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Abstract— In this paper, we aim to utilize the orca optimization
algorithm (OOA) as a computational intelligence method
combined with a non-linear data-driven function in the
optimization process for brain image de-noising. This meta-
heuristic population-based optimizer has recently been
proposed to solve complex optimization problems and has
achieved promising results in various domains. Here, it is used
to obtain the optimum threshold value and other parameters for
the activation function. We investigate the impact of this novel
algorithm compared to other state-of-the-art optimizers and
alternative approaches such as Cuckoo Search (CS), Particle
Swarm Optimization (PSO), Differential Evolution (DE),
Thresholding Neural Network (TNN), Neighboring Wavelet
Coefficients (Neishrink), Hard and Soft thresholds. Peak Signal
to Noise Ratio (PSNR) and Mean Square Error (MSE) are also
used to measure the performance analysis of various de-noising
approaches. The results show that the proposed method
performs better than other alternative optimization techniques.

Keywords-Brain image de-noising; computational
intelligence; optimum threshold value; orca optimization
algorithm; PSNR; MSE

I. INTRODUCTION

In image and signal processing, noise refers to unwanted
signals that cause undesirable effects, such as blurred objects,
obscured lines, and distorted scenes. Noise can be generated
during the capturing and transmission processes. Common
types of noise include additive noise, speckle noise, and salt-
and-pepper noise that distort and degrade the visual quality of
images. To be able to analyze and process the images
effectively and accurately, it is essential to eliminate these
noises that, in turn, enhance the image quality and resolution.

De-noising as a preprocessing step is considered a
critical task in image processing before any further analysis.
Although conventional filtering-based noise suppression
methods can remove noise from images, they may blur parts
of the images and reduce the resolution. The primary goal of
de-noising and noise removal approaches is to lessen the
effect of noise to consequently enhance the visual quality of
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images. Various de-noising approaches have been presented
for this purpose. Liu et al., introduced a fast/robust approach
based on integrating the Laplacian Pyramid and non-local
means algorithm for reducing the noise [1]. The method
noise, as a new measure for performance evaluation of the
noise suppression techniques, was developed by Buades et al.
[2] using local smoothing filters and non-local means based
on the image pixels’ non-local averaging. Bilateral filter-
based noise removal was developed in [3]. This method can
reduce the noises efficiently due to spatial averaging without
smoothing edges [3].

There are also several studies found in literature of the
wavelet domain. Wang et al., introduced an undecimated-
DWT combined with least squares Support Vector Machine
(SVM) for noise removal [4]. To do this, they applied un-
decimated wavelet transform (UWT) to the noisy image (noisy
coefficients) to decompose it into various frequency sub-
bands. Then, they used wavelet-based spatial regularity
method to form the noisy pixel’s feature vector. Thereafter,
they used a Least Square Support Vector Machine to generate
two types of wavelet components, namely, noisy and noise-
free constituents. These noisy components can be denoised
using adaptive threshold.

De-noising using Wiener filter is an approach that can
effectively reduce the noise. The wavelet image de-noising
algorithm based on Wiener filtering using local covariance was
done in [5] to obtain coefficients with high visual quality and
to preserve the edges, effectively. The traditional mean filters
for noise removal cannot only retain the significant features
and characteristics of images so that the image will be blurry.
Later, Song et al. proposed a mean filter combined with
wavelet transform to achieve better performance in image de-
noising [6].

In addition, to distinguish the noisy constituents from
noise-free components, Bayesian wavelet-based image de-
noising was proposed in [7] as a combined model using three
main strategies, namely, the magnitudes of the components, the
evolution of coefficients across the scales and large
components’ spatial clustering close to the edges. Several noise
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removal methods have been developed with respect to the
dependencies of wavelet constituents [8]. De-noising using
Bivariate shrinkage in the wavelet domain was introduced in
[9]. They proposed Bivariate non-Gaussian distributions, and
then, based on the theory of Bayesian estimation, they
extracted the shrinkage function. They proved that the
coefficients are not independent and there is a dependency
between the wavelet components and their parents which they
called parent-child dependency [10, 9].

