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Abstract: Cardiovascular disease is a leading cause of death worldwide. The differentiation of human
pluripotent stem cells (hPSCs) into functional cardiomyocytes offers significant potential for disease
modeling and cell-based cardiac therapies. However, hPSC-derived cardiomyocytes (hPSC-CMs)
remain largely immature, limiting their experimental and clinical applications. A critical challenge in
current in vitro culture systems is the absence of standardized metrics to quantify maturity. This study
presents a data-driven pipeline to quantify hPSC-CM maturity using gene expression data across
various stages of cardiac development. We determined that culture time serves as a feasible proxy for
maturity. To improve prediction accuracy, machine learning algorithms were employed to identify
heart-related genes whose expression strongly correlates with culture time. Our results reduced
the average discrepancy between predicted and observed culture time to 4.461 days and CASQ2
(Calsequestrin 2), a gene involved in calcium ion storage and transport, was identified as the most
critical cardiac gene associated with culture duration. This novel framework for maturity assessment
moves beyond traditional qualitative methods, providing deeper insights into hPSC-CM maturation
dynamics. It establishes a foundation for developing advanced lab-on-chip devices capable of real-
time maturity monitoring and adaptive stimulus selection, paving the way for improved maturation
strategies and broader experimental/ clinical applications.

Keywords: cardiovascular diseases; hPSC-CM maturity; gene expression; cardiac gene selection;
culture time prediction

1. Introduction

Cardiovascular diseases (CVDs) remain the leading cause of death worldwide,
according to reports from the American Heart Association and the National Institutes of
Health [1]. In 2021, CVDs were responsible for 20.5 million deaths, accounting for
one-third of all global fatalities [2]. In the United States, one person dies from
cardiovascular disease every 33 s, with heart disease imposing an economic burden of
approximately USD 252.2 billion annually from 2019 to 2020 [3]. These statistics highlight
the urgent need for effective treatments for heart disease.

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) represent a
promising solution by providing a potentially unlimited cell supply for applications such
as cell-based cardiac regeneration therapy, drug toxicity screening [4], and cardiovascular
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disease modeling [5]. However, curing myocardial infarction, the leading cause of death
among adults, requires mature hPSC-CMs that closely resemble adult cardiomyocytes
(CMs). Immature hPSC-CMs, with their inherently faster beating rates, pose the risk of
inducing lethal arrhythmias if transplanted into recovering adult hearts. This emphasizes
the critical need not only to differentiate CMs from hPSCs but also to effectively promote
their maturation.

To enhance the maturity and functionality of hPSC-CMs, researchers have explored
several approaches, such as mechanical stress stimulation, electrical stimulation,
biochemical cues, 3D cardiac tissue remodeling, substrate stiffness modification,
combinatorial co-culture to harness paracrine effects, and mitochondrial proteomic
analysis to support metabolic development [6-8]. Despite these efforts, hPSC-CMs
generated in vitro still exhibit characteristics of neonatal (immature) cardiomyocytes,
falling short in cardiac markers, action potential profiles, and morphology compared to
mature CMs [9,10]. This immaturity significantly limits their experimental and
clinical applications.

Since the maturation process of hPSC-CMs is influenced by numerous factors,
developing efficient strategies requires a deep understanding of how individual or
combined factors drive maturation. Currently, hPSC-CM maturity is assessed using
various biological methods that examine aspects such as cell morphology and structure,
electrophysiology, calcium handling, and gene expression [11,12]. However, a significant
challenge with existing in vitro hPSC-CM culture systems is the lack of standardized
metrics and protocols for quantifying overall maturity. This limitation hinders both the
comprehensive evaluation of maturation stages and the development of effective strategies
to enhance maturation.

Similar to human development, where an individual’s true biological age is
unobservable but can be inferred through various proxies (e.g., chronological age, bone
age, and telomere length), the maturity level of hPSC-CMs can be approximated using
measurable indicators such as post-differentiation time and biological markers (e.g., gene
expression profiles). Based on this hypothesis, we propose a data-driven approach to
address the challenges associated with assessing hPSC-CM maturity in current in vitro
culture systems. A data-driven model is a technology based on the analysis of the data
about a specific system that can find the relationship between variables in the system
without explicit knowledge of the physical behavior of the system [13-15].

Our proposed approach will first assess the feasibility of approximating true maturity
levels using observable metrics. Subsequently, machine learning algorithms will be applied
to identify biological measurements that strongly correlate with these maturity proxies,
enabling more accurate predictions of maturity levels. This method not only enhances our
understanding of the maturation process but also uncovers latent maturation states. In
particular, with 48,804 gene probe data at multiple in vitro culture time points [16], the
data-driven model is a promising method for the quantitative evaluation of the hPSC-CM
maturity level. Based on the gene profile data, which span different stages of cardiac
development, we have verified that hPSC-CMs can continually mature toward more
adult-like hPSC-CMs up to 120 days. Then, by adopting in vitro culture duration as
the proxy to estimate the maturity level of hPSC-CMs, these gene probes were ranked
based on their importance to predict the culture duration. Specifically, this ranking of
gene importance reflects the weight assigned to each gene in the machine learning-based
prediction model, indicating its contribution to explaining the variance in culture time. Five
different predictive methods have been proposed and the results showed that the most
accurate culture time prediction has an average error of 4.461 days, and the most important
cardiac gene that correlates to the culture time is Gene CASQ? (Calsequestrin 2), whose
protein plays a role in the storage and transportation of calcium ions.

