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Abstract
Neurodegenerative diseases often exhibit a strong link with sleep disruption, highlighting the importance of effective sleep 
stage monitoring. In this light, automatic sleep stage classification (ASSC) plays a pivotal role, now more streamlined 
than ever due to the advancements in deep learning (DL). However, the opaque nature of DL models can be a barrier in 
their clinical adoption, due to trust concerns among medical practitioners. To bridge this gap, we introduce SleepBoost, a 
transparent multi-level tree-based ensemble model specifically designed for ASSC. Our approach includes a crafted feature 
engineering block (FEB) that extracts 41 time and frequency domain features, out of which 23 are selected based on their 
high mutual information score (> 0.23). Uniquely, SleepBoost integrates three fundamental linear models into a cohesive 
multi-level tree structure, further enhanced by a novel reward-based adaptive weight allocation mechanism. Tested on the 
Sleep-EDF-20 dataset, SleepBoost demonstrates superior performance with an accuracy of 86.3%, F1-score of 80.9%, and 
Cohen kappa score of 0.807, outperforming leading DL models in ASSC. An ablation study underscores the critical role of 
our selective feature extraction in enhancing model accuracy and interpretability, crucial for clinical settings. This innovative 
approach not only offers a more transparent alternative to traditional DL models but also extends potential implications for 
monitoring and understanding sleep patterns in the context of neurodegenerative disorders. The open-source availability of 
SleepBoost’s implementation at https://​github.​com/​akibz​aman/​Sleep​Boost can further facilitate its accessibility and potential 
for widespread clinical adoption.
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1  Introduction

Sleep is fundamental to human well-being, occupying about 
a third of our lives and profoundly influencing our mental 
and physical health [1, 21]. Unfortunately, a myriad of neu-
rodegenerative diseases linked to sleep disorders often go 
undetected due to their subtle nature, sometimes taking years 
before severe symptoms emerge [34, 38, 44]. The intersec-
tion between disrupted sleep patterns and neurodegenera-
tive processes necessitates a deeper understanding and more 
accurate monitoring of sleep stages. Defined via overnight 
polysomnograms (PSG) with multiple 30-s epochs, sleep 
stages serve as critical tools for screening, assessing, and 
diagnosing sleep disturbances, which may precede or exac-
erbate neurodegenerative conditions [32]. These stages, 
categorized by the American Academy of Sleep Medicine 
Manual (AASM), include waking (W), rapid eye movement 
(REM), and three non-rapid eye movement (NREM) stages: 
N1, N2, and N3 [3].
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However, the current manual classification following 
AASM regulations is labor-intensive and time-consuming. 
This system struggles to meet the needs of the vast popu-
lation suffering from sleep disorders, given the high costs 
associated with each PSG recording and the resultant limited 
data collection. These constraints underscore the urgency for 
automating sleep staging, which promises both efficiency 
and broader accessibility for sleep diagnostics, potentially 
aiding in early detection and management of neurodegenera-
tive diseases.

In the quest for solutions, electroencephalography (EEG) 
signals have emerged as a promising avenue. Beyond sleep-
stage classification, EEG’s applications extend to areas like 
emotion recognition [15, 45, 47, 48], seizure detection [11, 
33, 39], and motor imagery classification [13, 14, 17]. These 
applications are particularly relevant in the context of neu-
rodegenerative diseases, where early detection and ongoing 
monitoring are crucial.

The advent of generalized PSG datasets has catalyzed 
significant advancements in the industry [6, 23, 31, 49]. 
From these datasets, handcrafted features spanning time, fre-
quency, and non-linear domains are extracted and employed 
in conventional machine learning techniques. Tools like sup-
port vector machine (SVM) [2] and random forest (RF) [10, 
36, 50, 51] have been instrumental in pioneering automated 
sleep scoring systems. A standout advantage of these con-
ventional models lies in their relative simplicity, yielding 
satisfactory results. This simplicity facilitates seamless inte-
gration into monitoring systems for practical applications, 
including those focused on neurodegenerative disorders. 
Delving deeper, a detailed analysis of these extracted fea-
tures can elucidate the significance of different attributes. 
Notably, in one study, a substantial 85% of 11 selected fea-
tures were derived from the frequency domain [51].

However, these models are not without limitations. They 
often overlook the time-series nature of raw EEG data and 
the intricate contextual relationships therein, presenting a 
notable shortcoming in their design.

Deep learning (DL) models stand in contrast to traditional 
methods, offering a robust solution to manage expansive 
datasets. As public sleep data sets burgeon, with participant 
counts often scaling from hundreds to thousands [23, 49], 
DL models are uniquely poised to handle this surge. They 
excel by continuously refining their learning from incremen-
tal data batches until they converge to the optimal model. 
One salient advantage of DL is its capability to autono-
mously identify features from rudimentary signals, elimi-
nating the tedious manual crafting of intricate features. The 
potential of these models in understanding complex neuro-
generative pathways linked to sleep disorders is immense.