It was discussed in [11] that a de-noised image can be
influenced by the type of the employed wavelet as well as the
adopted threshold value. To obtain customized filters and
wavelet threshold simultaneously, they wused simulated
annealing with respect to the noisy components. Additionally,
a neighborhood near the customized wavelet constituents was
considered for thresholding for noise removal purposes [11].
Wavelet domain-based noise reduction utilizing support vector
regression (SVR) was also proposed in [12] for Gaussian noise
reduction. Another method derived from statistical
distributions based on sub-bands’ modeling of wavelet detail
coefficients was proposed in [10].

A complex wavelet-based bivariate alpha-stable
distributions for noise reduction was also proposed in [13].
Wavelet-based noise reduction using Gaussian scale mixture
was introduced in [14, 15, 16]. In a different study, [17]
focused on curvelet-based image de-noising with combined
local parameters and mixture Gaussian model for wavelet
detail coefficients’ distribution. Additionally, noise removal
utilizing complex Gaussian scale mixture and Laplace
distributions mixture was proposed in [18] and [19],
respectively.

This study uses a newly developed optimization
technique called Orca Optimization Algorithm (OOA) [32]
for image denoising to improve the results of conventional
methods. This optimizer works based on the unique wave-
washing technique of orcas and has shown promising results
on some benchmark functions as compared to other state-of-
the-art metaheuristic optimizers [32]. We utilize this
algorithm to learn the parameters of the adaptive non-linear
data-driven function and also for acquiring the optimum
threshold value. Hence, there is no need to use any gradient
descent LMS learning algorithm to find the optimum values.
The de-noising results obtained show the superiority of the
proposed model over other alternative de-noising approaches.

The rest of the paper is organized as follows. In section
II we discuss the definition of noise and image de-noising in
the wavelet domain. Section III covers the de-noising process
with optimization algorithms. In section IV, we present our
proposed approach, and briefly describe Orca Optimization
Algorithm. In Section V, we present our results and discuss
them. Finally, we conclude this article in Section VI.
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II.  DE-NOISING

A. Noise Definition

The noisy data vector (influenced by additive white
Gaussian noise) is defined as: z = [zg, zy, ..., Zy—_1]":
Zx=fr+n, k=012,..,N-1 (1)
where, f; is the kK wavelet coefficients (without noise)
of noise-free signal and n; denotes the Gaussian noise in the
wavelet transform domain.

Note that the data vector of coefficients of a noise-free
signal is f = [fo, f1, -, fy—1]T and the estimate of the real
signal is f = [fo, f1, -» fy—1]T- The main aim of image de-
noising is to remove the noise from z; and also to acquire the
estimate f of the true image f to minimize the mean square
error (making the estimated value of f close to the real value
of £) [20] [10]. The mean square risk is formulated below.

~ 1 ~ 2 1 _ —~
JGE =2E|f - fI” = i5¥ - £ @
where, N denotes the sub-band size, fj, is the noise-free
coefficients and f, is the threshold coefficients.
In VisuShrink technique, the universal threshold (t,,) is

unique for all the noisy components [10]. This value can be
obtained as:

t, = 0/21In(n) 3)

where, n is the sample size, o is the noise’s standard
deviation and also it is called as robust median estimator [21]
in which it can be acquired as:

6 = Median (| Dy, |)/0.6745 @)

where Dy ,, is the coefficient in high frequency sub-band of
HH; sub-band [21].

B. Wavelet

We can write f(t) based on the scale and wavelet
functions [22]. ID-DWT can be written as follows [22]:

f@) = Zk Ago,p rgo,p(t) + nggo Zk dg,p Ag,p(t) Q)

where Iy, (£) =29T" (29t — p) denotes the scale function,
Agp (t)=28/2A(29t — p) is the wavelet function, the inner
product a4, =<F, Iz ,> is the approximation constituents
and the inner product d ,=<F, A, ,> is the detail coefficients.
Basically, in discrete wavelet transform (DWT) for the
first level, the input signal will pass through both the low pass
filter and the high pass filter and then it is followed by the
decimation. The input signal can be decomposed in detail and
approximation coefficients by DWT. To discard all the high
frequencies, the signal needs to pass through low pass filter
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and then it is followed by down sampling. Doing these
procedures (filtering and sub-sampling) can discard half of
the frequencies. As a result of this process, the quality of
image/signal will be halved. In the second level, we continue
the same procedure considering half of the former cut off
frequencies. For the higher levels of decomposition, we have
the same scenario as in [22]. Figures 1 and 2, show the
general block diagram of DWT for first and higher level of
decomposition, respectively. In these figures, L represents
low frequency, and H is for high frequency.