The major features of this work are as follows. (1) The existing hPSC-CM maturity
quantification schemes mainly focus on deciding whether the hPSC-CMs are mature or not.
For the first time, we have proposed a data-driven pipeline that is capable of quantifying
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the maturity level of the cell in vitro with a finer granularity. (2) The selected dominating
cardiac genes can guide the design of more efficient stimulation schemes to promote
hPSC-CM maturation. (3) The data-driven approach opens the door of hPSC-CM study to
multidisciplinary researchers without a strong biology background.

The remainder of the paper is organized as follows. Section 2 introduces existing
biological studies on the maturity determination methods for hPSC-CMs. Section 3 verifies
the feasibility of adopting in vitro culture duration as the proxy to estimate the maturity
level of hPSC-CMs. Section 4 explains the cardiac gene selection and culture duration
prediction models. Section 5 presents the results, Section 6 discusses the limitations of the
study and future work, and Section 7 concludes the paper.

2. Related Works

As compared to human adult cardiomyocytes, the current in vitro hPSC-CMs remain
largely immature. By the principle of “if you cannot measure it, you cannot improve it” [17],
the slowly moving hPSC-CM maturation research is challenged by the lack of a convenient
and standard method to assess hPSC-CMs’ degree of maturity quantitatively. Currently,
researchers have been using various biological methods to evaluate whether hPSC-CMs
are becoming more mature towards adult CMs from various aspects: morphology and
structure, calcium handling, contractile function and electrophysiological properties, and
gene expression. The differences between immature CMs and mature CMs in these four
aspects are summarized in Figure 1. The details of these aspects are provided below.

Maturity Evaluation
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Figure 1. Existing maturity evaluation methods of hPSC-CMs.

2.1. Morphology and Structure

The process from human fetal CMs to adult phenotype in vivo takes 6 to 10 years [18].
However, hPSC-CMs can be generated within 15 days of in vitro differentiation [19]. To
nurture more mature hPSC-CMs, researchers increased culturing time up to 120 days
and found key changes in cultured hPSC-CMs [11]. The main difference can be classified
into four parts: (1) shape of the cell; (2) sarcomeres: a contractile unit of the muscle fiber;
(3) sarcoplasmic reticulum (SR): also a structure found within muscles, the main function of
which is to store calcium ions Ca?™; and (4) transverse tubules (T-tubules): a cell membrane
that penetrates the center of the skeletal and cardiac muscle cell.

As illustrated in Figure 1, adult cardiomyocytes are well aligned, rod-like,
multinucleated cells. They have highly organized sarcomeres and well-developed SR and
T-tubules. In immature hPSC-CMs, those features tend to be lacking. The hPSC-CMs are
small, rounded, mononucleated, with disorganized and shorter sarcomeres. Moreover,
hPSC-CMs have poorly developed SR and no T-tubules [12].

Data Collection and Processing Methods: During the culturing period of 120 days, the
status of hPSC-CMs can be divided into two stages: the early stage (from 20 days to 40 days)
and the late stage (from 80 days to 120 days). During the culture process, the hPSC-CMs are
observed under the microscope. Cell images are captured and saved into a computer. The
parameters of sarcomere length, cell perimeter, cell area, percentage of multinucleation, and
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circularity index (ratio between the cell width and length) are obtained with appropriate
image analysis software [11].

2.2. Calcium Handling

In adult CMs, T-tubules and SR are well developed to regulate Ca’" induced Ca
release (CICR) and fast excitation-contraction coupling (ECC). The sharp and uniform
increase of intracellular Ca?* concentration in adult CMs is important for the synchronized
contraction in multiple sarcomeres. By contrast, in hPSC-CMs, T-tubules are absent and SR
is underdeveloped with low expression for the most part of sarcoendoplasmic reticulum
calcium ATPase (SERCA) and other key proteins.

Data Collection and Processing Methods: Calcium imaging technology refers to a
method for monitoring calcium ion concentration in tissues using calcium ion indicators
named dyes. The cultured slip is observed under the microscope after placing the coverslip
cultured with hPSC-CMs in a Petri dish containing the dye solution for about 30 min at
37 degrees Celsius. Images are captured and quantified with appropriate image
analysis software.

2.3. Contractile Function and Electrophysiological Properties

The contractile function is a fundamental status indicator of CMs. (1) The hPSC-CMs
and fetal CMs display a comparable force generation capacity (0.22 & 0.70 mN/mm? to
11.8 4+ 4.5 mN/mm? in hPSC-CMs and ~0.4 mN/mm? in fetal CMs), while adult CMs
generate much larger forces (~51 mN/ mm?) [20]. (2) The hPSC-CMs also show immaturity
in their electrophysiological properties, as compared with adult CMs, including reduced
electrical excitability, higher resting membrane potential (—20 to —60 mV vs. ~—90 mV),
low capacitance (30-50 pF vs. ~150 pF), smaller upstroke (15-50 V /s vs. 180400 V/s) and
conduction velocity (2.1-20 cm/s vs. 41-84 cm/s), and presence of spontaneous beating,
which is found in early fetal CMs [21].

Data Collection and Processing Methods: Contractile and electrophysiological data
are monitored and collected in real time by devices such as HEKA EPC-10 patch-clamp
amplifier. The changes in contractile and electrophysiological properties are analyzed by
appropriate software, e.g., Patchmaster and Igor Pro [22].

