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Abstract

A prototype model for a Fluid—Structure interaction is considered. We aim to stabilize
[enhance stability of] the model by having access only to a portion of the state. Toward
this goal we shall construct a compensator-based Luenberger design, with the follow-
ing two goals: (1) reconstruct the original system asymptotically by tracking partial
information about the full state, (2) stabilize the original unstable system by feeding
an admissible control based on a system which is obtained from the compensator. The
ultimate result is boundary control/stabilization of partially observed and originally
unstable fluid—structure interaction with restricted information on the current state and
without any knowledge of the initial condition. This prevents applicability of known
methods in either open-loop or closed loop stabilization/control.
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1 Introduction, Qualitative Description of the Results
1.1 Motivation

A 2-or 3-dimensional Fluid (Heat)-Structure Interaction model is considered, which
couples a fluid (heat) dynamics with an elastic body (structure), the coupling taking
place at the interface between the two media, where the respective dynamics evolve.
The original problem is unstable on its natural functional setting. The goal is then to
design a feedback control system endowed with the following features. The boundary
control operator is constrained to be active only on an arbitrarily small portion of the
interface, while the feedback operator cannot have access to the entire state, but only to
an accessible part of the state through a partial observation operator (partial observer)
acting itself only on another arbitrarily small portion of the interface. Thus, control
operator and observation operator are uncollocated, as they act on disjoint arbitrarily
small portions of the interface. It is the dynamics (called “compensator") determined
by the only accessible partial observation of the state, that feeds the control function
through the feedback operator. Justification of the name “compensator” is that this
known dynamics asymptotically approximates ("recovers") the unknown inaccessible
full state; that is, it compensates for the lack of knowledge of the whole state at a given
time, or even of the initial condition, in line with the Luenberger compensator theory
(originally introduced in the finite dimensional setting).

1.2 Premise

To provide a first qualitative description of the problem studied in this paper, we first
review the Luenberger compensator theory in its original finite dimensional setting
[29]. So all operators A, B, C, K below in this section are finite dimensional, with
the operator A being unstable. The theory rests on two assumptions: (i) stabilizability
and (i7) detectability, possibly with the same exponential decay.

(A.1) (Stabilizabilty) Given the pair {A, B}, with A unstable, there exists a (feedback)
operator F', such that (A + BF) is exponentially stable.

(A.2) (Detectability) Given the pair {A, C}, with A unstable, there exists an operator
K such that (A — K C) is exponentially stable.

Thus, under (A.1) and (A.2), we conclude that there exist constants M > 1 and k > 0,
such that

eAFBE 4| A=KON < Me7, 1> 0. (1.1)

Standard representation of Luenberger’s compensator theory is as follows (continuous
theory): It is based on the following coupled system:

y=Ay+ Bg, g = Fz=control, y(0) = yy, (1.2a)
z=(A+BF —KC)z+ K(Cy), z(0) = zo. (1.2b)
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where yy is the initial state of the original plant [may be unknown] and z is arbitrary.
It can be taken z¢g = 0.

The basic idea is that the full state y is inaccessible, unknown, beyond any measure-
ment, as is often the case in applications. What we have instead at our disposal is
the partial observation (Cy), where C is the known observation operator. Examples
abound: (i) the actual state within a furnace or (ii) the true distribution of ’noise*
within an acoustic chamber are not exactly accessible, and only some information
from the boundary may be available in each case. Thus, the (compensator) z-equation
(1.2b) is fed, or determined, by only the available partial observation (Cy). Subtracting
(1.2b) from (1.2a) with Bg = B F'z, we obtain after a cancellation of the term B Fz:

d
SO =20 = (A= KO [y® =201, (1.3a)
[y(1) —z2()] = 4K [yg — 201, ¢ > 0. (1.3b)

One next invokes the detectability assumption (A.2) for the pair {A, C}: there exist
M > 1 and k such that ||e A=K || < Me™ k > 0, > 0. Thus, from (1.3b), we
finally obtain

ly(@) — 2z = e KO [yg — 201l < Me ™ |lyo —z0ll, >0, (1.4)

and the dynamic compensator z(t), which is fed only by the known partial obser-
vation (Cy) of the inaccessible state y, and with possibly zo = 0, asymptotically
approximates such state y(z), at an exponential rate. The ultimate goal is to show
that such control g = Fz provides the sought-after uniform stability of the original
plant described by (1.2). This is the key of Luenberger’s theory [29] in the lumped case
where the state of the system is a finite dimensional vector. Non-trivial extensions were
subsequently introduced and studied in the case of distributed parameter systems mod-
eled by Partial Differential Equations [10, 11] and with boundary control/boundary
observations [7, 15-18, 22, 23], [24, p 495]. In the present paper we shall develop this
theory within the context of Fluid-Structure interaction with an interface, where both
control and observation are restricted to the first component state on just arbitrarily
small, disjoint portion of the interface. This setup presents not only physical interest
driven by applications, but also leads to considerable challenges at the mathematical
level when dealing with two different environments separated by an interface.

1.3 The Coupled PDE-System Corresponding to (1.2 a-b)

Let @y C R", n =2, 3 denote the bounded domain on which the heat component of
the coupled PDE system evolves. The boundary of €2 ¢ consists of two disjoint parts
I' f and I'y. The domain €2; [elastic body] immersed within €2  is the domain on which
the structural component evolves in time. see Fig. 1. On this domain we consider a
heat-structure interaction in the variables y = [w, w;, u] and z = [z1, 22 = Z1¢, 23],
where u € R” denotes the velocity of the fluid, w on R” displacement of the body
and wy its velocity. The common interface between the two environments is I's. On
the interface I'y one imposes matching of the velocities u = wy.
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Fig.1 The physical interaction model

Let I'y and I'Y (c =control; 0 =observation) be two arbitrarily small, disjoint,
connected, subsets of positive measure, of the interface I, see Fig. 1. The function
xp Will denote the characteristic function of the domain D. The vector v denotes the
outward unit normal to the domain €2 ¢, hence toward 5 on I'y. We introduce at the
outset the PDE-coupled system corresponding to the motivating finite dimensional
system (1.2a, b):

uy—Au=0 in(0,T] x Qp, (1.52)

wy — Aw — Aw; =0 in (0, T] x 24, (1.5b)
ulp, =0 in(0,T]x Ty (1.5¢)

ulr, = wylr, in (0, T] x T, (1.5d)
W:g—z—}—xrgg in (0, T] x I'y. (1.5e)

The control function g acts on a small portion of I'y denoted by I'{. This will be
later modeled as a control action given by a respective operator Bg which enters the
system via Neumann type boundary conditions [balance of the stresses]. The system
is observed via a displacement w localised on another [disjoint] portion of Iy denoted
by I'?. The above will lead to compensator construction in the variable z

z3r — Azz3 =0 in(0,T] x Qr, (l.6a)
1 — Az1 — Az;; =0 in (0, T] x Q, (1.6b)
z3lr, =0 in(0, 71 x Ty, (1.6¢)
23lr, = zuelry in(0, T] x Iy, (1.6d)
d(z1 +z11) _ 0z3

= — + xrez1 — xrez1 + xrew  in (0, T] x Ty, (1.6e)
v ov s s s

with L.C. yo = {wq, wy, uo} € H, zo = {z10, 220, 230} € H. We stress that while yq
is an initial condition corresponding to the original system, zo can be taken arbitrary-
including zo = 0. Coupling to both systems is exercised at a portion of the interface I'y:
xrezi in (1.5e) and xrow in (1.6e). It will be documented below-see (2.3), (2.4),(4.1),
(4.2)-that the abstract model for the coupled PDE-system (1.5 a—e), (1.6 a—e) is given
by,

@ Springer



Journal of Optimization Theory and Applications (2024) 203:1471-1508 1475

Fig.2 TIllustration of problem
(1.7 a-b) y = {w, w, u}

. y-unknown, Cy-known
Fz Cy
z = {21,722 = 214, 23} <
y=Ay+ BFz, (1.7a)
z=(A+BF-KC)z+K(Cy), (1.7b)

for operators A, B, F, KC, C to be identified below ([A, BB, C] given by the physical
problem, while [F, K] to be designed accordingly); or

dly| y A BF )
E[z] ‘%u’ = [ICC A+B}'—ICC]’ (182)

H=HxHD>D()—>H, (1.8b)

D) = {(n,¢) e H, An+ BF¢ e H; KCn + (A + BF — KC)¢ € H}. With the
suitable feedback operator F, the control g given by g = Fz will be shown to provide
a stabilizing effect on the original system described in the variable y in the natural
finite energy space for the model:

H=H'(Q) x L*(Q) x L*(Q), (1.9)

say for y = {w, w;, u} noted in (1.5). (For simplicity of notation, component spaces
are not bold faced. So we write, say L?(2) rather than L2(€2) or [LZ(QS)]n). See
the symbolic Fig. 2.

