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Abstract

Neurodegenerative diseases often exhibit a strong link with sleep disruption, highlighting the importance of effective sleep
stage monitoring. In this light, automatic sleep stage classification (ASSC) plays a pivotal role, now more streamlined
than ever due to the advancements in deep learning (DL). However, the opaque nature of DL models can be a barrier in
their clinical adoption, due to trust concerns among medical practitioners. To bridge this gap, we introduce SleepBoost, a
transparent multi-level tree-based ensemble model specifically designed for ASSC. Our approach includes a crafted feature
engineering block (FEB) that extracts 41 time and frequency domain features, out of which 23 are selected based on their
high mutual information score (> 0.23). Uniquely, SleepBoost integrates three fundamental linear models into a cohesive
multi-level tree structure, further enhanced by a novel reward-based adaptive weight allocation mechanism. Tested on the
Sleep-EDF-20 dataset, SleepBoost demonstrates superior performance with an accuracy of 86.3%, F1-score of 80.9%, and
Cohen kappa score of 0.807, outperforming leading DL models in ASSC. An ablation study underscores the critical role of
our selective feature extraction in enhancing model accuracy and interpretability, crucial for clinical settings. This innovative
approach not only offers a more transparent alternative to traditional DL models but also extends potential implications for
monitoring and understanding sleep patterns in the context of neurodegenerative disorders. The open-source availability of
SleepBoost’s implementation at https://github.com/akibzaman/SleepBoost can further facilitate its accessibility and potential
for widespread clinical adoption.
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1 Introduction
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and physical health [1, 21]. Unfortunately, a myriad of neu-
rodegenerative diseases linked to sleep disorders often go
undetected due to their subtle nature, sometimes taking years
before severe symptoms emerge [34, 38, 44]. The intersec-
tion between disrupted sleep patterns and neurodegenera-
tive processes necessitates a deeper understanding and more
accurate monitoring of sleep stages. Defined via overnight
polysomnograms (PSG) with multiple 30-s epochs, sleep
stages serve as critical tools for screening, assessing, and
diagnosing sleep disturbances, which may precede or exac-
erbate neurodegenerative conditions [32]. These stages,
categorized by the American Academy of Sleep Medicine
Manual (AASM), include waking (W), rapid eye movement
(REM), and three non-rapid eye movement (NREM) stages:
N1, N2, and N3 [3].
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However, the current manual classification following
AASM regulations is labor-intensive and time-consuming.
This system struggles to meet the needs of the vast popu-
lation suffering from sleep disorders, given the high costs
associated with each PSG recording and the resultant limited
data collection. These constraints underscore the urgency for
automating sleep staging, which promises both efficiency
and broader accessibility for sleep diagnostics, potentially
aiding in early detection and management of neurodegenera-
tive diseases.

In the quest for solutions, electroencephalography (EEG)
signals have emerged as a promising avenue. Beyond sleep-
stage classification, EEG’s applications extend to areas like
emotion recognition [15, 45, 47, 48], seizure detection [11,
33, 39], and motor imagery classification [13, 14, 17]. These
applications are particularly relevant in the context of neu-
rodegenerative diseases, where early detection and ongoing
monitoring are crucial.

The advent of generalized PSG datasets has catalyzed
significant advancements in the industry [6, 23, 31, 49].
From these datasets, handcrafted features spanning time, fre-
quency, and non-linear domains are extracted and employed
in conventional machine learning techniques. Tools like sup-
port vector machine (SVM) [2] and random forest (RF) [10,
36, 50, 51] have been instrumental in pioneering automated
sleep scoring systems. A standout advantage of these con-
ventional models lies in their relative simplicity, yielding
satisfactory results. This simplicity facilitates seamless inte-
gration into monitoring systems for practical applications,
including those focused on neurodegenerative disorders.
Delving deeper, a detailed analysis of these extracted fea-
tures can elucidate the significance of different attributes.
Notably, in one study, a substantial 85% of 11 selected fea-
tures were derived from the frequency domain [51].

However, these models are not without limitations. They
often overlook the time-series nature of raw EEG data and
the intricate contextual relationships therein, presenting a
notable shortcoming in their design.

