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Abstract

A prototype model for a Fluid–Structure interaction is considered. We aim to stabilize

[enhance stability of] the model by having access only to a portion of the state. Toward

this goal we shall construct a compensator-based Luenberger design, with the follow-

ing two goals: (1) reconstruct the original system asymptotically by tracking partial

information about the full state, (2) stabilize the original unstable system by feeding

an admissible control based on a system which is obtained from the compensator. The

ultimate result is boundary control/stabilization of partially observed and originally

unstable fluid–structure interaction with restricted information on the current state and

without any knowledge of the initial condition. This prevents applicability of known

methods in either open-loop or closed loop stabilization/control.
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1 Introduction, Qualitative Description of the Results

1.1 Motivation

A 2-or 3-dimensional Fluid (Heat)-Structure Interaction model is considered, which

couples a fluid (heat) dynamics with an elastic body (structure), the coupling taking

place at the interface between the two media, where the respective dynamics evolve.

The original problem is unstable on its natural functional setting. The goal is then to

design a feedback control system endowed with the following features. The boundary

control operator is constrained to be active only on an arbitrarily small portion of the

interface, while the feedback operator cannot have access to the entire state, but only to

an accessible part of the state through a partial observation operator (partial observer)

acting itself only on another arbitrarily small portion of the interface. Thus, control

operator and observation operator are uncollocated, as they act on disjoint arbitrarily

small portions of the interface. It is the dynamics (called “compensator") determined

by the only accessible partial observation of the state, that feeds the control function

through the feedback operator. Justification of the name “compensator" is that this

known dynamics asymptotically approximates ("recovers") the unknown inaccessible

full state; that is, it compensates for the lack of knowledge of the whole state at a given

time, or even of the initial condition, in line with the Luenberger compensator theory

(originally introduced in the finite dimensional setting).

1.2 Premise

To provide a first qualitative description of the problem studied in this paper, we first

review the Luenberger compensator theory in its original finite dimensional setting

[29]. So all operators A, B, C, K below in this section are finite dimensional, with

the operator A being unstable. The theory rests on two assumptions: (i) stabilizability

and (i i) detectability, possibly with the same exponential decay.

(A.1) (Stabilizabilty) Given the pair {A, B}, with A unstable, there exists a (feedback)

operator F , such that (A + B F) is exponentially stable.

(A.2) (Detectability) Given the pair {A, C}, with A unstable, there exists an operator

K such that (A − K C) is exponentially stable.

Thus, under (A.1) and (A.2), we conclude that there exist constants M ≥ 1 and k > 0,

such that

‖e(A+B F)t‖ + ‖e(A−K C)t‖ ≤ Me−kt , t ≥ 0. (1.1)

Standard representation of Luenberger’s compensator theory is as follows (continuous

theory): It is based on the following coupled system:

ẏ = Ay + Bg, g = Fz = control, y(0) = y0, (1.2a)

ż = (A + B F − K C)z + K (Cy), z(0) = z0. (1.2b)
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where y0 is the initial state of the original plant [may be unknown] and z0 is arbitrary.

It can be taken z0 = 0.

The basic idea is that the full state y is inaccessible, unknown, beyond any measure-

ment, as is often the case in applications. What we have instead at our disposal is

the partial observation (Cy), where C is the known observation operator. Examples

abound: (i) the actual state within a furnace or (i i) the true distribution of ’noise‘

within an acoustic chamber are not exactly accessible, and only some information

from the boundary may be available in each case. Thus, the (compensator) z-equation

(1.2b) is fed, or determined, by only the available partial observation (Cy). Subtracting

(1.2b) from (1.2a) with Bg = B Fz, we obtain after a cancellation of the term B Fz:

d

dt
[y(t) − z(t)] = (A − K C) [y(t) − z(t)] , (1.3a)

[y(t) − z(t)] = e(A−K C)t [y0 − z0], t ≥ 0. (1.3b)

One next invokes the detectability assumption (A.2) for the pair {A, C}: there exist

M ≥ 1 and k such that ‖e(A−K C)‖ ≤ Me−kt , k > 0, t ≥ 0. Thus, from (1.3b), we

finally obtain

‖y(t) − z(t)‖ = ‖e(A−K C)t [y0 − z0]‖ ≤ Me−kt‖y0 − z0‖, t ≥ 0, (1.4)

and the dynamic compensator z(t), which is fed only by the known partial obser-

vation (Cy) of the inaccessible state y, and with possibly z0 = 0, asymptotically

approximates such state y(t), at an exponential rate. The ultimate goal is to show

that such control g ≡ Fz provides the sought-after uniform stability of the original

plant described by (1.2). This is the key of Luenberger’s theory [29] in the lumped case

where the state of the system is a finite dimensional vector. Non-trivial extensions were

subsequently introduced and studied in the case of distributed parameter systems mod-

eled by Partial Differential Equations [10, 11] and with boundary control/boundary

observations [7, 15–18, 22, 23], [24, p 495]. In the present paper we shall develop this

theory within the context of Fluid-Structure interaction with an interface, where both

control and observation are restricted to the first component state on just arbitrarily

small, disjoint portion of the interface. This setup presents not only physical interest

driven by applications, but also leads to considerable challenges at the mathematical

level when dealing with two different environments separated by an interface.

1.3 The Coupled PDE-System Corresponding to (1.2 a-b)

Let � f ⊂ R
n, n = 2, 3 denote the bounded domain on which the heat component of

the coupled PDE system evolves. The boundary of � f consists of two disjoint parts

� f and �s . The domain �s [elastic body] immersed within � f is the domain on which

the structural component evolves in time. see Fig. 1. On this domain we consider a

heat-structure interaction in the variables y = [w,wt , u] and z = [z1, z2 = z1t , z3],

where u ∈ R
n denotes the velocity of the fluid, w on R

n displacement of the body

and wt its velocity. The common interface between the two environments is �s . On

the interface �s one imposes matching of the velocities u = wt .
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Fig. 1 The physical interaction model

Let �c
s and �o

s (c =control; o =observation) be two arbitrarily small, disjoint,

connected, subsets of positive measure, of the interface �s , see Fig. 1. The function

χD will denote the characteristic function of the domain D. The vector ν denotes the

outward unit normal to the domain � f , hence toward �s on �s . We introduce at the

outset the PDE-coupled system corresponding to the motivating finite dimensional

system (1.2a, b):

ut − �u ≡ 0 in (0, T ] × � f , (1.5a)

wt t − �w − �wt ≡ 0 in (0, T ] × �s, (1.5b)

u|� f
= 0 in (0, T ] × � f (1.5c)

u|�s = wt |�s in (0, T ] × �s, (1.5d)

∂(w + wt )

∂ν
=

∂u

∂ν
+ χ�c

s
g in (0, T ] × �s . (1.5e)

The control function g acts on a small portion of �s denoted by �c
s . This will be

later modeled as a control action given by a respective operator Bg which enters the

system via Neumann type boundary conditions [balance of the stresses]. The system

is observed via a displacement w localised on another [disjoint] portion of �s denoted

by �o
s . The above will lead to compensator construction in the variable z

z3t − �z3 ≡ 0 in (0, T ] × � f , (1.6a)

z1t t − �z1 − �z1t ≡ 0 in (0, T ] × �s, (1.6b)

z3|� f
= 0 in (0, T ] × � f , (1.6c)

z3|�s = z1t |�s in (0, T ] × �s, (1.6d)

∂(z1 + z1t )

∂ν
=

∂z3

∂ν
+ χ�c

s
z1 − χ�o

s
z1 + χ�o

s
w in (0, T ] × �s, (1.6e)

with I.C. y0 = {w0, w1, u0} ∈ H, z0 = {z10, z20, z30} ∈ H. We stress that while y0

is an initial condition corresponding to the original system, z0 can be taken arbitrary-

including z0 = 0. Coupling to both systems is exercised at a portion of the interface �s :

χ�c
s
z1 in (1.5e) and χ�o

s
w in (1.6e). It will be documented below-see (2.3), (2.4),(4.1),

(4.2)-that the abstract model for the coupled PDE-system (1.5 a–e), (1.6 a–e) is given

by,

123



Journal of Optimization Theory and Applications (2024) 203:1471–1508 1475

Fig. 2 Illustration of problem

(1.7 a-b)

ẏ = Ay + BF z, (1.7a)

ż = (A + BF − KC) z + K(Cy), (1.7b)

for operators A,B,F ,K, C to be identified below ([A,B, C] given by the physical

problem, while [F ,K] to be designed accordingly); or

d

dt

[
y

z

]
= A

[
y

z

]
, A =

[
A BF

KC A + BF − KC

]
; (1.8a)

H = H × H ⊃ D(A ) → H, (1.8b)

D(A ) = {(η, ζ ) ∈ H,Aη + BFζ ∈ H; KCη + (A + BF − KC)ζ ∈ H}. With the

suitable feedback operator F , the control g given by g = F z will be shown to provide

a stabilizing effect on the original system described in the variable y in the natural

finite energy space for the model:

H = H1(�s) × L2(�s) × L2(� f ), (1.9)

say for y ≡ {w,wt , u} noted in (1.5). (For simplicity of notation, component spaces

are not bold faced. So we write, say L2(�s) rather than L
2(�s) or

[
L2(�s)

]n
). See

the symbolic Fig. 2.

In the analysis, it will be critical to replace the space H in (1.9) with the norm

equivalent space:

He = H1
e (�s) × L2(�s) × L2(� f ), (1.10)

where the inner product, and square of the norm of v1 ∈ H1
e (�s), are defined by,

(v1, ṽ1)H1
e (�s )

= (∇v1,∇ṽ1)�s
+ (v1, ṽ1)�̃s

, (1.11a)

‖v1‖
2
H1

e (�s )
≡ ‖∇v1‖

2
L2(�s)

+ ‖v1|�̃s
‖2

L2(�̃s )
, (1.11b)

so that ‖v1‖H1
e (�s )

= 0 �⇒ v1 ≡ 0 in �s . In (1.11a), �̃s is a fixed portion of �s .

Norm-equivalence between H and He is justified in (4.16) below. The key reason for

introducing He is explained by Lemma 4.1 (ii) followed by Proposition 4.2, (4.20)

below.
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2 Main Results

2.1 Formulation and Comments

The main result of the present paper is the following one. (We recall that the operator

A is unstable on H: λ = 0 is an eigenvalue of A on H with eigenvector e = [1, 0, 0],

Remark 3.2.)

Theorem 2.1 The coupled PDE-system (1.5 a–e), (1.6 a–e) defines the operator A as

in (1.8 a-b), which is the generator of a s.c semigroup eA t on the finite energy space

H = H × H, H in (1.9):

[
y(t)

z(t)

]
= eA t

[
y0

z0

]
∈ C([0, T ];H). (2.1)

Moreover, eA t is analytic and uniformly stable on H: there exist constants M ≥

1, k > 0, such that,

‖eA t‖L(H) ≤ Me−kt , thus ‖

[
y(t)

z(t)

]
‖H ≤ Me−kt‖

[
y0

z0

]
‖H. (2.2)

Remark 2.1 • We note that the compensator system can be solved with an arbitrary

initial condition, in particular z0 = 0. The only information needed is the value of

the displacement w of the body on a portion of the boundary �o
s which is assumed

to be the observed quantity. The control acting on the original plant g = F z = z1

feeds the information from the compensator into the system. It acts also on a an

arbitrary small portion of the interface �c
s which may be far away from the observed

part �o
s . The final result provides exponential stabilization of the original plant on

a finite energy space.