In the analysis, it will be critical to replace the space H in (1.9) with the norm
equivalent space:

H, = H!(Q) x L*(Q) x L*(Q), (1.10)
where the inner product, and square of the norm of v € H el (£25), are defined by,

(1, VD) gl q,) = (Vvi, Vig, + (v, VD, , (1.11a)
1011310, = 1V011172g,) + 0117 1725 (1.11b)
so that ”leHJ(Qx) =0 = v; =0in Q. In (1.11a), ﬁ is a fixed portion of ['.
Norm-equivalence between H and H, is justified in (4.16) below. The key reason for

introducing H, is explained by Lemma 4.1 (ii) followed by Proposition 4.2, (4.20)
below.
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2 Main Results
2.1 Formulation and Comments

The main result of the present paper is the following one. (We recall that the operator
A is unstable on H: A = 0 is an eigenvalue of .4 on H with eigenvector ¢ = [1, 0, 0],
Remark 3.2.)

Theorem 2.1 The coupled PDE-system (1.5 a—e), (1.6 a—e) defines the operator <f as
in (1.8 a-b), which is the generator of a s.c semigroup e”! on the finite energy space

H=HxHHin(19):

Bgi] = ¢! Bﬂ e C([0, T]: H). Q2.1

Moreover, e is analytic and uniformly stable on H: there exist constants M >
1, k > 0, such that,

o't —kt y(t) —kty [ YO
le” Nleaey < Me™,  thus || [z(t)} lgx < Me ™| [20i| ll¢- (2.2)

Remark 2.1 e We note that the compensator system can be solved with an arbitrary
initial condition, in particular zo = 0. The only information needed is the value of
the displacement w of the body on a portion of the boundary I'{ which is assumed
to be the observed quantity. The control acting on the original plant g = Fz = z31
feeds the information from the compensator into the system. It acts also on a an
arbitrary small portion of the interface I'{ which may be far away from the observed
part I'Y. The final result provides exponential stabilization of the original plant on
a finite energy space.

e In [39] a similar model has been considered under the assumption of suitable sta-
bility. The goal of that work was to track asymptotically the solution via restricted
observation fed to a compensator. However, this work did not involve control part
or stabilization, where the latter is the main issue of the present contribution.

Remark 2.2 e As already mentioned, a compensator design has been considered for
a variety of PDE models also with boundary observation or control. The interest
of the present model is that this is an interface model with interaction of two
different environments. As we shall see, this provides for several challenges at the
level of mathematical [PDE] analysis, where unboundedness of traces occurring
at the interface is the main game changer. A more comprehensive model will be by
replacing "heat equation” by the dynamic Stokes equation -which also accounts
for the presence of pressure in the system [13, 34]. This can be done by using a
well known by now representation of the pressure in terms of a nonlocal operator
collecting the information from the interface [1-3, 37]. Similarly, more general
forms of elliptic operators, where A is replaced by strain—stress tensors could be
easily considered without changing the mathematical technicalities of the present
analysis.
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e Other heat-plate interaction models are given in [38, 40].

e The problem of stabilization subject to partial information on the state has acquired
a lot of recent attention in the literature and it is often referred to as “data assim-
ilations" or “determining modes" techniques [4, 6, 12, 30]. Here the principle is
somewhat different where asymptotic tracking of the trajectory is based on col-
lecting information on "finitely" many modes determining the system. The above
method reconstructs asymptotically trajectories and remarkably may even provide
information on additional regularity of solutions [4]. However, there is no control
aspect in the problem.

e It would be interesting to consider effects of nonlinearity in the model. In fact, this
has been done within the context of data assimilation [4, 6]. Within the present
framework, this could be done as in [5] where the control mechanism Fz is fed to
the original plant and provides a stabilizing effect also in the presence of nonlinear
effects for suitably small data.

e The stabilizing feedback operator F on the compensated system can be also
selected by using a Riccati operator F = —B*P where P € L(H) satis-
fies the Algebraic Riccati Equation of the form (A*Px, y)g + (PAx, y)u +
(x, y)u = (B*Px, B* Py),(re¢) associated with the cost functional J(g, y(g)) =
fooo[llyll2 + |Ig|1?]dt and the trajectory y(g) given by (1.5). The analyticity of
the "y " dynamics, along with the stabilizability condition allow to apply Riccati
Theory with unbounded controls, in order to assert [24] that P € L(H) exists, it
is unique, B*P € L(H; L,(T'y)) and F(y) = —B*P(y) is uniformly stabilizing
the original dynamics. Appealing now to the result of our main Theorem, we can
claim that the partially observed [compensated] feedback g = —B* Pz provides
"almost" optimal performance asymptotically. The latter follows from Bellman’s
optimality principle. This construct provides a minimal cost control feedback, at
the price of using the entire state z given by the compensator [16].

e Another aspect of the problem for consideration is the numerical approximation
of the compensator system in line with past work in [16, 18]. For discretization of
a fluid structure interactions see [20, 21].

Critical ingredients in the proof of Theorem 2.1 are the following results, which
are also of independent interest on their own.

Theorem 2.2 The (feedback) operator Ap = A+ BF (to be defined in (4.3),(4.5)) is
maximally dissipative on the space H, (e =equivalent) norm-equivalent to the space
H, and hence generates a s.c. contraction semigroup et on H,, which moreover is
analytic and uniformly stable on H,, and hence analytic and uniformly stable on H as
well. The PDE-version of the abstract (feedback) system y = Apy, y = [w, w;, u]
is given by (4.4 a—e):

uy — Au=0 in (0, T] x Qyp, (2.3a)

wy — Aw — Aw; =0 in (0, T] x Qq, (2.3b)
ulp, =0 in(0,T] x Iy, (2.3¢)

ulr, = wilr, in (0, T] x Iy, (2.3d)
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9 9
dwtw) _du Xrew in (0, T] x . (2.3¢)
ov ov s

Theorem 2.3 Similarly, the operator (A — KC) (to be defined below in (4.6), (4.8))
is maximally dissipative on the space H, norm-equivalent to the space H, and hence
generates a s.c. contraction semigroup on H,, which moreover is analytic and uni-
formly stable on H,, and hence analytic and uniformly stable on H as well. The
PDE-version of the abstract system, y = (A—KC)y, y = [w, wy, u] is given by (4.7
a-e): eqivalently: (2.3a ), (2.3b), (2.3¢c), (2.3d) with (2.3e) replaced by

9 9
dwtw) _0u o in(0.T] x T, (2.4)
av av s

Given the pair {4, B} from the physical problem, Theorem 2.2 designs a suitable
feedback stabilizing operator F to provide justification of the stabilizability assump-
tion (A.1). Similarly, given the pair {4, C} from the physical problem, Theorem 2.3
designs a suitable detectable operator K to provide justification of the detectability
assumption (A.2).

2.2 Strategy for the Proofs

Orientation and qualitative description of the present paper We next provide, at first
qualitatively, a description of the results of the present paper, following Luenberger’s
script.

Uncontrolled problem The operator A in Section (3.1a—e). The uncontrolled prob-
lem is the Heat-Kelvin-Voight interaction model (3.1a—e), in the variable {w, w;,} for
the structure, and u for the heat component. It is modeled by the abstract operator
A in (3.5), (3.6) on the natural function space H = H' () x L2(Sy) x Lz(Qf),
for {w, wy, u}, as noted in (1.9) or (3.2). In this setting, the operator A is unstable:
X = 01is an simple eigenvalue with corresponding eigenvector e = [1, 0, 0]. There is
therefore the need to stabilize it.

Controlled problem Section 3.2. The pair {.A, B} with controlled operator 5 applied
at the boundary (interface). In order to stabilize by feedback control the original
uncontrolled system (3.1a-e)[i.e. the operator A in (3.5), (3.6)], we need first to apply
to it a control operator. This is the operator B in (3.8), (3.9), whose boundary action on
the original system is given by Eq. (3.9), as acting on the portion I'{ of the interface
I's. This controlled equation on Iy in (3.7e) replaces the uncontrolled version (3.1e)
which is part of the operator A. With the pair {4, B} in place, one next addresses
the stabilizability condition to satisfy assumption (A.l), and hence counteract the
instability of A. Section4 is dedicated to this issue. It defines a feedback operator
F in (4.1), which is active only on the trace of the first coordinate on an arbitrary
small portion I'{ (of positive measure) of the full interface I'y. The corresponding
PDE-version is given by problem (2.3 a-e) or (4.4a—e). Its abstract formulation, i.e.
the abstract feedback operator A = A + BF is given in (4.3). The key issue is
to establish the validity of assumption (A.1): that is, that the feedback problem Ap
given by (4.4a—e) in PDE-form is well-posed and uniformly stable. This is a delicate
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issue that will be described below in Sect. 4.1, after treating the selection of the partial
observation operator C.