Several architectures have been floated for autonomous 
sleep scoring using DL. These include convolutional neu-
ral networks (CNNs) [20, 37, 43, 46, 52], recurrent neural 

networks (RNNs) [4, 18], and hybrid models that leverage 
both CNNs and RNNs [22, 35, 40, 41]. A recent trend in 
the field has seen the adoption of attention mechanisms, 
with many studies [5, 19, 26, 28, 53] presenting it as an apt 
alternative to RNNs, especially for integrating contextual 
nuances. Additionally, the concept of transfer learning has 
been explored in numerous works [7, 24, 27]. This approach 
leverages vast source datasets to transfer domain-specific 
knowledge, decision rules, and architectural nuances to aug-
ment models trained on smaller target datasets.

The integration of artificial intelligence (AI) into health-
care, particularly deep learning, is met with enthusiasm and 
skepticism. Despite AI’s advances, medical professionals are 
wary due to the “black box” nature of DL models, spread 
across interconnected hidden layers. This lack of transpar-
ency is especially concerning in areas like automated sleep 
stage classification (ASSC). Several studies have highlighted 
the challenges this poses [42, 53]. Concerns persist about the 
accuracy of DL models, especially when confidently classi-
fying conflicting stages [16, 28]. The trend towards increas-
ingly complex DL solutions sometimes yields only marginal 
benefits and demands more data and intensive training.

We believe that reverting to a judiciously crafted tradi-
tional machine learning model, emphasizing the most perti-
nent features, might offer a viable solution. Such an approach 
has the potential to match, if not surpass, the results of DL 
models, but with reduced complexity and fewer parameters. 
In our research, we introduce SleepBoost, a novel multi-level 
tree-based ensemble model tailored for ASSC. We rigor-
ously evaluated its efficacy on the Sleep-EDF-20 dataset, 
emphasizing its comparative performance against prevailing 
deep learning models.

Our approach began with the establishment of a feature 
engineering block (FEB). From this, we extracted 41 time 
and frequency domain features. Subsequent refinement using 
a mutual information score threshold (> 0.23) identified the 
most pertinent 23 features. These features underpin Sleep-
Boost’s core architecture—a sophisticated multi-level tree 
structure blending three fundamental tree-based ensemble 
models: categorical boost (CatBoost), light gradient boost 
(LGBoost), and random forest (RF). Additionally, we inte-
grated a reward-based adaptive weight allocation mecha-
nism, optimized using the FEB-filtered features. Empirical 
results indicate our model’s superior performance: 86.3% 
accuracy, 80.9% F1-score, and Cohen’s kappa score of 
0.807, besting state-of-the-art deep learning alternatives. A 
salient advantage of SleepBoost is its efficiency: it possesses 
1000 to 10,000 times fewer parameters than DL models, 
and its inference time, inclusive of processing and feature 
extraction, averages under 110 s for a typical Sleep-EDF 
dataset night. We further underscored the pivotal role of 
feature selection through an ablation study, examining four 
SleepBoost variants. Our aim is to not only offer a fresh 
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perspective on ASSC but also encourage fellow researchers 
to concurrently evaluate the potential of both traditional ML 
and DL models. Such synergy promises enhanced model 
portability and real-world applicability, especially in clini-
cal settings and compact devices. For those interested, the 
SleepBoost source code is accessible at https://​github.​com/​
akibz​aman/​Sleep​Boost.

The remainder of this paper unfolds as follows: In Sect. 2, 
we delve into the methodology and elaborate on the archi-
tecture of SleepBoost. Section 3 showcases the comparative 
experimental results of SleepBoost vis-a-vis existing mod-
els and emphasizes an ablation study on the significance of 
feature selection. Finally, Sect. 4 wraps up our findings, dis-
cussing the constraints of our research and potential avenues 
for future exploration.

2 � Methods

The materials used in this study together with a detailed 
description of the research methodology are presented in 
this section. In this study, we utilized EEG signals of the 
Fpz–Cz channel of the Sleep-EDF dataset. Later, we devel-
oped a FEB, extracting 41 features from the time and fre-
quency domains and selecting 23 features using a mutual 
information score threshold value. Finally, we developed 
SleepBoost, a multi-level tree-based ensemble model tuned 
by a reward-based adaptive weight allocation that uses the 
filtered features of FEB to classify the sleep stages.

2.1 � Description of the dataset

The Sleep-EDF dataset, which is accessible via the Phys-
ioNet website, has been utilized for evaluating the perfor-
mance of the proposed method in this study. EEG data in the 
Sleep-EDF dataset were obtained from 20 healthy partici-
pants aged 25 to 101 years. Each PSG recording in this data-
set has two EEG signals acquired at 100 Hz from the Fpz–Cz 
and Pz–Oz channels. One electrooculogram (EOG) signal, 
one electromyography (EMG) signal, and one oro-nasal res-
piration signal were also acquired alongside the EEG sig-
nals. Following earlier research [5, 37, 40, 41], we utilized 
the data from the Sleep Cassette study and used a single 
Fpz–Cz channel as the input in this study. Experts annotated 
each EEG recording of the dataset every 30 s separately in 
the hypnogram files in eight sleep stages: awake (W), N1, 
N2, N3, N4, REM, movement time (M), and unknown con-
dition (U). Note that the epochs associated with the M and 
U states are excluded from the experimental investigation. 
The Rechtschaffen and Kales (R&K) standard [32] classi-
fies sleep cycles into six distinct stages of sleep, which is 
therapeutically essential [8], and the AASM standard also 
proposes combining the N3 and N4 stages of sleep into a 

