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Abstract— In this paper, we aim to utilize the orca optimization 

algorithm (OOA) as a computational intelligence method 

combined with a non-linear data-driven function in the 

optimization process for brain image de-noising. This meta-

heuristic population-based optimizer has recently been 

proposed to solve complex optimization problems and has 

achieved promising results in various domains. Here, it is used 

to obtain the optimum threshold value and other parameters for 

the activation function. We investigate the impact of this novel 

algorithm compared to other state-of-the-art optimizers and 

alternative approaches such as Cuckoo Search (CS), Particle 

Swarm Optimization (PSO), Differential Evolution (DE), 

Thresholding Neural Network (TNN), Neighboring Wavelet 

Coefficients (Neishrink), Hard and Soft thresholds. Peak Signal 

to Noise Ratio (PSNR) and Mean Square Error (MSE) are also 

used to measure the performance analysis of various de-noising 

approaches. The results show that the proposed method 

performs better than other alternative optimization techniques.  

Keywords-Brain image de-noising; computational 

intelligence; optimum threshold value; orca optimization 

algorithm; PSNR; MSE 

I.  INTRODUCTION  

       
      In image and signal processing, noise refers to unwanted 
signals that cause undesirable effects, such as blurred objects, 
obscured lines, and distorted scenes. Noise can be generated 
during the capturing and transmission processes. Common 
types of noise include additive noise, speckle noise, and salt-
and-pepper noise that distort and degrade the visual quality of 
images. To be able to analyze and process the images 
effectively and accurately, it is essential to eliminate these 
noises that, in turn, enhance the image quality and resolution.  

De-noising as a preprocessing step is considered a 

critical task in image processing before any further analysis. 

Although conventional filtering-based noise suppression 

methods can remove noise from images, they may blur parts 

of the images and reduce the resolution. The primary goal of 

de-noising and noise removal approaches is to lessen the 

effect of noise to consequently enhance the visual quality of 

images. Various de-noising approaches have been presented 

for this purpose. Liu et al., introduced a fast/robust approach 

based on integrating the Laplacian Pyramid and non-local 

means algorithm for reducing the noise [1]. The method 

noise, as a new measure for performance evaluation of the 

noise suppression techniques, was developed by Buades et al. 

[2] using local smoothing filters and non-local means based 

on the image pixels’ non-local averaging.  Bilateral filter-

based noise removal was developed in [3]. This method can 

reduce the noises efficiently due to spatial averaging without 

smoothing edges [3].  

There are also several studies found in literature of the 

wavelet domain. Wang et al., introduced an undecimated-

DWT combined with least squares Support Vector Machine 

(SVM) for noise removal [4]. To do this, they applied un-

decimated wavelet transform (UWT) to the noisy image (noisy 

coefficients) to decompose it into various frequency sub-

bands. Then, they used wavelet-based spatial regularity 

method to form the noisy pixel’s feature vector. Thereafter, 

they used a Least Square Support Vector Machine to generate 

two types of wavelet components, namely, noisy and noise-

free constituents. These noisy components can be denoised 

using adaptive threshold.  

De-noising using Wiener filter is an approach that can 

effectively reduce the noise. The wavelet image de-noising 

algorithm based on Wiener filtering using local covariance was 

done in [5] to obtain coefficients with high visual quality and 

to preserve the edges, effectively. The traditional mean filters 

for noise removal cannot only retain the significant features 

and characteristics of images so that the image will be blurry.  

Later, Song et al. proposed a mean filter combined with 

wavelet transform to achieve better performance in image de-

noising [6].  

In addition, to distinguish the noisy constituents from 

noise-free components, Bayesian wavelet-based image de-

noising was proposed in [7] as a combined model using three 

main strategies, namely, the magnitudes of the components, the 

evolution of coefficients across the scales and large 

components’ spatial clustering close to the edges. Several noise 
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removal methods have been developed with respect to the 

dependencies of wavelet constituents [8]. De-noising using 

Bivariate shrinkage in the wavelet domain was introduced in 

[9]. They proposed Bivariate non-Gaussian distributions, and 

then, based on the theory of Bayesian estimation, they 

extracted the shrinkage function. They proved that the 

coefficients are not independent and there is a dependency 

between the wavelet components and their parents which they 

called parent-child dependency [10, 9].   