• In [39] a similar model has been considered under the assumption of suitable sta-

bility. The goal of that work was to track asymptotically the solution via restricted

observation fed to a compensator. However, this work did not involve control part

or stabilization, where the latter is the main issue of the present contribution.

Remark 2.2 • As already mentioned, a compensator design has been considered for

a variety of PDE models also with boundary observation or control. The interest

of the present model is that this is an interface model with interaction of two

different environments. As we shall see, this provides for several challenges at the

level of mathematical [PDE] analysis, where unboundedness of traces occurring

at the interface is the main game changer. A more comprehensive model will be by

replacing "heat equation" by the dynamic Stokes equation -which also accounts

for the presence of pressure in the system [13, 34]. This can be done by using a

well known by now representation of the pressure in terms of a nonlocal operator

collecting the information from the interface [1–3, 37]. Similarly, more general

forms of elliptic operators, where � is replaced by strain–stress tensors could be

easily considered without changing the mathematical technicalities of the present

analysis.
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• Other heat-plate interaction models are given in [38, 40].

• The problem of stabilization subject to partial information on the state has acquired

a lot of recent attention in the literature and it is often referred to as “data assim-

ilations" or “determining modes" techniques [4, 6, 12, 30]. Here the principle is

somewhat different where asymptotic tracking of the trajectory is based on col-

lecting information on "finitely" many modes determining the system. The above

method reconstructs asymptotically trajectories and remarkably may even provide

information on additional regularity of solutions [4]. However, there is no control

aspect in the problem.

• It would be interesting to consider effects of nonlinearity in the model. In fact, this

has been done within the context of data assimilation [4, 6]. Within the present

framework, this could be done as in [5] where the control mechanism F z is fed to

the original plant and provides a stabilizing effect also in the presence of nonlinear

effects for suitably small data.

• The stabilizing feedback operator F on the compensated system can be also

selected by using a Riccati operator F = −B∗P where P ∈ L(H) satis-

fies the Algebraic Riccati Equation of the form (A∗ Px, y)H + (PAx, y)H +

(x, y)H = (B∗ Px,B∗ Py)L2(�c
s ) associated with the cost functional J (g, y(g)) =∫∞

0 [||y||2 + ||g||2]dt and the trajectory y(g) given by (1.5). The analyticity of

the "y " dynamics, along with the stabilizability condition allow to apply Riccati

Theory with unbounded controls, in order to assert [24] that P ∈ L(H) exists, it

is unique, B∗ P ∈ L(H; L2(�s)) and F(y) = −B∗ P(y) is uniformly stabilizing

the original dynamics. Appealing now to the result of our main Theorem, we can

claim that the partially observed [compensated] feedback g = −B∗ Pz provides

"almost" optimal performance asymptotically. The latter follows from Bellman’s

optimality principle. This construct provides a minimal cost control feedback, at

the price of using the entire state z given by the compensator [16].

• Another aspect of the problem for consideration is the numerical approximation

of the compensator system in line with past work in [16, 18]. For discretization of

a fluid structure interactions see [20, 21].

Critical ingredients in the proof of Theorem 2.1 are the following results, which

are also of independent interest on their own.

Theorem 2.2 The (feedback) operator AF = A + BF (to be defined in (4.3),(4.5)) is

maximally dissipative on the space He (e =equivalent) norm-equivalent to the space

H, and hence generates a s.c. contraction semigroup eAF t on He, which moreover is

analytic and uniformly stable on He, and hence analytic and uniformly stable on H as

well. The PDE-version of the abstract (feedback) system ẏ = AF y, y = [w,wt , u]

is given by (4.4 a–e):

ut − �u ≡ 0 in (0, T ] × � f , (2.3a)

wt t − �w − �wt ≡ 0 in (0, T ] × �s, (2.3b)

u|� f
= 0 in (0, T ] × � f , (2.3c)

u|�s = wt |�s in (0, T ] × �s, (2.3d)
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∂(w + wt )

∂ν
=

∂u

∂ν
+ χ�c

s
w in (0, T ] × �s . (2.3e)

Theorem 2.3 Similarly, the operator (A − KC) (to be defined below in (4.6), (4.8))

is maximally dissipative on the space He norm-equivalent to the space H, and hence

generates a s.c. contraction semigroup on He, which moreover is analytic and uni-

formly stable on He, and hence analytic and uniformly stable on H as well. The

PDE-version of the abstract system, ẏ = (A − KC)y, y = [w,wt , u] is given by (4.7

a-e): eqivalently: (2.3a ), (2.3b), (2.3c), (2.3d) with (2.3e) replaced by

∂(w + wt )

∂ν
=

∂u

∂ν
− χ�o

s
w in (0, T ] × �s . (2.4)

Given the pair {A,B} from the physical problem, Theorem 2.2 designs a suitable

feedback stabilizing operator F to provide justification of the stabilizability assump-

tion (A.1). Similarly, given the pair {A, C} from the physical problem, Theorem 2.3

designs a suitable detectable operator K to provide justification of the detectability

assumption (A.2).

2.2 Strategy for the Proofs

Orientation and qualitative description of the present paper We next provide, at first

qualitatively, a description of the results of the present paper, following Luenberger’s

script.

Uncontrolled problem The operator A in Section (3.1a–e). The uncontrolled prob-

lem is the Heat-Kelvin-Voight interaction model (3.1a–e), in the variable {w,wt } for

the structure, and u for the heat component. It is modeled by the abstract operator

A in (3.5), (3.6) on the natural function space H = H1(�s) × L2(�s) × L2(� f ),

for {w,wt , u}, as noted in (1.9) or (3.2). In this setting, the operator A is unstable:

λ = 0 is an simple eigenvalue with corresponding eigenvector e = [1, 0, 0]. There is

therefore the need to stabilize it.

Controlled problem Section 3.2. The pair {A,B} with controlled operator B applied

at the boundary (interface). In order to stabilize by feedback control the original

uncontrolled system (3.1a-e)[i.e. the operator A in (3.5), (3.6)], we need first to apply

to it a control operator. This is the operator B in (3.8), (3.9), whose boundary action on

the original system is given by Eq. (3.9), as acting on the portion �c
s of the interface

�s . This controlled equation on �s in (3.7e) replaces the uncontrolled version (3.1e)

which is part of the operator A. With the pair {A,B} in place, one next addresses

the stabilizability condition to satisfy assumption (A.1), and hence counteract the

instability of A. Section 4 is dedicated to this issue. It defines a feedback operator

F in (4.1), which is active only on the trace of the first coordinate on an arbitrary

small portion �c
s (of positive measure) of the full interface �s . The corresponding

PDE-version is given by problem (2.3 a-e) or (4.4a–e). Its abstract formulation, i.e.

the abstract feedback operator AF = A + BF is given in (4.3). The key issue is

to establish the validity of assumption (A.1): that is, that the feedback problem AF

given by (4.4a–e) in PDE-form is well-posed and uniformly stable. This is a delicate
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issue that will be described below in Sect. 4.1, after treating the selection of the partial

observation operator C.

The partial observation operator Cand the detectability condition of the pair {A, C}

Section 4. In line with the core of the Luenberger theory, the full state y is not available,

only the observation (Cy) is accessible through a known partial observation operator

C. This is defined in (3.23) as an operator that, of the whole state [w,wt , u] in H, picks

up only the trace of the first component on an arbitrary small portion �o
s (of positive

measure) of the interface �s . It is desirable to allow �c
s ∩ �o

s = ∅ = empty set

(uncollocated control and observation actions).

The detectable operator K is selected in (4.1) [compare with B in (3.9)]. The result

of the design for BF and −KC is that showing uniform stabilization of A + BF

(problem (4.4 a-e)) or of A − KC (problem (4.7 a-e)) amounts essentially to the same

task, save for �c
s replacing �o

s .

Well-posedness in the sense of analytic semigroup well-posedness, and uniform

stability of A+BF or of A−KC = A+BC: Section 4.1–4.2 The common problem of

well-posedness (analyticity) and uniform stability of A+BF and A−KC = A+BC is

taken up in the Sect. 4.1 and 4.2, respectively. Here a generic portion �̃s of the interface

�s is selected, to stand for either �c
s or �o

s in the two cases. The PDE-problem with �̃s

given by (4.9a-e) and its evolution abstract operator is denoted by A in (4.11),(4.12),

to serve for AF = A + BF (�̃s = �c
s ) or for A − KC, (�̃s = �o

s ).

The first consequence is positive: now 0 ∈ ρ(A), the resolvent set of A, say on

the original space H, thus overcoming the original problem 0 ∈ σp(A) lamented

for the uncontrolled problem. However, at the outset, one faces a negative feature: it

turns out that the key operator A (image of A + BF and A − KC) is not dissipative

on the original state space H. To overcome this difficulty, we introduce a new state

space He (e=equivalent) which is norm-equivalent to H. More precisely, the first

component space H1(�s) with squared norm ‖∇v1‖
2
L2(�s )

+‖v1‖
2
L2(�s )

, is replaced by

the equivalent space H1
e (�s) with squared norm ‖∇v1‖

2
L2(�s )

+‖v1|�̃s
‖2

L2(�̃s )
as noted

in (1.11 a-b). It then turns out that in the new equivalent space He, A is dissipative, hence

maximal dissipative (as 0 ∈ ρ(A)) and thus generates a s.c. contraction semigroup eAt

on He (hence a s.c. semigroup on H as well). This is Proposition 4.3. Similar results

holds for the adjoint A
∗ of A on He defined in Sect. 4.1.2. With this preliminary

contraction semigroup result at hand, Sect. 4.2, then uses delicate energy estimates to

show the bound (4.43) in the resolvant R(iω, A) in the imaginary axis iω, ω ∈ R for

|ω| ≥ ω0 > 0 and appeal to the abstract result in [24, p 334] to conclude that eAt is

analytic on He, hence on H as well.

Finally, in Sect. 4.3, the resolvent bound (4.43) combined with 0 ∈ ρ(A) allows one

to invoke Pruss’s result [33] and conclude that eAt is moreover, uniformly stable on

He, hence on H as well. As A stands for both (A+BF) and (A−KC), we then obtain

the desired results that both e(A+BF)t and e(A−KC)t are analytic and uniformly stable

on He, hence on H. But as described, by the very core of the Luenberger’s theory, the

difference between the real (inaccessible) state y and its compensator z, which is fed

only by the known observation (Cy) is given by: y(t) − z(t) = e(A−KC)t [y0 − z0] as

in the finite dimensional case (1.4) and hence,
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‖y(t) − z(t)‖(·) ≤ Me−kt‖y0 − z0‖(·), (2.5)

(·) either He or H, so that the known compensator z(t) approximates asymptotically

with exponential rate the original unknown state y(t).

The last part of the program is to show that the control operator F z does the "job" of

uniform stabilization on the original plant. This is done in section 6-Proof of Theorem

3.1. The guiding idea is to use perturbation theory for analytic semigroups where one

can show that the perturbation KC -though unbounded can be handled via appropriate

duality method. Techniques from [14, 24] with critical us of the transformation in [32],

[24, p 497] are used.

3 The Original (free) HSI Model: Unstable on the Natural State Space
H = [H1(Äs)]

n × [L2(Äs)]
n × [L2(Äf )]

n for {w,wt,u}

3.1 PDE and Related SemigroupVersion

Throughout, � f ⊆ R
n , n = 2 or 3, will denote the bounded domain on which the heat

component of the coupled PDE system evolves. Its boundary will be denoted here as

∂� f = �s ∪ � f , �s ∩ � f = ∅, with each boundary piece being sufficiently smooth.