Deep learning (DL) models stand in contrast to traditional
methods, offering a robust solution to manage expansive
datasets. As public sleep data sets burgeon, with participant
counts often scaling from hundreds to thousands [23, 49],
DL models are uniquely poised to handle this surge. They
excel by continuously refining their learning from incremen-
tal data batches until they converge to the optimal model.
One salient advantage of DL is its capability to autono-
mously identify features from rudimentary signals, elimi-
nating the tedious manual crafting of intricate features. The
potential of these models in understanding complex neuro-
generative pathways linked to sleep disorders is immense.

Several architectures have been floated for autonomous
sleep scoring using DL. These include convolutional neu-
ral networks (CNNs) [20, 37, 43, 46, 52], recurrent neural
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networks (RNNs) [4, 18], and hybrid models that leverage
both CNNs and RNNs [22, 35, 40, 41]. A recent trend in
the field has seen the adoption of attention mechanisms,
with many studies [5, 19, 26, 28, 53] presenting it as an apt
alternative to RNNSs, especially for integrating contextual
nuances. Additionally, the concept of transfer learning has
been explored in numerous works [7, 24, 27]. This approach
leverages vast source datasets to transfer domain-specific
knowledge, decision rules, and architectural nuances to aug-
ment models trained on smaller target datasets.

The integration of artificial intelligence (Al) into health-
care, particularly deep learning, is met with enthusiasm and
skepticism. Despite AI’s advances, medical professionals are
wary due to the “black box” nature of DL. models, spread
across interconnected hidden layers. This lack of transpar-
ency is especially concerning in areas like automated sleep
stage classification (ASSC). Several studies have highlighted
the challenges this poses [42, 53]. Concerns persist about the
accuracy of DL models, especially when confidently classi-
fying conflicting stages [16, 28]. The trend towards increas-
ingly complex DL solutions sometimes yields only marginal
benefits and demands more data and intensive training.

We believe that reverting to a judiciously crafted tradi-
tional machine learning model, emphasizing the most perti-
nent features, might offer a viable solution. Such an approach
has the potential to match, if not surpass, the results of DL
models, but with reduced complexity and fewer parameters.
In our research, we introduce SleepBoost, a novel multi-level
tree-based ensemble model tailored for ASSC. We rigor-
ously evaluated its efficacy on the Sleep-EDF-20 dataset,
emphasizing its comparative performance against prevailing
deep learning models.

Our approach began with the establishment of a feature
engineering block (FEB). From this, we extracted 41 time
and frequency domain features. Subsequent refinement using
a mutual information score threshold (> 0.23) identified the
most pertinent 23 features. These features underpin Sleep-
Boost’s core architecture—a sophisticated multi-level tree
structure blending three fundamental tree-based ensemble
models: categorical boost (CatBoost), light gradient boost
(LGBoost), and random forest (RF). Additionally, we inte-
grated a reward-based adaptive weight allocation mecha-
nism, optimized using the FEB-filtered features. Empirical
results indicate our model’s superior performance: 86.3%
accuracy, 80.9% F1-score, and Cohen’s kappa score of
0.807, besting state-of-the-art deep learning alternatives. A
salient advantage of SleepBoost is its efficiency: it possesses
1000 to 10,000 times fewer parameters than DL models,
and its inference time, inclusive of processing and feature
extraction, averages under 110 s for a typical Sleep-EDF
dataset night. We further underscored the pivotal role of
feature selection through an ablation study, examining four
SleepBoost variants. Our aim is to not only offer a fresh
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perspective on ASSC but also encourage fellow researchers
to concurrently evaluate the potential of both traditional ML
and DL models. Such synergy promises enhanced model
portability and real-world applicability, especially in clini-
cal settings and compact devices. For those interested, the
SleepBoost source code is accessible at https://github.com/
akibzaman/SleepBoost.

The remainder of this paper unfolds as follows: In Sect. 2,
we delve into the methodology and elaborate on the archi-
tecture of SleepBoost. Section 3 showcases the comparative
experimental results of SleepBoost vis-a-vis existing mod-
els and emphasizes an ablation study on the significance of
feature selection. Finally, Sect. 4 wraps up our findings, dis-
cussing the constraints of our research and potential avenues
for future exploration.