The partial observation operator Cand the detectability condition of the pair { A, C}
Section 4. In line with the core of the Luenberger theory, the full state y is not available,
only the observation (Cy) is accessible through a known partial observation operator
C. This is defined in (3.23) as an operator that, of the whole state [w, wy, u] in H, picks
up only the trace of the first component on an arbitrary small portion I'{ (of positive
measure) of the interface I'y. It is desirable to allow I' N T'Y = @ = empty set
(uncollocated control and observation actions).

The detectable operator K is selected in (4.1) [compare with B in (3.9)]. The result
of the design for BF and —/KC is that showing uniform stabilization of A + BF
(problem (4.4 a-e)) or of A — KCC (problem (4.7 a-e)) amounts essentially to the same
task, save for I'¢ replacing I'¢.

Well-posedness in the sense of analytic semigroup well-posedness, and uniform
stability of A+BF or of A—KC = A+BC: Section 4.1-4.2 The common problem of
well-posedness (analyticity) and uniform stability of A+BF and A—KC = A+BC s
taken up in the Sect. 4.1 and 4.2, respectively. Here a generic portion I, of the interface
Iy is selected, to stand for either I' or I'? in the two cases. The PDE-problem with I,
given by (4.9a-e) and its evolution abstract operator is denoted by A in (4.11),(4.12),
to serve for Ay = A+ BF ([y = I'¢) or for A — KC, (T = rY).

The first consequence is positive: now 0 € p(A), the resolvent set of A, say on
the original space H, thus overcoming the original problem 0 € o,(A) lamented
for the uncontrolled problem. However, at the outset, one faces a negative feature: it
turns out that the key operator A (image of A + BF and A — KC) is not dissipative
on the original state space H. To overcome this difficulty, we introduce a new state
space H, (e=equivalent) which is norm-equivalent to H. More precisely, the first
component space H () with squared norm || V|| iz(gs) + vl iz(gs ) isreplaced by
the equivalent space He] (£25) with squared norm || Vv ”%Z(QV) +llvilg, ”%ﬁ(ﬁ) as noted
in (1.11 a-b). It then turns out that in the new equivalent space H,, A is dissipafive, hence
maximal dissipative (as 0 € p(A)) and thus generates a s.c. contraction semigroup e*!
on H, (hence a s.c. semigroup on H as well). This is Proposition 4.3. Similar results
holds for the adjoint A* of A on H, defined in Sect.4.1.2. With this preliminary
contraction semigroup result at hand, Sect. 4.2, then uses delicate energy estimates to
show the bound (4.43) in the resolvant R(iw, A) in the imaginary axis iw, w € R for
lw| > wp > 0 and appeal to the abstract result in [24, p 334] to conclude that e?' is
analytic on H,, hence on H as well.

Finally, in Sect. 4.3, the resolvent bound (4.43) combined with 0 € p(A) allows one
to invoke Pruss’s result [33] and conclude that €™ is moreover, uniformly stable on
H,, hence on H as well. As A stands for both (A + BF) and (A — KC), we then obtain
the desired results that both ¢ATBF) and e(A-KO gre analytic and uniformly stable
on H,, hence on H. But as described, by the very core of the Luenberger’s theory, the
difference between the real (inaccessible) state y and its compensator z, which is fed
only by the known observation (Cy) is given by: y(¢) — z(t) = e(A-KO) [yo — zo] as
in the finite dimensional case (1.4) and hence,
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ly(2) =zl ) < Me ™ lyo — z0ll ()5 (2.5)

(-) either H, or H, so that the known compensator z(¢) approximates asymptotically
with exponential rate the original unknown state y(¢).

The last part of the program is to show that the control operator Fz does the "job" of
uniform stabilization on the original plant. This is done in section 6-Proof of Theorem
3.1. The guiding idea is to use perturbation theory for analytic semigroups where one
can show that the perturbation KC -though unbounded can be handled via appropriate
duality method. Techniques from [14, 24] with critical us of the transformation in [32],
[24, p 497] are used.

3 The Original (free) HSI Model: Unstable on the Natural State Space
H = [HT(Q)]" x [L3(Q)]" x [L*(R¢)]" for {w, w, u}

3.1 PDE and Related Semigroup Version

Throughout, 2y € R", n = 2 or 3, will denote the bounded domain on which the heat
component of the coupled PDE system evolves. Its boundary will be denoted here as
0Qr =Ty Uy, Iy NIy = ¢, with each boundary piece being sufficiently smooth.
Moreover, the geometry €2, immersed within €2 ¢, will be the domain on which the
structural component evolves with time. As configured then, the coupling between the
two distinct fluid and elastic dynamics occurs across boundary interface I'y = 9€2;;
see Figure 1. In addition, the unit normal vector v(x) will be directed away from 2 ¢;
thus on I, foward Q. (This specification of the direction of v will influence the
computations to be done below.)

On this geometry in Fig. 1, we thus consider the following fluid—structure PDE
model in solution variables u = [u1(t, x), ua (¢, x),..., u, (¢, x)] (the heat component
here replacing the usual velocity field), and w = [wq (¢, x), wa(t, x), ..., wy(, x)]
(the structural displacement field):

u; — Au=0 in(0,T] xQr, (3.1a)
wy — Aw — Aw, =0 in (0,7] x 2, (3.1b)
ulr, =0 in(0,T]xTy, (3.1c)
ulr, = wylr, in(0,7] x Ty, (3.1d)
dw+w) _ du

o . in(0,T] x5, (3.1le)

(IC) ['LU(O, ')7 wt(O’ ')7 M(O, )] = [w07 wi, MO] € Ha (31f)

H = H'(Q) x L*(Q) x L*(Q), (32)

for the variable {w, w;, u}. H is a Hilbert space with the following norm inducing
inner product, where (f, g)a = [ f§d:
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V1 ﬁ]
v2 |, |02 = (Vuy, Vipg, + (v1, 0)g, + (v2, 02)g, + (f, fa,. (3.3)
f 1w

Abstract model for the free dynamics (3.1 a—e) The operator A. We rewrite problem
(3.1 a—e) as a first-order equation:

Jlw 0710 w w
d_ Wy = AAO Wy ZA wy |, (34)
! 00A u u

where we introduce the operator A : H D D(A) — H :

3] 0710 U1 v2
Alvm | =|AAO0 v =AM +v) |, 3.5)
h 00A h Ah

for {vy, v, h} € D(A), described as follows [28]:
(i) v1,v2 € H'(Qy), so that var, = hlr, € H'3(Ty),

Av) + v2) € L2(Sy). (3.6a)
(i) h € H'(Qy), Ah € L*(Qy), hlr, =0, hlr, = v2|r, € H'/2(Ty),

d(vi +v2)  0dh
T

e H™Y2(ry). (3.6b)
v

(3.6b) is justified in [26, Section 1].

Remark 3.1 As noted in this same reference, the above description of D(A4) shows
that the point {vy, vz, h} € D(A) enjoys a smoothing of regularity by one Sobolev
unit—from L2(-) to H'(-) — but only of the coordinates v, and &, with respect
to the original finite energy state space H in (3.2). In contrast, the first coordinate
v| experiences no smoothing: it is in H'(y), the first coordinate component of the
space H. This amounts to the fact that A has non-compact resolvent R(, A) on H.
Consistently, it was shown in [26, Proposition 2.4] that the point A = —1 belongs to
the continuous spectrum of A : —1 € o.(A).

Remark 3.2 Orientation Reference [26] provides a rather detailed and comprehensive
account of the properties of system (3.1 a—e)-equivalently of the operator A in (3.5),
(3.6) not in the energy space H in (3.2) with full H 1(Qy) first component, but on the
space Hy where the first component is given by H'!($2)/R, i.e. with squared norm

Vv ”%2(9.?) rather than [||Vv1||22(9s) + ||v1||iz(gs)]. In particular, it was shown in

[26] that, in the space Hy, the operator A generates a s.c. contraction semigroup A,
which moreover is analytic and uniformly stable here. The choice of Hy over H was
induced by the fact that, as readily pointed out in [39, Section 0], A = 0 is a simple
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eigenvalue of A with corresponding eigenvector e = [1, 0, 0] on H. Thus, moving
from H to Hy, allowed one to factor out the 1-dimensional eigenspace generated by
e = [1, 0, 0]. Plainly anaylyticity of eAlis preserved on H = Hy+ span {e}; however,
uniform stablity is lost. Paper [39] on the Luenberger compensator exploited uniform
stability and thus studied problem (3.1 a-e) on Hy.

3.2 The Localized Control Operator /3; the Localized Observation Operator C

The key factor of the present problem is that control action and state observation are
localized on arbitrary, small, disjoint, portions of the interface I'y, say I'{ and I'?,
respectively of positive measures. See Fig 1.