Moreover, the geometry �s , immersed within � f , will be the domain on which the

structural component evolves with time. As configured then, the coupling between the

two distinct fluid and elastic dynamics occurs across boundary interface �s = ∂�s ;

see Figure 1. In addition, the unit normal vector ν(x) will be directed away from � f ;

thus on �s , toward �s . (This specification of the direction of ν will influence the

computations to be done below.)

On this geometry in Fig. 1, we thus consider the following fluid–structure PDE

model in solution variables u = [u1(t, x), u2(t, x),…, un(t, x)] (the heat component

here replacing the usual velocity field), and w = [w1(t, x), w2(t, x), . . . , wn(t, x)]

(the structural displacement field):

ut − �u ≡ 0 in (0, T ] × � f , (3.1a)

wt t − �w − �wt ≡ 0 in (0, T ] × �s, (3.1b)

u|� f
= 0 in (0, T ] × � f , (3.1c)

u|�s = wt |�s in (0, T ] × �s, (3.1d)

∂(w + wt )

∂ν
=

∂u

∂ν
in (0, T ] × �s, (3.1e)

(IC) [w(0, ·), wt (0, ·), u(0, ·)] = [w0, w1, u0] ∈ H, (3.1f)

H = H1(�s) × L2(�s) × L2(� f ), (3.2)

for the variable {w,wt , u}. H is a Hilbert space with the following norm inducing

inner product, where ( f , g)� ≡
∫
�

f ḡ d�:
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⎛
⎝
⎡
£

v1

v2

f

¤
⎦ ,

⎡
£

ṽ1

ṽ2

f̃

¤
⎦
⎞
⎠

H

= (∇v1,∇ṽ1)�s + (v1, ṽ1)�s + (v2, ṽ2)�s + ( f , f̃ )� f
. (3.3)

Abstract model for the free dynamics (3.1 a–e) The operator A. We rewrite problem

(3.1 a–e) as a first-order equation:

d

dt

⎡
£

w

wt

u

¤
⎦ =

⎡
£

0 I 0

� � 0

0 0 �

¤
⎦
⎡
£

w

wt

u

¤
⎦ = A

⎡
£

w

wt

u

¤
⎦ , (3.4)

where we introduce the operator A : H ⊃ D(A) → H :

A

⎡
£

v1

v2

h

¤
⎦ =

⎡
£

0 I 0

� � 0

0 0 �

¤
⎦
⎡
£

v1

v2

h

¤
⎦ =

⎡
£

v2

�(v1 + v2)

�h

¤
⎦ , (3.5)

for {v1, v2, h} ∈ D(A), described as follows [28]:

(i) v1, v2 ∈ H1(�s), so that v2|�s = h|�s ∈ H1/2(�s),

�(v1 + v2) ∈ L2(�s). (3.6a)

(ii) h ∈ H1(� f ),�h ∈ L2(� f ), h|� f
= 0, h|�s = v2|�s ∈ H1/2(�s),

∂(v1 + v2)

∂ν
=

∂h

∂ν
∈ H−1/2(�s). (3.6b)

(3.6b) is justified in [26, Section 1].

Remark 3.1 As noted in this same reference, the above description of D(A) shows

that the point {v1, v2, h} ∈ D(A) enjoys a smoothing of regularity by one Sobolev

unit—from L2( · ) to H1( · ) — but only of the coordinates v2 and h, with respect

to the original finite energy state space H in (3.2). In contrast, the first coordinate

v1 experiences no smoothing: it is in H1(�s), the first coordinate component of the

space H. This amounts to the fact that A has non-compact resolvent R(λ,A) on H.

Consistently, it was shown in [26, Proposition 2.4] that the point λ = −1 belongs to

the continuous spectrum of A : −1 ∈ σc(A).

Remark 3.2 Orientation Reference [26] provides a rather detailed and comprehensive

account of the properties of system (3.1 a–e)-equivalently of the operator A in (3.5),

(3.6) not in the energy space H in (3.2) with full H1(�s) first component, but on the

space H0 where the first component is given by H1(�s)/R, i.e. with squared norm

‖∇v1‖
2
L2(�s )

rather than
[
‖∇v1‖

2
L2(�s )

+ ‖v1‖
2
L2(�s )

]
. In particular, it was shown in

[26] that, in the space H0, the operator A generates a s.c. contraction semigroup eAt ,

which moreover is analytic and uniformly stable here. The choice of H0 over H was

induced by the fact that, as readily pointed out in [39, Section 0], λ = 0 is a simple

123



1482 Journal of Optimization Theory and Applications (2024) 203:1471–1508

eigenvalue of A with corresponding eigenvector e = [1, 0, 0] on H. Thus, moving

from H to H0, allowed one to factor out the 1-dimensional eigenspace generated by

e = [1, 0, 0]. Plainly anaylyticity of eAt is preserved on H = H0+ span {e}; however,

uniform stablity is lost. Paper [39] on the Luenberger compensator exploited uniform

stability and thus studied problem (3.1 a-e) on H0.

3.2 The Localized Control OperatorB; the Localized Observation Operator C

The key factor of the present problem is that control action and state observation are

localized on arbitrary, small, disjoint, portions of the interface �s , say �c
s and �o

s ,

respectively of positive measures. See Fig 1.

The localized control portion �c
s We consider the following non-homogeneous varia-

tion of the unstable free problem (3.1 a–e), with control exercised only on the portion

�c
s of the interface �s .

ut − �u ≡ 0 in (0, T ] × � f , (3.7a)

wt t − �w − �wt ≡ 0 in (0, T ] × �s, (3.7b)

u|� f
= 0 in (0, T ] × � f (3.7c)

u|�s = wt |�s in (0, T ] × �s, (3.7d)

∂(w + wt )

∂ν
=

∂u

∂ν
+ χ�c

s
g in (0, T ] × �s . (3.7e)

χ�c
s

= characteristic function of �c
s ; χ�c

s
≡ 1 on �c

s , χ�c
s

≡ 0 on �s\�
c
s . Optimal

well-posed results of the map g (on the entire�s) → [w,wt , u] are given in [35].

Abstract model of the controlled problem (3.7a–e). One may show as in [39] that the

abstract model is:

d

dt

⎡
£

w

wt

u

¤
⎦ = A

⎡
£

w

wt

u

¤
⎦+ Bg, (3.8)

Bg =

⎡
£

0

AN ,tr Nχ�c
s
g

0

¤
⎦ : continuous L2(�c

s ) →

⎡
£

⊗[
D(AN ,tr )

1/4+ε
]′

⊗

¤
⎦ , (3.9)

where −AN ,tr is the negative self-adjoint Neumann Laplacian translated by 1:

− AN ,trϕ = (� − 1)ϕ, D(AN ,tr ) =

{
ϕ ∈ H2(�s);

∂ϕ

∂ν

∣∣∣
�s

= 0

}
, (3.10)

and where N is the corresponding Neumann map:

ψ = Nμ ⇐⇒

§
¨
©

(� − 1)ψ = 0 in �s,

∂ψ
∂ν

∣∣∣
�s

= μ.
(3.11)
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In fact, we return to (3.1b) and rewrite it as:

wt t = �(w + wt ) = (� − 1)

[
(w + wt ) − N

(
∂u

∂ν
+ g

)]
+ (w + wt ), (3.12)

where the term
[
(w + wt ) − N

(
∂u
∂ν

+ g
)]

satisfies the zero Neumann B.C. of −AN ,tr

in (3.9), by (3.11) so we can rewrite (3.12) as:

wt t = −AN ,tr

[
(w + wt ) − N

(
∂u

∂ν
+ g

)]
+ (w + wt ) ∈ L2(�s), (3.13)

or

wt t = − ÃN (w + wt ) + ÃN ,tr N

(
∂u

∂ν
+ g

)
∈
[
D(AN ,tr )

]′
, (3.14)

with ÃN ,tr the isomorphic extension L2(�s) →
[
D(AN ,tr )

]′
= dual of D(AN ,tr )

w.r.t. L2(�s) and − ÃN the isomorphic extension L2(�s) → [D(AN )]′ of the operator

−AN = �, D(AN ) = D(AN ,tr ). Henceforth, we shall drop the f̃or the extension

ÃN ,tr . As in [39] the adjoint operator B∗ is given by,

B∗

⎡
£

x1,

x2

x3

¤
⎦ = −χ�c

s
x2|�s = −x2|�c

s
, x2 ∈ H1/2+ε(�s). (3.15)

In fact, as in [39], by (3.9),

⎛
⎝Bg,

⎡
£

x1

x2

x3

¤
⎦
⎞
⎠

H

=

⎛
⎝
⎡
£

0

AN ,tr Nχ�c
s
g

0

¤
⎦ ,

⎡
£

x1

x2

x3

¤
⎦
⎞
⎠

H

(3.16)

=
(

AN ,tr Nχ�c
s
g, x2

)
L2(�s )

=
(
g, N∗ AN ,tr x2

)
L2(�c

s )
(3.17)

=
(
g,−x2|�c

s

)
L2(�c

s )
=

⎛
⎝χ�c

s
g,B∗

⎡
£

x1

x2

x3

¤
⎦
⎞
⎠

L2(�s )

, (3.18)

since, in the usual way, we have,

N∗ AN ,tr x2 = −x2|�s , for x2 ∈ H1/2+ε(�s). (3.19)

In fact, take initially ϕ ∈ D(AN ,tr ) as in (3.10) and refer to (3.11) with μ ∈ L2(�s)

to obtain via Green’s second theorem, since ν is inward to �s;

−
(
N∗ AN ,trϕ,μ

)
L2(�s )

=
(
−AN ,trϕ, Nμ

)
L2(�s )

= ((� − I )ϕ, Nμ)L2(�s )
(3.20)
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=
(
ϕ,�����

(� − I )ψ
)

L2(�s )
−

∫

�s �
��

∂ϕ

∂ν
ψ d�s +

∫

�s

ϕ
∂ψ

∂ν
d�s (3.21)

= (ϕ, μ)L2(�s )
. (3.22)

Thus (3.19) follows from (3.21) initially for ϕ ∈ D(AN ,tr ) and later extended to

ϕ ∈ H1/2+2ε(�s) [24].

The localized portion �o
s of the observer Let now �o

s be a (say, connected) arbitrary

portion of the boundary �s , also of positive measure, and generally �o
s ∩ �c

s = ∅ =

empty set . Let χ�o
s

be the characteristic function: �o
s . We define the operator C by:

C

⎡
£

v1

v2

v3

¤
⎦ = χ�o

s
v1, C : H → L2(�o

s ), (3.23)

thus, with v1 ∈ H1(�s). Thus, the two critical operators to be employed on the

free system (3.1 a–e) or the operator A in (3.5), (3.6)-the control operator B and the

observation operator C-are acting on two arbitrary small disjoint portion �c
s and �o

s

of the interface �s . Next, we need to design a feedback stabilizing operator F and a

detectablity operator K.

