal vessel to account for the effect of
microvascular hemodynamics (45):

Q ¼ P
Rp

þ C
dP
dt

(7)

C was assumed to be constant at 9 cm4 s2 g!1 based on patient
averages from (36). Rp was distributed among the terminal
branches using resistance-radius relationships commonly used
for coronary simulations (4, 5, 14, 46):

Ri ¼ Pmean &
PNterminal

j¼1 r3j
Qostialr3i

(8)

where Ri is the peripheral resistance at each terminal branch,
Pmean is mean arterial pressure, Qostial is flow rate at the ostium,
r is the average terminal branch radius, and Nterminal is the
number of terminal branches. Resting state mean arterial
pressure and inlet flow rate were both obtained from clinical
measurements and terminal branch radii were computed via
1D vessel centerlines. Specifically, the ostial flow rate was
determined as a fraction of cardiac output via flow dominance
(4, 5). Terminal resistances were scaled down by a factor of
0:22x (4, 5, 14, 44) from the resting state to estimate hyperemia.

2.3.4. Model convergence
Blood flow was simulated for 20 cardiac cycles based on

temporal convergence tests, and the last cardiac cycle was
used for analysis (Figure 1D). The grid spacing, or Euclidean
distance between fluid points, was set to 500 micrometers
based on grid invariance tests. The time step was 10!5 s to
satisfy the Courant-Friedrichs-Lewy condition. The
convergence criterion was L2 error ,10!3 based on similar
CFD studies (4, 5, 47–50). The metric of interest was time-
averaged pressure at the distal location. Pressure at the distal

location was selected because this was used to compute FFR.
Temporal and spatial convergence data could be found in
Supplementary Figure S1 and Table S1, respectively.

2.4. Defining the streamlined model for
calculating fractional flow reserve

Understanding which clinical inputs could be relegated to
patient averages was the first step to developing a streamlined
computational FFR framework. We used global uncertainty
analysis to elucidate which raw clinical measurements were
critical to computing FFR accurately, as defined by a validated
baseline model with all parameters derived from patient data,
FFRbaseline.

2.4.1. Mathematical basis of global uncertainty
quantification

We employed variance-based global uncertainty
quantification techniques as explained by Eck et al. (51).
Global was selected over local uncertainty quantification to
most uniformly sample the multi-dimensional parameter
space and capture non-additive, non-monotonic, and non-
linear effects and interactions between inputs (51). Global
uncertainty quantification enabled assessment of the
individual contribution of input parameters to the overall
variance in FFR as well as the interaction between input
parameters. Sobol indices were used to quantify the impact of
clinical inputs on FFR:

Si ¼
V[E[YjZi]]

V[Y]
(9)

Sij ¼
V[E[YjZi, Zj]]

V[Y]
(10)

STi ¼ 1! V[E[YjZ!i]]
V[Y]

(11)

where Si captures the main effect of input parameter Zi

(neglecting interaction between inputs) to the total variance
V[Y], Sij quantifies the effect of interaction between inputs Zi

and Z j, and STi quantifies the sum total of main and
interaction effects. The V[E[YjZi]] term is the variance of the
expected value of output Y given a fixed value of input
parameter Zi. Z!i is a set of all input parameters excluding Zi.
When Si ' STi, interaction effects are negligible, suggesting
that main effects drove the variance in Y .

2.4.2. Parameterizing clinical inputs
Incorporating a complete set of inputs could be injudicious if

many parameters do not significantly contribute to FFR, which
would in effect only enlarge the sample space needlessly. The
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raw inputs to define personalized blood flow simulations
included mean arterial pressure, cardiac output, coronary
geometry, heart rate, stenosis anatomy, hematocrit, and distal
location. We considered stenosis anatomy separately from
coronary geometry. Explicit pressure drop terms were required
to accurately evaluate ischemic burden, and these terms were
parameterized via stenosis geometry: stenosis length and
stenosis radius at the minimum luminal diameter (30, 31).
Cardiac output was used to parameterize the inlet flow rate
waveform and peripheral resistance at the outlets. To prevent
diluting the parameter space with insignificant parameters, the
raw inputs were narrowed to mean arterial pressure, cardiac
output, stenosis degree, and distal location based on what has
been shown to be significant from prior works (27, 31). As
inlet flow rate was found to be insignificant in the literature
(27, 31, 52), we only evaluated cardiac output as it pertained to
peripheral resistance and relegated cardiac output as it
pertained to inlet flow rate as patient-generalized. The
importance of distal location has been discussed in (53) and
was also considered potentially significant. From this point
forward, we define distal location as the anatomic location of
pressure sampling distal to the stenosis. Supplementary
Figure S2 summarizes the raw inputs we investigated within
the context of the CFD framework.