The localized control portion I We consider the following non-homogeneous varia-
tion of the unstable free problem (3.1 a—e), with control exercised only on the portion
"¢ of the interface I'y.

uy—Au=0 in (0, T] x Qy, (3.72)

wy — Aw — Aw, =0 in (0, T'] x 4, (3.7b)
ulp, =0 in(0,T]x Ty (3.7¢)

ulr, = welr, in (0, T] x T, (3.7d)

W = ?)_z + Xreg in (0, T] x T. (3.7¢)

xre = characteristic function of I'{; xre¢ = 1 on I'y, xre = 0 on ['\\T'y. Optimal
well-posed results of the map g (on the entirel'y) — [w, wy, u] are given in [35].

Abstract model of the controlled problem (3.7a—e). One may show as in [39] that the
abstract model is:

d w w
| = A w |+ Be, (3.8)
u u
0 ®
Bg = | An.+Nxreg | : continuous L*(I') — | [D(Ay ) /4] |, (3.9)
0 ®

where — Ay ;- is the negative self-adjoint Neumann Laplacian translated by 1:

0
- AN,tr@ = (A = D, D(AN,tr) = {‘P € HQ(QS); %

= O} , (3.10)
Ly
and where N is the corresponding Neumann map:

(A—DY =0 inQ;,
V=Npn < 1y
v

3.11)

T e
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In fact, we return to (3.1b) and rewrite it as:

ou

wy =Aw+w) =(A-1) [(w+wz)—N<av

+ g)i| + (w4 wy), (3.12)

where the term [(w + w,) — N (g—fj + g)] satisfies the zero Neumann B.C. of —Ay
in (3.9), by (3.11) so we can rewrite (3.12) as:

ou

Wy = —Apnr |:(w +w) =N (81}

+ g)] + (w+w) € L), (3.13)

or
~ ~ 8u /
wi = —Av(w +w) + Av N (o= +g ) € [DAN] . (3.14)

with XN," the isomorphic extension LZ(QS) — ['D(AN,,,)]/ = dual of D(AN 1)
W.L.L. Lz(QS) and —ZN the isomorphic extension L2(,) —> [D(AN)] of the operator
—An = A, D(Ay) = D(An ). Henceforth, we shall drop the™ for the extension
A N.tr- As in [39] the adjoint operator B* is given by,

X1,
B*| x2 | = —xrexalr, = —x2lre, x2 € H'2H(Qy). (3.15)

X3

In fact, as in [39], by (3.9),

X1 0 X1
Bg, | x2 =| | AN Nxreg |, | %2 (3.16)
X3/ 0 X314/

= (AN,trNXF§'gv x2)L2(QS) = (gs N*AN,trXZ)LZ(Fg) (317)

X1
Y31/ 2wy
since, in the usual way, we have,
N*An.rx2 = —x2|1,, for xa € H/2E(Qy). (3.19)

In fact, take initially ¢ € D(Ay 4-) as in (3.10) and refer to (3.11) with u € L2(Ty)
to obtain via Green’s second theorem, since v is inward to €;

- (N*AN,HQD, M)LZ(F‘;) = (_AN,tr(ps NM)LZ(QS) = ((A - 1)§07 NM)Lz(QS) (320)
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= (¢ A—117) 12q,) — fvf dTs + 40% ary (321

= (¢, Wr2r,) - (3.22)

Thus (3.19) follows from (3.21) initially for ¢ € D(Apn ;) and later extended to
¢ € H'/ZT2(Qy) [24].

The localized portion T'¢ of the observer Let now I'? be a (say, connected) arbitrary
portion of the boundary I'y, also of positive measure, and generally 'Y NIy = @ =
empty set . Let xro be the characteristic function: I'{. We define the operator C by:

V]
Cluv | =xrovi, C:H— LXTY), (3.23)
v3

thus, with v € H 1(Qx). Thus, the two critical operators to be employed on the
free system (3.1 a—e) or the operator A in (3.5), (3.6)-the control operator 3 and the
observation operator C-are acting on two arbitrary small disjoint portion I'{ and 'Y
of the interface I'. Next, we need to design a feedback stabilizing operator F and a
detectablity operator K.

4 Uniform Stabilization of {.4, B} by a Feedback Stabilizing Operator
F and Detectability of {.4, C} by an Operator /C

We design the feedback stabilizing operator F and the detectability operator C by
setting

V1 0
Flu|=vlre, F:H— LT, Ku=|—-AyuNu
U3 0
LAy = [Py ] @

(compare K with B in (3.9)), so that by (3.9) and (4.1), we obtain:

V] 0 V] 0
BF |v2| = | AnuNxrevi |, —KC|va | = | AN Nxrovi |.  (4.2)
V3 0 V3 0

Since vy € HI(QS), we have vi|r, € HI/Z(FX), hence Nv; € HZ(QS). Our task is to
show that, with this selection of F and C, the stabilizability condition for {.A, B} and
the detectability condition for {A, C} as defined by (A.1) and (A.2) hold true. To this
end, we need to introduce the PDE-problems corresponding to the operator models
(A+ BF) and (A — KC).
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Thus, the PDE-version of the abstract (feedback) problem:

w w
y=Ay+BFy=Ary, y=|w|,g=F |w |, (4.3)
u u
is given by,
U — Au = in(0,T] x Qy, (4.4a)
wy — Aw — Aw;, = in (0, T] x 4, (4.4b)
ulrf 0 in(0,T] x Ty, (4.40)
ulr, = welr, in (0, T] x I, (4.44d)
d 0
(wa+ W) _ a—” + xrew in (0, T] x T, (4.4e)
v

with L.C. w(0, ) = wg, ws(0,:) = wy,u(0,-) = up. A mathematical analysis of
problem (4.4 a—e) is deferred to Sect. 4.1. We have: (A+BF) : H D D(A+BF) — H.

1] 1%)
A+BF)|v|=|A(vi+v) | e€H (4.5a)
v3 Ah
v1,v2 € HY(Qy), A(vy +v2) € LA(y), Ah € L*(R2); (4.5b)
d(vy + v2) oh _
hlr, =0,ulr, = valr, € H'2(Ty), ———| = —| + xrevi € HA(Ty).
av Iy av Iy

(4.5¢)

The PDE-version of the abstract observed system:

w
y=Ay—KCy, y=|w |, (4.6)
u
is given by,
ur— Au=0 in (0,T] x Qy, (4.7a)
wy — Aw — Aw, =0 in (0, T] x €, (4.7b)
ulp, =0 in(0,T] x Ty, 4.7¢)
ulr, = welr, in (0, T] x Iy, (4.7d)
a d
dwrw) _du in (0. T] x T, (4.7¢)
av av s
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with I.C. [wg, w1, ug]. We have: (A — KC) : HD> D(A — KC) — H.

V1 1%)
A=KO) |v| =AW +wm) | eH; (4.8a)
v3 Ah
v, v2 € HY(Qy), A(vi +v2) € LA(Ry), Ah € L*(Q2); (4.8b)
d(vy + v7) oh _
hlr, =0,ulr, = valr, € H'2(Ty), ———| = —| — xrovi € H'/2(Ty).
ov Iy v Ty

(4.8¢)

Thus, the feedback control operator F acts on I'{ while the partial observation operator
C picks up the information w on I'{.

4.1 Analysis of the Critical PDE-System: Analytic Semigroup, Well-Posedness and
Uniform Stability

In this section we denote by [’i an arbitrary portion of the boundary I'y; thus F s =TI°¢
for the controlled portion of I'y, Iy = I'¢ for the observed portion of I';. We consider
the following PDE problem:

uy— Au=0 in (0,T] x Qy, (4.92)

wy — Aw — Aw; =0 in (0, T] x Qj, (4.9b)
ulp, =0 in(0, T] x Ty, (4.9¢)

ulr, = wylr, in (0, T] x 'y, (4.9d)

W = g—z + xFpw in (0, T] x I'. (4.9¢)

Its abstract version is given by,

PR R 0710 w w
d_ wr | = AAO wr | = A wy |, (410)
o 00A u u
with action of A given by,
V] 0710 V1 v2
Alvw|=|1AA0 ml=|AW +v)]|, 4.11)
h 00A h Ah

where the domain of the operator A : H D D(A) — H is as follows:
{vi, v2, h} € D(A)

() vi,v2 € HY(Qy), so that va|r, = h|r, € H'/*(Ty),

A(v) + 1) € L2(Qy), (4.12a)
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(ii) h € H'(Qy), Ah € L*(Qy), hlr; =0, hlr, = va|r, € HY(Ty),

d(vy + v oh _
Y tva) Ok e HTVAT). (4.12b)
ov av s

[One cannot invoke the abstract results [8, 9], because of the coupled boundary con-

ditions.]

4.1.1 Well-Posedness of (4.9 a-e) or (4.10)
Lemma 4.1 With reference to the operator A in (4.10), (4.11), we have:
(i)
0€p(A). (4.13)
(ii) A is not dissipative on H in (3.2).