4 Uniform Stabilization of {A, B} by a Feedback Stabilizing Operator
F and Detectability of {A, C} by an OperatorK

We design the feedback stabilizing operator F and the detectability operator K by

setting

F

⎡
£

v1

v2

v3

¤
⎦ = v1|�c

s
, F : H → L2(�c

s ), Kμ =

⎡
£

0

−AN ,tr Nμ

0

¤
⎦ :

L2(�s) →
[
D(AN ,tr )

1/4+ε
]′

, (4.1)

(compare K with B in (3.9)), so that by (3.9) and (4.1), we obtain:

BF

⎡
£

v1

v2

v3

¤
⎦ =

⎡
£

0

AN ,tr Nχ�c
s
v1

0

¤
⎦ , −KC

⎡
£

v1

v2

v3

¤
⎦ =

⎡
£

0

AN ,tr Nχ�o
s
v1

0

¤
⎦ . (4.2)

Since v1 ∈ H1(�s), we have v1|�s ∈ H1/2(�s), hence Nv1 ∈ H2(�s). Our task is to

show that, with this selection of F and C, the stabilizability condition for {A,B} and

the detectability condition for {A, C} as defined by (A.1) and (A.2) hold true. To this

end, we need to introduce the PDE-problems corresponding to the operator models

(A + BF) and (A − KC).
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Thus, the PDE-version of the abstract (feedback) problem:

ẏ = Ay + BF y = AF y, y =

⎡
£

w

wt

u

¤
⎦ , g = F

⎡
£

w

wt

u

¤
⎦ , (4.3)

is given by,

ut − �u ≡ 0 in (0, T ] × � f , (4.4a)

wt t − �w − �wt ≡ 0 in (0, T ] × �s, (4.4b)

u|� f
= 0 in (0, T ] × � f , (4.4c)

u|�s = wt |�s in (0, T ] × �s, (4.4d)

∂(w + wt )

∂ν
=

∂u

∂ν
+ χ�c

s
w in (0, T ] × �s, (4.4e)

with I.C. w(0, ·) = w0, wt (0, ·) = w1, u(0, ·) = u0. A mathematical analysis of

problem (4.4 a–e) is deferred to Sect. 4.1. We have: (A+BF) : H ⊃ D(A+BF) → H.

(A + BF)

⎡
£

v1

v2

v3

¤
⎦ =

⎡
£

v2

�(v1 + v2)

�h

¤
⎦ ∈ H (4.5a)

v1, v2 ∈ H1(�s), �(v1 + v2) ∈ L2(�s), �h ∈ L2(� f ); (4.5b)

h|� f
= 0, u|�s = v2|�s ∈ H1/2(�s),

∂(v1 + v2)

∂ν

∣∣∣
�s

=
∂h

∂ν

∣∣∣
�s

+ χ�c
s
v1 ∈ H−1/2(�s).

(4.5c)

The PDE-version of the abstract observed system:

ẏ = Ay − KCy, y =

⎡
£

w

wt

u

¤
⎦ , (4.6)

is given by,

ut − �u ≡ 0 in (0, T ] × � f , (4.7a)

wt t − �w − �wt ≡ 0 in (0, T ] × �s, (4.7b)

u|� f
= 0 in (0, T ] × � f , (4.7c)

u|�s = wt |�s in (0, T ] × �s, (4.7d)

∂(w + wt )

∂ν
=

∂u

∂ν
− χ�o

s
w in (0, T ] × �s, (4.7e)
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with I.C. [w0, w1, u0]. We have: (A − KC) : H ⊃ D(A − KC) → H.

(A − KC)

⎡
£

v1

v2

v3

¤
⎦ =

⎡
£

v2

�(v1 + v2)

�h

¤
⎦ ∈ H; (4.8a)

v1, v2 ∈ H1(�s), �(v1 + v2) ∈ L2(�s), �h ∈ L2(� f ); (4.8b)

h|� f
= 0, u|�s = v2|�s ∈ H1/2(�s),

∂(v1 + v2)

∂ν

∣∣∣
�s

=
∂h

∂ν

∣∣∣
�s

− χ�o
s
v1 ∈ H−1/2(�s).

(4.8c)

Thus, the feedback control operator F acts on �c
s while the partial observation operator

C picks up the information w on �o
s .

4.1 Analysis of the Critical PDE-System: Analytic Semigroup,Well-Posedness and

Uniform Stability

In this section we denote by �̃s an arbitrary portion of the boundary �s ; thus �̃s = �c
s

for the controlled portion of �s , �̃s = �o
s for the observed portion of �s . We consider

the following PDE problem:

ut − �u ≡ 0 in (0, T ] × � f , (4.9a)

wt t − �w − �wt ≡ 0 in (0, T ] × �s, (4.9b)

u|� f
= 0 in (0, T ] × � f , (4.9c)

u|�s = wt |�s in (0, T ] × �s, (4.9d)

∂(w + wt )

∂ν
=

∂u

∂ν
+ χ�̃s

w in (0, T ] × �s . (4.9e)

Its abstract version is given by,

d

dt

⎡
£

w

wt

u

¤
⎦ =

⎡
£

0 I 0

� � 0

0 0 �

¤
⎦
⎡
£

w

wt

u

¤
⎦ = A

⎡
£

w

wt

u

¤
⎦ , (4.10)

with action of A given by,

A

⎡
£

v1

v2

h

¤
⎦ =

⎡
£

0 I 0

� � 0

0 0 �

¤
⎦
⎡
£

v1

v2

h

¤
⎦ =

⎡
£

v2

�(v1 + v2)

�h

¤
⎦ , (4.11)

where the domain of the operator A : H ⊃ D(A) → H is as follows:

{v1, v2, h} ∈ D(A)

(i) v1, v2 ∈ H1(�s), so that v2|�s = h|�s ∈ H1/2(�s),

�(v1 + v2) ∈ L2(�s), (4.12a)
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(ii) h ∈ H1(� f ),�h ∈ L2(� f ), h|� f
= 0, h|�s = v2|�s ∈ H1/2(�s),

∂(v1 + v2)

∂ν
=

∂h

∂ν
+ χ�̃s

v1 ∈ H−1/2(�s). (4.12b)

[One cannot invoke the abstract results [8, 9], because of the coupled boundary con-

ditions.]

4.1.1 Well-Posedness of (4.9 a–e) or (4.10)

Lemma 4.1 With reference to the operator A in (4.10), (4.11), we have:

(i)

0 ∈ ρ(A). (4.13)

(ii) A is not dissipative on H in (3.2).

Verification of (ii) will appear from the proof of Proposition 4.2. The proof of (i) is

given in Appendix 7.1, which provides a explicit expression for A
−1 : H → D(A) in

Eqt. (7.11). To remedy the shortcoming in (ii), we replace the space: H = H1(�s) ×

L2(�s) × L2(� f ) in (3.2), with the space

He ≡ H1
e (�s) × L2(�s) × L2(� f ), (4.14)

where the inner product on H1
e (�s) (e = equivalent) is defined by,

(v1, ṽ1)H1
e (�s )

= (∇v1,∇ṽ1)�s
+ (v1, ṽ1)�̃s

, (4.15a)

‖v1‖
2
H1

e (�s )
≡ ‖∇v1‖

2
L2(�s)

+ ‖v1|�̃s
‖2

L2(�̃s )
, (4.15b)

so that ‖v1‖H1
e (�s )

= 0 �⇒ v1 ≡ 0 in �s . In (4.15a), the portion �̃s of �s is the

same as in (4.9e).

Claim: The H1
e (�s)− norm of v1 in (4.15b) is equivalent to the H1(�s)-norm of

v1. This follows from [27, p 260]:

Let ψ ∈ H1(�s). Let �̃ be an arbitrary portion of ∂� = � of positive measure.

Then, there exist constants 0 < k1 < k2, such that,

k1

∫

�

[
|ψ |2 + |∇ψ |2

]
d� ≤

∫

�
|∇ψ |2d� +

∫

�̃
|ψ |2d�̃ ≤ k2

∫

�

[
|ψ |2 + |∇ψ |2

]
d�.

(4.16)

Henceforth, we shall study problem (4.9) (the operator A in (4.11), (4.12) on the

function space He in (4.14) which is norm equivalent to the function space H in (3.2).

The reason is justified by the following result.
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Proposition 4.2 (i) Let [v1, v2, h] ,

[
ṽ1, ṽ2, h̃

]
∈ D(A). Then, with reference to the

space He in (4.14) we have, in the L2−norms:

⎛
⎝A

⎡
£

v1

v2

h

¤
⎦ ,

⎡
£

ṽ1

ṽ2

h̃

¤
⎦
⎞
⎠

He

= (∇v2,∇ṽ1)�s − (∇v1,∇ṽ2)�s

+ (v2, ṽ1)�̃s
− (v1, ṽ2)�̃s

− (∇v2,∇ṽ2)�s − (∇h,∇h̃)� f
.

(4.17)

(ii) Thus, if now [v1, v2, h] =
[
ṽ1, ṽ2, h̃

]
∈ D(A), then (4.17) specializes to:

⎛
⎝A

⎡
£

v1

v2

h

¤
⎦ ,

⎡
£

v1

v2

h

¤
⎦
⎞
⎠

He

= (∇v2,∇v1)�s − (∇v1,∇v2)�s + (v2, v1)�̃s
− (v1, v2)�̃s

− ‖∇v2‖
2
�s

− ‖∇h‖2
� f

(4.18)

= 2Im(∇v2,∇v1)�s + 2Im(v2, v1)�̃s
− ‖∇v2‖

2
�s

− ‖∇h‖2
� f

, (4.19)

thus, A is dissipative on He

Re

⎛
⎝A

⎡
£

v1

v2

h

¤
⎦ ,

⎡
£

v1

v2

h

¤
⎦
⎞
⎠

He

= −‖∇v2‖
2
�s

− ‖∇h‖2
� f

, [v1, v2, h] ∈ D(A).

(4.20)

Since 0 ∈ ρ(A) by Lemma 4.1 (also on He), then dissipativity of A in He in (4.20)

implies its maximal dissipativity. The Lumer-Phillips Theorem [31] then yields:

Theorem 4.3 The operator A in (4.11), (4.12) is maximal dissipative on He; hence, it

generates a s.c. contraction semigroup eAt on He. Since H and He are norm-equivalent,

then A generates a s.c semigroup eAt on H as well.

Proof of Proposition 4.2 As in Part 1, take [v1, v2, h] ,

[
ṽ1, ṽ2, h̃

]
∈ D(A) and compute

via (4.11) and the topology in (4.15)

⎛
⎝A

⎡
£

v1

v2

h

¤
⎦ ,

⎡
£

ṽ1

ṽ2

h̃

¤
⎦
⎞
⎠

He

=

⎛
⎝
⎡
£

v2

�(v1 + v2)

�h

¤
⎦ ,

⎡
£

ṽ1

ṽ2

h̃

¤
⎦
⎞
⎠

He

=(∇v2,∇ṽ1)�s
+(v2, ṽ1)�̃s

+(�(v1+v2), ṽ2)�s
+
(
�h, h̃

)
� f

.

(4.21)

Next we apply Green’s first Theorem to each of the last two terms in (4.21), recall that

the unit normal ν is inward to �s , as well as the B.C. (4.12a),(4.12b) in D(A). We

obtain:
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(�(v1+v2), ṽ2)�s
+
(
�h, h̃

)
� f

=−

∫

�s

∂(v1+v2)

∂ν
¯̃v2 d�s − (∇(v1 + v2),∇ṽ2)�s

+

∫

�s

∂h

∂ν

¯̃
h d�s −

(
∇h,∇h̃

)
� f

= −

������
∫

�s

∂h

∂ν

¯̃
h d�s −

∫

�̃s

v1
¯̃v2 d�̃s +

������
∫

�s

∂h

∂ν

¯̃
h d�s −

(
∇h,∇ h̃

)
� f

. (4.22)

Substituting (4.22) in the RHS of (4.21) yields (4.17), from which (4.19)-(4.20) readily

follow. ��

Time-domain version of dissipativity We next provide (as in [26]) a time-domain

version of dissipativity. To this end, with reference to problem (4.9 a–e), define:

Eu(t) =

∫

� f

u2(t, ·) d� f , (4.23)

Ew(t) =

∫

�s

w2(t, ·) d�s +

[∫

�s

|∇w(t, ·)|2 d�s +

∫

�̃s

w2(t, ·) d�̃s

]
.