It was discussed in [11] that a de-noised image can be 

influenced by the type of the employed wavelet as well as the 

adopted threshold value. To obtain customized filters and 

wavelet threshold simultaneously, they used simulated 

annealing with respect to the noisy components. Additionally, 

a neighborhood near the customized wavelet constituents was 

considered for thresholding for noise removal purposes [11]. 

Wavelet domain-based noise reduction utilizing support vector 

regression (SVR) was also proposed in [12] for Gaussian noise 

reduction. Another method derived from statistical 

distributions based on sub-bands’ modeling of wavelet detail 

coefficients was proposed in [10].  

A complex wavelet-based bivariate alpha-stable 

distributions for noise reduction was also proposed in [13]. 

Wavelet-based noise reduction using Gaussian scale mixture 

was introduced in [14, 15, 16]. In a different study, [17] 

focused on curvelet-based image de-noising with combined 

local parameters and mixture Gaussian model for wavelet 

detail coefficients’ distribution. Additionally, noise removal 

utilizing complex Gaussian scale mixture and Laplace 

distributions mixture was proposed in [18] and [19], 

respectively.  

This study uses a newly developed optimization 

technique called Orca Optimization Algorithm (OOA) [32] 

for image denoising to improve the results of conventional 

methods. This optimizer works based on the unique wave-

washing technique of orcas and has shown promising results 

on some benchmark functions as compared to other state-of-

the-art metaheuristic optimizers [32]. We utilize this 

algorithm to learn the parameters of the adaptive non-linear 

data-driven function and also for acquiring the optimum 

threshold value. Hence, there is no need to use any gradient 

descent LMS learning algorithm to find the optimum values. 

The de-noising results obtained show the superiority of the 

proposed model over other alternative de-noising approaches. 

The rest of the paper is organized as follows. In section 

II we discuss the definition of noise and image de-noising in 

the wavelet domain. Section III covers the de-noising process 

with optimization algorithms. In section IV, we present our 

proposed approach, and briefly describe Orca Optimization 

Algorithm. In Section V, we present our results and discuss 

them. Finally, we conclude this article in Section VI.  

II. DE-NOISING 

A. Noise Definition 

The noisy data vector (influenced by additive white 

Gaussian noise) is defined as: 𝑧 = [𝑧0, 𝑧1, … , 𝑧𝑁−1]𝑇: 

                   𝑧𝑘 = 𝑓𝑘 + 𝑛𝑘      𝑘 = 0,1,2, … , 𝑁 − 1             (1) 

where, 𝑓𝑘 is the kth wavelet coefficients (without noise) 

of noise-free signal and 𝑛𝑘 denotes the Gaussian noise in the 

wavelet transform domain.  

Note that the data vector of coefficients of a noise-free 

signal is 𝑓 = [𝑓0, 𝑓1, … , 𝑓𝑁−1]𝑇  and the estimate of the real 

signal  is 𝑓̂ = [𝑓̂0, 𝑓̂1, … , 𝑓̂𝑁−1]𝑇. The main aim of image de-

noising is to remove the noise from 𝑧𝑘  and also to acquire the 

estimate 𝑓̂ of the true image 𝑓 to minimize the mean square 

error (making the estimated value of 𝑓̂ close to the real value 

of 𝑓) [20] [10]. The mean square risk is formulated below.  

              𝐽(𝑓̂, 𝑓) =
1

2
𝐸‖𝑓̂ − 𝑓‖

2
=

1

2
∑ (𝑓𝑘̂ − 𝑓𝑘)2𝑁−1

𝑘=0         (2) 

where, 𝑁 denotes the sub-band size, 𝑓𝑘 is the noise-free 

coefficients and 𝑓𝑘̂ is the threshold coefficients.  