single class [3]. Therefore, a five-class categorization has 
been considered for classifying sleep stages in several works 
[5, 22, 40]. In this study, we also treated N3 and N4 as stage 
3 (N3) as per the AASM standards and considered the EEG 
signal collected from the Fpz–Cz channel following previous 
works [4, 5, 26, 28, 40, 41]. Table 1 highlights the number 
of EEG epochs corresponding to various sleep stages. In 
this work, we split the dataset into three non-overlapping 
segments: (a) feature selection (14,018 epochs), (b) training 
(25,708 epochs), and test (9,719 epochs). We utilize feature 
selection to select the important features from extracted fea-
tures, training data to train the developed model and finally, 
test data to run the generalization and ablation evaluation of 
the trained models.

2.2 � Development of feature engineering block 
(FEB)

EEG signal detection can capture unrelated signals like elec-
trocardiogram (ECG), electromyography (EMG), electrooc-
ulogram (EOG), and respiration sounds due to the move-
ments of muscles and bones, creating physiological signal 
artifacts. To mitigate these effects, the EEG signal is filtered 
using a second-order Butterworth Bandpass Filter with a 
0.5 Hz and 45 Hz cutoff frequency. It is partitioned into 
seven frequency sub-bands and distributed in 30-s epochs 
(see Table 2). For accurate sleep staging, 41 features from 
the time and frequency domain have been obtained.

2.2.1 � Time domain features

Empirical mode decomposition (EMD) is a robust time–fre-
quency signal analysis technique suitable for getting the 
instantaneous properties of non-linear and non-stationary 
EEG signals by retaining the data attributes during the 
decomposition process. EMD splits each EEG signal into a 
set of 7 intrinsic mode functions (IMF) and forms a math-
ematical expression as shown in (1) in which X(t) is the tth 

Table 1   Number of epochs considered for each sleep condition 
from the Sleep-EDF database. FS denotes feature selection data, TR 
denotes training data, and TS denotes test data

Sleep condi-
tion

FS TR TS Total 
number of 
epochs

% of total data

Wake (W) 2891 5303 2005 10,199 20.63
N1 923 1692 640 3255 6.58
N2 5877 10,777 4074 20,728 41.92
N3 1848 3390 1282 6520 13.19
REM 2479 4546 1718 8743 17.68
Total 14,018 25,708 9719 49,445

https://github.com/akibzaman/SleepBoost
https://github.com/akibzaman/SleepBoost
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EEG epoch, Yi is the ith IMF of total n number of functions, 
and r(t) is the residue generated in the process.

This approach is chosen rather than selecting a single 
IMF based on a specific criterion because it allows for a 
more detailed analysis of the data. By leveraging all 14 fea-
tures from each IMF, we utilize the full spectrum of infor-
mation available in the data and capture a broader range of 
intrinsic oscillatory modes inherent in the data. After the 
extraction of IMFs, Welch’s method is applied to each IMF 
to estimate their Power Spectral Density (PSD), enabling a 
detailed analysis of the signal’s frequency content. A total of 
14 features were extracted using the obtained IMFs denoted 
T1 to T14, which include mean (Xmean), standard deviation 
(S2), variance, minimum, maximum, argMinimum, argMaxi-
mum, root mean square (RMS), median, maximum-mini-
mum distance (MMD), skewness, kurtosis, Hjorth mobility 
(HM), and Hjorth complexity (HC) (refer to Table S1 of the 
supplementary material for the formulas).

Frequency domain features  The features of EEG signals 
across the various frequency ranges of the different sleep 
stages are vital for accurately identifying the unique attrib-
utes of a specific sleep stage and classifying it accordingly. 
Eight direct features and 19 derived features are extracted 
from each epoch of the EEG signal resulting in 27 frequency 
domain features. The N1 stage demonstrates mostly the pres-
ence of Theta (θ) and Alpha (α) sub-bands. During the N2 
stage, the amplitude of the EEG signal increases, and the 
θ sub-band becomes more prominent. Subsequently, dur-
ing N3, the θ and Delta-High (high-δ) sub-bands are more 
propagated. During N4, the frequency of the EEG signal 
drops further and fluctuates in the frequency range of the 
Delta-Low (low-δ) sub-band. On the contrary, Beta-Low 
(low-β), Beta-High (high-β), and Gamma-Low (low-γ) 
sub-bands are predominant in the REM stage. These facts 
point out the importance of extracting features related to the 

(1)X(t) =

n
∑

i=1

Yi + r(t)

frequency domain. Several related works [2, 10, 36, 50, 51] 
also utilized frequency domain features to develop the sleep 
stage classification model. Imtiaz et al. [9] developed a REM 
detection algorithm using spectral edge frequency in the 
8–16 Hz frequency band, together with the absolute power 
and the relative power of the signal. In a broader extent, 
Zhao et al. [50] calculated the energy of the individual sub-
bands to derive the frequency domain features. We utilized 
the time-domain signals of each sub-band segment and con-
verted them to frequency-domain signals using a fast Fourier 
transform. The band energy can be obtained according to the 
different frequency ranges, which have been acquired as the 
Direct Frequency Domain (DFD) features and were labelled 
E1 to E8 (refer to Table S2 of the supplementary material 
for the formulas). Subsequently, inspired by previous work 
[51], we utilize the DFD features to calculate 19 Derived 
Frequency Domain (DeFD) features denoted D1 to D19. The 
equations used for obtaining the DFD and DeFD features can 
be found in Table S2 and S3 of the supplementary material, 
respectively.