(4.24)

Proposition 4.4 With reference to problem (4.9 a–e), the following energy equality

holds true, in the notation of (4.23), (4.24),

Eu(t) + Ew(t) + 2

∫ t

0

∫

� f

|∇u|2 d� f dτ

+2

∫ t

0

∫

�s

|∇wt |
2 d�sdτ = Eu(0) + Ew(0). (4.25)

Hence, the following dissipativity inequality holds

2

∫ ∞

0

∫

� f

|∇u|2 d� f dt + 2

∫ ∞

0

∫

�s

|∇wt |
2 d�sdt ≤ Eu(0) + Ew(0)

(4.26a)

as well as contraction of the semigroup eAt on He,

Eu(t) + Ew(t) ≤ Eu(0) + Ew(0) or ‖eAt‖L(He) ≤ 1, t ≥ 0. (4.26b)

Proof Multiply Eq (4.9a) by u, use ut u = 1
2

∂(u2)
∂t

and integrate in time and space, use

Green’s first lemma and u|� f
= 0, to obtain:

Eu(t) + 2

∫ t

0

∫

� f

|∇u|2 d� f dτ = Eu(0) + 2

∫ t

0

∫

�s

∂u

∂ν
u d�s . (4.27)

123



1490 Journal of Optimization Theory and Applications (2024) 203:1471–1508

Next, multiply Eq. (4.9b) by wt , use wt twt = 1
2

∂(w2
t )

∂t
, and Greens First Lemma with

unit normal ν inward to �s , use the B.C ∂(w+wt )
∂ν

= ∂u
∂ν

+ χ�̃s
w on �s and obtain:

1

2

∫

�s

[
w2

t (t, ·) − w2
t (0, ·)

]
d�s +

∫ t

0

∫

�s

∂u

∂ν
wt d�sdτ +

∫

�̃s

∫ t

0

1

2

∂(w2
t )

∂τ
dτd�̃s

+

∫

�s

∫ t

0

1

2

∂(|∇w|2)

∂τ
dτd�s +

∫ t

0

∫

�s

|∇wt |
2 d�sdτ = 0. (4.28)

Recalling u = wt on �s , we see that (4.28) yields via (4.24),

Ew(t) + 2

∫ t

0

∫

�s

|∇wt |
2 d�sdτ = Ew(0) − 2

∫ t

0

∫

�s

∂u

∂ν
u d�sdτ. (4.29)

Finally sum up (4.27) and (4.29) and obtain (4.25) after a cancellation of the boundary

terms,
∫ t

0

∫
�s

∂u
∂ν

u d�sdτ . ��

4.1.2 Spectral Properties on iR ofA and its AdjointA
∗

Complementing 0 ∈ ρ(A) in (4.13), we now obtain:

Lemma 4.5 With reference to the operator A in (4.11), (4.12), we have

iR /∈ σp(A) = point spectrum of A. (4.30)

Proof Consider the eigenproblem of A with potential eigenvalue ir , r �= 0 ∈ R, for

[v1, v2, h] ∈ D(A), with norm=1:

A

⎡
£

v1

v2

h

¤
⎦ = ir

⎡
£

v1

v2

h

¤
⎦ �⇒

⎛
⎝A

⎡
£

v1

v2

h

¤
⎦ ,

⎡
£

v1

v2

h

¤
⎦
⎞
⎠

He

= ir

⎛
⎝
⎡
£

v1

v2

h

¤
⎦ ,

⎡
£

v1

v2

h

¤
⎦
⎞
⎠

He

= ir .

(4.31)

Thus recalling the dissipativity condition (4.20), we obtain from (4.31):

Re

⎛
⎝A

⎡
£

v1

v2

h

¤
⎦ ,

⎡
£

v1

v2

h

¤
⎦
⎞
⎠

He

= −‖∇v2‖
2
�s

− ‖∇h‖2
� f

= 0. (4.32)

Hence ∇h ≡ 0 or h ≡constant in � f , in fact h ≡ 0 in � f , since h|� f
= 0. Moreover

∇v2 ≡ 0 or v2 ≡ constant in �s , in fact v2 ≡ 0 in �s , since v2|�s = h|�s = 0. Finally,

the eigen expression in (4.31) yields via (4.11) v2 = irv1, hence v1 ≡ 0 in �s for

r �= 0. For r = 0, we have the stronger statement (4.13). ��

AdjointA∗of A in He4 Though not strictly necessary for the analysis of the present

paper, we wish to introduce the adjoint A
∗ of A in He.
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Proposition 4.6 The adjoint A
∗ of A in He is given by

A
∗

⎡
£

v1

v2

h

¤
⎦ =

⎡
£

0 −I 0

−� � 0

0 0 �

¤
⎦
⎡
£

v1

v2

h

¤
⎦ =

⎡
£

−v2

�(v2 − v1)

�h

¤
⎦ , (4.33)

with [v1, v2, h] ∈ D(A), meaning:

(i) v1, v2 ∈ H1(�s), so that v2|�s = h|�s ∈ H1/2(�s)

�(v2 − v1) ∈ L2(�s) (4.34a)

(ii) h ∈ H1(� f ),�h ∈ L2(� f ), h|� f
= 0, h|�s = v2|�s ∈ H1/2(�s)

∂(v2 − v1)

∂ν
=

∂h

∂ν
− χ�̃s

v1 ∈ H−1/2(�s).

(4.34b)

The proof is given in Appendix 7.2. The counterpart of Proposition 4.2, whose proof

is also given in Appendix B is

Lemma 4.7 (i) Let [v1, v2, h] ,

[
ṽ1, ṽ2, h̃

]
∈ D(A∗). Then with reference to the space

He in (4.14) we have, in the L2−norms:

⎛
⎝A

∗

⎡
£

v1

v2

h

¤
⎦ ,

⎡
£

ṽ1

ṽ2

h̃

¤
⎦
⎞
⎠

He

= −(∇v2,∇ṽ1)�s
+ (∇v1,∇ṽ2)�s

−(v2, ṽ1)�̃s
+(v1, ṽ2)�̃s

−(∇v2, ∇ṽ2)�s
−(∇h, ∇ h̃)� f

.

(4.35)

(ii) Thus, if now [v1, v2, h] =
[
ṽ1, ṽ2, h̃

]
∈ D(A∗), then (4.35) specializes to

⎛
⎝A

∗

⎡
£

v1

v2

h

¤
⎦ ,

⎡
£

v1

v2

h

¤
⎦
⎞
⎠

He

=−(∇v2,∇v1)�s +(∇v1,∇v2)�s −(v2, v1)�̃s
+(v1, v2)�̃s

− ‖∇v2‖
2
�s

− ‖∇h‖2
� f

(4.36)

= 2Im(∇v1,∇v2)�s + 2Im(v1, v2)�̃s
− ‖∇v2‖

2
�s

− ‖∇h‖2
� f

(4.37)

thus, A
∗ is dissipative on He :

Re

⎛
⎝A

∗

⎡
£

v1

v2

h

¤
⎦ ,

⎡
£

v1

v2

h

¤
⎦
⎞
⎠

He

= −‖∇v2‖
2
�s

− ‖∇h‖2
� f

, [v1, v2, h] ∈ D(A∗).

(4.38)
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The counterpart of Lemma 4.5 is now

Lemma 4.8 With reference to the operator A
∗ in (4.33), (4.34), we have

iR /∈ σp(A
∗) = point spectrum of A

∗, hence iR /∈ σr (A),

the residual spectrum of A. (4.39)

Proof Consider the eigenproblem of A
∗ with potential eigenvalue ir , 0 �= r ∈ R, for

[v1, v2, h] ∈ D(A∗), with norm=1:

A
∗

⎡
£

v1

v2

h

¤
⎦ = ir

⎡
£

v1

v2

h

¤
⎦ �⇒

⎛
⎝A

∗

⎡
£

v1

v2

h

¤
⎦ ,

⎡
£

v1

v2

h

¤
⎦
⎞
⎠

He

= ir

⎛
⎝
⎡
£

v1

v2

h

¤
⎦ ,

⎡
£

v1

v2

h

¤
⎦
⎞
⎠

He

= ir .

(4.40)

Thus recalling the dissipativity condition (4.38), we obtain from (4.40):

Re

⎛
⎝A

∗

⎡
£

v1

v2

h

¤
⎦ ,

⎡
£

v1

v2

h

¤
⎦
⎞
⎠

He

= −‖∇v2‖
2
�s

− ‖∇h‖2
� f

= 0. (4.41)

Hence ∇h ≡ 0 or h ≡constant in � f , in fact h ≡ 0 in � f , since h|� f
= 0 by

(4.34b). Moreover ∇v2 ≡ 0 or v2 ≡ constant in �s , in fact v2 ≡ 0 in �s , since

v2|�s = h|�s = 0 by (4.34b). Finally, the eigen expression in (4.40) yields via (4.33),

−v2 = irv1, hence v1 ≡ 0 in �s for r �= 0. For r = 0, 0 /∈ σp(A
∗). In fact, let

A
∗

⎡
£

v1

v2

h

¤
⎦ =

⎡
£

−v2

�(v2 − v1)

�h

¤
⎦ = 0, (4.42)

hence v2 ≡ 0 in �s . Moreover �h ≡ 0 in � f which along woth h|� f
≡ 0 and

v2|�s = h|�s = 0 via (4.34b) yields h ≡ 0 in � f . Finally

�v1 ≡ 0 in �s

− ∂v1
∂ν

= ∂h
∂ν

− χ�̃s
v1 = 0 or ∂v1

∂ν
− χ�̃s

v1 = 0

implies v1 ≡ 0. So 0 /∈ σp(A
∗). ��

4.2 Analyticity of eAt (and eA
∗t) on He (hence on H)

The following is a main result of the present paper.

Theorem 4.9 The s.c. contraction semigroup eAt on the space He is moreover analytic.

Then eAt is also analytic on H.
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Proof We have already established that the operator A in (4.11), (4.12), possesses

the following two features: (i) it is the generator of a s.c. (C0-) semigroup eAt of

contractions on the finite energy space Hein (4.14) (Theorem 4.3); (ii) 0 ∈ ρ(A), the

resolvent set of A, and hence there is a small open disk Sr0 in the complex plane

centered at the origin and of small radius r0 > 0, that is all contained in ρ(A) : Sr0 ⊂

ρ(A) (Lemma 4.1 (i)). Accordingly, to conclude that eAt is, moreover, analytic on

He (and hence on H), all we need to show [24, Thm. 3E.3, p. 334] is that (A has no

spectrum on the imaginary axis, and):

‖R(iω, A)‖L(He) ≤
C

|ω|
, ∀ |ω| ≥ some ω0 > 0. (4.43)

Equivalently, in this section we shall show that

‖AR(iω, A)‖L(He) ≤ C, ∀ |ω| ≥ some ω0 > 0. (4.44)

since AR(iω, A) = −I + iωR(iω, A).