L Approximation
Coefficients
[ S K

Figure 1. First level of decomposition for DWT

3" Level
Coefficients

2 Level
Coefficients

1* Level
Coefficients

Figure 2. DWT for higher level of decomposition.

C. Image De-noising in the Wavelet Domain

Additive White Gaussian Noise (AWGN) with zero mean
and standard deviation of o gives the input noisy image.
This noise need to be discarded so that we have a high
resolution image. The process of image de-noising using
wavelet transform is as follows:

Apply Discrete Wavelet Transform

Obtain wavelet coefficients.

Apply the threshold function.

Obtain the thresholded wavelet coefficients.
Apply inverse DWT.

Obtain output de-noised image.

Hard, soft, and garrote are the basic threshold functions
that have been utilized in the past. Recently, TNN-based
approaches have become more common among researchers.
In these approaches, the aim is to use a network combined
with an activation function, which is an improved and
enhanced version of the conventional standard threshold
function.

In thresholding Neural Networks (NN), instead of using
standard hard and soft thresholds, we can use the non-linear,
data driven and differentiable functions [23]. These functions
can tune the small noisy coefficients by a polynomial instead

978

of setting them to zero [24]. The Least mean square (LMS)
algorithm as an iterative learning approach is one of the
important methods in NN learning. In this case, utilizing
gradient-based least mean square, we can calculate the
optimal threshold value [31, 10].

III. DENOISING WITH OPTIMIZATION ALGORITHM

Although using LMS learning in TNN to find the
optimum threshold value has some advantages, it is still very
time-consuming and slow. Thus, different studies have been
trying to find a way with shorter processing time and with more
efficiency. In this regard, optimized adaptive-based de-noising
was proposed in [24]. In this approach, instead of using
gradient descent LMS learning, they utilized nature-inspired
optimizers such as Differential Evolution (DE) [25], Particle
Swarm Optimization (PSO) [26], Wind Driven Optimization
(WDO) [27], Firefly Algorithm (FA) [28], Cuckoo Search
(CS) Algorithm [29], and JADE algorithm [30] for acquiring
the optimized threshold components.

The procedure of the optimized-based de-noising is as
follows [24]:

e Obtain Noise coefficients by applying a DWT on the
noisy image and setting the optimizer’s parameters
(e.g. scale parameter, solutions’ number and
iterations’ number of iterations, number of solutions,
scale parameters, etc.).

. Finding the solutions of the algorithm by passing
these noisy components through the combined
nature-inspired optimizer and adaptive data-driven
threshold.

. Finding the best fitness value for each solution by
computing it through the threshold function.

e  Obtaining optimized wavelet components by
passing these parameters through adaptive function.

. Applying inverse discrete wavelet transform on
these coefficients.

. Get output de-noised image.

IV. PROPOSED APPROACH

A. Orca Optimization Algorithm (OOA)

Particular kinds of orcas that live in Antarctic region use
the cunning tactic of repeatedly hunting in a crowd and
forming strong waves to wash seals off drifting ice blocks.
The orcas’ population produces strong waves in various
directions and repeats this treat many times until the target
(seal in the orca optimization algorithm) falls from the ice
block into the ocean.

The orca optimization algorithm models this behavior,
and artificial orcas represent the answers in the algorithm
[32]. In the orca optimization algorithm, each orca (potential
candidate) represents the unknown variables of the problem
and has a similar role to the bee in the artificial bee colony
(ABC) optimization algorithm, chromosome in the genetic
algorithm (GA), cuckoo in the cuckoo optimization
algorithm, or particle in the particle swarm algorithm (PSO).
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The optimization process begins with a set of random
orcas in the search space. Each orca must represent the
unknown variables of the problem that we want to find their
optimal values. In the orca optimization algorithm, different
orcas knock the ice block from various orientation and angles
which each orca has its specific energy depending on its
velocity. The value of this energy determines the orca’s
capacity to wash the ice block and get closer to the target or
global point. In the outlined manner, orcas will be in the
predefined zone by radius R, at irregular direction and
positions.