2.4. Gene Expression

During the culturing of hPSC-CMs, several cardiac-specific genes express a more
adult heart-like expression level over time, such as CASQ2, CRYAB, MYH6, MYH7, TNNI3,
and ACTCI. (1) Gene CASQ? results in a more mature calcium handling phenotype
during culturing [23]. The CASQ?2 gene provides instructions for marking a protein called
calsequestrin 2 found in myocytes, where it is involved in storing and transporting calcium
ions. (2) CRYAB is a part of the small heart protein family and functions as a molecular
chaperone that primarily binds misfolded proteins to prevent protein aggregation, inhibit
apoptosis, and contribute to in-tricellular architecture. (3) In an adult heart, the genes
MYH6 and MYH7 are predominantly expressed in the ventricle and atrium, respectively.
As the culture time of hPSC-CMs is prolonged, the gene expression level of MYH7 and
MYHG6 tends to mature toward the adult cardiomyocyte level. Also, MYH7 and MYH6
provide essential instructions to form part of a large protein called type II myosin that
generates the mechanical force to pump blood to the rest of the body. (4) The level of
TNNI3 expression gradually increases with the culture time. The TNNI3 gene provides
instruction for making a protein called cardiac troponin I, which helps coordinate the heart’s
contraction. (5) ACTCI is the major protein of the thin filament in cardiac sarcomeres. Some
other important cardiac-specific genes are listed in Table 1.
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Table 1. The 21 example cardiac-specific genes and fold change expression.

Gene Description Adult1 Adult2 Day 120 Day 0
ACTC1 Actin, alpha, cardiac muscle 1 15.64 15.60 15.48 9.74
MYH7 Myosin light chain 7 15.62 15.62 14.02 6.82
CRYAB Crystallin alpha B 15.52 15.48 13.81 6.80
TNNC1 Troponin C1, slow skeletal and cardiac type 15.50 15.30 14.57 7.46
MYL2 Myosin light chain 2 15.43 15.38 14.56 6.99
MYL3 Myosin light chain 3 15.15 15.18 14.60 6.86
MYH6 Myosin light chain 6 14.71 15.57 15.01 6.99

MB Myoglobin 14.59 14.50 13.67 6.90
MYBPC3 Myosin binding protein C, cardiac 14.54 14.71 13.96 6.85
TNNT?2 Troponin T2, cardiac type 14.51 14.08 13.72 7.48
TNNI3 Troponin I3, cardiac type 14.37 14.06 12.32 7.95
CKMT2 Creatine kinase, mitochondrial 2 14.22 14.29 12.45 7.16

NPPA Natriuretic peptide A 14.17 14.95 15.22 6.84
CASQ2 Calsequestrin 2 14.08 13.69 12.41 6.92

HRC Histidine rich calcium binding protein 14.02 13.96 11.81 7.38
MYL7 Myoslin light chain 7 13.65 14.24 15.07 7.11
ACTN2 Actinin alpha 2 12.15 11.31 10.59 7.48
NKX2-5 NK2 homeobox 5 11.10 11.03 10.71 6.76

PLN Phospholamban 10.79 8.28 11.50 6.88

LDB3 LIM domain binding 3 9.15 8.76 8.92 6.86
KCNH2 Potassium voltage-gated channel subfamily H member 2 8.16 8.52 8.07 7.10

Data Collection and Processing Methods: The differentiation protocol is performed
over millions of cells. At different culture dates, these cells are removed for RNA sample
collection, and total RNA from hPSC-CMs can be isolated using reagent by following the
manufacturer’s protocol [24,25]. To obtain the gene expression profiles, 48,804 genes are
probed with the microarray method, which can determine whether the RNA or DNA from
a particular individual contains a gene mutation. The gene expression profile of hPSC-CMs
is then compared with adult CMs by conducting statistical tests.

3. The hPSC-CM Maturity Evaluation Proxy

To propose a data-driven model capable of quantifying the maturation stage of
hPSC-CMs with fine granularity, we first examine the gene expression data collected
during culturing.

3.1. Cardiac-Specific Gene Data Collection

The miRNA expressions of hPSC-CMs (Supp_table4 in [25]) are adopted as input data
to analyze the maturation process. The gene expression datasets include (a) the mRNA
expression collected for a set of in vitro culture time points in
T = {0,3,7,10,14, 20, 28, 35,45, 60,90, 120} days; (b) two independent runs of the adult
mRNA expression, namely adult 1 sample and adult 2 sample, where the culture time is
indicated as t* > > 120, approximately two years.

On day t € 7T, three million cells were sampled for RNA collection and
N ={1,...,203} cardiac genes listed in the Genomic Institute of the Novartis Research
Foundation (GNF) expression atlas were probed [26]. For the i-th probed cardiac gene
expression, i € N, the fold change value y: is measured, which is used to describe the
degree of change from the initial gene profile of the fetal sample to the gene profile on
day t.

t
Yt =log, (%),vs eNVtET, )
Zi
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where for the i-th gene, z} indicates the corresponding gene probe profile of the hPSC-CMs
on day t, and z:.U is the initial profile of the fetal hPSC-CMs. The log> transformed the ratio
to “fold”, i.e., “times”, where ¥} = 1 means z} is doubling z:”.

The resulting fold change dataset given below will be used to verify whether culture
time can serve as the proxy of the maturity level of hPSC-CMs.

(1) A set of fold change values Y; = {y!|i € N'} for hPSC-CMs on day t € T, where
y; is the fold change value of the i-th gene. (2) Y* = {y/|i € N'} for adult CMs on day ¢*,
where y; is the fold change value of the i-th gene.

3.2. Maturation Level vs. Culture Duration

To compare the fold changes of the heart signature genes between hPSC-CMs on day
t and adult CMs on day t*, the Pearson correlation coefficient ry, y« has been calculated
during the hPSC-CMs differentiation for two random variables Y; and Y*.