Step 1 Given {v∗
1 , v∗

2 , h∗} ∈ He, and ω ∈ R\{0}. Initially, we seek to solve the equation

((iω)I − A)

⎡
£

v1

v2

h

¤
⎦ =

§
¨
©(iω)I −

⎡
£

0 I 0

� � 0

0 0 �

¤
⎦
«
¬
­

⎡
£

v1

v2

h

¤
⎦ =

⎡
£

v∗
1

v∗
2

h∗

¤
⎦ (4.45)

in terms of {v1, v2, h} ∈ D(A) uniquely, and establish, in fact, the analyticity estimate

(4.43), equivalently estimate (4.44). For iω ∈ ρ(A), we have

⎡
£

v1

v2

h

¤
⎦ = R(iω, A)

⎡
£

v∗
1

v∗
2

h∗

¤
⎦ ; AR(iω, A)

⎡
£

v∗
1

v∗
2

h∗

¤
⎦ =

⎡
£

0 I 0

� � 0

0 0 �

¤
⎦

⎡
£

v1

v2

h

¤
⎦ =

⎡
£

v2

�(v1 + v2)

�h

¤
⎦ . (4.46)

We then see that the analyticity condition (4.44) is equivalent to showing the following

estimate (recall (4.15b)) (all norms are L2-norms on the respective domains): there

exists a constant C > 0 such that

‖∇v2‖
2
�s

+ ‖v2|�̃s
‖2
�̃s

+ ‖�(v1 + v2)‖
2
�s

+ ‖�h‖2
� f

≤ C
{
‖∇v∗

1‖2
�s

+ ‖v∗
1 |�̃s

‖2
�̃s

+ ‖v∗
2‖2

�s
+ ‖h∗‖2

� f

}
(4.47)

∀ |ω| ≥ some ω0 > 0. Explicitly (4.45) is re-written as

iωv1 − v2 = v∗
1 ∈ H1

e (�s); (4.48a)

iωv2 − �(v1 + v2) = v∗
2 ∈ L2(�s) (4.48b)
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iωh − �h = h∗ ∈ L2(� f ). (4.48c)

Step 2 We take the L2(� f )-inner product of Eqn. (4.48c) against �h, use Green’s First

Theorem to evaluate
∫
� f

h � h d� f , recall the B.C. h|� f
= 0 in D(A) and obtain

iω

∫

�s

h
∂h

∂ν
d�s − iω‖∇h‖2

� f
− ‖�h‖2

� f
= (h∗,�h)� f

. (4.49)

Similarly, we take the L2(�s)-inner product of (4.48b) against �(v1+v2), use Green’s

First Theorem to evaluate
∫
�s

v2�(v1 + v2)d�s , recalling that the normal vector ν is

inward w.r.t. �s , and obtain

−iω

∫

�s

v2
∂(v1 + v2)

∂ν
d�s − iω

(∇v2,∇(v1 + v2))�s
− ‖�(v1 + v2)‖

2
�s

= (v∗
2 ,�(v1 + v2))�s . (4.50)

Invoking now the B.C., h|�s = v2|�s and ∂(v1+v2)
∂ν

∣∣
�s

= ∂h
∂ν

∣∣
�s

+ χ�̃s
v1 in D(A)

(see (4.12b)), we rewrite (4.50) as

−iω

∫

�s

h
∂h

∂ν
d�s − iω

∫

�̃s

v2ṽ1 d�̃s − iω‖∇v2‖
2
�s

− iω(∇v2,∇v1)�s

−‖�(v1 + v2)‖
2
�s

= (v∗
2 ,�(v1 + v2))�s . (4.51)

Summing up (4.50) and (4.51) yields, after a cancellation of the boundary terms,

−iω
[
‖∇v2‖

2
�s

+ ‖∇h‖2
�s

]
= ‖�(v1 + v2)‖

2
�s

+ ‖�h‖2
� f

+ iω
[
(∇v2,∇v1)�s + (v2, v1)�̃s

]

+ (v∗
2 ,�(v1 + v2))�s + (h∗,�h)� f

. (4.52)

or recalling (4.12b),

‖�(v1 + v2)‖
2
�s

+ ‖�h‖2
� f

+ iω
[
(v2, v1)H1

e (�s )
+ ‖∇v2‖

2
�s

+ ‖∇h‖2
� f

]

= −(v∗
2 ,�(v1 + v2))�s − (h∗,�h)� f

(4.53)

Next, by (4.48a), v1 = − iω
ω2

[
v2 + v∗

1

]
, hence,

iω(v2, v1)H1
e (�s )

= iω

(
v2,−

iω

ω2

[
v2 + v∗

1

])

H1
e (�s )

(4.54)

= −‖v2‖
2
H1

e (�s )
− (v2, v

∗
1)H1

e (�s )
. (4.55)
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Substituting (4.55) into the LHS of (4.53) yields:

‖�(v1 + v2)‖
2
�s

+ ‖�h‖2
� f

+ iω
[
‖∇v2‖

2
�s

+ ‖∇h‖2
� f

]

= ‖v2‖
2
H1

e (�s )
+ (v2, v

∗
1)H1

e (�s )
− (v∗

2 ,�(v1 + v2))�s − (h∗,�h)� f
. (4.56)

Step 3 We take the real part of identity (4.56), thus obtaining a new identity.

‖�(v1 + v2)‖
2
�s

+ ‖�h‖2
� f

= ‖v2‖
2
H1

e (�s )
+ Re(v2, v

∗
1)H1

e (�s)
− Re(v∗

2 ,�(v1 + v2)) − Re(h∗,�h), (4.57)

from which we obtain:

(1 − ε)

[
‖�(v1 + v2)‖

2 + ‖�h‖2
]

≤ (1 + ε)‖v2‖
2
H1

e (�s )

+ Cε{‖v
∗
1‖2

H1
e (�s )

+ ‖v∗
2‖2 + ‖h∗‖2}. (4.58)

Step 4 We take the imaginary part of identity (4.56), thus obtaining the new identity,

ω

[
‖∇v2‖

2 + ‖∇h‖2
]

= Im(v2, v
∗
1)H1

e (�s )
− Im(v∗

2 ,�(v1 + v2)) − Im(h∗,�h)

(4.59)

or for ω �= 0,

[
‖∇v2‖

2+‖∇h‖2
]
=

1

ω

{
Im(v2, v

∗
1)H1

e (�s )
− Im(v∗

2 ,�(v1 + v2))−Im(h∗,�h)

}
.

(4.60)

Step 5 Next, by Poincare inequality, since h|� f
= 0 and v2|�s = h|�s , we have,

‖v2|�s ‖
2
L2(�s )

= ‖h|�s ‖
2
L2(�s )

≤ c
[
‖∇h‖2 + ‖h‖2

]
≤ c̃‖∇h‖2. (4.61)

Using (4.61) on the LHS of identity (4.60) yields:

‖∇v2‖
2 +

1

c̃
‖v2|�̃s

‖2
�̃s

≤ ‖∇v2‖
2 +

1

c̃
‖v2|�s ‖

2
L2(�s )

(4.62)

≤ ‖∇v2‖
2 + ‖∇h‖2 (4.63)

≤
1

|ω|

{
ε

[
‖v2‖

2
H1

e (�s )
+ ‖�(v1 + v2)‖

2 + ‖�h‖2
]

+
1

ε

[
‖v∗

1‖2
H1

e (�s )
+ ‖v∗

2‖2 + ‖h∗‖2
]}

. (4.64)
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Thus, taking c1 = min
{
1, 1

c̃

}
and |ω| ≥ some ω0 > 0, we obtain from (4.64),

‖v2‖
2
H1

e (�s )
= ‖∇v2‖

2 + ‖v2|�̃s
‖2

L2(�̃s )
≤

ε

c1ω0
‖v2‖

2
H1

e (�s )

+
ε

c1ω0

[
‖�(v1 + v2)‖

2 + ‖�h‖2
]

+
1

εc1ω0

[
‖v∗

1‖2
H1

e (�s )
+ ‖v∗

2‖2 + ‖h∗‖2
]
. (4.65)

Finally, by taking ε < c1ω0
2

, we get

1

2
‖v2‖

2
H1

e (�s )
≤

[
1 −

ε

c1ω0

]
‖v2‖

2
H1

e (�s )
≤

ε

c1ω

[
‖�(v1 + v2)‖

2 + ‖�h‖2
]

+
1

εc1ω0

[
‖v∗

1‖2
H1

e (�s )
+ ‖v∗

2‖2 + ‖h∗‖2
]
. (4.66)

Step 6 We substitute ‖v2‖
2
H1

e (�s )
from (4.66) into the RHS of inequality (4.58) with

1
2

< (1 − ε), thus obtaining,

‖�(v1 + v2)‖
2 + ‖�h‖2 ≤2(1 + ε)‖v2‖

2
H1

e (�s )
+c̃ε

[
‖v∗

1‖2
H1

e (�s )
+‖v∗

2‖2+‖h∗‖2
]

≤
2(1 + ε)2ε

c1ω0

[
‖�(v1 + v2)‖

2 + ‖�h‖2
]

(4.67)

+ ĉε

[
‖v∗

1‖2
H1

e (�s )
+ ‖v∗

2‖2 + ‖h∗‖2
]
, (4.68)

from which we obtain the estimate:

‖�(v1 + v2)‖
2 + ‖�h‖2 ≤ constε,ω0

[
‖v∗

1‖2
H1

e (�s )
+ ‖v∗

2‖2 + ‖h∗‖2
]
,

∀ |ω| ≥ some ω0 > 0. (4.69)

Step 7 Substituting estimate (4.69) on the RHS of estimate (4.66), we obtain likewise,

‖v2‖
2
H1

e (�s )
≤ Constε,ω0

[
‖v∗

1‖2
H1

e (�s )
+ ‖v∗

2‖2 + ‖h∗‖2
]
, ∀ |ω| ≥ some ω0 > 0

.(4.70)

Step 8 Summing up (4.69) and (4.70) yields the sought after estimate (4.47):

‖v2‖
2
H1

e (�s )
+ ‖�(v1 + v2)‖

2 + ‖�h‖2 ≤ Cε,ω0

[
‖v∗

1‖2
H1

e (�s )
+ ‖v∗

2‖2 + ‖h∗‖2
]
,

∀ |ω| ≥ some ω0 > 0, (4.71)

and Theorem 4.9 is proved. eAt is analytic on He, hence on H. ��
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4.3 Uniform Stability of eAt on He, Hence on H

Theorem 4.10 The s.c contraction, analytic semigroup eAt on He is moreover uni-

formly stable here: there exist constants M ≥ 1, δ > 0 such that

‖eAt‖L(He) ≤ Me−δt , t ≥ 0, (4.72)

hence, as He and H are norm-equivalent,

‖eAt‖L(H) ≤ M1e−δt , t ≥ 0. (4.73)

Proof The resolvent bound (4.43) combined with 0 ∈ ρ(A) (or A
−1 ∈ L(He)), hence

Sr0 ⊂ ρ(A) by (4.13), allows one to conclude that the resolvent operator is uniformly

bounded on the imaginary axis iR:

‖R(iω, A)‖L(H) ≤ const, ∀ω ∈ R. (4.74)

Hence, [33] the s.c. analytic semigroup eAt is, moreover. (uniformly) exponentially

stable and (4.72) is proved. ��

5 Consequences of Sect. 4.3: The pair {A, B} is stabilizable by
feedbackF in (4.1); the pair {A, C} is detectable byK in (4.1).
Assumptions (A.1) and (A.2) are verified, and so is analyticity of
(A + BF) and (A − KC)

The results of semigroup well-posedness, in particular analyticity, and uniform sta-

bility, refer to the PDE-problem (4.9 a–e) for an arbitrary choice of a portion of the

boundary �̃s of �s of positive measure.