The uncertainty bounds, or range of allowed uncertainty, for
each clinical input was either derived from literature or estimated
from the patient population (Table 1). All uncertainty bounds in
clinical inputs were modeled as normal distributions (51).
Patient-specific cardiac output and mean arterial pressure were
varied by multiplying with scaling factors, modeled as normal
distributions with means of unity and standard deviations from
literature-derived coefficients of variations (27, 54). The error
bound in stenosis degree was modeled to reflect the worst-case
inter-observer variability. The difference in stenosis degrees
measured by an interventional cardiologist and a researcher,
with measurements blinded to each other, was used to
parameterize a normal distribution of uncertainty. The mean
was fixed to zero to reflect the case when both observers agreed
perfectly. The standard deviation directly quantified the error
bound and was added to the baseline stenosis degree to probe
uncertainty. For distal location, we estimated a coefficient of
variation (CV ¼ 0:117; see Supplementary Figure S3) and

mean (30mm) based on the patient population and clinical
recommendations (55). The values sampled from the resulting
normal distribution were used as the distal location to compute
FFR in the global uncertainty analysis.

2.4.3. Evaluating the relative contribution of
clinical inputs to fractional flow reserve

After defining the parameters and range of uncertainties to
explore, we needed to perturb FFRbaseline models to compute
Sobol indices and evaluate the relative contribution to FFR.
The normal distributions in Table 1 were sampled according
to a second order Saltelli sequence. This sampling technique
has been shown to minimize error rates in estimating the
Sobol indices (56, 57). Sobol indices were considered as
converged when the bootstrapped 95% confidence interval
width of the main and total effects were smaller than 10% of
the maximum Sobol index for each parameter (58). FFR was
computed for every combination of the four clinical inputs
from the Saltelli sequence. Sobol indices were computed on
the aggregate of all FFR values to relate the impact of
uncertainty in clinical inputs to the resulting FFR value. Based
on tests, over 1 million simulations were required to achieve
converged Sobol indices. A high number of simulations were
also noted by Eck et al. (51) to obtain convergence. We used
an embarassingly parallel scheme to run multiple simulations
simultaneously. The simulations were completed with wall
clock duration of two weeks on 32 compute nodes. Sobol
indices exceeding a threshold of 0.05 were considered
significant (51).

2.4.4. Establishing and evaluating FFRstreamlined

The Sobol indices were used to identify which clinical inputs
were most important and inform on streamlining the CFD
framework. Patient-generalized values were used for
parameters that had relatively little contribution to FFR. These
values were computed by taking the average over the entire
cohort of patients to be used as inputs in the streamlined
model. One parameter that could be patient-generalized from
the get-go was inlet flow rate waveform. As prior studies (27,
31, 52) demonstrated that the inlet flow rate waveform
contributed minimally to FFR, two canonical hyperemic
waveforms were created (Figure 2), one for the left coronary
artery (LCA) and one for the right coronary artery (RCA).

After identifying all the patient-generalized parameters via
global uncertainty quantification, the streamlined model was
compared to the baseline framework and clinical ground-
truths. Correlation between streamlined models
(FFRsemi!streamlined and FFRstreamlined) with FFRbaseline and
FFRinvasive was determined using a least-squares linear
regression. Bland-Altman analysis was used to evaluate the
mean differences between streamlined models with FFRbaseline

and FFRinvasive. We also evaluated ability of streamlined
models to classify ischemic vs. non-ischemic stenoses

TABLE 1 Input parameter bounds to study the impact of patient-
specificity on FFR.

Clinical input Type Distribution

Distal location (mm) Value N(30:0, 3:5)

Cardiac output (%) Factor N(1, 0:153)

Stenosis degree (%) Addition N(0, 16:9)

Mean arterial pressure (%) Factor N(1, 0:056)

Normal distributions denoted as N(m, s).
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identified by FFRinvasive, using metrics such as sensitivity,
specificity, positive predictive value, negative predictive value,
and overall accuracy. Finally, receiver-operating characteristics
(ROC) curves were used to compute an area under the curve
(AUC) and to recover the 0.80 ischemic threshold to evaluate
bias. An unbiased model would recover the 0.80 threshold
and trade-off the true positive and false positive rate. The
optimum threshold from an ROC curve was taken as the
point that maximizes sensitivity (or true positive rate) and
minimizes 1-specificity (or false positive rate).

2.4.5. Determining if relative contribution is
generalizable across patients

As a secondary endpoint to this work, we evaluated whether
Sobol indices varied across patients. Previous works have
conventionally aggregated the Sobol indices over all patients
in the cohort, but the relative importance of each input
parameter to FFR may not generalize across differing patient
anatomy and physiology (11, 27, 31). To this end, we
performed a global repeated measures analysis of variance
(ANOVA), where anatomic and hemodynamic variations
subdivided the Sobol indices. Specifically, anatomy was
subdivided by LCA and RCA. We considered two
hemodynamic variations. Ischemia-inducing disease was
considered at the clinical threshold of 0.80. Patients were
stratified using this classification to probe how the impact of
patient-specificity could differ between functionally significant
and insignificant stenoses. As a positive control, we also
incorporated the grey-zone FFR—a range of FFR values,
between 0.75–0.85, traditionally known to be of uncertain
ischemic burden (59). Subdividing by grey-zone provided a
baseline variance to compare with coronary vessel and
ischemia classification subgroups. Successive factorial

ANOVAs were performed to reveal the most important
subdivisions in the parameter space using variance.