Y\ (yr =Y
, L COUy,; y* _ t'EZN (yt t)(yt ) (2)
Y Y 5}}5‘{* Z (yf _ ?{)2 Z (y* _ Y*)Z !
ieN ! e !

where cov is the covariance and ¢ is the standard deviation. N = 203 is the sample size,
which equals the total number of sample cardiac genes indexed by i. For hPSC-CMs on day
t during in vitro differentiation, Y; = (Y;cpr¢) /N is the sample mean of the 203 genes.
For adult CMs, Y* = (¥L;en ¥7) /N is the corresponding sample mean.

Pearson correlation coefficient is a measure of the similarity of two random variables
between —1 and 1. If ¥; and Y* are highly correlated, ie., |ry,y+| is close to 1, it is
reasonable to build a model such that Y; can be predicted based on the value of Y*. An
example relationship between the response Y; and the predictor Y* can be described as a
linear function:

Vi=a+BYVEET, ®3)

where Y; is the predicted response of Y;. The coefficients a; and B; are the intercept and
slope, respectively. B; tells how much the dependent variable Y; is expected to increase
when the independent variable Y* increases by one.

For the simple linear regression model in Equation (3), a; and B; are selected to
minimize the difference between the predicted response ¥; and the measured response Y;.
In particular, to quantify how much variance remains after fitting the linear model, the sum
of squared error (SSE) is adopted to measure the performance of the predictive model.

SSE=Y (v —Y:)?% )
ieN

where SSE is measured by the squared differences between the predicted and actual target
values. To minimize SSE, the coefficients have the following values.

_ e
Br=rvx, ©)
ny = Yf — ﬁY* P

where the above coefficients are derived by setting the partial derivative of SSE to 0. As
compared with slope B, ry, y+ can be treated as the standardized slope of the simple linear
regression model.

Meanwhile, the coefficient of determination, R%},Y” measures that “ R%’r,\r”‘ x 100 % of
the variation in Y; is reduced by taking into account predictor Y*”. R%},Y* tells how much
of the total variance can be explained by the linear model.
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SSE SSE
RZ, —1-222_q___ 2% 6
Y,y SST T Y7 (6)
ieN

where the sum of squared total (SST) quantifies the total variance of the target outcome as
the sum of squared distance between individual data point i} and the mean of the response
variable Y;. Note that for the linear regression model in Equation (3), R%},Y* = (ry,y+)%

As illustrated in Table 2, R? y,y+ increases with culture time £. In particular, the squared
Pearson correlation coefficient R .5 y+ — 0-55 shows a moderate positive linear relationship
between the gene expression proﬁles of day 28 hPSC-CMs and adult CMs. Meanwhile,
the value of 93.0% in Figure 2 suggests a strong linear relationship between two adult
samples, where only 7% of the variation in the adult 2 sample is left to explain after taking
into account the adult 1 sample in a linear way. However, knowing the hPSC-CMs are
continually becoming mature is not sufficient. The quantification of the mature stage will
be discussed next.

Table 2. The coefficient of determination.

Time ¢ R} . Time ¢ R} .
Day 0 0.08 Day 28 0.55
Day 3 0.09 Day 35 0.58
Day 7 0.12 Day 45 0.59
Day 10 0.23 Day 60 0.61
Day 14 0.37 Day 90 0.61
Day 20 0.49 Day 120 0.65
16 A
X r_.= 28, R?=0.55 x %
— Y,y =0.74Y" +1.84
t= 120, R?=0.65 -
Y120 =0.78Y"+1.48 *

14 4 N
o t=t", R?=0.93

— ¥ =0.95Y"+0.78

124

104

Y: (Fold Change log; Expression)

é 1‘0 1’2 1‘4 1’5
Y* (Adult 1 Fold Change log, Expression)
Figure 2. Comparison of the cardiac-specific genes between adult CMs and hPSC-CMs.

4. Data-Driven Maturity Quantification

Aiming for an effective algorithm to quantify the maturity level of hPSC-CMs, the data-
driven pipeline in Figure 3 is designed to select cardiac-specific genes and then map those
genes to the in vitro culture time ¢, which is adopted as the proxy of the maturity stage.
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Figure 3. The data-driven maturation quantification pipeline.

4.1. Data-Driven Maturity Quantification Pipeline

Data Collection: We collected two publicly available datasets with gene-specific fold
change values across 12 in vitro culture time points in 7. The first dataset has recorded
203 cardiac genes for one group of cells (Supp_table4 in [25]), and the second dataset has
48,804 genes recorded for three groups of cells (GSM873339-GS5M873374 in [16]).

Step 1: Since both datasets are collected in the same culturing environment setting, to
integrate them and increase the data volume, the gene “ID” (used by dataset 2) is mapped
to the “ILMN_Gene” (used by dataset 1) according to the GPL6884 table in [27], which can
translate the “unique identifier for the probe” to the “internal gene symbol”. Since multiple
IDs can map to the same ILMN_Gene, we remove the redundant entries in dataset 2.

After cleaning dataset 2 and taking the intersection of gene symbols in both datasets,
the resulting integrated dataset has 48 data records: four groups of cells across 12 in vitro
culture time points. For each record, 189 genes listed in Table Al in Appendix A are
recorded. For notation simplicity, the genes that are fed into the next steps (feature selection
and predictive modeling) are denoted as X = {x;]i € N}, where x; represents the fold
change value of the i-th cardiac gene in A, = {1,...,189}.

Steps 2-3: With 48 records of {X, T}, the train—test split in Table 3 separates the total
dataset into two parts: Myzin = {1,..., My, } Tecords for training and the remaining
Miest = {1,..., Miest} for testing. Based on the training data, a subset of X is selected such
that regression analysis can be conducted to learn a function f and predict T.