2.3 � Selection of important features

To simplify the computing procedure and enhance the algo-
rithm’s portability, we ran feature screening on the extracted 
features from Sect. 2.2. Moreover, it was assumed that some 
of the features are more relevant than the other features. 
Among several feature selection techniques, we utilized the 
mutual information (MI)-based feature selection technique 
for selecting the most relevant features. The rationale for 
choosing MI over other feature selection methods was due 
to its simplicity and its capability to consider the non-linear 
dependence of the features. Since the dataset is not mas-
sively large in terms of dimensionality, challenges like com-
putational complexity were not an issue in this situation.

MI [25] is a numerical score between two (potentially 
multidimensional) random variables X and Y that measures 
the amount of knowledge received about one random vari-
able through the other. Equation (2) shows the calculation 
of MI:

where p(x, y) represents the joint probability density func-
tion of X and Y and p(x) and p(y) represent the marginal 
density functions. MI determines the similarity between the 
joint distribution and the products of the marginal distribu-
tions that have been factored. If X and Y are fully irrelevant 
(and thus independent), then p(x, y) equals p(x) p(y), and 
this integral is zero. We calculated the mutual information 
of each of the extracted features (X) and the sleep stage of 
that sample (Y). In this study, features with feature weight 

(2)I(X,Y) = ∫
.

x∫
.

y

p(x, y)log
p(x, y)

p(x)p(y)
dxdy

Table 2   Frequency ranges of the partitioned sub-bands

Name of the sub-band Frequency range (Hz)

Total band power 0.50–45.00
Delta-Low (low-δ) 0.50–2.00
Delta-High (high-δ) 2.01–4.00
Theta (θ) 4.01–8.00
Alpha (α) 8.01–12.00
Beta-Low (low-β) 12.01–20.00
Beta-High (high-β) 20.01–30.00
Gamma-Low (low-γ) 30.01–45.00
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coefficients greater than 0.23 (which is the mean MI value 
for all the extracted features) were chosen as the final set of 
selected features as the outcome of the FEB. We carried out 
experiments to determine this value by evaluating and ana-
lyzing values in the range of 0.1 to 0.3 at an interval of 0.025 
using the feature selection dataset (see Sect. 2, Table 1). We 
acquire the best result for the value of 0.225 (rounded as 
0.23), and thus, it has been used as the threshold for the 
feature weight coefficient during feature selection. A total 
of 23 features, namely T2–T5, T8, T10, T13, E1, E2, E4, 
E6–E8, D3–D7, D11, D12, D15, D16, and D18, were chosen 
based on the MI threshold score (> 0.23), while consider-
ing all of the classes. This result is also consistent when we 
consider a single class at a time. We also further evaluate 
which features were more important and closely related for 
any specific class (see Sect. 3.3).

2.4 � Architecture of SleepBoost

Using the selected features, we developed a multi-level tree-
based ensemble model by fusing the prediction of three indi-
vidual prediction models: categorical boost (CatBoost), light 
gradient boost (LGBoost), and RF. The general architecture 
of the ensemble model utilizes a weighted majority vot-
ing–based architecture, highlighted in Fig. 1. The rationale 
to employ an additional ensemble layer atop existing tree 
ensembles is rooted in empirical evidence suggesting that 
such meta-ensembles can achieve superior performance by 
harnessing the strengths of different models while mitigat-
ing their individual weaknesses. Individual tree ensembles, 
though powerful, may develop biases towards particular pat-
terns within the training data. By integrating multiple tree 
ensembles, we effectively diversify the model’s perspective, 
reducing the likelihood of overfitting and enhancing its gen-
eralization capabilities on unseen data. Moreover, the meta-
ensemble approach was able to improve model robustness by 
capturing a wider array of complex patterns and interactions, 
which might be overlooked by single-layer ensembles.

Bayesian optimization has been utilized for optimizing the 
hyperparameters of RF, CatBoost, and LGBoost, delivering 
better overall performance. Thus, specific parameter tuning 
using random search and grid search is not required. For Cat-
Boost, the learning rate is set to 0.8 from the hyperparameter 
tweaking along with 100 estimators. Additionally, the number 
of leaves is set to 100 with a minimum of two data in each leaf, 
and the bagging percentage is set to 0.65, meaning that 65% of 
rows are used per tree-building iteration. In addition, the objec-
tive was multiclass with a weighted average for each class. In 
the case of RF, we employ 200 trees, which aids in avoiding 
overconfidence with a minimum leaf size of 1 and a minimum 
sample split of 9. We utilize the gradient-boosted decision tree 
(GBDT) for the LGB model to avoid the excessive computa-
tional burden of dart gradient boosting (dart). Moreover, the 

learning rate is set to 0.8 based on the hyperparameter tuning 
along with 100 estimators, the number of leaves is set to 100 
with a minimum of two data in each leaf, and the bagging 
fraction is set to 0.65. In addition, the objective was multiclass 
with a weighted average for each class.