Verification of (ii) will appear from the proof of Proposition 4.2. The proof of (i) is
given in Appendix 7.1, which provides a explicit expression for A~! : H — D(A) in
Eqt. (7.11). To remedy the shortcoming in (ii), we replace the space: H = H'! () x
L%(Qy) x L*(Qy) in (3.2), with the space

H, = H!(Q) x L*(2) x L*(Q), (4.14)
where the inner product on Hel (£25) (e = equivalent) is defined by,

(W1, V) g1(q,) = (Vvi, Vidg, + (v, VDF, (4.152)

1011310, = 1VV11172g,) + 0117 1725 (4.15b)

so that ||v; ||He] @) =0 = v = 0in ;. In (4.15a), the portion I:; of Iy is the
same as in (4.9e).

Claim: The He1 (Q)— norm of vy in (4.15b) is equivalent to the H'(£2;)-norm of
v1. This follows from [27, p 260]:

Let ¢ € H' (). Let T be an arbitrary portion of 92 = I' of positive measure.
Then, there exist constants 0 < k| < k», such that,

b [ [weswpp]ans [ wopags [wPdE <k [ [P+ iveE]as.
Q Q r Q
(4.16)

Henceforth, we shall study problem (4.9) (the operator A in (4.11), (4.12) on the
function space H, in (4.14) which is norm equivalent to the function space H in (3.2).
The reason is justified by the following result.
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Proposition 4.2 (i) Let [vy, v, K], [v], Vo, ﬁ] € D(A). Then, with reference to the

space H, in (4.14) we have, in the L% —norms:

V] U]
Alv |, |0 = (Vup, Vi, — Vv, Vip)g,
h hl)n
+ (2. U7, — (W1, )p, — (Yo, Vin)g, — (Vh, Vi)g,.
(4.17)
(ii) Thus, if now [v1, va, h] = [171, 0, iz] € D(A), then (4.17) specializes to:
V1 V1
Alv|,|wvn = (Vuz, Voo, — (Vui, Vo)g, + (v2, v1)r, — (V1, v2)f,
h hl)y
— IVl — IVRIG, (4.18)
= 2Im(Vva, Vo), + 20m(v2, vi)ps, — IVuallg, — VA, (4.19)
thus, A is dissipative on H,
V1 V1
Re|A|v|,|v = —[IVulg, = IVAlG,, [vi,v2, k] € DEA).
h hl)a
(4.20)

Since 0 € p(A) by Lemma 4.1 (also on H,), then dissipativity of A in H, in (4.20)
implies its maximal dissipativity. The Lumer-Phillips Theorem [31] then yields:

Theorem 4.3 The operator A in (4.11), (4.12) is maximal dissipative on H,; hence, it
generates as.c. contraction semigroup ™' on H,. Since Hand H, are norm-equivalent,
then A generates a s.c semigroup ¢ on H as well.

Proof of Proposition 4.2 AsinPart 1, take [v}, v3, h], [171 1, E] € D(A) and compute
via (4.11) and the topology in (4.15)

| v ) )
Aluv |, |0 =AW +w) |, |02
nl L)y Ah W)
= (Vuz, Vil)g, +(v2, ) HA@ +2), ), +(Ah, ﬁ)Qf .
@21)

Next we apply Green’s first Theorem to each of the last two terms in (4.21), recall that
the unit normal v is inward to €, as well as the B.C. (4.12a),(4.12b) in D(A). We
obtain:
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d(v1+v2) =

(A(vl—kvz),ﬁz)gs—f-(Ah,ﬁ)Q :—/ - B dTs — (Vv + v2), Vi),
f T,

oh = i
/ Ahar, — Vh Vh)

oh = oh = -
/wal/l‘—/ v T, +/f%7¢d/rs— (Vh,Vh) . (4.22)
B v Qf

Substituting (4.22) in the RHS of (4.21) yields (4.17), from which (4.19)-(4.20) readily
follow. O

Time-domain version of dissipativity We next provide (as in [26]) a time-domain
version of dissipativity. To this end, with reference to problem (4.9 a—e), define:

Eu(t) = f W21, ) Sy, 423)
Qf

Ew<r)=/ w(t, ) dy + [/ |Vw(r,~>|2dszs+/~ w(z, -)dl:s].
QS Q.Y FS
(4.24)

Proposition 4.4 With reference to problem (4.9 a—e), the following energy equality
holds true, in the notation of (4.23), (4.24),

t
Eu(t)—i—Ew(t)—i—Z/ / |Vul> dQpde
0 Qf
t
+2/ / IVw,|? d2sdt = E,(0) + Ey(0). (4.25)
0 Jo

Hence, the following dissipativity inequality holds
oo o0
2/ / |Vu|2d§2fdt+2/ / |Vw,|? dQdt < E,0) + Ey(0)
0 Qf 0 Qs
(4.26a)
as well as contraction of the semigroup ¢ on H,,
Ey(0) + Euw(0) < Ey(0) + Ew(©) or [e™ |z, <1.1>0. (4.26b)

A
at

Proof Multiply Eq (4.92a) by u, use u;u = 2
Green’s first lemma and u[r, = 0, to obtain:

and integrate in time and space, use

t

t
9
Eu(z)—}—2// |Vu|2dedr=Eu(0)+2/ Muar,. @27
0 Ja, 0 Jr, 9
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Next, multiply Eq. (4.9b) by wy, use wyw; = 5 a(g;, and Greens First Lemma with

unit normal v inward to g, use the B.C 8(wa+th) = dv + xg,w on 'y and obtain:

%/[ 1) = w}0, )] d2 +//—wtdrdr+//la(w drdr
//13(|Vw|)d a9, +// IV, 2 dQdT = 0. (4.28)

Recalling u = w; on I'y, we see that (4.28) yields via (4.24),

t t
d
Ey(t) +2/ f IV, 2 dQsdt = Ey(0) —2f M ardr.  (4.29)
0 Jo, o Jr, 9v

Finally sum up (4.27) and (4.29) and obtain (4.25) after a cancellation of the boundary
terms, fot fn %u dlsdr. O

4.1.2 Spectral Properties on iR of A and its Adjoint A*

Complementing 0 € p(A) in (4.13), we now obtain:

Lemma 4.5 With reference to the operator A in (4.11), (4.12), we have
iR ¢ o,(A) = point spectrum of A. (4.30)

Proof Consider the eigenproblem of A with potential eigenvalue ir, r # 0 € R, for
[vi, v2, k] € D(A), with norm=1:

V] V] V] V] V] Lt
Al |=irfv| = [Alv|,|vn =ir vy, v =ir.
h h h h o h h i
(4.31)
Thus recalling the dissipativity condition (4.20), we obtain from (4.31):
V1 V1
Re[A|v|,|w = —IIVuallg, — IVAlg, = 0. (4.32)
h h '

H,

Hence VA = 0 or h =constantin Q ¢, in fact 2 = 01in Q, since h|rf = 0. Moreover
Vv, = 0or vy = constantin g, in fact v = 01in 4, since v2|r, = A|r, = 0. Finally,
the eigen expression in (4.31) yields via (4.11) v, = irvy, hence vy = 0 in Q; for
r # 0. For r = 0, we have the stronger statement (4.13). O

AdjointA*of A in H,4 Though not strictly necessary for the analysis of the present
paper, we wish to introduce the adjoint A* of A in H,.
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Proposition 4.6 The adjoint A* of A in H, is given by

V] 0 —-10 V] )
A*lwm|=|-A A0 v | =|A( -1y, (4.33)
h 0 0 A h Ah

with [vy, va, h] € D(A), meaning:
(i) vi,va € H'(Qy), so that va|r, = h|r, € H'/*(Iy)

A(vs —v1) € L2(Sy) (4.342)
(ii) h € H'(Qy), Ah € L*(Qy), hlr; =0, hlr, = va|r, € H'*(T'y)

3(1)2 - U]) 8h _1/2
_— = — = ~ H F .
™ 5, ~XFUIE T's)

(4.34b)

The proof is given in Appendix 7.2. The counterpart of Proposition 4.2, whose proof
is also given in Appendix B is

Lemmad4.7 (i) Let[vy, va, h], [171, V2, ﬁ] € D(A*). Then with reference to the space
H, in (4.14) we have, in the L*—norms:

v] U]
A* vy |, (V2 = —(Vuy, Vi))gq, + (Vu, Vip)gq,
h h H

—(v2, VD, + (1, 02)F, = (Vva, Vi), — (Vh, Vig, .