In VisuShrink technique, the universal threshold (𝑡𝑢) is 

unique for all the noisy components [10]. This value can be 

obtained as: 

              𝑡𝑢 = 𝜎√2 ln(𝑛)                                            (3) 

where, n is the sample size,  𝜎 is the noise’s standard 

deviation and also it is called as robust median estimator [21] 

in which it can be acquired as: 

            𝜎̂ = 𝑀𝑒𝑑𝑖𝑎𝑛 (│𝐷𝑘,𝑚│)/0.6745                    (4)                                                                                                                                      

where 𝐷𝑘,𝑚 is the coefficient in high frequency sub-band of 

𝐻𝐻1 sub-band [21]. 

B. Wavelet  

We can write 𝑓(𝑡)  based on the scale and wavelet 
functions [22]. 1D-DWT can be written as follows [22]:                          

      𝑓(𝑡) = ∑ 𝑎𝑔0,𝑝𝑘  𝛤𝑔0,𝑝(𝑡) +  ∑ ∑ 𝑑𝑔,𝑝𝑘𝑔≤𝑔0
 Λ𝑔,𝑝(𝑡)    (5)  

where 𝛤𝑔,𝑝(𝑡)= 2𝑔𝛤 (2𝑔𝑡 − 𝑝 ) denotes the scale function, 

  Λg,p(𝑡)=2g/2𝛬(2𝑔𝑡 − 𝑝) is the wavelet function, the inner 

product 𝑎𝑔,𝑝 =<F,  𝛤𝑔,𝑝 > is the approximation constituents 

and the inner product 𝑑𝑔,𝑝=<F, 𝛬𝑔,𝑝> is the detail coefficients. 

Basically, in discrete wavelet transform (DWT) for the 

first level, the input signal will pass through both the low pass 

filter and the high pass filter and then it is followed by the 

decimation. The input signal can be decomposed in detail and 

approximation coefficients by DWT. To discard all the high 

frequencies, the signal needs to pass through low pass filter 
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and then it is followed by down sampling. Doing these 

procedures (filtering and sub-sampling) can discard half of 

the frequencies. As a result of this process, the quality of 

image/signal will be halved. In the second level, we continue 

the same procedure considering half of the former cut off 

frequencies. For the higher levels of decomposition, we have 

the same scenario as in [22]. Figures 1 and 2, show the 

general block diagram of DWT for first and higher level of 

decomposition, respectively. In these figures, L represents 

low frequency, and H is for high frequency. 
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Figure 1. First level of decomposition for DWT 
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Figure 2. DWT for higher level of decomposition. 

C. Image De-noising in the Wavelet Domain 

      Additive White Gaussian Noise (AWGN) with zero mean 
and standard deviation of  gives the input noisy image. 

This noise need to be discarded so that we have a high 
resolution image. The process of image de-noising using 
wavelet transform is as follows: 

• Apply Discrete Wavelet Transform 

• Obtain wavelet coefficients. 

• Apply the threshold function. 

• Obtain the thresholded wavelet coefficients. 

• Apply inverse DWT. 

• Obtain output de-noised image. 
 

      Hard, soft, and garrote are the basic threshold functions 
that have been utilized in the past. Recently, TNN-based 
approaches have become more common among researchers. 
In these approaches, the aim is to use a network combined 
with an activation function, which is an improved and 
enhanced version of the conventional standard threshold 
function.  
      In thresholding Neural Networks (NN), instead of using 
standard hard and soft thresholds, we can use the non-linear, 
data driven and differentiable functions [23]. These functions 
can tune the small noisy coefficients by a polynomial instead 

of setting them to zero [24]. The Least mean square (LMS) 
algorithm as an iterative learning approach is one of the 
important methods in NN learning. In this case, utilizing 
gradient-based least mean square, we can calculate the 
optimal threshold value [31, 10].  