2 Methods

The materials used in this study together with a detailed
description of the research methodology are presented in
this section. In this study, we utilized EEG signals of the
Fpz—Cz channel of the Sleep-EDF dataset. Later, we devel-
oped a FEB, extracting 41 features from the time and fre-
quency domains and selecting 23 features using a mutual
information score threshold value. Finally, we developed
SleepBoost, a multi-level tree-based ensemble model tuned
by a reward-based adaptive weight allocation that uses the
filtered features of FEB to classify the sleep stages.

2.1 Description of the dataset

The Sleep-EDF dataset, which is accessible via the Phys-
ioNet website, has been utilized for evaluating the perfor-
mance of the proposed method in this study. EEG data in the
Sleep-EDF dataset were obtained from 20 healthy partici-
pants aged 25 to 101 years. Each PSG recording in this data-
set has two EEG signals acquired at 100 Hz from the Fpz—Cz
and Pz—Oz channels. One electrooculogram (EOG) signal,
one electromyography (EMG) signal, and one oro-nasal res-
piration signal were also acquired alongside the EEG sig-
nals. Following earlier research [5, 37, 40, 41], we utilized
the data from the Sleep Cassette study and used a single
Fpz—Cz channel as the input in this study. Experts annotated
each EEG recording of the dataset every 30 s separately in
the hypnogram files in eight sleep stages: awake (W), N1,
N2, N3, N4, REM, movement time (M), and unknown con-
dition (U). Note that the epochs associated with the M and
U states are excluded from the experimental investigation.
The Rechtschaffen and Kales (R&K) standard [32] classi-
fies sleep cycles into six distinct stages of sleep, which is
therapeutically essential [8], and the AASM standard also
proposes combining the N3 and N4 stages of sleep into a

single class [3]. Therefore, a five-class categorization has
been considered for classifying sleep stages in several works
[5, 22, 40]. In this study, we also treated N3 and N4 as stage
3 (N3) as per the AASM standards and considered the EEG
signal collected from the Fpz—Cz channel following previous
works [4, 5, 26, 28, 40, 41]. Table 1 highlights the number
of EEG epochs corresponding to various sleep stages. In
this work, we split the dataset into three non-overlapping
segments: (a) feature selection (14,018 epochs), (b) training
(25,708 epochs), and test (9,719 epochs). We utilize feature
selection to select the important features from extracted fea-
tures, training data to train the developed model and finally,
test data to run the generalization and ablation evaluation of
the trained models.

2.2 Development of feature engineering block
(FEB)

EEG signal detection can capture unrelated signals like elec-
trocardiogram (ECG), electromyography (EMG), electrooc-
ulogram (EOG), and respiration sounds due to the move-
ments of muscles and bones, creating physiological signal
artifacts. To mitigate these effects, the EEG signal is filtered
using a second-order Butterworth Bandpass Filter with a
0.5 Hz and 45 Hz cutoff frequency. It is partitioned into
seven frequency sub-bands and distributed in 30-s epochs
(see Table 2). For accurate sleep staging, 41 features from
the time and frequency domain have been obtained.

2.2.1 Time domain features

Empirical mode decomposition (EMD) is a robust time—fre-
quency signal analysis technique suitable for getting the
instantaneous properties of non-linear and non-stationary
EEG signals by retaining the data attributes during the
decomposition process. EMD splits each EEG signal into a
set of 7 intrinsic mode functions (IMF) and forms a math-
ematical expression as shown in (1) in which X(7) is the 7#th

Table1 Number of epochs considered for each sleep condition
from the Sleep-EDF database. FS denotes feature selection data, TR
denotes training data, and TS denotes test data

Sleep condi-  FS TR TS  Total % of total data
tion number of

epochs
Wake (W) 2891 5303 2005 10,199 20.63

N1 923 1692 640 3255 6.58

N2 5877 10,777 4074 20,728 41.92
N3 1848 3390 1282 6520 13.19
REM 2479 4546 1718 8743 17.68
Total 14,018 25,708 9719 49,445
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Table 2 Frequency ranges of the partitioned sub-bands

Name of the sub-band Frequency range (Hz)

Total band power 0.50-45.00
Delta-Low (low-0) 0.50-2.00
Delta-High (high-5) 2.01-4.00
Theta (0) 4.01-8.00
Alpha (o) 8.01-12.00
Beta-Low (low-f) 12.01-20.00
Beta-High (high-B) 20.01-30.00
Gamma-Low (low-y) 30.01-45.00

EEG epoch, Y; is the ith IMF of total » number of functions,
and r(¢) is the residue generated in the process.