Firstly, we split the dataset into three segments named 
training (60%), validation (20%), and test (20%) sets. Then, 
we use the training set to train the individual classifiers and 
then the validation set to evaluate dependent features. We 
compare the prediction on the validation dataset with the 
actual classes. Then, the weights of the classifiers are adap-
tively calculated by offering a reward for the right predic-
tion and normalizing the weight of each classifier using the 
cumulative sum of the weights of all three classifiers (see 
Algorithm S1 in Supplementary Material). Then based on 
these weights, we combine the output of the training data-
set by considering the weights generated by the validation 
dataset.

3 � Results and discussion

In this section, the evaluation procedure along with the per-
formance metrics and results derived from SleepBoost are 
presented. Firstly, we describe the performance metrics uti-
lized in this evaluation. We then compare SleepBoost with 
other conventional machine learning models. Later, we show 
the importance of feature selection by comparing four dif-
ferent variants of SleepBoost. Finally, we compare the per-
formance of SleepBoost with other recognized models using 
the same SleepEDF-20 dataset.

3.1 � Performance metrics

The tenfold cross-validation [12] method has been used to 
assess the performance of the classifiers under considera-
tion. Furthermore, we use accuracy (ACC), precision (PR), 
recall (RE), F1-score (F1), and Cohen’s kappa coefficient 
(K) to evaluate the model’s performance on each epoch. 
ACC is the proportion of accurate predictions relative to 
the total number of predictions made by the model. PR is the 
ratio of correctly anticipated positives to the total number 
of positives. RE refers to the percentage of true positives 
to all class predictions. The weighted mean of PR and RE 
is F1. K quantifies the degree of agreement between actual 
and anticipated labels. A high value of K can indicate the 
effectiveness of the model.

3.2 � Comparison of conventional models 
and SleepBoost

We calculated average performance metrics over tenfold 
cross-validation from the Sleep-EDF dataset for baseline 
models and SleepBoost. Figure 2 provides the mean CM of 
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tenfold cross-validation from the Sleep-EDF dataset (using 
the selected extracted features) while Table 3 provides a 
summary of these metrics for both the baseline ensemble 
models and SleepBoost, using all features and only the 
selected ones. We also evaluate the variability of our method 
with respect to the data by visualizing the performance of 
our model across these ten folds (see Fig. 3), which shows 
consistent performance over the folds. SleepBoost achieved 
an accuracy of 84.8% with all the features and 86.3% with 
the selected features, outperforming baseline models. Nota-
bly, performance improved for all models when using the 

selected features, highlighting the importance of feature 
selection. More elaboration on this discussion is presented 
in detail in the next subsection. Using the selected features, 
SleepBoost demonstrates a Macro–PR of 82.8%, a Macro-
RE of 80.3%, and a Macro-F1 of 80.9%, which outperforms 
the other models with a notable mean improvement of 1.42% 
(Macro-PR), 2.37% (Macro-RE), and 2.2% (Macro-F1) 
compared to the unit models (LGBoost, RF, and CatBoost) 
of SleepBoost. The developed model also demonstrates a 
high value of K (0.807), outperforming other models with a 
mean improvement of 1.26%. In terms of the area under the 

Fig. 1   General architecture of SleepBoost. We trained RF, LGBoost, 
and CatBoost as a unit block model for SleepBoost using the training 
dataset. Adaptive weight calculation is initiated using the prediction 

of the unit block models. Finally, a weighted score is calculated to 
predict the sleep stage
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Fig. 2   Confusion matrices of all the models: a support vector machine (SVM), b adaptive boosting (AdaBoost), c random forest (RF), d cat-
egorical boosting (CatBoost), e light gradient boosting (LGBoost), and f SleepBoost

Table 3   Comparison of 
performance metrics among the 
base conventional models and 
SleepBoost

Bold - indicates the best value

Model Dataset ACC​ Macro
PR

Macro
RE

MF1 K AUC​

SVM All features 51.4 41.2 40.5 39.1 0.307 0.703
Selected features 52.1 41.3 40.9 39.8 0.333 0.670

RF All features 84.3 81.2 75.9 77.1 0.783 0.902
Selected features 85.1 82.5 76.7 77.9 0.793 0.908

CatBoost All features 84.0 79.2 75.8 76.6 0.779 0.900
Selected features 85.1 81.0 77.1 78.0 0.792 0.907

AdaBoost All features 74.1 66.2 66.8 66.3 0.623 0.842
Selected features 74.3 66.4 67.1 66.7 0.647 0.839

LGBoost All features 84.0 78.4 77.8 78.1 0.781 0.910
Selected features 85.5 80.7 80.0 80.2 0.798 0.920

SleepBoost All features 84.8 80.3 77.3 78.5 0.792 0.928
Selected features 86.3 82.8 80.3 80.9 0.807 0.936
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receiver operating curve (AUC), SleepBoost demonstrated a 
score of 0.936, i.e., it can successfully predict the sleep stage 
of 93.6% of the test epochs (see Fig. 2a).