III. DENOISING WITH OPTIMIZATION ALGORITHM 

Although using LMS learning in TNN to find the 
optimum threshold value has some advantages, it is still very 
time-consuming and slow. Thus, different studies have been 
trying to find a way with shorter processing time and with more 
efficiency. In this regard, optimized adaptive-based de-noising 
was proposed in [24]. In this approach, instead of using 
gradient descent LMS learning, they utilized nature-inspired 
optimizers such as Differential Evolution (DE) [25], Particle 
Swarm Optimization (PSO) [26], Wind Driven Optimization 
(WDO) [27], Firefly Algorithm (FA) [28], Cuckoo Search 
(CS) Algorithm [29], and JADE algorithm [30] for acquiring 
the optimized threshold components.  

The procedure of the optimized-based de-noising is as 
follows [24]:  

• Obtain Noise coefficients by applying a DWT on the 
noisy image and setting the optimizer’s parameters 
(e.g. scale parameter, solutions’ number and 
iterations’ number of iterations, number of solutions, 
scale parameters, etc.). 

•   Finding the solutions of the algorithm by passing 
these noisy components through the combined 
nature-inspired optimizer and adaptive data-driven 
threshold.   

•   Finding the best fitness value for each solution by 
computing it through the threshold function. 

•  Obtaining optimized wavelet components by 
passing these parameters through adaptive function. 

•   Applying inverse discrete wavelet transform on 
these coefficients. 

•   Get output de-noised image. 

IV. PROPOSED APPROACH 

A. Orca Optimization Algorithm (OOA) 

      Particular kinds of orcas that live in Antarctic region use 

the cunning tactic of repeatedly hunting in a crowd and 

forming  strong waves to wash seals off drifting ice blocks. 

The orcas’ population produces strong waves in various 

directions and repeats this treat many times until the target 

(seal in the orca optimization algorithm) falls from the ice 

block into the ocean.  

      The orca optimization algorithm models this behavior, 

and artificial orcas represent the answers in the algorithm 

[32]. In the orca optimization algorithm, each orca (potential 

candidate) represents the unknown variables of the problem 

and has a similar role to the bee in the artificial bee colony 

(ABC) optimization algorithm, chromosome in the genetic 

algorithm (GA), cuckoo in the cuckoo optimization 

algorithm, or particle in the particle swarm algorithm (PSO).  
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      The optimization process begins with a set of random 

orcas in the search space. Each orca must represent the 

unknown variables of the problem that we want to find their 

optimal values. In the orca optimization algorithm, different 

orcas knock the ice block from various orientation and angles  

which each orca has its specific energy depending on its 

velocity. The value of this energy determines the orca’s 

capacity to wash the ice block and get closer to the target or 

global point. In the outlined manner, orcas will be in the 

predefined zone by radius R, at irregular direction and 

positions.  

      The orcas that are located farther away from the ice block 

have a quicker speed when reaching the ice block and wash 

it with more energy and higher severity. At the same time, the 

orcas that are located near ice blocks will possess smaller 

energy when they smash the piece of ice. To determine the 

new position of artificial orcas in the orca optimization 

algorithm, the energy of artificial orcas is implemented. The 

equation below is defined for computing the orca’s energy: 

         𝐸𝑛𝑒𝑟𝑔𝑦𝑖 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 − 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑠                        (6) 

    In Eq. (6), 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖  and 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑠  denote the fitness of 

orcas at 𝑃𝑖  and 𝑃𝑠  respectively. The orca with upper and 

lowest energy can be determined by sorting the energy vector 

[𝐸𝑛𝑒𝑟𝑔𝑦]𝑁×1 . Based on the arranged energy vector, we 

compute the normalized number of energies by Eq. (7): 