2.5. Statistical analysis

The Kolmogorov-Smirnov test was used to ensure that the
data followed the central limit theorem. Predicted FFR was
evaluated against the clinical ground-truth via least-squares
correlation and Bland-Altman analysis. ANOVA and post hoc
tests were performed on JMP Pro 16 (JMP Statistical
Discovery LLC, Cary, NC, USA). Diagnostic performance
metrics between models were compared using paired t-test or
Wilcoxon signed-rank test. A value of p , 0:05 was
considered significant.

3. Results

3.1. Patient and clinical characteristics

A retrospective cohort of 50 patients was created from
adults with angiographically documented coronary artery
disease, involving at least one vessel with FFRinvasive

measurement between January 1, 2016 and August 1, 2018.
Patient characteristics are highlighted in Table 2. A total of
69.4% of patients were male. The mean age was 66.5 years.
2.0% had hypertension, 8.2% had hypercholesterolemia, and
32.7% had diabetes mellitus. The mean left ventricular
ejection fraction was 58.2%. The most common medications
at the time of cardiac catheterization were lipid lowering
agents (93.9%), aspirin (87.8%), and ACEi/ARB (59.2%).
Stenosis characteristics are presented in Table 3. 79.6% of
stenoses were right dominant, 12.2% were left dominant, and

FIGURE 2

Canonical waveforms for the left and right coronary circulation. Hyperemic pulsatile flow rate waveforms were used as inputs to the streamlined
model for the left (LCA) and right (RCA) coronary arteries. The waveforms were generalized over the 50 patients in the cohort.
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8.2% were co-dominant circulations. The mean stenosis degree
was 55.6%. Stenosis that underwent intervention were found in
the left anterior descending artery (53.1%), left circumflex artery
(20.4%), and right coronary artery (26.5%). The majority of
stenoses were concentric (65.3%).

3.2. Patient-specific 1D coronary models
agree with clinical measurements

The first step in developing a streamlined framework was to
validate a baseline CFD framework with full patient-tuned
inputs—representing the best-case scenario. The baseline
framework, FFRbaseline, was validated in 50 patients who had
angiographically documented coronary artery disease. We
validated FFRbaseline against FFRinvasive. The correlation

coefficient was 0.71 (p , 0:0001) and the mean difference was
0:01+ 0:09 (Figure 3). Diagnostic performance of FFRbaseline

to discern ischemic stenoses are summarized in Table 5. The
sensitivity was 89.5% (95% CI: 66.9–98.7%), specificity was
93.6% (95% CI: 78.6–99.2%), and overall accuracy was 92.0%
(95% CI: 80.8–97.8%). Furthermore, the positive predictive
value was 89.5% (95% CI: 68.8–97.0%) and the negative
predictive value was 93.6% (95% CI: 79.6–98.2%).

3.3. Cardiac output and stenosis degree
contributed most to fractional flow
reserve

When aggregating all 50 patients, the uncertainty analysis
(Figure 4) indicated that cardiac output and stenosis degree
contributed most to the variance in FFR. Distal location and
mean arterial pressure also exceeded the threshold for
sensitivity, but contributed less to the variance in FFR than
cardiac output and stenosis degree. While distal location
exceeded the threshold for significance, Sobol indices are
relative metrics and the effect sizes of cardiac output and
stenosis degree exceeded distal location. To minimize the
number of parameters, we created two streamlined models.
FFRsemi!streamlined incorporated patient-generalized mean

TABLE 2 Aggregated characteristics of patients (N ¼ 50).

Age (years) 66:5+ 9:5

Female (%) 30:6

Hypertension (%) 2:0

Hypercholesterolemia (%) 8:2

Diabetes mellitus (%)

Type I 8:2

Type II 24:5

Tobacco use (%)

Current 4:1

Former 36:7

Never 59:2

Prior MI (%) 44:9

Prior PCI (%) 46:9

Prior CABG (%) 0:0

Congestive heart failure (%) 34:7

Peripheral arterial disease (%) 26:5

Chronic kidney disease (%) 28:6

Weight (kg) 87:8+ 20:6

Systolic blood pressure* (mmHg) 125:8+ 25:8

Diastolic blood pressure* (mmHg) 67:1+ 12:7

Heart rate* (bpm) 70:8+ 13:7

Cardiac output* (L/min) 4:5+ 1:5

Left ventricular ejection fraction (%) 58:2+ 10:8

Medications (%)

Aspirin 87:8

P2Y12 inhibitors 38:8

Anticoagulants 26:5

Lipid lowering agents 93:9

ACEi/ARB 59:2

Nitrates 20:4

Values are mean+ SD or n (%). (Values are in resting state conditions. MI,
myocardial infarction; PCI, percutaneous coronary intervention; CABG,
coronary artery bypass graft.