The orcas that are located farther away from the ice block
have a quicker speed when reaching the ice block and wash
it with more energy and higher severity. At the same time, the
orcas that are located near ice blocks will possess smaller
energy when they smash the piece of ice. To determine the
new position of artificial orcas in the orca optimization
algorithm, the energy of artificial orcas is implemented. The
equation below is defined for computing the orca’s energy:

Energy; = Fitness; — Fitness; (6)
In Eq. (6), Fitness; and Fitness, denote the fitness of
orcas at P; and P; respectively. The orca with upper and
lowest energy can be determined by sorting the energy vector
[Energy]yxi. Based on the arranged energy vector, we
compute the normalized number of energies by Eq. (7):

Energyi—Energymin

Energymax—Energymin

0

i

The population of orca will move approaching the piece
of ice (where the target is in that area) and lie somewhere
within the two circles as illustrated in Figure 3:

d; = Energy; X Radius ®)

Figure 3. Orcas moving toward the target in OOA [32]

At each iteration of algorithm, K percent of population
that have the worst fitness according to defined fitness
function will be wiped out. Instead of eliminating orcas, new
orcas will be placed randomly. Eliminating weak orcas and
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generating new orcas allows the orca optimization algorithm
to escape from local minima.

B. Denoising using OOA

As can be seen in Figure 4, to process optimized based
image de-noising, applying discrete wavelet transform
provides us with noisy coefficients. These coefficients can
pass through a channel containing the orca optimization
algorithm and adaptive wavelet threshold [10] to get
optimized threshold components. The orca algorithm is used
to find the optimum threshold value and other parameters.
Then, applying inverse discrete wavelet transform on the
optimized constituents gives the output de-noised image.
Here the cost function is considered as the mean square error
risk between original and estimated images.

Input Image

Output Image

Figure 4. The procedure of optimized based de-noising

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Results

We performed several experiments to validate the
superiority of the proposed method over other alternative
approaches. We used PSNR (dB) and Mean Square Error
(MSE) as two metrics to evaluate the performance of the de-
noising methods. In the experimental parts we have utilized
several brain images (with the size of 128%128) as can be
seen in Figure 5. The "Db4" wavelet with one decomposition
level is used in all the experiments. The data sets are available
in [33, 34]. Note that the images have been corrupted by
AWGN with zero mean and various variances (var) as can be
seen in the below experiments.

In the first experiment, we compared the OOA based de-
noising with Zhang [35], Nasri-TNN [10], and Zhang-TNN
[20] methods both visually and quantitatively in Figure 6.
Here we utilized test images 1-4. As is shown in this figure,
both quality and PSNR values of OOA de-noising method are
higher than Zhang’s method followed by Nasri-TNN and
Zhang-TNN techniques.
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Image 1

Image 5 Image 6 Image 7 Image 8

Figure 5. Test images with the size of 128x128.

00A Zhang Nasri-TNN Zhang-TNN Noisy
Ll
PSNR=26.12 PSNR=24.56 PSNR=23.10 PSNR=22.89 PSNR=17.23

Image 2

PSNR=20.19 PSNR=16.17

Image 3

PSNR=23.86  PSNR=22.45  PSNR=21.34 PSNR=16.59

Image 4

PSNR=17.21

PSNR=23.53 PSNR=23.01

PSNR=26.29

PSNR=24.78

Figure 6. Qualitative and quantitative comparison of different de-noising
methods for variance of 0.01 (the values are in dB).
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In the second experiment we compared the proposed de-
noising method with other alternative approaches such as
HHO [36], JADE [24], CS [29], Bayes [37], Neishrink [38],
Soft [21] and Hard [21]. As can be seen in Table 1, the PSNR
values obtained by OOA are higher than other methods.
Images 5-9 have been utilized in this experiment.
Additionally, the MSE results which are indicated in Table 2
show that the proposed method generates lower MSE values.