           𝐸𝑖 =
𝐸𝑛𝑒𝑟𝑔𝑦𝑖−𝐸𝑛𝑒𝑟𝑔𝑦𝑚𝑖𝑛

𝐸𝑛𝑒𝑟𝑔𝑦𝑚𝑎𝑥−𝐸𝑛𝑒𝑟𝑔𝑦𝑚𝑖𝑛
                             (7) 

     The population of orca will move approaching the piece 
of ice (where the target is in that area) and lie somewhere 
within the two circles as illustrated in Figure 3:  

                          𝑑𝑖 = 𝐸𝑛𝑒𝑟𝑔𝑦𝑖 × 𝑅adius                          (8) 

 
Figure 3. Orcas moving toward the target in OOA [32] 

      At each iteration of algorithm, K percent of population 

that have the worst fitness according to defined fitness 

function will be wiped out. Instead of eliminating orcas, new 

orcas will be placed randomly. Eliminating weak orcas and 

generating new orcas allows the orca optimization algorithm 

to escape from local minima. 

B. Denoising using OOA 

      As can be seen in Figure 4, to process optimized based 

image de-noising, applying discrete wavelet transform 

provides us with noisy coefficients. These coefficients can 

pass through a channel containing the orca optimization 

algorithm and adaptive wavelet threshold [10] to get 

optimized threshold components. The orca algorithm is used 

to find the optimum threshold value and other parameters. 

Then, applying inverse discrete wavelet transform on the 

optimized constituents gives the output de-noised image. 

Here the cost function is considered as the mean square error 

risk between original and estimated images.  

 

Input Image

Output Image

DWT

Wavelet Coefficients

Optimized Thresholded 
Coefficients

OOA+Adaptive 
Threshold

 
Figure 4. The procedure of optimized based de-noising 

 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

A. Results 

     We performed several experiments to validate the 

superiority of the proposed method over other alternative 

approaches. We used PSNR (dB) and Mean Square Error 

(MSE) as two metrics to evaluate the performance of the de-

noising methods. In the experimental parts we have utilized 

several brain images (with the size of 128×128) as can be 

seen in Figure 5. The "Db4" wavelet with one decomposition 

level is used in all the experiments. The data sets are available 

in [33, 34]. Note that the images have been corrupted by 

AWGN with zero mean and various variances (var) as can be 

seen in the below experiments.  

     In the first experiment, we compared the OOA based de-

noising with Zhang [35], Nasri-TNN [10], and Zhang-TNN 

[20] methods both visually and quantitatively in Figure 6. 

Here we utilized test images 1-4. As is shown in this figure, 

both quality and PSNR values of OOA de-noising method are 

higher than Zhang’s method followed by Nasri-TNN and 

Zhang-TNN techniques.  

 
 

Authorized licensed use limited to: Rutgers University Libraries. Downloaded on July 17,2025 at 12:40:32 UTC from IEEE Xplore.  Restrictions apply. 



 980 

       Image 1 Image 2 Image 3 Image 4

Image 5 Image 6 Image 7 Image 8

Image 9 Image 10

 
Figure 5. Test images with the size of 128×128. 
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Figure 6. Qualitative and quantitative comparison of different de-noising 

methods for variance of 0.01 (the values are in dB).  

      

      In the second experiment we compared the proposed de-
noising method with other alternative approaches such as 
HHO [36], JADE [24], CS [29], Bayes [37], Neishrink [38], 
Soft [21] and Hard [21]. As can be seen in Table 1, the PSNR 
values obtained by OOA are higher than other methods. 
Images 5-9 have been utilized in this experiment. 
Additionally, the MSE results which are indicated in Table 2 
show that the proposed method generates lower MSE values.  
      In the last experiment, as can be seen from Figure 7, we 
used test image 10 to make a comparison between proposed 
method and DE [25], Wiener, and Median methods. The 
result indicates that the PSNR values obtained by OOA stays 
higher than DE followed by Wiener and Median techniques. 
For a standard deviation of 0.03, the PSNR of Median, 
Wiener and DE is 21.6 dB, 23.02 dB, and 23.89 dB, 
respectively. On the other hand, OOA achives the highest 
value which is equal to 24.9 dB.  