TABLE 3 Aggregated characteristics of vessels (N ¼ 50).

Vessel dominance (%)

Right 79:6

Left 12:2

Co-dominant 8:2

SYNTAX score (%)

Low 2:0

Medium 12:2

High 85:7

Invasive FFR vessel (%)

LAD 53:1

LCx 20:4

RCA 26:5

Minimal luminal diameter (mm) 1:4+ 0:4

Minimal luminal area (mm2) 1:7+ 0:9

Stenosis degree (%) 55:6+ 17:2

Plaque Eccentricity (%)

Concentric 65:3

Eccentric 34:7

Calcified (%) 44:9

Tortuous (%) 10:2

Thrombus (%) 8:2

Aneurysm (%) 2:0

Values are mean+ SD or n (%). Invasive FFR, fractional flow reserve; LAD, left
anterior descending artery; LCx, left circumflex artery; RCA, right coronary
artery.
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arterial pressure, and patient-specific cardiac output, stenosis
degree, and distal location. FFRstreamlined used patient-
generalized distal location and mean arterial pressure, and
patient-specific cardiac output and stenosis degree. The total
and main effects were not statistically different, which meant
that interaction effects between input parameters were
insignificant.

3.4. Streamlined models maintain
diagnostic performance

To test our findings from the aggregated Sobol indices, we
parameterized the streamlined models with patient-
generalized mean arterial pressure (87.3 mmHg), heart rate
(70.8 bpm), hematocrit (39.2%), and ostial diameter
(3.9 mm) (Table 4). With an average hematocrit of 39.2%,
the average dynamic viscosity was 1.97 cP, which was

comparable to viscosities used in other works at hyperemic
state (4, 5). Patient-generalized cardiac output (4.5 L/min)
was used to derive inlet flow waveforms, but patient-specific
cardiac output was used to compute peripheral resistance.
A patient-generalized distal location of 30 mm was used for
FFRsemi!streamlined.

FFRsemi!streamlined compared well against FFRbaseline in terms
of correlation (r ¼ 0:96, p , 0:001) and agreement
(mean difference ¼ 0:00+ 0:04) (Figure 5A). Compared to
FFRbaseline vs. FFRinvasive, FFRsemi!streamlined vs. FFRinvasive had
slightly improved correlation (r ¼ 0:75, p , 0:001) and
agreement (mean difference ¼ 0:01+ 0:08) (Figure 5B).
FFRstreamlined compared well against FFRbaseline in terms of
correlation (r ¼ 0:84, p , 0:001) and agreement
(mean difference ¼ 0:01+ 0:07) (Figure 5C). Compared to
FFRbaseline vs. FFRinvasive, FFRstreamlined vs. FFRinvasive had a
decrease in correlation (r ¼ 0:64, p , 0:001) but a slight
improvement in agreement (mean difference ¼ 0:01+ 0:08)

FIGURE 3

Correlation and agreement of FFRbaseline compared to FFRinvasive . (Top) Scatter plot of FFRbaseline and FFRinvasive for 50 vessels. The number of stenoses
and Pearson’s r are presented in the lower right hand corner. Interrupted lines represent the 0.80 ischemic threshold and the solid red line represents
ideal correlation. (Bottom) Bland-Altman plot displaying the mean difference between FFRbaseline and FFRinvasive for 50 vessels. The mean difference and
standard deviation are presented in the lower right corner. Black interrupted lines indicate the upper and lower limits of agreement (s:+1.96) and the
solid red line indicates mean difference.
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(Figure 5D). The average percentage discrepancy compared to
FFRbaseline was 3.3% for FFRsemi!streamlined and 5.7% for
FFRstreamlined.

In terms of diagnostic performance to identify ischemic
stenoses, the sensitivity was 89.5% (95% CI: 66.9–98.7%),
specificity was 93.6% (95% CI: 78.6–99.2%), and overall
accuracy was 92.0% (95% CI: 80.8–97.8%) for
FFRsemi!streamlined, which was identical to FFRbaseline. As for
FFRstreamlined, the sensitivity was 79.0% (95% CI: 54.4–94.0%),
specificity was 90.3% (95% CI: 74.3–98.0%), and overall
accuracy was 86.0% (95% CI: 73.3–94.2%). To compare
between the models (Table 5), we applied paired Wilcoxon
signed-ranked tests with Holm-Bonferroni correction. The
diagnostic metrics were not statistically significant for
FFRstreamlined vs. FFRbaseline (p ¼ 0:125) and the diagnostic

metrics were identical between FFRsemi!streamlined vs. FFRbaseline.
We further validated the streamlined models by evaluating
AUC and recovering the ischemic threshold (Figure 6). The
idealized case, FFRbaseline, had an AUC of 0.95, and the
ischemic threshold was recovered to be 0.79–0.80.
FFRsemi!streamlined had an AUC of 0.96 and the ischemic
threshold ranged between 0.79–0.81. FFRstreamlined had an
AUC of 0.90 and the ischemic threshold ranged between
0.78–0.80.