(4.35)
(ii) Thus, if now [v1, v2, h] = [v], V2, fl] € D(A*), then (4.35) specializes to
vy V1
A" v |, | v =—(Vva, Vo, +(Vur, Vua)g, —(v2, vi) g +(v1, v2) 7,
h hl)y
— V2l = IVRIG, (4.36)
= 2Im(Vvy, Voo, + 2m(vi, v2)7, — IVuallg, — VA, (4.37)
thus, A* is dissipative on H, :
] V1
Re[A* v |, |v|| =-IVelg —IVAlg, [, v, k] € DAY,
h h)n,
(4.38)
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The counterpart of Lemma 4.5 is now

Lemma 4.8 With reference to the operator A* in (4.33), (4.34), we have

iR ¢ 0,(A*) = point spectrum of A*, hence iR ¢ o,(A),
the residual spectrum of A. (4.39)

Proof Consider the eigenproblem of A* with potential eigenvalue ir, 0 # r € R, for
[v, v2, h] € D(A™), with norm=1:

U1 V] U1 U1 V1 U1
A v |=ir|lv| = [A"|wn],|nr =ir v, | v =ir.
h h h hl)g h hl)u
(4.40)
Thus recalling the dissipativity condition (4.38), we obtain from (4.40):
V1 V1
* _ 2 2
Re | A 1;12 , 1;12 = —[IVuzllg, ||Vh||9f =0. (4.41)

H,

Hence Vi = 0 or h =constant in Qy, in fact & = 0 in Q, since h|1~_/ = 0 by
(4.34b). Moreover Vv, = 0 or vy = constant in £, in fact v) = 0 in g, since
v2lr, = hlr, = 0 by (4.34b). Finally, the eigen expression in (4.40) yields via (4.33),
—vp = irvy, hence vy = 0in Q forr # 0. Forr = 0,0 ¢ 0,(A*). In fact, let

U1 —V2
A v | =] A —vy) | =0, (4.42)
h Ah

hence v; = 0 in Q. Moreover Ak = 0 in Qy which along woth h|1~f = 0 and
v2|r, = h|r, = 0 via (4.34b) yields 7 = 0 in Q. Finally

Avy =0 in

vy __ dh - . - .
—%v =5y —XRU1 =0 or b —xFv =0

implies v; = 0. S0 0 ¢ 0, (A¥). O

4.2 Analyticity of et (and e*"*) on H, (hence on H)

The following is a main result of the present paper.

Theorem 4.9 The s.c. contraction semigroup ™ on the space H, is moreover analytic.
Then e is also analytic on H.
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Proof We have already established that the operator A in (4.11), (4.12), possesses
the following two features: (i) it is the generator of a s.c. (Cp-) semigroup A of
contractions on the finite energy space H,in (4.14) (Theorem 4.3); (ii) 0 € p(A), the
resolvent set of A, and hence there is a small open disk S, in the complex plane
centered at the origin and of small radius ro > 0, that is all contained in p(A) : S, C
p(A) (Lemma 4.1 (i)). Accordingly, to conclude that €™ is, moreover, analytic on
H, (and hence on H), all we need to show [24, Thm. 3E.3, p. 334] is that (A has no
spectrum on the imaginary axis, and):

C
IRGw, Al zn,) < —| 3 YV |w| > some wqy > 0. (4.43)
w

Equivalently, in this section we shall show that
IAR(iw, Al zm,) <C, V|w| > somewy > 0. (4.44)

since AR(iw, A) = —I +iwR(iw, A).
Step 1 Given {v{, v3, h*} € H,,and w € R\{0}. Initially, we seek to solve the equation

v 0710 vy v}
(Ga) —D) | v | = i) = |AA O v | = | v (4.45)
h 00A h h*

in terms of {vy, vy, h} € D(A) uniquely, and establish, in fact, the analyticity estimate
(4.43), equivalently estimate (4.44). For iw € p(A), we have

U] vy v} 0710

v | =R@w,A)|[v]|; AR(G(w,A)|vi|=|AAO0

h h* | h* ] 00A
|l [ w
v | =|A +v)|. (4.46)
h | Y

We then see that the analyticity condition (4.44) is equivalent to showing the following
estimate (recall (4.15b)) (all norms are L;-norms on the respective domains): there
exists a constant C > 0 such that

IVv2lig, + o2l I + 1AQ +v2)lig, + ARG,

<C {nwi“néx + vl IE + 19311, + ||h*||éf} (4.47)
Y |w| > some wg > 0. Explicitly (4.45) is re-written as

iov] — vy = v} € HN(Qy); (4.48a)
iwvy — A(vy + v2) = v} € L*() (4.48b)
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iwh — Ah = h* € L*(Qy). (4.48¢)

Step 2 We take the L2 (€2 p)-inner product of Eqn. (4.48c) against Ak, use Green’s First
Theorem to evaluate fo hARdQ f» recall the B.C. h|r, = 0 in D(A) and obtain

. h ﬁdr _ 3 2 _ 2 _ *
iw s —iol|VhL, — ARG, = (0", Ah)g,. (4.49)
r, v / / /

Similarly, we take the L2(§2)-inner product of (4.48b) against A(v;+v3), use Green’s
First Theorem to evaluate st V2 A (V] + v2)d €2, recalling that the normal vector v is
inward w.r.t. 2, and obtain

T+ T
—iw/ vzwdrs —iw
; ov

(Vor, Vo + v2))g, — [AQ1 + v)l3, = 05, A1 +v))g,.  (450)

Invoking now the B.C., hr, = va|r, and 2020 | = Bh] 4y in D(A)

(see (4.12b)), we rewrite (4.50) as

oh -
—ia)/ h %dl“s — ia)/~ 0V dl — 0|V ||§, —io(Vy, Vo),
s Ty
—lA@ +w)lg, = 5. A + ), (4.51)

Summing up (4.50) and (4.51) yields, after a cancellation of the boundary terms,

—io [IVuld, + 1V, | = 1A@ + v R, + AR,

+io[(Vva, Vog, + (v2. v)F |
+ (U3, Ay + ), + (h*, Ah)g, . (4.52)

or recalling (4.12b),

1A+ vl + 181G, + i | @2 v) @, + IVe2lh, + VAR, ]
= —(v3, A(v1 +v2))o, — (A", Ah)q, (4.53)

Next, by (4.48a), v] = —iT“z’ [1)2 + vﬂ, hence,

iw(vy, U])Hel(Qx) =iw|v, —— [vz + vl] (4.54)
@ HY(2)
=~ 2l o, — @2 ) E1@,)- (4.55)
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Substituting (4.55) into the LHS of (4.53) yields:

IA@ + w3, + 18k, +io 1Vl + VA3, ]

= ||U2||%161 () + (U2, UT)H‘?I Q) — (U>2k7 A(Ul + U2))Qs - (h*s Ah)Qf (456)
Step 3 We take the real part of identity (4.56), thus obtaining a new identity.

1AL+ )G, + ARG,
= ||v2||%181 (@, T Re(2, V) g1(,) — Re(v3, A(i + v2)) — Re(h*, Ah), (4.57)

from which we obtain:

A= [I1a@ + v + A1) < (1 + vl )
+Cellvf I3 g, + V312 + 112} (4.58)

Step 4 We take the imaginary part of identity (4.56), thus obtaining the new identity,

o [IV02 + VI ] = Im(vz, v) 0,y = M3, A1 +v2)) = Im(h*, AR)
(4.59)

or for w # 0,

1
(V021981 | = = fim(ws. v 10, = Im(03. AGvr + v2)~Im(h*, Ah) |
(4.60)

Step 5 Next, by Poincare inequality, since &|r ;= 0 and v2|r, = h|r,, we have,
ozl B,y = WAl B, < e [IVAIR+ 1012] < @lval?. @6

Using (4.61) on the LHS of identity (4.60) yields:

1 1
IVl + Zlvalis I, < IVeall® + Zlvaln agr, (4.62)
< IVoa|l?* + | VAII? (4.63)
1 2 2 2
< o (L2l o) + 1AQ1+v)I” + 1Ak
1
= [ 10713, + 10317 + ||h*||2]} . (4.64)
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Thus, taking ¢; = min {1, 1} and || > some wy > 0, we obtain from (4.64)

”vv2” + ||v2|I‘ ”LZ(F )y — ”v2”H1(§2 )

||v2”Hl(Q )
+——[1a@ + w2 +||Ah|| ]
Clwo
12 112 *2
10 [””1 W1 @) 10207 + 127 ] (4.65)
Finally, by taking ¢ < Cléuo, we get

sl < (1=~ | ol — 1A+l + s
212 HN @) = oo | 12 H @) = g e

10120, + ||v3‘||2 + 2] (4.66)

EClwWO

Step 6 We substitute ||vs |2 H(Q) from (4.66) into the RHS of inequality (4.58) with

5 < (1 — g), thus obtaining,

1A+ v+ AR <201+ &) vzl g+ 1011 g+ 105 1P+ 171

2(1 +¢)2e
= == [1A@ +w)I? + 18417 (4.67)
Cl1w(
+ & [ 1012 ) + 0512 + 1112 (4.68)
from which we obtain the estimate:
|81+ v + 1812 < consteu [ 1071310, + 10312 + 15717
(4.69)

V |w| > some wg > 0.