 
Figure 7. Performance analysis of OOA based de-noising with other 

methods in terms of PSNR values for various variances.  

B. Discussion 

      This study proposes an optimized based de-noising 

structure containing evolutionary algorithms and an adaptive 

threshold function. Orca optimizer has been utilized in the 

optimization procedure for searching and finding unknown 

parameters. There are several facts we need to consider here. 

The exploration phase and having a more-in-depth scanning 

ability are categorized as important factors of a dominant 

optimizer. Among the evolutionary algorithms available in 

the literature, the proposed optimizer performs well in the 

initial phase. How about the second phase which is called 

shifting process from exploration and exploitation? Can 

exploitation process affect the de-noising results as well? 

Some of these optimizers may also act well in the second 

phase or even in the initial phase. However, the PSNR and 

MSE results obtained by OOA are better than others. Here we 

need to look more in depth in the searching strategy to 

confirm how better exploration, shifting, and exploitation 

processes affect the PSNR results? Can we strongly say that 

a much better exploration phase results in much better PSNR? 
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Or does the much better exploitation phase result in much 

better PSNR?  These may be some crucial reasons why OOA 

achieves better quantitative and qualitative results compared 

to other optimizers.  

      It is important to highlight that swarm intelligence-based 

de-noising approaches achieve more efficient and reliable 

results when the metaheuristic optimization method can make 

a more apropos equilibrium among the exploration and 

exploitation trends. The surprising thing is how the proposed 

optimizer combines computational intelligence with image 

de-noising. Based on the qualitative and quantitative results, 

metaheuristic approaches perform better compared to the 

TNN and thresholding-based methods. There are a few 

questions in which their answers help us to have a deep 

understanding about choosing appropriate de-noising 

approaches. As discussed, an image may be contaminated by 

various types of noises.  

TABLE I.  PSNR COMPARISON BETWEEN DU=IFFERENT DE-NOISING METHODS FOR AVERAGE OF 10 EXPERIMENTS 

Image var 

 

Hard Soft NeiShrink Bayes CS JADE HHO OOA 

Image 

5 

0.01 21.2980 22.8210 23.1645 24.0514 24.8925 25.8111 27.2659 27.6029 

0.03 19.8793 21.6450 21.8897 22.7713 23.6737 24.5523 25.6101 26.2003 

0.05 17.2987 18.7982 19.4987 20.5009 21.2114 21.8218 23.2219 23.4218 

Image 

6 

0.01 21.4986 22.8902 23.2098 24.1187 24.7983 25.7789 27.1179 27.4512 

0.03 18.3012 19.8129 20.1197 21.0983 21.9760 22.8112 24.1098 24.4967 

0.05 16.5108 17.7987 18.3654 19.2981 20.1238 20.7689 22.3102 22.7981 

Image 

7 

0.01 22.0918 23.8971 24.3987 25.5110 26.4568 27.1115 28.5812 28.7642 

0.03 20.8982 22.4532 22.9871 23.8654 24.7765 25.5429 26.5185 26.9997 

0.05 19.4009 21.0312 21.5190 22.3918 23.2101 23.8120 25.2912 25.6823 

Image 

8 

0.01 22.1128 23.2986 23.6239 24.4118 25.3112 25.8136 27.3918 27.7112 

0.03 20.7983 21.8762 22.3982 23.2761 24.0989 24.7910 26.3712 26.6783 

0.05 18.1102 19.4892 19.9984 20.8920 21.8793 22.6980 24.2526 24.6129 

Image 

9 

0.01 20.2918 21.5987 22.0125 22.9081 23.7770 24.6072 26.0514 26.4128 

0.03 19.1764 20.4598 20.9670 21.7098 22.6680 23.4182 24.5538 24.9123 

0.05 17.6908 19.0981 19.6121 20.3128 21.1021 21.8993 23.2197 23.7012 

TABLE II.  MSE COMPARISON BETWEEN DIFFERENT DE-NOISING METHODS FOR AVERAGE OF 10 EXPERIMENTS 

Image var 

 