In our study, the classification accuracy was high for 
stages W and N3, whereas the recognition accuracy was 
lower for stage N1, which has been summarized in Table 4. 
The proposed model shows the best ability to detect the W 
stage with an ACC of 92.7% and PR of 93.2%. Similarly, 
N3 also demonstrates a significantly close performance 
compared to W with an F1 of 91.4% and PR of 92%, which 
outperforms other classes in terms of PR and F1. By con-
trast, the performance of stage N1 classification is the worst, 
which is consistent with the results of existing related works. 
To be specific, 39.8% of N1 epochs are being recognized 
correctly, showing an F1 of 51%. On a similar note, REM 
also shows a below-average performance with an F1 of 
79.4% and ACC of 82.3%.

The uniqueness of the EEG characteristics in different 
sleep stages may cause this phenomenon. Awareness is 
still relatively intact at the Wake (W) stage, and a blend 
of Alpha and Beta sub-bands characterize the EEG signal. 
The N1 is the transition phase of the brain from the aware 
state to the sleep state, during which the Alpha wave share 
steadily declines, and the Theta wave begins to develop 

and replace Alpha waves, indicating that the EEG sig-
nal changes dramatically during this period. So, with its 
steady characteristics, the W phase is more uncomplicated 
to recognize than the N1 phase with its more varied EEG 
signals. It should be noted that prior research [5] has dem-
onstrated that an imbalance in the number of categories 
used during staging will impact the final accuracy, and the 
class with fewer sample epochs will produce lower clas-
sification performance. We observe that the test dataset 
of N1 is significantly lower than the other classes, which 
aligns with the poor performance demonstrated by this 
class. Since most of the real-life sleep datasets tend to be 
imbalanced, i.e., the amount of data in the N1 class will 
always be significantly smaller than the other classes. We 
have not generated synthetic samples of the N1 class to 
try and balance the data for each class. However, in future 
works, we will explore and evaluate the use of synthetic 
data. In some of the previous works, 5 classes have been 
transformed into 4 classes where N1 has been merged 
with N2. To evaluate the robustness of our model, we kept 
N1 separate to analyze the performance of this particu-
lar class. Additionally, the reported performance metrics 
of the SleepBoost are the worst-case or minimum pos-
sible metrics which also facilitated the comparison of the 

Fig. 3   Performance metrics of 
SleepBoost (selected features 
with adaptive weights) over ten 
folds

Table 4   Class-wise 
performance of SleepBoost on 
test data

Sleep stage Test samples Correctly predicted 
samples

ACC​ PR RE F1

W 2005 1858 92.7 86.3 93.2 89.5
N1 640 255 39.8 69.7 41.3 51.0
N2 4074 3687 90.5 90.1 90.3 90.2
N3 1282 1121 87.4 92.0 90.6 91.4
REM 1718 1414 82.3 77.2 82.5 79.4
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prevailing models (explained in Sect. 3.4) in an unbiased 
and standardized way. We further reveal the hypnogram 
comparison labeled by experts and the model’s prediction 
for one subject of Sleep-EDF datasets in Fig. 4.

3.3 � Importance of selecting relevant features

The proposed FEB in this study supports a multi-domain 
integration of time and frequency domain features for each 
unique epoch, extracting 41 features, and selecting relevant 
features using the MI threshold score. Features with an MI 
score greater than 0.23 are selected and fed into SleepBoost 
for the classification of each epoch into their respective 
sleep stages. There are 7 time-domain features and 16 fre-
quency-domain features (6 DFD and 10 DeFD) among the 
23 selected features. The frequency domain data accounted 
for a more significant proportion of the automated sleep 
staging, followed by the time domain features. This may be 
probably because different stages of sleep exhibited distinct 
frequency and energy characteristics. In addition, the ratio 
of DeFD features is the highest among the filtered features 
of FEB, with a ratio of 8:17. Table 3 shows that SleepBoost, 
along with all the base models, had superior performance 
when trained and tested using the filtered features of FEB. 
We discovered an average improvement of 0.97 in ACC, 
1.37 in Macro-PR, 1.33 in Macro-RE, 1.30 in MF1, and 
0.02 in K while employing the selected features of FEB 
instead of using all the features. Figure 4 displays the AUC-
ROC, which corroborates the conclusion that the AUC value 
for SleepBoost improved by 0.008 when trained using the 
selected features (Fig. 4b) in comparison to when all the fea-
tures were used (Fig. 4a). A similar statement is also true for 
most of the other baseline models utilized in the evaluation 

study, as they also demonstrate better performance with the 
selected features (refer to Table 3) Fig. 5.

In addition, we developed four variants of SleepBoost to 
conduct a detailed ablation study to validate the importance 
of proper feature selection and performance improvement by 
utilizing the adaptive weight allocation during multi-level 
ensemble. The SleepBoost variants are as follows:

•	 M1: All features with trivial (balanced) weight allocation 
during ensemble.

•	 M2: Selected features with trivial (balanced) weight allo-
cation during ensemble.

•	 M3: All features with adaptive weight allocation during 
ensemble.