Next, if we specialize to �̃s = �c
s , we obtain the PDE-problem (4.4 a–e), whose

abstract version is given by ẏ = (A + BF)y in (4.3), (4.5). This means that the

open loop pair {A,B},whose PDE-version given by (3.7 a–e) is stabilizable by the

feedback operator F in (4.1); in other words, on the space He, the s.c. contraction

analytic semigroup e(A+BF)t is moreover, uniformly stable. This verifies assumption

(A.1), with the feedback operator F .

Similarly, if we specialize to �̃s = �o
s , we obtain the PDE-problem (4.7 a–e),

whose abstract version is given by ẏ = (A − KC)y in (4.6), with K defined by (4.1).

The partial observation C

⎡
£

w

wt

u

¤
⎦ = χ�o

s
w in (3.23) picks up only the first coordinate

at the portion �o
s of the interface �s . This means that the pair {A, C} is detectable, i.e.

there exists an operator K in (4.1) such that the corresponding s.c. contraction analytic

semigroup e(A−KC)t is moreover uniformly stable on He. This verifies assumption

(A.2). Moreover, the analyticity Theorem 4.9 for eAt applies also to e(A+BF)t and

e(A−KC)t for �̃s specialized to �̃s = �c
s or �̃s = �o

s respectively. Thus Theorem 2.2

is established.
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We next recall that:

(1) The PDE-problem corresponding to the abstract equation ẏ = Ay+Bg, g = F z,

y = [w,wt , u] , z = [z1, z2 = z1t , z3] is given by (4.4 a–e);

(2) The PDE-problem corresponding to ż = (A + BF − KC)z + K(Cy) is given by

(1.6 a–e).

5.1 The PDE-Problem Corresponding to ḋ = (A − KC)d, d = y − z

In the Luenberger’s theory, the ultimate goal is to establish uniform stability of the

problem ḋ = (A − KC)d, where,

d(t) = y(t) − z(t) = [w(t) − z1(t), wt (t) − z2(t), u(t) − z3(t)]

= [d1(t), d2(t), d3(t)] . (5.1)

Recalling (4.6), (4.7 a–e) and relabeling the notation [d1(t), d2(t), d3(t)] =

[ŵ(t), ŵt (t), û(t)], we see that the PDE-problem corresponding to ḋ = (A − KC)d

is:

ût − �û ≡ 0 in (0, T ] × � f , (5.2a)

ŵt t − �ŵ − �ŵt ≡ 0 in (0, T ] × �s, (5.2b)

û|� f
= 0 in (0, T ] × � f , (5.2c)

û|�s = ŵt |�s in (0, T ] × �s, (5.2d)

∂(ŵ + ŵt )

∂ν
=

∂ û

∂ν
− χ�o

s
ŵ in (0, T ] × �s . (5.2e)

This is precisely problem (4.7 a–e) that was shown in Sect. 4.3/5 to be uniformly stable,

so that the Luenberger theory ultimate goal:

‖y(t) − z(t)‖ ≤ Me−δt‖y0 − z0‖, (5.3)

is achieved on either He or H. It remains to establish Theorem 2.1.

6 Proof of Theorem 2.1

Theorem 2.2 was established in Sects. 4.1, 4.2, 4.3 as noted in Sect. 5: thus the operator

(A + BF) defined in (4.5) and the operator (A − KC) defined in (4.8) are generators

of s.c. semigroups on H and He, which moreover are analytic and uniformly stable in

these spaces (and moreover contraction on He). These results will be now critically

used to prove Theorem 2.1. The next point is to use the transformation introduced in

[32], see also [24, p 497]

J =

[
I I

0 I

]
with inverse J −1 =

[
I −I

0 I

]
, (6.1)
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to transform A into its similarity form:

Â = J −1
A J =

[
A − KC 0

KC A + BF

]
. (6.2)

This leads us to the study of the transformed system. For λ ∈ C to be further

identified below, we compute the resolvent R
(
λ, Â

)
of the operator Â in (6.2). For

{ỹ, z̃} ∈ H × H = H, we seek to solve:

(
λIH − Â

) [y

z

]
= λIH×H −

[
A − KC 0

KC A + BF

] [
y

z

]
=

[
ỹ

z̃

]
, (6.3)

for [y, z] ∈ D
(
Â
)
. Thus,

[λIH − (A − KC)] y = ỹ or y = R (λ,A − KC) ỹ, (6.4)

and

[λIH − (A + BF)] z = KCy + z̃, (6.5)[
y

z

]
= R

(
λ, Â

) [ỹ

z̃

]
=

[
R (λ,A − KC) 0

R (λ,A + BF)KCR (λ,A − KC) R (λ,A + BF)

]

[
ỹ

z̃

]
. (6.6)

The resolvents R (λ,A − KC) and R (λ,A + BF) are well-defined for all λ ∈ C

outside the usual triangular sector with vertex on the negative real axis, which contains

the spectrum of the analytic, uniformly stable generators (A − KC) and (A + BF).

We shall next establish that the term R (λ,A + BF)KC is likewise well defined in

H. To this end we shall establish the following.

Lemma 6.1 With reference to the operator (KC) in (4.2), its adjoint (KC)∗ is given

by,

(KC)∗

⎡
£

f1

f2

f3

¤
⎦ =

⎡
£

N N∗ AN ,tr f2

0

0

¤
⎦ =

⎡
£

−N
(

f2|�s

)

0

0

¤
⎦ , (6.7)

for [ f1, f2, f3] ∈ D ((KC)∗), and thus requires f2 ∈ H1/2+ε(�s).

Proof For [v1, v2, v3] ∈ D(KC) and [ f1, f2, f3] ∈ D ((KC)∗), we compute, recalling

(4.2)

⎛
⎝KC

⎡
£

v1

v2

v3

¤
⎦ ,

⎡
£

f1

f2

f3

¤
⎦
⎞
⎠

H

=

⎛
⎝
⎡
£

0

−AN ,tr N
(
χ�o

s
v1|�s

)

0

¤
⎦ ,

⎡
£

f1

f2

f3

¤
⎦
⎞
⎠

H

(6.8)

=
(
−AN ,tr N

(
χ�o

s
v1|�s

)
, f2

)
L2(�s )
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=
(
−
(
χ�o

s
v1|�s

)
, N∗ AN ,tr f2

)
L2(�s )

(6.9)

(by (3.19)) =
(
N∗ AN ,trv1|�s , N∗ AN ,tr f2

)
L2(�s )

(6.10)

=
(

A
1/2
N ,trv1, A

1/2
N ,tr N N∗ AN ,tr f2

)
L2(�s )

(6.11)

=
(
v1, N N∗ AN ,tr f2

)
H1(�s )

(6.12)

(by (3.19))=

⎛
⎝
⎡
£

v1

v2

v3

¤
⎦ ,

⎡
£

N N∗ AN ,tr f2

0

0

¤
⎦
⎞
⎠

H

=

⎛
⎝
⎡
£

v1

v2

v3

¤
⎦ ,

⎡
£
−N

(
f2|�s

)

0

0

¤
⎦
⎞
⎠

H

(6.13)

=

⎛
⎝
⎡
£

v1

v2

v3

¤
⎦ ,

⎡
£

0 N N∗ AN ,tr

0 0

0 0

¤
⎦
⎡
£

f1

f2

f3

¤
⎦
⎞
⎠

H

(6.14)

=

⎛
⎝
⎡
£

v1

v2

v3

¤
⎦ , (KC)∗

⎡
£

f1

f2

f3

¤
⎦
⎞
⎠

H

, (6.15)

and (6.15) proves (6.7). ��

In order to show that the terms R (λ,A + BF) (KC) is well defined on H in the second

row of (6.6), we re-write it as:

R (λ,A + BF)KC=[λ−(A + BF)]1/2 R (λ,A+BF) [λ−(A+BF)]−1/2 (KC)

(6.16)

whereby all we need to show is that:

Lemma 6.2

(KC)∗
[
λ − (A + BF)∗

]−1/2
∈ L(H). (6.17)

Proof Let y ∈ H. We want to show that:

(KC)∗ f ∈ H, where f = [λ − (A + BF)]−1/2 y, (6.18)

so that f ∈ D
(
[λ − (A + BF)]1/2

)
= D

(
[− (A + BF)]1/2

)
. In other words, we

want to show that:

(KC)∗
[
−(A + BF)∗

]−1/2
∈ L(H). (6.19)

i.e. that (KC)∗ is well-defined in D

([
−(A + BF)∗

]1/2
)

. To see this, we recall [25,

26, 36] that,

[ f1, f2, f3] ∈ D

([
−(A + BF)∗

]1/2
)

, (6.20a)
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means that f1, f2, f3 have the same regularity of the operator (A+BF)∗ or of A, i.e.

f1 ∈ H1(�s), f2 ∈ H1(�s), f3 ∈ H1(� f ), (6.20b)

while only the lower order B.C. of D ((A + BF)∗), i.e. of D(A) apply; i.e.

f1|� f
= 0, f1|�s = f2|�s . (6.20c)

But the definition (6.7) of (KC)∗ shows that (KC)∗ is well-defined a-fortiori for f2 ∈

H1(�s) as is the case by (6.20b). Thus, Lemma 6.2 is established.

In conclusion The resolvent expression R(λ, Â ) in (6.6) is well defined for all λ ∈ C

for which R(λ,A + BF) and R(λ,A − KC) are well defined, with (A + BF) and

(A − KC) uniformly stable, analytic generators. ��

Proof Analyticity A few proofs may be given. Perhaps simplest is to consider the

perturbation of an analytic generator view point [19, 31]: We want show that

P =

[
0 0

KC 0

]
is relatively bounded with respect to Â

1/2

=

[
[−(A − KC)]1/2 0

0 [−(A + BF)]1/2

]
, (6.21)

or passing to the adjoints, that

P∗ =

[
0 (KC)∗

0 0

]
is relatively bounded with respect to Â

∗1/2

=

[[
−(A − KC)∗

]1/2
0

0
[
−(A + BF)∗

]1/2

]
(6.22)

more precisely that,

‖(KC)∗y‖H ≤ C‖
[
−(A + BF)∗

]1/2
y‖H, y ∈ D((KC)∗), (6.23)

or, explicitly, setting z = (A + BF)∗1/2 y:

‖(KC)∗
[
− (A + BF)∗

]−1/2
z‖H ≤ C‖z‖H, z ∈ H. (6.24)

But this is precisely what (6.19) shows. Thus the classical perturbation of an analytic

generator applies [19, 31].