Hard  Soft NeiShrink Bayes CS JADE HHO OOA 

image 5 

0.01 482.2590 339.6099 313.7836 255.8234 210.7804 170.5965 122.0366 112.9250 

0.03 668.5753 455.2258 420.8335 343.5186 279.0682 227.9556 178.6777 155.9733 

0.05 1211.1846 857.5517 729.8109 579.4158 491.9719 427.4648 309.6637 295.7333 

image 6 

0.01 460.4901 334.2414 310.5277 251.8896 215.4023 171.8661 126.2671 116.9392 

0.03 961.5245 678.8758 632.5725 504.9523 412.5535 340.3771 252.4063 230.8927 

0.05 1452.1128 1079.4694 947.4152 764.3114 631.9756 544.7413 381.9973 341.4053 

image 7 

0.01 401.6986 265.0759 236.1621 182.8017 147.0281 126.4533 90.1488 86.4291 

0.03 528.7621 369.6241 326.8664 267.0178 216.4862 181.4639 144.9540 129.7508 

0.05 746.4321 512.8145 458.3321 374.8869 310.5062 270.3213 192.2916 175.7318 

image 8 

0.01 399.7609 304.2428 282.2866 235.4509 191.4081 170.4984 118.5496 110.1438 

0.03 541.0661 422.1437 374.3349 305.8231 253.0406 215.7646 149.9547 139.7173 

0.05 1004.7554 731.4091 650.4896 529.5175 421.8425 349.3657 244.2420 224.7969 

image 9 

0.01 607.9954 449.9977 409.1008 332.8667 272.5086 225.0921 161.4136 148.5252 

0.03 786.0141 584.9252 520.4516 438.6320 351.7874 295.9786 227.8769 209.8216 

0.05 1106.6247 800.3323 711.0012 605.0626 504.5106 419.9043 309.8206 277.3066 

 
      These noises have a wide variety of features and 
characteristics. According to the obtained results, 
metaheuristics as computational intelligence approaches can 
handle these noisy characteristics better than other alternative 
methods available in the literature. It may be due to the fact 
that the swarm intelligence methods have strong searching 
ability (in exploration and exploitation procedures) to find the 
optimum parameters leading to better de-noising results. Do 
metaheuristics optimizers perform well even if the images are 

corrupted by other types of noise? If not, it is one of the 
drawbacks of computational intelligence-based methods in 
de-noising fields.  
     The proposed method may have some shortcomings as 
well. First, it may not work well if we consider more images 
and more datasets. There may be room to enhance the 
efficiency, robustness, and accuracy of the OOA by working 
on the initial phase. Computational time and speed are also 
other important factors which need to be taken into  
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consideration. Second, the utilized adaptive threshold 
function may not work well for large images or highly noisy 
images. There is also room to enhance and improve the 
threshold function since it deals with noisy components, and 
it needs to be proficient enough. The proper threshold 
function may also affect the de-noising speed as well.  

VI. CONCLUSION 

      In this paper we have introduced a new optimized based 

approach for brain image denoising using a newly proposed 

population-based metaheuristic optimizer called the orca 

optimization algorithm, combined with an adaptive data 

driven threshold function. This optimizer has demonstrated 

promising results for solving various complex optimization 

problems. The OOA was utilized here in the optimization 

process for acquiring the optimal values of threshold 

function. Its performance has been compared to various 

approaches like TNN, Neishrink, and other optimized based 

methods. We have used two metrics (PSNR and MSE) to 

measure the performance of the proposed de-noising 

technique. The results indicate the superiority of our 

proposed method over other techniques. As a direction for 

future work, we aim at extending the OOA by having more-

in-depth investigation on the exploration phase to improve 

the searching ability. We also aim at improving the threshold 

function to enhance the de-noising results.  
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