In the last experiment, as can be seen from Figure 7, we
used test image 10 to make a comparison between proposed
method and DE [25], Wiener, and Median methods. The
result indicates that the PSNR values obtained by OOA stays
higher than DE followed by Wiener and Median techniques.
For a standard deviation of 0.03, the PSNR of Median,
Wiener and DE is 21.6 dB, 23.02 dB, and 23.89 dB,
respectively. On the other hand, OOA achives the highest
value which is equal to 24.9 dB.

2 = 13 T T
. —>— Noisy
$ 20 | < Median i
g —4&— Wiener
o 18- —+— DE y
—&— OOA
16 -
14|
12 r r r
0.01 0.02 0.03 0.04 0.05
o values

Figure 7. Performance analysis of OOA based de-noising with other
methods in terms of PSNR values for various variances.

B. Discussion

This study proposes an optimized based de-noising
structure containing evolutionary algorithms and an adaptive
threshold function. Orca optimizer has been utilized in the
optimization procedure for searching and finding unknown
parameters. There are several facts we need to consider here.
The exploration phase and having a more-in-depth scanning
ability are categorized as important factors of a dominant
optimizer. Among the evolutionary algorithms available in
the literature, the proposed optimizer performs well in the
initial phase. How about the second phase which is called
shifting process from exploration and exploitation? Can
exploitation process affect the de-noising results as well?
Some of these optimizers may also act well in the second
phase or even in the initial phase. However, the PSNR and
MSE results obtained by OOA are better than others. Here we
need to look more in depth in the searching strategy to
confirm how better exploration, shifting, and exploitation
processes affect the PSNR results? Can we strongly say that
a much better exploration phase results in much better PSNR?
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Or does the much better exploitation phase result in much
better PSNR? These may be some crucial reasons why OOA
achieves better quantitative and qualitative results compared
to other optimizers.

It is important to highlight that swarm intelligence-based
de-noising approaches achieve more efficient and reliable
results when the metaheuristic optimization method can make
a more apropos equilibrium among the exploration and
exploitation trends. The surprising thing is how the proposed

optimizer combines computational intelligence with image
de-noising. Based on the qualitative and quantitative results,
metaheuristic approaches perform better compared to the
TNN and thresholding-based methods. There are a few
questions in which their answers help us to have a deep
understanding about choosing appropriate de-noising
approaches. As discussed, an image may be contaminated by
various types of noises.

TABLE 1. PSNR COMPARISON BETWEEN DU=IFFERENT DE-NOISING METHODS FOR AVERAGE OF 10 EXPERIMENTS

Image var Hard Soft NeiShrink Bayes CS JADE HHO 00A
0.01 21.2980 22.8210 23.1645 24.0514 24.8925 25.8111 27.2659 27.6029

Image | 0.03 19.8793 21.6450 21.8897 22.7713 23.6737 24.5523 25.6101 26.2003
5 0.05 17.2987 18.7982 19.4987 20.5009 21.2114 21.8218 23.2219 23.4218
0.01 21.4986 22.8902 23.2098 24.1187 24.7983 25.7789 27.1179 27.4512
Image | 0.03 18.3012 19.8129 20.1197 21.0983 21.9760 22.8112 24.1098 24.4967
6 0.05 16.5108 17.7987 18.3654 19.2981 20.1238 20.7689 22.3102 22.7981
0.01 22.0918 23.8971 24.3987 25.5110 26.4568 27.1115 28.5812 28.7642
Image | 0.03 20.8982 22.4532 22.9871 23.8654 24.7765 25.5429 26.5185 26.9997
7 0.05 19.4009 21.0312 21.5190 22.3918 23.2101 23.8120 25.2912 25.6823
0.01 22.1128 23.2986 23.6239 24.4118 253112 25.8136 27.3918 27.7112

Image | 0.03 20.7983 21.8762 22.3982 23.2761 24.0989 24.7910 26.3712 26.6783
8 0.05 18.1102 19.4892 19.9984 20.8920 21.8793 22.6980 24.2526 24.6129
0.01 20.2918 21.5987 22.0125 22.9081 23.7770 24.6072 26.0514 26.4128

Image | 0.03 19.1764 20.4598 20.9670 21.7098 22.6680 23.4182 24.5538 24.9123
9 0.05 17.6908 19.0981 19.6121 20.3128 21.1021 21.8993 23.2197 23.7012