•	 M4: Selected features with adaptive weight allocation 
during ensemble.

Figure 6 highlights the observed performance metrics 
from all four variants while evaluating on same test epochs. 
The radar curve in Fig. 6 demonstrates that in both the 
case of balanced and adaptive weight allocation during 
the ensemble, variants (M2 and M4) trained with selected 
features outperformed variants trained with all extracted 
features (M1 and M3). Alternatively, in both the case of 
selected and all features, adaptive weight allocation out-
performed trivial weight allocation. In variants with all 
extracted features (M1 and M3), M3 with adaptive weight 
allocation outperformed M1 with balanced weight alloca-
tion. Similarly, in the case of variants with selected features 
(M2 and M4), M4 with adaptive weight allocation outper-
formed M2 with balanced weight allocation. In summary, 
feature extraction is critical along with selecting suitable fea-
tures, which has been achieved in this study by incorporating 

Fig. 4   Comparison of manual sleep stage labelling with SleepBoost model’s prediction. The actual label represents the result of manual staging 
by experts, while the predicted label is the result of the SleepBoost model
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the MI score–based feature selection method. Additionally, 
adaptive weight allocation performs better than the trivial 
balanced weight allocation in tuning SleepBoost for the 
classification.

We further evaluate whether our feature selection pro-
cedure using MI has a negative impact on the performance 
of the classes with a small number of samples such as N1. 

Two important questions were raised in this process: (Q1) 
Whether some of the features were important for Class i (for 
example, REM) classification while not important for Class 
j (for example, N1)? (Q2) While choosing the important 
features based on all the classes, have we neglected some 
of the features that were important for an individual class?

We investigate these questions by calculating feature 
importance when only considering a single class, termed 
as Local MI Score (LMIS), versus when considering all 
classes, termed as Global MI Score (GMIS). Then, we com-
pare the LMIS and GMIS of each feature in the case of all 
of the five classes and present the result in Fig. 7. Note that 
to eliminate the bias from sample inadequacy among some 
classes (for example, N1), both scores are scaled within the 
range of the minimum and maximum values of MI when all 
classes are considered, which ensures a fair comparison. The 
green dots indicate that both LMIS and GMIS are higher 
than the threshold for that feature, meaning the locally sig-
nificant feature has also been successfully considered sig-
nificant on a global scale. In contrast, the red dots indicate 
situations where LMIS is higher, while GMIS is lower than 
the threshold for that feature, suggesting that the locally 
significant feature has been overlooked in the global set of 
significant features.

This evaluation answers the earlier questions and adds sev-
eral interesting findings. Firstly, there is a difference in feature 
importance for a specific class which has been illustrated in 
Fig. 7. For example, in N1 (6) and N2 (7) classes, a higher 
number of time domain features are important unlike N3 (2) 
and REM (3). There is a feature set that is important for all 
the classes. However, there are also features which are only 
dependent for a particular class but independent for other 

Fig. 5   Comparison of area under the receiver operating curve (AUC-ROC) among the conventional models and SleepBoost. a Using all 
extracted features; b using selected features of FEB

Fig. 6   Comparison of performance in different variants of Sleep-
Boost. M1 (all features + balanced weight), M2 (selected fea-
tures + balanced weight), M3 (all features + adaptive weight), and M4 
(selected features + adaptive weight) represent four variants of Sleep-
Boost with the combinations of features and weight allocation
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Fig. 7   Comparison of feature importance when considering a single class, termed as Local MI Score (LMIS), versus when considering all 
classes, termed as Global MI Score (GMIS)
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classes. For example, feature E5 is dependent only for N1 
and N3 but independent for all other classes. Similarly, T10 is 
important for Wake, N2, and REM but not for others. Moreo-
ver, the score of importance also varies from class to class for 
a particular feature. Secondly, while choosing the important 
features based on the GMIS, we have neglected a few of the 
features that are important for some of the classes like N1 (2) 
and N3 (6). For our future direction, we aim to try and mitigate 
this by exploring feature selection techniques that account for 
class imbalance or by employing alternative measures that can 
better capture the unique dependencies of features on minor-
ity classes. Techniques such as weighted MI, where weights 
are adjusted based on class proportions, or conditional feature 
selection methods might provide a more nuanced approach 
to retaining important features for all classes, including those 
with fewer samples. However, we were able to capture all the 
locally important features for Wake, N2, and REM classes, 
and most of the locally important features for N1 (13 out of 
15) and N3 (16 out of 22) classes. These findings demonstrate 
that the feature selection based on GMIS is able to provide a 
better model performance despite undermining a few of the 
locally important features for N1 and N3 classes.

This investigation shows that feature engineering and 
selection is not only important to reduce the complexity of 
the model but also helps improve performance by feeding 
the right data to the model. These answers also open doors 
for further exploration in the domain of feature selection 
while classifying sleep stages and demonstrate the need for 

the growth of transparency to bridge the gap between medi-
cal practitioners and computer scientists. While the deep 
learning model does not provide this transparency, linear 
models can be useful to achieve this attribute.