X(t) = )Y, +1(0) )
i=1

This approach is chosen rather than selecting a single
IMF based on a specific criterion because it allows for a
more detailed analysis of the data. By leveraging all 14 fea-
tures from each IMF, we utilize the full spectrum of infor-
mation available in the data and capture a broader range of
intrinsic oscillatory modes inherent in the data. After the
extraction of IMFs, Welch’s method is applied to each IMF
to estimate their Power Spectral Density (PSD), enabling a
detailed analysis of the signal’s frequency content. A total of
14 features were extracted using the obtained IMFs denoted
T1 to T14, which include mean (X,,,.,,), standard deviation
(Sz), variance, minimum, maximum, argMinimum, argMaxi-
mum, root mean square (RMS), median, maximum-mini-
mum distance (MMD), skewness, kurtosis, Hjorth mobility
(HM), and Hjorth complexity (HC) (refer to Table S1 of the
supplementary material for the formulas).

Frequency domain features The features of EEG signals
across the various frequency ranges of the different sleep
stages are vital for accurately identifying the unique attrib-
utes of a specific sleep stage and classifying it accordingly.
Eight direct features and 19 derived features are extracted
from each epoch of the EEG signal resulting in 27 frequency
domain features. The N1 stage demonstrates mostly the pres-
ence of Theta (0) and Alpha (a) sub-bands. During the N2
stage, the amplitude of the EEG signal increases, and the
0 sub-band becomes more prominent. Subsequently, dur-
ing N3, the 0 and Delta-High (high-8) sub-bands are more
propagated. During N4, the frequency of the EEG signal
drops further and fluctuates in the frequency range of the
Delta-Low (low-0) sub-band. On the contrary, Beta-Low
(low-p), Beta-High (high-p), and Gamma-Low (low-y)
sub-bands are predominant in the REM stage. These facts
point out the importance of extracting features related to the
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frequency domain. Several related works [2, 10, 36, 50, 51]
also utilized frequency domain features to develop the sleep
stage classification model. Imtiaz et al. [9] developed a REM
detection algorithm using spectral edge frequency in the
8-16 Hz frequency band, together with the absolute power
and the relative power of the signal. In a broader extent,
Zhao et al. [50] calculated the energy of the individual sub-
bands to derive the frequency domain features. We utilized
the time-domain signals of each sub-band segment and con-
verted them to frequency-domain signals using a fast Fourier
transform. The band energy can be obtained according to the
different frequency ranges, which have been acquired as the
Direct Frequency Domain (DFD) features and were labelled
E1 to ES8 (refer to Table S2 of the supplementary material
for the formulas). Subsequently, inspired by previous work
[51], we utilize the DFD features to calculate 19 Derived
Frequency Domain (DeFD) features denoted D1 to D19. The
equations used for obtaining the DFD and DeFD features can
be found in Table S2 and S3 of the supplementary material,
respectively.

2.3 Selection of important features

To simplify the computing procedure and enhance the algo-
rithm’s portability, we ran feature screening on the extracted
features from Sect. 2.2. Moreover, it was assumed that some
of the features are more relevant than the other features.
Among several feature selection techniques, we utilized the
mutual information (MI)-based feature selection technique
for selecting the most relevant features. The rationale for
choosing MI over other feature selection methods was due
to its simplicity and its capability to consider the non-linear
dependence of the features. Since the dataset is not mas-
sively large in terms of dimensionality, challenges like com-
putational complexity were not an issue in this situation.