Uniform Boundedness We have concluded below (6.20c) that the resolvent expres-

sion R
(
λ, Â

)
in (6.6) is well-defined for all λ ∈ C, save in the triangular sector

containing the spectrum of (A − KC) and (A + BF). Thus,

Re σ
(
Â
)

≤ −δ, for some δ > 0. (6.25)
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Hence uniform stability of eÂ t follows via spectral theorem. ��

7 Appendix

7.1 Lemma 4.1: Explicit Expression ofA
−1

We reference to the operator A in (4.10),(4.11), we have established that:

A
−1 ∈ L(H) or 0 ∈ ρ(A), (7.1)

with explicit expression given in (7.11) below. Let
[
ṽ1, ṽ2, h̃

]
∈ H. We seek to solve:

A

⎡
£

v1

v2

h

¤
⎦ =

⎡
£

v2

�(v1 + v2)

�h

¤
⎦ =

⎡
£

ṽ1

ṽ2

h̃

¤
⎦ , (7.2)

uniquely for [v1, v2, h] ∈ D(A) in (4.12). From (7.2)-(i), we first obtain, v2 = ṽ1 ∈

H1(�s), thus v2|�s = ṽ1|�s ∈ H1/2(�s). From (7.2)-(iii), we next obtain:

�h = h̃ ∈ L2(� f ), (7.3a)

h|� f
= 0, h|�s = v2|�s = ṽ1|�s ∈ H1/2(�s). (7.3b)

Hence, the unique solution is:

h = A−1
D, f h̃ + D̃

(
ṽ1|�s

)
∈ D(AD, f ) + H1(� f ), (7.4)

where AD, f ϕ = �ϕ in � f , D(AD, f ) = H2(�s) ∩ H1
0 (� f ), and D̃ is the Dirichlet

map in � f , acting from �s :

D̃g = ϕ ⇐⇒
{
�ϕ = 0 in � f , ϕ|� f

= 0, ϕ|�s = g
}
. (7.5)

Finally, from (7.2)-(iii), recalling v2 = ṽ1 and the B.C., we have,

�(v1 + v2) = ṽ2 in �s, �v1 = ṽ2 − �ṽ1 ∈ H−1(�s), (7.6a)

∂(v1 + v2)

∂ν
=

∂h

∂ν
+ χ�̃s

v1 on �s, or

[
∂v1

∂ν
− χ�̃s

v1

]

�s

=

[
∂h

∂ν
−

∂ṽ1

∂ν

]

�s

∈ H−1/2(�s), (7.6b)

a Robin problem, whose unique solution is:

v1 = A−1
R,s [̃v2 − �ṽ1] + Rs

[
∂h

∂ν
−

∂ṽ1

∂ν

]

�s

, (7.7)
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In (7.7), AR,s is the Robin Laplacian on �s , and Rs is the Robin map:

AR,sϕ = �ϕ, D(AR,s) =

{
ϕ ∈ H2(�s) :

[
∂ϕ

∂ν
− χ�̃s

ϕ

]

�s

= 0

}
(7.8)

Rsμ = f ⇐⇒

{
� f = 0 in �s,

∂ f

∂ν
− χ�̃s

f = μ

}
. (7.9)

Recalling (7.4) in (7.7), we rewrite it explicitly in terms of
[
ṽ1, ṽ2, h̃

]
as

v1 = A−1
R,s

[
ṽ2 − �ṽ1

]
+ Rs

{
∂

∂ν

[
A−1

D, f h̃ + D̃(ṽ1|�s )

]
−

∂ṽ1

∂ν

∣∣∣
�s

}
, (7.10)

Ultimately we obtain:

⎡
£

v1

v2

h

¤
⎦ =

⎡
⎢£

−A−1
R,s� + Rs

∂ D̃
∂ν

(·|�s ) − ∂
∂ν

A−1
R,s Rs

∂ A−1
D, f

∂ν

I 0 0

D̃(·|�s ) 0 A−1
D, f

¤
⎥⎦

⎡
£

ṽ1

ṽ2

h̃

¤
⎦ . (7.11)

7.2 AdjointA
∗ ofA on He. Proof of Proposition 4.6

Let {w1, w2, u} ∈ D(A), hence subject to the conditions (4.12 a, b), and let

{v1, v2, h} ∈ He, subject to the conditions in (4.34 a, b). We compute:

⎛
⎝A

⎡
£

w1

w2

u

¤
⎦ ,

⎡
£

v1

v2

h

¤
⎦
⎞
⎠

He

=

⎛
⎝
⎡
£

w2

�(w1 + w2)

�u

¤
⎦ ,

⎡
£

v1

v2

h

¤
⎦
⎞
⎠

He

= (∇w2,∇v1)�s + (w2, ṽ1)�̃s
+ (�(w1 + w2), v2)�s

+ (�u, h)� f
. (7.12)

By Green’s Second Theorem on � f , recalling u|� f
= 0, h|� f

= 0, we obtain:

(�u, h) = (u,�h) +

∫

�s

∂u

∂ν
h d�s −

∫

�s

u
∂h

∂ν
d�s . (7.13)

Similarly, by Green’s Second Theorem on �s , recalling that the unit normal vector ν

is inward w.r.t. �s ,

(�(w1 + w2), v2)�s = (w1 + w2,�v2)�s −

∫

�s

∂(w1 + w2)

∂ν
v2 d�s

+

∫

�s

(w1 + w2)
∂v2

∂ν
d�s
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= (w1 + w2,�v2)�s −

∫

�s

∂u

∂ν
v2 d�s

−

∫

�̃s

w1v2 d�̃s +

∫

�s

(w1 + w2)
∂v2

∂ν
d�s, (7.14)

recalling, ∂(w1+w2)
∂ν

= ∂u
∂ν

+χ�̃s
w1 on �s . Summing up (7.13) and (7.14) and recalling

that v2|�s = h|�s , w2|�s = u|�s , we obtain

RHS of (7.12) = (∇w2,∇v1)�s

+ (w2, v1)�̃s
+ (w1 + w2,�v2)�s −

�
�

�
�

�
��∫

�s

∂u

∂ν
h d�s − (w1, v2)�̃s

+

∫

�s

(w1 + w2)
∂v2

∂ν
d�s + (u,�h) +

�
�

�
�

�
��∫

�s

∂u

∂ν
h d�s

−

∫

�s

w2
∂h

∂ν
d�s (7.15)

Next, recalling again that ν is inward to �s , we obtain:

(w1,�v2)�s
=

∫

�s

�v2w1 d�s = −

∫

�s

∂v2

∂ν
w1 d�s − (∇w1,∇w2)�s

,(7.16)

(∇w2,∇v1)�s
= − (w2,�v1)�s

−

∫

�s

∂v1

∂ν
w2 d�s . (7.17)

Substituting (7.16) and (7.17) on the RHS of (7.15) yields:

RHS of (7.12) = − (w2,�v1)�s
−

∫

�s

∂v1

∂ν
w2 d�s + (w2, v1)�̃s

−
�������
∫

�s

∂v2

∂ν
w1 d�s − (∇w1,∇w2)�s

+ (w2,�v2)�s
− (w1, v2)�̃s

+
�������
∫

�s

w1
∂v2

∂ν
d�s

+

∫

�s

w2
∂v2

∂ν
d�s + (u,�u)� f

−

∫

�s

w2
∂h

∂ν
d�s

= − (∇w1,∇w2)�s
− (w1, v2)�̃s

+ (w2,�(v2 − v1))�s

+ (u,�u)� f
+

∫

�s

w2

[
∂(v2 − v1)

∂ν
−

∂h

∂ν
+ χ�̃s

v1

]
d�s

= − (w1, v2)H1
e (�s )

+ (w2,�(v2 − v1))�s
+ (u,�u)� f

, (7.18)

since by (4.34b),

∂(v2 − v1)

∂ν
= −

∂h

∂ν
− χ�̃s

v1, on �s . (7.19)
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Finally (7.18) can be rewritten as:

⎛
⎝A

⎡
£

w1

w2

u

¤
⎦ ,

⎡
£

v1

v2

h

¤
⎦
⎞
⎠

He

=

⎛
⎝
⎡
£

w1

w2

u

¤
⎦ ,

⎡
£

0 −I 0

−� � 0

0 0 �

¤
⎦
⎡
£

v1

v2

h

¤
⎦
⎞
⎠

He

(7.20)

or

A
∗

⎡
£

v1

v2

h

¤
⎦ =

⎡
£

0 −I 0

−� � 0

0 0 �

¤
⎦
⎡
£

v1

v2

h

¤
⎦ =

⎡
£

−v2

�(v2 − v1)

�h

¤
⎦ , (7.21)

for [v1, v2, h] satisfying conditions (4.34) characterizing D(A∗).

7.3 Dissipativity ofA
∗ on the Space He

Proposition 7.1 Let [v1, v2, h] ,
[
ṽ1, ṽ2, h̃

]
∈ D(A∗) defined in (4.34). Then,

1.

⎛
⎝A

∗

⎡
£

v1

v2

h

¤
⎦ ,

⎡
£

ṽ1

ṽ2

h̃

¤
⎦
⎞
⎠

He

= − (∇v2,∇ṽ1)�s
+ (∇v1,∇ṽ2)�s

− (v2, ṽ1)�̃s

+ (v1, ṽ2)�̃s
− (∇v2,∇ṽ2)�s

−
(
∇h,∇h̃

)
� f

. (7.22)

2. Let now [v1, v2, h] =
[
ṽ1, ṽ2, h̃

]
∈ D(A∗),

⎛
⎝A

∗

⎡
£

v1

v2

h

¤
⎦ ,

⎡
£

v1

v2

h

¤
⎦
⎞
⎠

He

= 2 Im (∇v1,∇v2)�s
+ 2 Im (v1, v2)�̃s

−‖∇v2‖
2 − ‖∇h‖2. (7.23)

3. A
∗ is dissipative on He:

Re

⎛
⎝A

∗

⎡
£

v1

v2

h

¤
⎦ ,

⎡
£

v1

v2

h

¤
⎦
⎞
⎠

He

= −‖∇v2‖
2 − ‖∇h‖2, [v1, v2, h] ∈ D(A∗).

(7.24)

Proof Recalling A
∗ from (4.33) and the topology of He from (4.14), we compute:

⎛
⎝A

∗

⎡
£

v1

v2

h

¤
⎦ ,

⎡
£

ṽ1

ṽ2

h̃

¤
⎦
⎞
⎠

He

=

⎛
⎝
⎡
£

−v2

�(v2 − v1)

�h

¤
⎦ ,

⎡
£

ṽ1

ṽ2

h̃

¤
⎦
⎞
⎠

He

= − (∇v2,∇ṽ1)�s
− (v2, ṽ1)�̃s

+ (�(v2 − v1), ṽ2)�s

123



1506 Journal of Optimization Theory and Applications (2024) 203:1471–1508

+
(
�h, h̃

)
� f

= − (∇v2,∇ṽ1)�s
− (v2, ṽ1)�̃s

−

∫

�s

∂(v2 − v1)

∂ν
ṽ2 d�s

− (∇(v2 − v1),∇ṽ2)�s
+

∫

�s

∂h

∂ν
h̃ d�s −

(
∇h,∇ h̃

)
� f

,

(7.25)

where we have used the unit ν inward to �s and h|� f
= 0. Next, recalling ∂(v2−v1)

∂ν
=

∂h
∂ν

− χ�̃s
v1 on �s as well as h|�s = v2|�s , we obtain:

RHS of (7.25) = − (∇v2,∇ṽ1)�s
− (v2, ṽ1)�̃s

−

�
�

�
�

��
∫

�s

∂h

∂ν
h̃ d�s +

∫

�̃s

v1h̃ d�̃s

− (∇v2,∇ṽ2)�s
+ (∇v1,∇ṽ2)�s

+

�
�

�
�

��
∫

�s

∂h

∂ν
h̃ d�s −

(
∇h,∇ h̃

)
� f

(7.26)

and (7.26) proves (7.22).

Parts (2) and (3) follow readily. ��
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