3.4 � Comparison of SleepBoost 
with the state‑of‑the‑art deep learning models

Deep learning (DL) is a machine learning technique that 
transforms a specific input into a representation learned 
by the model’s hidden layers instead of being developed 
beforehand, resulting in the consumption of scaled data. 
In contrast, most traditional machine learning (ML) mod-
els, including linear and tree-based models, do not create 
internal representations from the raw data. These models 
rely on learning relations on the supplied representations 
of the data fed into the model. Consequently, such models 
required extracted features from an EEG epoch to classify 
the sleep stage. We argue that classical ML models are 
capable of state-of-the-art performance or are on par with 
the DL models when deployed using relevant features. To 
validate this argument, we compared the performance of 
the recognized DL models with SleepBoost on the Sleep-
EDF-20 dataset and summarized the result in Table 5. 
SleepBoost outperforms the DL models in terms of all 
the performance metrics and shows a promising future 
scope of exploring more conventional ML models in the 
domain of ASSC.

Table 5   Comparison of 
performance with the state-
of-the-art methods evaluated 
on the Sleep EDF-20 dataset. 
Performance of SleepBoost 
variants has been scored on 
the test dataset (as described in 
Table 1)

Bold - indicates the best value

Year Model Accuracy F1-Score K

2020 FKSVM-SRN [2] 82.22 - -
2021 1D-CNN + Hidden Markov Model [46] 83.23 75.03 0.76
2021 CNN-TCN-CRF [50] 82.46 - 0.78
2018 CNN 1-Max Pool [26] 82.60 74.20 0.76
2021 C–C/R-R SleepNet [22] 84.29 79.81 0.78
2021 TinySleepNet [41] 83.10 78.10 0.77
2017 DeepSleepNet [40] 82.00 76.90 0.76
2019 IITNet [35] 84.00 78.00 0.78
2021 AttnSleep [5] 84.40 78.10 0.79
2020 CNN + Attention [53] 82.80 77.80 -
2019 SleepEEGNet [19] 82.83 77.02 0.77
2018 ARNN-SVM [29] 82.50 72.01 0.76
2021 RobustSleepNet [7] - 78.60 -
2020 SeqSleepNet + , DeepSleepNet + [Expanded 

with Transfer Learning][30]
81.00 77.50 0.73

2019 SeqSleepNet [27] 85.50 80.00 0.79
Proposed SleepBoost (M1) 80.10 74.81 0.76

SleepBoost (M2) 84.83 78.53 0.79
SleepBoost (M3) 81.60 77.01 0.77
SleepBoost (M4) 86.30 80.90 0.81
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One of the recent works [42] also showed results aligning 
with the findings of our study, where a CatBoost-based lin-
ear model was developed, and decent results were achieved 
compared to the recognized DL models. Here we provide a 
more detailed comparison of our work with [42] which has 
achieved promising results for sleep stage classification. In [42], 
the authors used a linear model based on categorical boosting 
with 131 features extracted from a time and frequency domain 
from multiple windows resulting in 1048 features in total. In 
general, they used a combination of EEG, EOF, and EMG data. 
In our work, we extracted a total of only 41 time and frequency 
domain features from a single 30-s window and used only EEG 
data. Moreover, we employed the feature engineering block for 
feature selection using mutual information to select the impor-
tant features. The selected features are then fed into the multiple 
tree-based ensemble model to predict the sleep stages. In terms 
of method, the feature engineering of both works is different. 
Unlike [42], we evaluate the effectiveness of feature selection 
through a detailed ablation study to demonstrate which features 
are important for a specific class (LMIS) as well as for all of the 
classes (GMIS). Furthermore, both [42] and our work demon-
strate that linear models should be explored more in terms of 
providing further transparency in classification which is lacking 
in the deep learning models.

4 � Conclusion and future directions

Sleep and/or wake cycle alterations are common in neurode-
generative diseases (ND), posing significant challenges in their 
early detection and management. Our research diverges from 
the prevalent deep learning (DL) focus, showcasing the efficacy 
of a traditional approach for automatic sleep stage classifica-
tion (ASSC). Using the Sleep-EDF dataset’s EEG signals, our 
feature engineering block (FEB) extracted 41 features, refining 
down to 23 through mutual information. SleepBoost, our main 
contribution, outperformed both baseline ensemble and leading 
DL models. Its lightweight design offers ease of training and 
deployment, and its transparency bolsters trust—a paramount 
consideration in medical applications, especially crucial in the 
sensitive domain of neurodegeneration, where understanding 
and interpreting sleep patterns can provide valuable insights 
into disease progression and patient well-being.

Challenges arose, notably in distinguishing between the W 
and N1 stages and between REM and N1 EEG waves due to 
their similarities. These challenges are particularly pertinent 
in neurodegenerative contexts, where sleep disturbances may 
present subtly but have profound implications. Our results high-
light the potential of traditional machine learning in sleep scor-
ing and advocate for its parallel consideration with DL models.

Future research can explore simpler models in ASSC for 
optimal portability and efficiency. Such models would be par-
ticularly valuable in the context of neurodegenerative diseases, 

where ease of use and interpretability are key. Additionally, 
investigating the specific impacts of various sleep stages on 
neurodegenerative disease progression can further enhance our 
understanding and management of these conditions.
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