MI [25] is a numerical score between two (potentially
multidimensional) random variables X and Y that measures
the amount of knowledge received about one random vari-
able through the other. Equation (2) shows the calculation
of MI:

p(x,y)
(X, Y 1
X, Y) = //p( y)og()(y) )

where p(x, y) represents the joint probability density func-
tion of X and Y and p(x) and p(y) represent the marginal
density functions. MI determines the similarity between the
joint distribution and the products of the marginal distribu-
tions that have been factored. If X and Y are fully irrelevant
(and thus independent), then p(x, y) equals p(x) p(y), and
this integral is zero. We calculated the mutual information
of each of the extracted features (X) and the sleep stage of
that sample (Y). In this study, features with feature weight




Medical & Biological Engineering & Computing (2024) 62:2769-2783

2773

coefficients greater than 0.23 (which is the mean MI value
for all the extracted features) were chosen as the final set of
selected features as the outcome of the FEB. We carried out
experiments to determine this value by evaluating and ana-
lyzing values in the range of 0.1 to 0.3 at an interval of 0.025
using the feature selection dataset (see Sect. 2, Table 1). We
acquire the best result for the value of 0.225 (rounded as
0.23), and thus, it has been used as the threshold for the
feature weight coefficient during feature selection. A total
of 23 features, namely T2-T5, T8, T10, T13, El, E2, E4,
E6-ES8, D3-D7, D11, D12, D15, D16, and D18, were chosen
based on the MI threshold score (>0.23), while consider-
ing all of the classes. This result is also consistent when we
consider a single class at a time. We also further evaluate
which features were more important and closely related for
any specific class (see Sect. 3.3).

2.4 Architecture of SleepBoost

Using the selected features, we developed a multi-level tree-
based ensemble model by fusing the prediction of three indi-
vidual prediction models: categorical boost (CatBoost), light
gradient boost (LGBoost), and RF. The general architecture
of the ensemble model utilizes a weighted majority vot-
ing—based architecture, highlighted in Fig. 1. The rationale
to employ an additional ensemble layer atop existing tree
ensembles is rooted in empirical evidence suggesting that
such meta-ensembles can achieve superior performance by
harnessing the strengths of different models while mitigat-
ing their individual weaknesses. Individual tree ensembles,
though powerful, may develop biases towards particular pat-
terns within the training data. By integrating multiple tree
ensembles, we effectively diversify the model’s perspective,
reducing the likelihood of overfitting and enhancing its gen-
eralization capabilities on unseen data. Moreover, the meta-
ensemble approach was able to improve model robustness by
capturing a wider array of complex patterns and interactions,
which might be overlooked by single-layer ensembles.
Bayesian optimization has been utilized for optimizing the
hyperparameters of RF, CatBoost, and LGBoost, delivering
better overall performance. Thus, specific parameter tuning
using random search and grid search is not required. For Cat-
Boost, the learning rate is set to 0.8 from the hyperparameter
tweaking along with 100 estimators. Additionally, the number
of leaves is set to 100 with a minimum of two data in each leaf,
and the bagging percentage is set to 0.65, meaning that 65% of
rows are used per tree-building iteration. In addition, the objec-
tive was multiclass with a weighted average for each class. In
the case of RF, we employ 200 trees, which aids in avoiding
overconfidence with a minimum leaf size of 1 and a minimum
sample split of 9. We utilize the gradient-boosted decision tree
(GBDT) for the LGB model to avoid the excessive computa-
tional burden of dart gradient boosting (dart). Moreover, the

learning rate is set to 0.8 based on the hyperparameter tuning
along with 100 estimators, the number of leaves is set to 100
with a minimum of two data in each leaf, and the bagging
fraction is set to 0.65. In addition, the objective was multiclass
with a weighted average for each class.

Firstly, we split the dataset into three segments named
training (60%), validation (20%), and test (20%) sets. Then,
we use the training set to train the individual classifiers and
then the validation set to evaluate dependent features. We
compare the prediction on the validation dataset with the
actual classes. Then, the weights of the classifiers are adap-
tively calculated by offering a reward for the right predic-
tion and normalizing the weight of each classifier using the
cumulative sum of the weights of all three classifiers (see
Algorithm S1 in Supplementary Material). Then based on
these weights, we combine the output of the training data-
set by considering the weights generated by the validation
dataset.

3 Results and discussion

In this section, the evaluation procedure along with the per-
formance metrics and results derived from SleepBoost are
presented. Firstly, we describe the performance metrics uti-
lized in this evaluation. We then compare SleepBoost with
other conventional machine learning models. Later, we show
the importance of feature selection by comparing four dif-
ferent variants of SleepBoost. Finally, we compare the per-
formance of SleepBoost with other recognized models using
the same SleepEDF-20 dataset.