T=f(X"), X' CX, @)

where T is the time estimated by the predictive model f.
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Table 3. Training and testing datasets.

Dataset Number of Records Percentage
Training My gin = 40 85%
Testing Miest = 8 15%

The purpose of feature selection is to remove unnecessary, irrelevant, and redundant
genes. The remaining important cardiac genes in X’ are useful to create an accurate
predictive model f, which aims to minimize the root-mean-square error (RMSE).

f = argmin RMSE(T) = argmin

1
SSE(T), 8
i, ooE(T) ®

where for the j-th training record, T; is the ground truth, and Tf is the corresponding
estimated value. SSE(T) = Lje m,,.. (T — Tf )2 is the sum of squared errors of predicting
T, which measures the deviation between the observed value and the true value.

Note that after splitting the training data and test data, the standardization of
numerical features is performed over training data, such that each gene’s fold change
value has zero mean and unit variance.

xfjormalized = 3‘:,;73(35:, Vj S Mtrat’ﬂ U Mtesh (9)
where x;; is the fold change value of the i-th gene in the j-th collected record. For each
cardiac gene, based on all necessary statistics of the training data (mean
X = Z;‘e Mypain Xi,j/ Mirain and standard deviation oy,;), the standardization is also
performed on test data. For notation simplicity, we dropped the superscript Normalized in
the rest of the paper.

With all of the numerical values in the dataset being standardized, no gene can
dominate the objective function and make the estimator unable to learn from other features
correctly as expected.

Step 4: To verify the performance of the feature selection algorithm and predictive
modeling, the standardized data records in the test dataset are fed into the model, and the
corresponding RMSE and R? score are adopted as the performance evaluation metrics.

2
Yy (Tf_TI)
2 JEMiest
RT,?: — 3 (T T )2, (10)
feMtest ! fest

where Tiest = ( Z;‘e Mises Tf-)/ M;est is the average ground truth culture time of the testing
data. R? is the fraction of the total sum of squares that is explained by the regression, and
the closer R? is to 1, the better the model.

Since Steps 1 and 4 are fixed for the proposed pipeline, to improve the performance of
the hPSC-CM culture time prediction, the following feature selection algorithms (Step 2)
and predictive modeling (Step 3) are investigated in our study.

Method 1 (M): Filter method and linear regression;

Method 2 (M2): Wrapper method;

Method 3 (M3): Embedded method;

Method 4 (My): Non-linear feature selection and non-linear regression;
Method 5 (Ms): Non-linear feature selection and linear regression.
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4.2. My—Filter Method (Pearson Correlation) + Linear Regression

To select the dominant cardiac genes in N that determine the culture duration T, the
univariate feature selection technique examines the linear strength of the relationship (such
as Pearson correlation coefficient) between each input feature x; and the corresponding
output variable T. The ranking of input features based on their strength of relationship
concerning the output variable can gain a preliminary understanding of the collected data.

The detailed steps of the correlation-based filter method include the following. (1) The
constant and quasi-constant cardiac genes in X, which have variance less than the threshold
0.01, ie., ((5;,“)2 < 0.01, are removed from N,.. This step can delete the cardiac genes that
do not change significantly when the culture time T increases. (2) Irrelevant cardiac genes
with the absolute Pearson correlation coefficient less than the threshold 0.5, i.e., |ry, | < 0.5
are removed as well, as they contain little information to predict the output T. (3) When
the correlation coefficient for a pair of cardiac genes (x;,, x;,) is higher than the threshold
0.5, ie., |rx, :Iizl > 0.5, only one gene with a higher correlation with the output variable T
is kept.

As illustrated by the heatmap in Figure 4, k* = 2 cardiac genes are kept by the filter
method, and each selected input feature X' = {x19,x175}) has a high correlation to the
output T. The correlations among the selected features are less than the
predefined threshold.

1.0
0.8
0.6

-0.4

T

-0.2
-0.0
--0.2

X19

X175

0.4

[ -0.6

T X9 X175

Figure 4. Pair-wise correlation of the gene selected by M;.

After the above feature selection steps, the multiple linear regression is applied to
the clean dataset and the coefficient of each feature in the linear function f; is obtained
as follows:

T = fl (xlg, 1175) = Z ﬁfxt- +a = 30.42119 - 8.32‘[]75 + 3767, (11)
i€{19,175}

where the coefficients of the above linear function are selected to minimize RMSE in
Equation (8). The intercept is 37.67 and other coefficients show the change in the output
variable T for one unit of change in the input cardiac gene while holding other input
genes in the model constant. Since |B19| > |B175|, X19 has more impact on the culture time
prediction as compared to x17s.

4.3. My—Wrapper Method (Recursive Feature Elimination 4 Linear Regression)

Different from M; with sequential feature selection and regression modeling, the
wrapper method uses the performance of the regression model as evaluation criteria for the
feature selection scheme. In particular, the wrapper method can generate different subsets
of features, and each subset is used to build a model and train the learning algorithm. The
subset yielding the best performance in terms of RMSE is selected as the final features.

During the subset generation process, the recursive feature elimination (RFE) method
involves multiple rounds of elimination of the input variables. In each round, RFE specifies
the number of input features that should be selected to build the regression model, and
then performs recursive feature elimination. The detailed procedure is given below.
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Iteration k: The number of features being selected is iterated from k = 1 to
k = min{|Nc|, | Mirain|} = 40, where | o | means the cardinality of the cardiac genes in set
N and the cardinality of the training set M. Note that the number of features being
selected cannot exceed the number of records in the training dataset.

In the k-th iteration, RFE performs the following two steps.