3.5. Relative contribution of clinical inputs
influenced by anatomy

As a secondary endpoint, we also evaluated whether Sobol
indices could be generalized across patients. Using global
ANOVA, grey-zone (p ¼ 0:0356), anatomy (p ¼ 0:0357), and
the repeated measures of the Sobol indices (p , 0:0001) were
statistically significant main effects (Supplementary Table S2).
The interaction effect of the repeated measures with anatomy
(p ¼ 0:0293) was significant. Since the repeated measures
captured most of the effect size and contributed to the
significant interaction effect, we subdivided the clinical inputs
and performed a factorial ANOVA. Distal location was found
to have no significant effects (Supplementary Table S3).
Anatomy had a significant main effect for cardiac output
(p ¼ 0:0279) (Supplementary Table S4), stenosis degree
(p ¼ 0:0025) (Supplementary Table S5), and mean arterial
pressure (p ¼ 0:0266) (Supplementary Table S6). Since the
contribution of mean arterial pressure to FFR was the least in
the aggregated global uncertainty quantification results
(Figure 4), we focused on elucidating how cardiac output and
stenosis degree varied by anatomy via post hoc analysis.

Through two-tailed t-tests (Figure 7A), the impact of
patient-specificity differed between LCA and RCA for cardiac
output and stenosis degree. Specifically, uncertainty in cardiac
output had a larger effect on the LCA than RCA (p , 0:05),
and uncertainty in stenosis degree had a larger effect on the

FIGURE 4

Sobol sensitivity indices of patient-tuned parameters on FFR. Total and main effects are displayed for cardiac output, distal location, stenosis degree,
and mean arterial pressure. Cardiac output and stenosis degree contribute most to the variance in FFR. The horizontal interrupted line at 0.05 shows
the threshold for sensitivity.

TABLE 4 Patient-generalized clinical inputs.

Mean arterial pressure (mmHg) 87:3

Heart rate (bpm) 70:8

Cardiac output (L/min) 4:5

Hematocrit (%) 39:2

Ostial diameter (mm) 3:9

Clinical inputs were averaged over 50 patients and used to parameterize the
streamlined model. Mean arterial pressure, heart rate, and cardiac output are
in resting state conditions. Cardiac output was patient-generalized only as it
pertained to inlet flow rate. Ostial diameter was obtained through coronary
geometry reconstruction.

TABLE 5 Diagnostic performance of FFRstreamlined, FFRsemi!streamlined, and
FFRbaseline to detect ischemic stenoses at the clinical threshold of 0.80.

Metric FFRstreamlined FFRsemi!streamlined FFRbaseline

Sensitivity 79.0 (54.4–94.0) 89.5 (66.9–98.7) 89.5 (66.9–98.7)

Specificity 90.3 (74.3–98.0) 93.6 (78.6–99.2) 93.6 (78.6–99.2)

PPV 83.3 (62.5–93.8) 89.5 (68.8–97.0) 89.5 (68.8–97.0)

NPV 87.5 (74.4–94.4) 93.6 (79.6–98.2) 93.6 (79.6–98.2)

Overall accuracy 86.0 (73.3–94.2) 92.0 (80.8–97.8) 92.0 (80.8–97.8)
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RCA than LCA (p , 0:001). However, examining variances are
relative metrics, and demonstrating statistically significant
differences in total effects may not translate to crossing the

ischemic threshold or motivating a different treatment
strategy. To test if the impact of patient-specificity in cardiac
output and stenosis degree could change treatment strategy,