TABLE II. MSE COMPARISON BETWEEN DIFFERENT DE-NOISING METHODS FOR AVERAGE OF 10 EXPERIMENTS

Image var Hard Soft NeiShrink Bayes CS JADE HHO 00A
0.01 | 482.2590 339.6099 313.7836 | 255.8234 | 210.7804 | 170.5965 | 122.0366 | 112.9250
image 5 | 0.03 | 668.5753 455.2258 420.8335 | 343.5186 | 279.0682 | 227.9556 | 178.6777 | 155.9733
0.05 1211.1846 857.5517 729.8109 579.4158 491.9719 | 427.4648 | 309.6637 295.7333
0.01 | 460.4901 334.2414 310.5277 | 251.8896 | 215.4023 | 171.8661 | 126.2671 | 116.9392
image 6 | 0.03 | 961.5245 678.8758 632.5725 | 504.9523 | 412.5535 | 340.3771 | 252.4063 | 230.8927
0.05 | 1452.1128 | 1079.4694 947.4152 | 764.3114 | 631.9756 | 544.7413 | 381.9973 | 341.4053

0.01 | 401.6986 265.0759 236.1621 182.8017 | 147.0281 | 126.4533 | 90.1488 86.4291
image 7 | 0.03 | 528.7621 369.6241 326.8664 | 267.0178 | 216.4862 | 181.4639 | 144.9540 | 129.7508
0.05 | 746.4321 512.8145 458.3321 | 374.8869 | 310.5062 | 270.3213 | 192.2916 | 175.7318
0.01 | 399.7609 304.2428 282.2866 | 235.4509 | 191.4081 | 170.4984 | 118.5496 | 110.1438
image 8 | 0.03 | 541.0661 422.1437 374.3349 | 305.8231 | 253.0406 | 215.7646 | 149.9547 | 139.7173
0.05 | 1004.7554 731.4091 650.4896 | 529.5175 | 421.8425 | 349.3657 | 244.2420 | 224.7969
0.01 | 607.9954 449.9977 409.1008 | 332.8667 | 272.5086 | 225.0921 | 161.4136 | 148.5252
image 9 | 0.03 | 786.0141 584.9252 520.4516 | 438.6320 | 351.7874 | 295.9786 | 227.8769 | 209.8216
0.05 | 1106.6247 800.3323 711.0012 | 605.0626 | 504.5106 | 419.9043 | 309.8206 | 277.3066

These noises have a wide variety of features and
characteristics. According to the obtained results,
metaheuristics as computational intelligence approaches can
handle these noisy characteristics better than other alternative
methods available in the literature. It may be due to the fact
that the swarm intelligence methods have strong searching
ability (in exploration and exploitation procedures) to find the
optimum parameters leading to better de-noising results. Do
metaheuristics optimizers perform well even if the images are

corrupted by other types of noise? If not, it is one of the
drawbacks of computational intelligence-based methods in
de-noising fields.

The proposed method may have some shortcomings as
well. First, it may not work well if we consider more images
and more datasets. There may be room to enhance the
efficiency, robustness, and accuracy of the OOA by working
on the initial phase. Computational time and speed are also
other important factors which need to be taken into
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consideration. Second, the utilized adaptive threshold
function may not work well for large images or highly noisy
images. There is also room to enhance and improve the
threshold function since it deals with noisy components, and
it needs to be proficient enough. The proper threshold
function may also affect the de-noising speed as well.

VL

In this paper we have introduced a new optimized based
approach for brain image denoising using a newly proposed
population-based metaheuristic optimizer called the orca
optimization algorithm, combined with an adaptive data
driven threshold function. This optimizer has demonstrated
promising results for solving various complex optimization
problems. The OOA was utilized here in the optimization
process for acquiring the optimal values of threshold
function. Its performance has been compared to various
approaches like TNN, Neishrink, and other optimized based
methods. We have used two metrics (PSNR and MSE) to
measure the performance of the proposed de-noising
technique. The results indicate the superiority of our
proposed method over other techniques. As a direction for
future work, we aim at extending the OOA by having more-
in-depth investigation on the exploration phase to improve
the searching ability. We also aim at improving the threshold
function to enhance the de-noising results.

CONCLUSION
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