Step M3 1: Build a full linear regression model with all of the input features in the
cardiac gene set V..

T=f(X)= ) pxita (12)

ieN;
where the above model aims to minimize the RMSE in Equation (8). Note that since we are
trying to build a model with |N;| = 189 coefficients based on | M| = 40 records in the
training dataset, the full model is not unique because of the small dataset: |N;| > | Mgin]-

Step Mj,: Rank features based on the absolute value of the coefficient. The least
important feature is pruned from the current set of cardiac features. Note that since
the training dataset has been standardized to unit variance, the importance of a feature
increases with increasing |B;|. Otherwise, the feature importance ranking has to take
account of the standard deviation of each cardiac gene as well: |B;|oy; [28].

Ending Condition for the k-th iteration: For each k-th iteration, repeat the feature
elimination Steps Mj ;—M3.» over the pruned set until the number of genes left is k.

After all of the iterations are completed (k = 40), the subset size k* that optimizes
the performance criteria (smallest RMSE) is used to select the input variables, and the
corresponding optimal subset is then used to train the final model. As illustrated in
Figure 5, k* = 39 selected features are ranked based on the absolute linear regression
coefficient | §;| in the final model.

8_

6_

1

:

. U T T TTT E—
ol | I Hin

Coefficient (8;)

Figure 5. The ranking of cardiac genes selected by M.

4.4. Ms—Embedded Method (Lasso Regularization)

Embedded methods combine the qualities of the filter and wrapper methods. It is
implemented by regression algorithms with built-in feature selection schemes.
Regularization is the most commonly used embedded method that introduces additional
constraints to bias the regression model toward less input cardiac features. As shown
below, the least absolute shrinkage and selection operator (LASSO), i.e., L1 regularization
for generalized linear models, has an additional weighted penalty against the complexity
of the model.

2
f3:arg:mjn{ Z (T),-—Tf-) +A Z |ﬁ;|}, (13)
j€ M train iENc

where T = f3(X) = Licn. Bixi + . The model complexity is the sum of the absolute
coefficients for all the input features. Meanwhile, 0 < A < o is adjustable and the higher
the value, the more the coefficient ; is forced to shrink. With this penalty term, if a feature
x; is irrelevant, LASSO penalizes its coefficient and makes it 0, and this feature is then
removed from the dataset.

To determine the appropriate value for A, cross-validation (CV) is adopted and the
training dataset is divided into 5 non-overlapping folds. A total of 100 values of A are
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iterated to train Lasso models over 5 folds. As illustrated in Figure 6, the optimal A* yields
the best average performance in terms of the smallest fold average RMSE: A* = 0.0226. With
the chosen optimal A*, k* = 40 features with non-zero coefficient g; in the corresponding
predictive model are ranked in Figure 7.
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Figure 6. The tuning of regularization coefficient A.
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Figure 7. The ranking of cardiac genes selected by M3.
4.5. My—Non-Linear Feature Selection and Regression (XGBoost Method)

When the regression model f in Equation (7) represents a non-linear relationship
between the input cardiac genes and the output culture time, the tree-based methods, e.g.,
decision trees, random forest, and extreme gradient boosting (XGBoost) [29], can be applied
to perform feature selection with low complexity. They can model non-linear relations well
and do not require much tuning.

As illustrated in Figure 8, the decision tree can create a regression model that predicts
the culture time T by evaluating a sequence of true/false questions regarding the cardiac
features. Although an effective regression model, the decision tree is very sensitive and
small changes to the training set can result in significantly different tree structures.

Figure 8. The first decision tree fi of XGBoost.
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XGBoost addresses this issue by leveraging the wisdom of crowds wherein a large
number of individual trees operating as a committee will outperform any of the individual
constituent trees.

T=f(X)=Y fiX).fi € F, (14)

o=
|||'[Ud
—

where B is the number of trees. f? is a function in the functional space F, and F is the set
of all possible trees, which can map the data record to the green leaf node. B is a tunable
parameter that can be iterated to reduce the training RMSE.

The importance of a feature in the XGBoost can be measured as the number of times
a feature is used to split the data across all trees. With this feature ranking mechanism,
multiple XGBoost models are trained iteratively by feeding the top k features. As shown
in Figure 9, the cross-validation performance shows that the best XGBoost model only
needs the top k* = 27 features. When feeding the selected top 27 cardiac genes, various
parameters in the XGBoost model are tuned based on the training data, and the resulting
feature importance is ranked in Figure 10.
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Figure 9. XGBoost-based feature selection.
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Figure 10. The ranking of cardiac genes selected by My.

4.6. M5—XGBoost Method + Linear Regression

M5 adopts the input features selected by My (XGBoost) and predicts the output with
the linear regression model. This method is introduced to measure the improvement that
M, achieves by capturing nonlinearity among input features and output T. In other words,
this method signifies the impact and importance of implied nonlinearity among the input
features and between pairs of inputs and output. The coefficients of the selected cardiac
genes in the linear regression model are shown in Figure 11.
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Figure 11. The ranking of cardiac genes used by Ms.
5. Results

The five feature selection and regression model development methods (M; to Ms) are
applied to select the most important cardiac-specific genes that are related to the hPSC-CM
culture duration. With the selected genes, predictive algorithms are adopted to quantify
the maturity level of hPSC-CMs. The resulting performance over the test data is collected.

5.1. Culture Time Prediction

The comparison between the observed culture time T and the predicted culture time
T over the test dataset is shown in Figure 12. All of the five methods have acceptable test
performance in terms of a small discrepancy between T and T, as verified by the low RMSE

and the R2 score closer to 1 in Table 4.
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Figure 12. The predicted maturity level.