FIGURE 5

Correlation and agreement comparing FFRsemi!streamlined, FFRstreamlined , FFRbaseline, and FFRinvasive . (Left) Scatter plots. The number of stenoses and
Pearson’s r are presented in the lower right hand corner. Interrupted lines represent the 0.80 ischemic threshold and the solid red line
represents ideal correlation. (Right) Bland-Altman plots. The mean difference and standard deviation are presented in the lower right corner.
Black interrupted lines indicate the upper and lower limits of agreement (s: +1.96) and the solid red line indicates mean difference. We
compared (A) FFRsemi!streamlined to FFRbaseline , (B) FFRsemi!streamlined to FFRinvasive , (C) FFRstreamlined to FFRbaseline , and (D) FFRstreamlined to FFRinvasive .
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we re-sampled the normal distributions of cardiac output and
stenosis degree simultaneously while restricting distal location
and mean arterial pressure to their patient-specific baselines.
To quantify variability in FFR, we computed an average
within-patient range of FFR values across the population as a
function of increasing error. Since uncertainty was modeled
using normal distribution, we re-sampled the normal
distributions with increasing standard deviations. The results
indicated that the average range of FFR values was slightly
higher in the RCA than LCA across all standard deviations
(Figure 7B). We examined the proportion of the cohort that
was reclassified due to uncertainty. The reclassification
proportion (RP) also increased with increasing standard
deviation, but demonstrated that the RCA was more sensitive
to reclassification than the LCA at all standard deviation
levels (Figure 7B). Both FFR range and RP curves plateaued
after one standard deviation. At one standard deviation, 50%
of cases were reclassified in the RCA and 25% of cases were
reclassified in the LCA (Figure 7C). The patients that were
reclassified were more sensitive to uncertainty and the
patients that were never reclassified were less sensitive to
uncertainty. In short, cardiac output and stenosis degree
needed to be patient-tuned, and the impact of uncertainty
could have differing effects between anatomies and patients.

4. Discussion

This study demonstrates the potential for CFD frameworks
with minimal patient-tuned inputs to match the accuracy and
diagnostic performance of frameworks with a full gamut of
patient-tuned parameters, which is important because
obtaining patient-specific parameters for CFD simulations is

difficult and not always possible. Through global uncertainty
analyses, we not only identified that stenosis degree and
cardiac output (when used to parameterize peripheral
resistance) were required on a per-patient level, in addition to
accurately reconstructing coronary trees, but also
demonstrated the validity of the findings by creating
streamlined models to compare with baseline and clinical
ground-truths. FFRsemi!streamlined had nearly-identical results
with the FFRbaseline and FFRstreamlined was comparable in
accuracy and diagnostic performance to the FFRbaseline.
Furthermore, the impact of uncertainty on stenosis degree
and cardiac output was shown to cause reclassification in
some patients, and the impact of uncertainty had a larger
effect on the RCA than LCA for stenosis degree and on the
LCA than RCA for cardiac output. These results could help
increase the reach and translatability of CFD frameworks for
cases with missing data and scenarios when clinical data
collection could be challenging.

4.1. FFRbaseline compares well to
categorical and continuous FFRinvasive

To create a low cost CFD framework, it was important to
first demonstrate an accurate baseline high cost model
compared to clinical measurements. This work used a cohort
of 50 patients with a representative disease prevalence of 38%
that is comparable to other studies (16, 17), and the baseline
1D FFR framework was validated against clinical ground-
truths. FFRbaseline had generally superior diagnostic
performance and comparable correlation and agreement
compared to computed tomography-based models (13, 60),
albeit on a much smaller sample of patients. On a per-study

FIGURE 6

Receiver-operating characteristics curves to compare FFRsemi!streamlined, FFRstreamlined , and FFRbaseline . AUC is area under the curve. Interrupted vertical
and horizontal lines indicate the sensitivity and 1-specificity values that correspond to the optimum threshold. Blue, green, and red colored circles
represent the threshold overlaid on the receiver-operating characteristics curves.
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basis, FFRbaseline had comparable mean differences and
diagnostic performance compared to other 3D or 0D
coronary angiography-based models (8, 19, 20, 61–68). The
studies that validate angiography-based 1D FFR is generally
less than 0D or 3D models. Of note, Mohee et al. (69)
validated a coronary angiography-based 1D model against
invasive FFR. FFRbaseline had better correlation and diagnostic
performance. Other global uncertainty analysis studies have
generally validated their models with smaller patient cohorts
and use 3D models as ground-truth. Fossan et al. (27)

validated their 1D model of FFR in 13 patients with 24
stenoses, but used 3D FFR models as ground-truth. Morris
et al. (11) validated a pseudotransient model in 20 patients
against full transient 3D CFD models. There were also studies
focusing on idealized or few patient-specific geometries (26,
28, 51). In contrast, the high cost, patient-tuned, 1D model
had high diagnostic performance (sensitivity ¼ 89:5%,
specificity ¼ 93:6%) compared to clinical measurements of
FFR and provided a robust baseline of models to investigate
patient-specificity.