Step 7 Substituting estimate (4.69) on the RHS of estimate (4.66), we obtain likewise

”v2”H1(Q ) = CO}’ISIS NOL) ["Ul ” (Qs) + ||U;||2 + ”h*”2:| 9 V |C()| 2 some wg > 0
(4.70)

Step 8 Summing up (4.69) and (4.70) yields the sought after estimate (4.47):

102031 gy + 1A Q1+ 22+ AR = Coson [ 107130, + 10512 + 157 12]
V |w| > some wy > 0, 4.71)

and Theorem 4.9 is proved. ¢® is analytic on H,, hence on H. O
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4.3 Uniform Stability of e’on He, Henceon H
Theorem 4.10 The s.c contraction, analytic semigroup e™ on H, is moreover uni-
formly stable here: there exist constants M > 1,8 > 0 such that

el ca,) < Me™, 120, (4.72)
hence, as H, and H are norm-equivalent,
el ey < Mie™, >0, 4.73)

Proof The resolvent bound (4.43) combined with 0 € p(A) (or A~! € £L(H,)), hence
Sy, C p(A) by (4.13), allows one to conclude that the resolvent operator is uniformly
bounded on the imaginary axis iR:

IR(w, Ay < const, Yo e R. (4.74)
Hence, [33] the s.c. analytic semigroup e® is, moreover. (uniformly) exponentially
stable and (4.72) is proved. O

5 Consequences of Sect. 4.3: The pair {.4, 1B} is stabilizable by
feedback F in (4.1); the pair { A, C} is detectable by IC in (4.1).
Assumptions (A.1) and (A.2) are verified, and so is analyticity of
(A+ BF)and (A - KC)

The results of semigroup well-posedness, in particular analyticity, and uniform sta-
bility, refer to the PDE-problem (4.9 a—e) for an arbitrary choice of a portion of the
boundary Iy of T'y of positive measure.

Next, if we specialize to ﬁ = I'¢, we obtain the PDE-problem (4.4 a—e), whose
abstract version is given by y = (A + BF)y in (4.3), (4.5). This means that the
open loop pair {A, B},whose PDE-version given by (3.7 a—e) is stabilizable by the
feedback operator F in (4.1); in other words, on the space H,, the s.c. contraction
analytic semigroup eATBII i moreover, uniformly stable. This verifies assumption
(A.1), with the feedback operator F.

Similarly, if we specialize to ﬁ = I'Y, we obtain the PDE-problem (4.7 a—e),
whose abstract version is given by y = (A — KC)y in (4.6), with K defined by (4.1).

w
The partial observation C | w; | = xroew in (3.23) picks up only the first coordinate
u
at the portion I'Y of the interface I'y. This means that the pair {.4, C} is detectable, i.e.
there exists an operator K in (4.1) such that the corresponding s.c. contraction analytic
semigroup eA=KO! i moreover uniformly stable on H,. This verifies assumption
(A.2). Moreover, the analyticity Theorem 4.9 for ¢*! applies also to eATBFI and
eA-KO! for T specialized to Iy = IS or Iy = "¢ respectively. Thus Theorem 2.2
is established.
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We next recall that:

(1) The PDE-problem corresponding to the abstract equation y = Ay+Bg, g = Fz,
y = [w, wy,u], z=1[z1,22 = 211, 23] is given by (4.4 a—e);

(2) The PDE-problem corresponding to z = (A + BF — KC)z + K(Cy) is given by
(1.6 a—e).

5.1 The PDE-Problem Corresponding to d= A-KCd,d=y—-z

In the Luenberger’s theory, the ultimate goal is to establish uniform stability of the
problem d = (A — KC)d, where,

d(t) = y@) —z(t) = [w() — z21(1), w; (1) — 22(2), u(t) — 23(1)]
= [di(1), d2(1), d3(1)] . .1

Recalling (4.6), (4.7 a—e) and relabeling the notation [d; (), glz 1),ds(t)] =
[w(r), w(¢), u(t)], we see that the PDE-problem corresponding to d = (A — KC)d
is:

U —Au=0 in (0, T] x Qr, (5.2a)

Dy — A — A, =0 in (0, T] x Q, (5.2b)
ﬁ|rf =0 in (0, 7] x 'y, (5.2¢)

ulr, = wrlr, in (0, T] x I, (5.2d)

B(wa——il—)wl) = g—z — Xro in (0, T] x T. (5.2¢)

This is precisely problem (4.7 a—e) that was shown in Sect. 4.3/5 to be uniformly stable,
so that the Luenberger theory ultimate goal:

ly(t) — 2Ol < Me™* |lyo — zol, (5.3)

is achieved on either H, or H. It remains to establish Theorem 2.1.

6 Proof of Theorem 2.1

Theorem 2.2 was established in Sects. 4.1,4.2, 4.3 as noted in Sect. 5: thus the operator
(A + BF) defined in (4.5) and the operator (A — KCC) defined in (4.8) are generators
of s.c. semigroups on H and H,, which moreover are analytic and uniformly stable in
these spaces (and moreover contraction on H,). These results will be now critically
used to prove Theorem 2.1. The next point is to use the transformation introduced in
[32], see also [24, p 497]

J = [(I) f] with inverse  J ! = [é —11 } , 6.1)
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to transform .7 into its similarity form:

6.2)

. JA-KC 0
Ad=7 "QM—[ Ke A+B]—'}

This leads us to the study of the transformed system. For A € C to be further
identified below, we compute the resolvent R (A, .52?) of the operator .2 in (6.2). For
{¥,Z} € H x H = H, we seek to solve:

v A—-KC 0 vl [y
(1 = ) u _“HX“_[ xc A+B]—'} [z] = [’z‘] 6.3)

for[y,z] € D (;2?) Thus,
AMg—(A-KCO]ly=y or y=R(X, A-KO)Y, (6.4)
and

g — (A+BFR)z=KCy+7Z, 6.5)
Y| _ vyl R(h, A—KC) 0
|:z:| =R (1. ) [E] N [R (A, A+ BF)KCR (r, A—KC) R(A,A+B]~')}

y
E] , 6.6)

The resolvents R (A, A — KC) and R (A, A + BF) are well-defined for all A € C
outside the usual triangular sector with vertex on the negative real axis, which contains
the spectrum of the analytic, uniformly stable generators (A — KC) and (A + BF).
We shall next establish that the term R (A, A + BF) KC is likewise well defined in
H. To this end we shall establish the following.

Lemma 6.1 With reference to the operator (KC) in (4.2), its adjoint (KC)* is given
by,

N NN*AN 1 f2 —N (f2Ir,)
axo | | = 0 = 0 , 6.7)
V] 0 0

for [ f1, f2, f3] € D ((KC)*), and thus requires f, € HU2re(Qy).

Proof For [v], v2, v3] € D(KC) and [ f1, f2, f3] € D ((KC)*), we compute, recalling
“4.2)

v fi 0 S
KCluv|.| f2 = || —An.arN (xrevilr,) | | /2 (6.8)
v3 f3 H 0 f3 H
= (_AN,trN (XF§'UI |FS) s fZ)LZ(Qx)
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= (= (xrevilr,) . N*Ay ter)Lz(r) (6.9)
(by (3 19)) = (N AN er1|I‘\7 N AN ter)LZ(I‘ ) (610)
= (A0 AN NN AN ), o) 6.11)
(U] NN AN trf2)Hl(Q) (612)
NN*AN o fr vi'| [N (falr,)
(by (3.19))= =||v|, 0
H V3 0 H

(6.13)

[vi] [ONN*An. ] [ £

( " [O ; MfD 614
| 3 | 0 0 f3 H

[v1] S
v |, (KO*| f2 , (6.15)
| V3 Bl u

and (6.15) proves (6.7). O

In order to show that the terms R (A, A + BF) (KC) is well defined on H in the second
row of (6.6), we re-write it as:

R (h, A+ BF)KC=[A—(A+ BF)1'? R\, A+BF) [»—(A+BF)]~"? (KC)

(6.16)
whereby all we need to show is that:
Lemma 6.2
(KO)* [r — (A+BF ™ e ). 6.17)
Proof Let y € H. We want to show that:
(KO)*f € H, where f =[x — (A+ BF)|"'/?y, (6.18)

so that f € D ([r — (A+ BA)I'?) = D([— (A+ BF)]'?). In other words, we
want to show that:

1/2

(KO [-(A+BF*|" /" e LM). (6.19)

i.e. that (KCC)* is well-defined in D ([—(A + B]—')*]]/2>. To see this, we recall [25,
26, 36] that,

fi. fo. 3l € D ([—(A+BF]?), (6.20a)
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means that f1, f>, f3 have the same regularity of the operator (A + BJF)* or of A, i.e.
fie H(Q), fre H(Qy). f3e H(Qp), (6.20b)
while only the lower order B.C. of D (A + BF)*), i.e. of D(A) apply; i.e.

filr, =0, filr, = f2Ir,. (6.20c)

But the definition (6.7) of (XCC)* shows that (CC)* is well-defined a-fortiori for f, €
H' () as is the case by (6.20b). Thus, Lemm’el 6.2 is established.