Table 4. The performance of various feature selection and regression algorithms.

Method k* Genes in X’ Ranked by Importance RMSE (Day) R? Score
M;j (Linear) 2 {x19, x175} 6.837 0.934
{x45f ng x159f x149f x84f x?4f x5?f x19f x28! xI@f x44f xmf x30f x@f
M2 (Lmear) 39 X158, X175, X94, X174, X115, X3, X176, X16, X133, X1, X43, X83, X86, X162, 5.216 0.962
Xo1, X183, X144, X14, X33, X126, X15, X141, X85, X157, x26}
{x19 » X159, X176, X16, X144, X149, X60, X69, X183, X31, X115, X86, X15/
M3 (Lmear) 40 X74, X1, X14, X43, X33, X152, X175, X38, X127, X48, X94, X44, X56, X162, 5.521 0.957
X8, X78, X167, X57, X133, X85, X84, X109, X23, X126, X7, X142, x3}
x r fx fx fx fx fx fx fx fxfx fx fx fxf
My {XGBOOSt) 27 { 19 » X93, X149, X168, X123, X17, X151, X144, X46, X2, X82, X109, X60, X4 4.461 0.972
Xo1, X52, X159, X175, X44, X49, X156, X14, X94, X11, X130, X7, x43}
. X159, Xo4, X168, X16, X4, X91, X109, X151, X82, X52, X2, X17, X130, X175,
M; (Lmear) 27 { 159, 494, 4168, X16, 44, 91, 4109, X151, 482, X52, 42, X17, 4130, X175 8.724 0.892

X11, X60, X93, X19, X14, X43, X149, X49, X144, X123, X7, X46, X44}
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For the linear regression models, Mz (RFE with 39 features) yields the best
performance, which is followed by M3 (Lasso with 40 features), M (Pearson correlation
with 2 features), and Ms (with 27 features selected by XGBoost). For these four linear
models, the predictive performance does not strictly grow or decrease with the number of
selected cardiac genes. The reason is that on one hand, the predictive performance will
improve when the number of important cardiac genes being selected increases. On the
other hand, the performance will drop when less important cardiac genes are included in
the predictive model.

Moreover, the non-linear model My (XGBoost) outperforms all of the four linear
models. This is another successful application of XGBoost because it can extract useful
predictive information from 27 cardiac genes while Mz (RFE) needs 39 cardiac genes. The
performance degradation from M, to M verifies that XGBoost can capture the non-linearity
correlation among the selected cardiac genes and culture time.

5.2. Cardiac Gene Selection

As illustrated in Table 4, three methods (M;, M3, and My) have selected x19 as the top
gene in X' that correlates with the culture duration. The detailed importance level of x1q
can be found in Equation (11), Figures 7 and 10. Although M> (RFE in Figure 5) ranks x19
as the eighth most important gene, the training dataset is very small (only 40 data records),
and there is randomness in the 189 coefficients of the full model returned by Equation (12).
Consequently, the ranking of the cardiac genes returned by M3 has randomness as well.
When x19 is not ranked as the top cardiac gene, M5 has the worst performance. It is thus
reasonable to conclude that x19 is the most important gene in terms of predicting the culture
time of hPSC-CMs.

In addition, biology domain knowledge suggests that x19 (Gene CASQ?2: Calsequestrin
2) triggers skeletal and cardiac muscle contraction and plays a critical role in excitation—
contraction coupling in the heart and in regulating the rate of heartbeats. This validates
our proposed data-driven approach for assessing hPSC-CM maturity in in vitro culture
systems. Moreover, this observation is particularly significant as it can inform the design of
maturation promotion schemes for hPSC-CMs. By stimulating hPSC-CMs in a way that
accelerates the fold-change increase in CASQ?2, it is likely to facilitate their maturation into
a more adult-like phenotype.

6. Discussion

We have proposed an innovative approach that integrates machine learning with
biological data to evaluate hPSC-CM maturity. By correlating publicly available gene
expression profiles with culture duration, our data-driven framework represents a
significant improvement over traditional biological qualitative techniques in Figure 1.

6.1. Limitations and Future Work for Maturity Evaluation

Although the data-driven pipeline is novel, the limited data size used in this study
increases sensitivity to noise and outliers in the gene profile. This issue is further
complicated by the inherent variability in cell maturation rates, as cells may achieve
similar functionalities at different paces. As a result, the correlation between
post-differentiation culture time and unobservable maturity level may not be perfect.
These factors could cause the regression model to overfit the current dataset, thereby
limiting its generalizability to other datasets.

To address these limitations, future work will aim to enhance the robustness and
generalizability of the proposed approach by improving both data quantity and model
design through the following strategies: (1) Collecting additional experimental data to
further validate the regression model’s predictions. For example, predicted maturity levels
could be compared with functional assays or the physiological characteristics of
cardiomyocytes to improve the model’s accuracy and reliability. (2) Exploring more
reliable proxies for maturation levels and developing advanced machine learning models
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capable of uncovering latent maturity levels from relatively small datasets. These efforts
will further strengthen the predictive framework and enhance the model’s applicability
and performance.

6.2. Limitations and Future Work for Maturity Monitoring and Promotion

Since the cultured cells are destroyed during data acquisition, the existing gene
expression-based hPSC-CM maturity quantification schemes are invasive and costly,
similar to the morphology- and structure-based schemes and calcium handling-based
schemes described in Section 2. For non-invasive maturity quantification, the contractile
function and electrophysiological property-based approaches have the most potential,
because advanced lab-on-chip devices [30] can be designed and fabricated to monitor the
properties that correlate with cell maturity indicator, such as gene x9, in real time as the
culture duration is prolonged.