FIGURE 7

The differing impact of patient-specificity in cardiac output and stenosis degree between anatomies. (A) Coronary anatomy had differing effects on
cardiac output and stenosis degree. LCA is left coronary artery and RCA is right coronary artery. (B) Re-sampling the global parameter space to
estimate FFR range and reclassification proportion (RP) when only varying cardiac output and stenosis degree. Normal distributions of uncertainty
were re-sampled at increasing levels of standard deviation (SD). (C) Dumbbell plot showing the range of FFR values when re-sampling to include
1 standard deviation of the variability in cardiac output and stenosis degree. Red dumbbells indicate re-classified cases and black dumbbells
indicate cases without re-classification.
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4.2. Streamlining clinical inputs maintain
comparatively high diagnostic
performance

To develop streamlined models, we explored how the
variance contribution of clinical inputs impacted FFR. We
found that cardiac output, stenosis degree, and distal location
crossed the 0.05 threshold for sensitivity, and mean arterial
pressure narrowly crossed the threshold. The effect size for
cardiac output and stenosis degree far exceeded that of distal
location. Based on the global uncertainty quantification
results, we created streamlined models using only personalized
values for coronary anatomy (including stenosis anatomy) and
cardiac output for FFRstreamlined and additionally with patient-
specific distal location for FFRsemi!streamlined.

The semi-streamlined model had identical diagnostic
performance with the baseline and slightly better accuracy
and mean difference. The streamlined model maintained high
diagnostic performance (sensitivity ¼ 79:0%, specificity =
90:3%) while introducing minimal bias as compared to the
baseline model (mean difference = 0:01+ 0:07) and clinical
measurements (mean difference = 0:01+ 0:08). We also
successfully recovered the ischemic threshold using ROC
curves and demonstrated minimal bias for all three models.
The semi-streamlined model had nearly identical AUC with
the baseline model. This finding indicated that it was possible
to use a streamlined set of inputs, and nearly identical
performance could be maintained if there was a patient-
specific distal location. The streamlined model had slightly
lower AUC and represents a worst-case scenario, where a
relatively high diagnostic performance could still be
maintained without a clinically-indicated distal location.

In the streamlined framework, only two waveforms were
used for the entire population, one for the LCA and one for
the RCA. This indicated that patient-derived waveforms may
not be needed. A common ostial diameter was used to
convert coronary flow velocity to flow rates, which suggested
that coronary anatomy did not matter at the inlet but
mattered in terminal branches when controlling flow
distribution around the coronary tree. As FFRsemi!streamlined

almost perfectly matched FFRbaseline, mean arterial pressure,
heart rate, and hematocrit did not tangibly influence FFR.
The discrepancy in performance between FFRsemi!streamlined

and FFRstreamlined could be solely attributed to distal location.
While a relatively high diagnostic performance was
maintained with FFRstreamlined, the non-negligible influence of
distal location on FFR was observed here and was also
consistent with the global uncertainty analysis results.

We demonstrated that peripheral resistance and stenosis
anatomy contributed most to the variance in FFR, and that
peripheral resistance had the largest variance contribution.
These results are consistent with current literature (11, 27–29)
that also investigated the contribution of input parameters to

FFR using global uncertainty quantification. In this study, we
further identified cardiac output as the input that contributed
most to peripheral resistance. We used a patient-generalized
mean arterial pressure to determine peripheral resistances,
which demonstrated that cardiac output was more important
than mean arterial pressure in distributing flow down the
coronary tree. Ultimately, the framework has the flexibility to
accept a full set of patient-tuned inputs, representing the best-
case scenario, but could also simulate cases with missing data
using the streamlined models without compromising much
diagnostic performance.

4.3. Impact of geometry reconstruction
and cardiac output differ by coronary
vessel

Coronary arteries can widely vary in anatomy and
physiology (70–72), especially in diseased cases where there
could be disturbed blood flow dynamics. Existing sensitivity
analysis and uncertainty quantification studies assume
generalizability (11, 27). We further investigated the impact of
uncertainty across anatomy (LCA vs. RCA) and physiology
(ischemic vs. non-ischemic identified by FFRinvasive, grey-zone
vs. non-grey-zone). The grey-zone is a known cluster of FFR
values where there is uncertainty on how to treat patients (59,
73). Global repeated measures ANOVA identified that the
main effect of anatomy was significant and had the same
effect size as grey-zone. From a variance perspective, the
results indicated that the difference between grey-zone and
non-grey-zone cases was comparable to the difference between
LCA and RCA. Therefore, the impact of uncertainty was not
generalizable across coronary geometry. There was also a
significant interaction effect between anatomy and the
repeated measure of total effects in clinical inputs. We first
subdivided the repeated measures and found that cardiac
output and stenosis degree had significant main effects, which
highlighted that the impact of uncertainty was not
generalizable in these clinical inputs. Conversely, distal
location had no statistically significant main or interaction
effects. To characterize how the impact of uncertainty varied
in the LCA and RCA, we performed post hoc analyses and
discovered that uncertainty in cardiac output had a larger
effect on the LCA than RCA and uncertainty in stenosis
degree had a larger effect on the RCA than LCA. The impact
of error on FFR was not only different across anatomy, but
how the effect differed also varied between clinical inputs. As
total effects are relative, we also re-sampled the global
parameter space to examine whether the uncertainty could
cause reclassification and warrant a different treatment
strategy. The parameter space was re-sampled incrementally,
from the baseline inputs to 3 standard deviations of the error
parameter space. These results demonstrated that the
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magnitude of error in cardiac output and stenosis degree was
sufficient to reclassify a considerable proportion of the
population. Measuring accurate clinical inputs should be
prioritized on a coronary anatomy-specific level. Hence,
accurate anatomic reconstruction and measurement of cardiac
output were important in accurately computing FFR.