In conclusion The resolvent expression R(X, /) in (6.6) is well defined for all > € C
for which R(A, A + BF) and R(A, A — KC) are well defined, with (A + BF) and
(A — KC) uniformly stable, analytic generators. O

Proof Analyticity A few proofs may be given. Perhaps simplest is to consider the
perturbation of an analytic generator view point [19, 31]: We want show that

P = |: ICOC 8] is relatively bounded with respect to a'?

1= —-Kon'? 0
‘[ 0 [—(A+BAA] (©2D
or passing to the adjoints, that
* -~
P* = [g (Kg ) :| is relatively bounded with respect to ./*!/2
—(A-k0)*]'? 0
_ | [ ] i (6.22)
0 [-(A+ BF*¥]
more precisely that,
IKC)* Yl < CIl [=(A+BH ]y, y e DAKOD,  (623)
or, explicitly, setting z = (A + BF)*1/? y:
I0CO)* [~ (A + BF*] ' zllm < Clizllm, z € H. (6.24)

But this is precisely what (6.19) shows. Thus the classical perturbation of an analytic
generator applies [19, 31].

Uniform Boundedness We have concluded below (6.20c) that the resolvent expres-
sion R (A, JZZ) in (6.6) is well-defined for all A € C, save in the triangular sector
containing the spectrum of (A4 — C) and (A + BF). Thus,

Reo (/) < —5, forsome s > 0. (6.25)
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Hence uniform stability of e follows via spectral theorem. O

7 Appendix
7.1 Lemma 4.1: Explicit Expression of A~1
We reference to the operator A in (4.10),(4.11), we have established that:
Al e LH) or 0€ep(A), (7.1)

with explicit expression given in (7.11) below. Let [7)'1, v, Z] € H. We seek to solve:

U] v 1
Aln|=Avi+w)|=|2], (7.2)
h Ah h

uniquely for [vy, va, A] € D(A) in (4.12). From (7.2)-(i), we first obtain, v = V] €
H'(Q;), thus va|r, = V1|1, € H'/?(Qy). From (7.2)-(iii), we next obtain:

Ah =Th e L*(y), (7.3a)
hlr, = 0. hlr, = v2lr, = TiIr, € H'*(T). (7.3b)

Hence, the unique solution is:
h=Ap! i+ D (®ilr,) € D(Ap ) + H' (), (7.4)

where Ap ro = Apin Qy, D(Ap f) = H*(Q,) N HO1 (£2¢), and D is the Dirichlet
map in ¢, acting from I'y:

Dg=¢ < {Ap=0inQ,¢lr, =0, 0lr, =g}. (7.5)

Finally, from (7.2)-(iii), recalling v, = 0 and the B.C., we have,

A +v2) =T in Qy, Av = — AT € H1(Qy), (7.62)
d(v] + v7) oh vy
TZRJFXFNSUI onIy, or W_XFN‘UI N
ah v
= |22 e mAm), (7.6b)
dv v |p,

a Robin problem, whose unique solution is:

v = ALl [V — AT+ Ry oo , (1.7
R.s CLov 9v Jp,
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In (7.7), Ag s is the Robin Laplacian on €2, and Rj is the Robin map:

0
Arsp = Mg, D(Agy) = {w e HX(Q,) : [a—‘f - Xﬁ‘P:| = 0} (7.8)
Ts
. af
Rsu=f<:>{Af:O IHQs,E—Xﬂf=M}- (7.9)

Recalling (7.4) in (7.7), we rewrite it explicitly in terms of [51, V2, fz] as

—1 ~ ~ 8 -1 7 ~ 81;1
v = Agh [0 — AvT]+ Ry { = (45! 7+ D@l | - M SR (AL
Ultimately we obtain:
-1 aD 3 —1 45
V] —Ag A+ R GECIn) — 55 Ary Ri—p Y1
vy | = I 0 0 V2 (7.11)
h D(Ir,) 0 Ay, |LA

7.2 Adjoint A* of A on He. Proof of Proposition 4.6

Let {wy, w2, u} € D(A), hence subject to the conditions (4.12 a, b), and let
{v1, va, h} € He, subject to the conditions in (4.34 a, b). We compute:

w1 V1 w?2 V]
Ajlwr|, v =|[Awi+w) |, |v2
u h - Au h -
= (Vwa, Vuy)g, + (w2, D)5, + (A(wi + w2), v2)g,
+ (Au, h)g,. (7.12)

By Green’s Second Theorem on 2 ¢, recalling u|r ;= 0, h|r P = 0, we obtain:

ou — oh
(Au,h):(u,Ah)—i—/ —hdFS—/ u—dry. (7.13)
r, ov . ov

Similarly, by Green’s Second Theorem on €2, recalling that the unit normal vector v
is inward w.r.t. g,

d(wy +w2) _
(A(wy +w2), 12)o, = (w1 + w2, Avy)g, —/ 2 drl’y

[y

9T
+/ (W1 + wy) =2 dT
Iy av
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ou
= (w1 + w2, Avp)gq, —f —02dl
Ty av
_ o~ vy
— | wivodly + (w1 + wp)—=dI, (7.14)
Ty I av

recalling, M 5+ X, w1 onI'y. Summing up (7.13) and (7.14) and recalling

that vo|r, —h|pA,w2|r —u|rs,weobtaln

RHS of (7.12) = (Vw2, Vuy)gq,

ou —
+ (w2, v, + (w1 + w2, Avz)g, —M— (w1, v2)f,

vy u —
+/ (w1 +w2)—2drs+<u,Ah)+/ ar,
r, av ,

s

oh
—/ wy — dI (7.15)
Iy av

Next, recalling again that v is inward to €25, we obtain:

v
(w1, Avp)g, _f ATrw; dQy = / ﬂwldr — (Vwi, Vi)g, (7.16)
o,

v
(Vw, Vor)g, = — (w2, Avi)g, — / S dl. (7.17)

Substituting (7.16) and (7.17) on the RHS of (7.15) yields:

ov
RHS of (7.12) = — (w2, Avi)g, — | —twady + (w2, vi)f,
S F.v v s
vy
- —17] Iy — (Vwi, Vun)g + (w2, Ava)g, — (wi, v2)f,
’ V2
r
+ w 3 K

s

oV, oh
+ wy—dls + (u, Au)g, — wr— dI
Iy v f Iy Jdv
— (Vwi, Vun)g, — (wi, v2)f, + (w2, A(v2 — v1))g,
3, —v1)  0h _
+ @ Auyg, + | wy | " — =+ xp T | dTs
T, v §
— (w1, 1) g1(g,) + (w2, Az —v1))g, + (4, Au)g, , (7.18)
since by (4.34b),

d(vp —v1) oh _
T:_E_Xﬁ'vl’ onT. (7.19)
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Finally (7.18) can be rewritten as:

w1 V] w 0 —10 V]
Aflwy |, | v = wr|,| —A A O [55) (7.20)
u h H, u 0 0 A h H,
or
V1 0 —10 V1 )
A lvm|=-AA0||ln|=|A-—-v)], (7.21)
h 0 0 A h Ah
for [v1, vy, h] satisfying conditions (4.34) characterizing D(A*).
7.3 Dissipativity of A* on the Space H,
Proposition 7.1 Let [vy, v2, h], [V, T, '1{] € D(A*) defined in (4.34). Then,
1.
V1 V1
A"l vp |, |2 = — (Vup, Vil)g, + (Vui, Vio)g — (v2, V1)F,
h h

H,
+ (1, ), — (Vuz, Vi), — (Vh, vfz)m. (7.22)

2. Let now [v1, v2, h] = [91, T2, h] € D(AY),

U1 V1
A* vy |, | v =2Im (Vvi, Vu)g, + 2Im (vi, v2)F,
h h H,
—[Vva? = VR (7.23)
3. A* is dissipative on H,:
V1 V1
Re|A* | vy |, | 02 = — IV l® = IVAI?, [v1,v2, k] € D(A®).
h h

H,
(7.24)

Proof Recalling A* from (4.33) and the topology of H, from (4.14), we compute:

vy U] —v3 v
A'fv |, |02 =A@ —v) |, |02
h h H, Ah h H,

= —(Vua, VU)o, — (v2, V1)F, + (A(v2 — v1), 12)g,
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+ (Ah,ﬁ)
Qf
~ ~ (v — )=
= — (Vus, Vii)g, — (2, D) —f AR g,

oh= ~
— (V(v2 —v1), Vo —hdl'y — (Vh,Vh ,
(V(v2 = v1) ”2)9s+/rav o= (vmvi),
(7.25)

s

where we have used the unit v inward to g and A|p P = 0. Next, recalling a(vf)—;”l) =

% — XF,v1 on I’y as well as h|r, = v2|r,, we obtain:

oh—= = o~
RHS of (7.25) = — (V. Vi), — (v2. 11)F —//Jﬁd/ﬂ—i—/ vih dT
| o Je .
i ) oh= _
— (Vva, Vi)g, + (Y1, Vi), +f ar, — <Vh, Vh)Q
e !

(7.26)

and (7.26) proves (7.22).
Parts (2) and (3) follow readily. O
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