Meanwhile, by leveraging a lab-on-chip device capable of real-time cell status
monitoring and potential stimulation through mechanical stretching or electrical pulsing,
future longitudinal studies can utilize live data to track the maturation process over time.
This approach could offer deeper insights into the maturation dynamics of hPSC-derived
cardiomyocytes, including adaptive stimulation adjustments.

7. Conclusions

We have proposed a data-driven pipeline for evaluating the maturity of hPSC-CMs.
Using public gene expression data spanning various in vitro culture time points, we
demonstrated the feasibility of using culture time as a proxy for assessing hPSC-CM
maturity. By integrating biological domain knowledge with machine learning algorithms,
we identified key cardiac genes that correlate strongly with culture time. Regression
models further predicted culture time with an average error of less than 4.5 days. This work
establishes a foundation for standardizing the quantification of hPSC-CM maturation and
offers valuable insights for promoting their maturation. Building on this foundation, our
future work will focus on developing an advanced lab-on-chip device capable of real-time
monitoring of cell maturity and selecting adaptive stimuli to enhance cell maturation.
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Appendix A

Table A1l. The mapping between variable name in X and cardiac gene ID.

Notation Gene Notation Gene Notation Gene Notation Gene
x1 ABO X2 ACO2 X3 ACOT2 x4 ACOX2
X5 ACTN2 Xg AK1 X7 ANK1 Xg ANKRD?2
Xg ATP5G1 X1p ATP5G3 x11 BAG3 X172 BRP#4L
X13 BSG X14 C1 QA X15 C1 QB X16 CA4
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Table A1. Cont.

Notation Gene Notation Gene Notation Gene Notation Gene
x17 CABC1 X1g CAND2 X19 CASQ2 X720 CCL15
X721 CD151 X979 CD320 X923 CFD Xo4 CHST7
Xo5 CKM X26 CKMT2 X7 CLEC3B Xog CLTB
X29 CcoQ9 x30 COX5A X3 COX5B X32 COX6A2
X33 COX7A1 X34 COX8A X35 CPT1B X36 CRIP2
X37 CRYAB X38 CRYM X39 CcsDcC2 x40 CSRP3
X41 CTTN X42 cyc1 X43 DCHS1 X44 DCI
X45 DES X46 DEXI X47 DMPK X438 DSPP
X49 ECHDC3 Xs50 ECSIT X51 EEF1A2 X502 EFEMP2
X53 ENDOG Xgq ERCC1 Xs55 FABP3 X56 FAHD2A
Xs57 FARS? X58 FHL2 X59 FL]22222 X60 FLNC
Xg1 FXYD1 Xgo GADD45GIP1 Xg3 GAMT Xg4 GATA4
Xg5 GATA6 X6 GOT1 Xg7 GPC1 Xg8 GYS1
Xgo HOMER3 X70 HRC X7 HSPB1 X7 HSPB2
x73 HSPB3 X74 HSPBé X75 HSPB7 X76 HSPBS8
X77 HSPG?2 x78 ICAM?2 X79 IDH?2 X80 IF127
xg1 IGFBP2 xg2 IGFBP7 xg3 IL11RA xg4 ILVBL
Xgg INMT Xgg ITGA7 Xg7 ITGB1BP2 Xgg ITGB1BP3
Xgg KCNH2 Xgp LDB3 Xo1 LGALS3BP Xgp MAPKAPK3
Xo3 MB Xgyq MCOLN1 Xog MRAS Xgg MRPL12
Xg7 MRPL34 Xog MRPL41 X99 MRPS12 X100 MSRB?2
X101 MYBPC3 X102 MYH6 X103 MYH7 X104 MYL2
X105 MYL3 X106 MYL4 X107 MYL7 X108 MYL9
X109 MYLC2PL X110 MYOM1 X111 MYOM?2 X112 MYOZ2
X113 NDUFA11 X114 NDUFA7 X115 NDUFB10 X116 NDUFB7
X117 NDUFS7 X118 NDUFS8 X119 NKX2-5 X120 NOL3
X121 NPPA X122 NPPB X123 NRAP X124 OGDH
X125 OPLAH X126 PCTK3 X127 PDE4DIP X128 PDK2
X129 PDLIM5 X130 PGAM?2 X131 PGM1 X132 PHPT1
X133 PLA2G5 X134 PLEKHF1 X135 PLN X136 POLR2I
X137 POLRMT X138 POMGNT1 X139 POPDC2 X140 PPAPDC3
X141 PPP1R13L X142 PPPI1R1A X143 PPP2R3B X144 PTGDS
X145 PTP4A3 X146 PTPLA X147 PTRF X148 PXMP2
X149 RAMP1 X150 RAMP3 X151 RASIP1 X152 RBPMS
X153 RGS3 X154 RRAS X155 S5100A1 X156 SEPW1
X157 S5GCG X158 SH3RF2 X159 SIVA X160 SLC25A11
X161 SLC25A4 X162 SLC29A1 X163 SLC4A3 X164 SMPX
X165 SMTN X166 SNTA1 X167 STAB1 X168 STOML1
X169 STOML?2 X170 SYNPO2L x171 TACC2 X172 TAX1BP3
X173 TCAP X174 TIMMSB X175 TM7SF2 X176 TMEM159
X177 TNNC1 X178 TNNI3 X179 TNNT2 X180 TNXA
X181 TNXB X182 TPM1 X183 TSPAN4 X184 UQCR
X185 UQCRC1 X186 VAMP5 X187 VEGFB X188 VWF
X189 WDR13
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