4.4. Clinical translatability of streamlined
1D models

It is important to consider whether the pathway to clinical
translation is feasible. While models such as FFRangio

(CathWorks, Kfar-saba, Israel) (15–17) have already paved the
way for clinical translation, these state-of-the-art frameworks
rely on a full gamut of patient-specific inputs for accurate
FFR assessment. This work indicated that a few clinical
parameters were needed, namely cardiac output and stenosis
degree at the minimum, to maintain diagnostic performance
as compared to the invasive gold-standard. Clinical
measurements such as mean arterial pressure, heart rate, and
hematocrit could be omitted. This finding could be useful in
the event of missing data, which is a pervasive issue seen
intra- and inter-clinic (23–25). Streamlining the clinical
measurement process expands the utility of currently available
techniques and may reduce the barrier for clinical translation.
Further, the streamlined models have several advantages over
other 1D models currently undergoing the process for clinical
translation. The average computation time for the 1D
framework was 10:1+ 4:7 min. Our calculation time was
more than twice as fast as other 1D models, such as
23:9+ 11:2 min with Siemens cFFR (74) and 27:1+ 7:5 min
with Toshiba CT-FFR (75). Both streamlined models also had
superior diagnostic performance, correlation, and mean
differences compared to the Siemens and Toshiba 1D models
(75, 76). Accurate geometry segmentation was shown to be an
important factor, and is typically a bottleneck even for 1D
simulations (77). Applying our semi-automated algorithm,
accurate coronary reconstructions were completed within
10 min (32, 78). The streamlined framework contributes to
clinical translatability by identifying the measurements that
could be patient-generalized and those that need to be
patient-specific for accurate FFR computation.

4.5. Limitations

Regarding limitations, the patient population was
retrospective and from a single center. A prospective study
from multiple centers would provide a more robust validation,
but the point of this work was to develop an optimized model
from a fully patient-specific model, and validating with
clinically measured FFR demonstrated that both models were

accurate. Second, the correlation between FFRbaseline and
FFRinvasive was moderate. There are multiple ways to validate
FFRbaseline against the clinical ground-truth. FFR is
fundamentally a dichotomous metric used to refer patients to
percutaneous coronary intervention (FFR # 0:80) or optimal
medical therapy (FFR . 0:80). In this work, we validated
both continuous and categorical FFR. While the Bland-
Altman mean differences indicated negligible bias, the
correlation was moderate. FFRbaseline was comparable to other
studies in the literature. The vast majority of 1D FFR models
validate against 3D models (27, 29, 52, 79–81). Compared to
studies that also validated with invasive FFR (75, 76, 82),
FFRbaseline had generally higher correlation. Categorical FFR
was validated using diagnostic performance metrics (i.e.,
sensitivity, specificity, positive predictive value, negative
predictive value, accuracy, AUC) and exceeded 90% for nearly
all metrics. Third, the effect of adenosine was considered
generalizable across the cohort. Lo et al. (83) recently
compared patient-specific outflow conditions based on
myocardial perfusion from positron emission tomography
data to the conventional scaling method. They found that the
effect of adenosine could be overestimated and result in
overestimating FFR severity. The FFRbaseline vs. FFRinvasive

slope exceeded unity, which could indicate that our model
overestimated hyperemia because of using scaling laws. This
could be rectified in future works by acquiring myocardial
perfusion data and tuning hyperemia on a per-patient level
(83, 84). Fourth, the factorial study subdividing patient-
specificity by anatomic and hemodynamic classes was limited.
Although we explored coronary anatomy, ischemic vs. non-
ischemic stenoses, and grey-zone cases, the study could have
also explored differing effects of patient-specificity on factors
such as age, sex, and the presence of co-morbidities. A larger
cohort would be required to expand on the number of factors
investigated. We also primarily focused on focal lesions.
Including complex coronary disease, such as ostial and
bifurcation stenoses, would require separate sensitivity studies
as we expect hemodynamics to differ from focal stenoses. For
example, ostial stenoses may have an impact on inlet coronary
waveforms and bifurcation stenoses may increase the
importance of segmenting accurate stenoses.

4.6. Conclusion

In this study, we developed two streamlined models with
minimal clinical inputs that could compute FFR accurately.
This work demonstrated that patient-generalized parameters
could be used to accurately recover diagnostic phenomarkers
and that the impact of error was not generalizable across
varying anatomy and physiology. We presented a flexible
framework that could enable cases with missing data to be
simulated accurately. Additionally, the proposed framework
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could help improve the translatability and use of CFD models to
guide interventional planning.
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