3.1 Performance metrics

The tenfold cross-validation [12] method has been used to
assess the performance of the classifiers under considera-
tion. Furthermore, we use accuracy (ACC), precision (PR),
recall (RE), Fl-score (F1), and Cohen’s kappa coefficient
(K) to evaluate the model’s performance on each epoch.
ACC is the proportion of accurate predictions relative to
the total number of predictions made by the model. PR is the
ratio of correctly anticipated positives to the total number
of positives. RE refers to the percentage of true positives
to all class predictions. The weighted mean of PR and RE
is F1. K quantifies the degree of agreement between actual
and anticipated labels. A high value of K can indicate the
effectiveness of the model.

3.2 Comparison of conventional models
and SleepBoost

We calculated average performance metrics over tenfold

cross-validation from the Sleep-EDF dataset for baseline
models and SleepBoost. Figure 2 provides the mean CM of
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Fig. 1 General architecture of SleepBoost. We trained RF, LGBoost,
and CatBoost as a unit block model for SleepBoost using the training
dataset. Adaptive weight calculation is initiated using the prediction

tenfold cross-validation from the Sleep-EDF dataset (using
the selected extracted features) while Table 3 provides a
summary of these metrics for both the baseline ensemble
models and SleepBoost, using all features and only the
selected ones. We also evaluate the variability of our method
with respect to the data by visualizing the performance of
our model across these ten folds (see Fig. 3), which shows
consistent performance over the folds. SleepBoost achieved
an accuracy of 84.8% with all the features and 86.3% with
the selected features, outperforming baseline models. Nota-
bly, performance improved for all models when using the
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of the unit block models. Finally, a weighted score is calculated to
predict the sleep stage

selected features, highlighting the importance of feature
selection. More elaboration on this discussion is presented
in detail in the next subsection. Using the selected features,
SleepBoost demonstrates a Macro—PR of 82.8%, a Macro-
RE of 80.3%, and a Macro-F1 of 80.9%, which outperforms
the other models with a notable mean improvement of 1.42%
(Macro-PR), 2.37% (Macro-RE), and 2.2% (Macro-F1)
compared to the unit models (LGBoost, RF, and CatBoost)
of SleepBoost. The developed model also demonstrates a
high value of K (0.807), outperforming other models with a
mean improvement of 1.26%. In terms of the area under the
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Fig.2 Confusion matrices of all the models: a support vector machine (SVM), b adaptive boosting (AdaBoost), ¢ random forest (RF), d cat-
egorical boosting (CatBoost), e light gradient boosting (LGBoost), and f SleepBoost

Table 3 Comparison of
performance metrics among the
base conventional models and
SleepBoost

Model Dataset ACC Macro Macro MF1 K AUC
PR RE
SVM All features 514 41.2 40.5 39.1 0.307 0.703
Selected features 52.1 41.3 40.9 39.8 0.333 0.670
RF All features 84.3 81.2 75.9 77.1 0.783 0.902
Selected features 85.1 82.5 76.7 779 0.793 0.908
CatBoost All features 84.0 79.2 75.8 76.6 0.779 0.900
Selected features 85.1 81.0 77.1 78.0 0.792 0.907
AdaBoost All features 74.1 66.2 66.8 66.3 0.623 0.842
Selected features 74.3 66.4 67.1 66.7 0.647 0.839
LGBoost All features 84.0 78.4 77.8 78.1 0.781 0.910
Selected features 85.5 80.7 80.0 80.2 0.798 0.920
SleepBoost All features 84.8 80.3 717.3 78.5 0.792 0.928
Selected features 86.3 82.8 80.3 80.9 0.807 0.936

Bold - indicates the best value
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Fig.3 Performance metrics of
SleepBoost (selected features
with adaptive weights) over ten
folds
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receiver operating curve (AUC), SleepBoost demonstrated a
score of 0.936, i.e., it can successfully predict the sleep stage
of 93.6% of the test epochs (see Fig. 2a).

In our study, the classification accuracy was high for
stages W and N3, whereas the recognition accuracy was
lower for stage N1, which has been summarized in Table 4.
The proposed model shows the best ability to detect the W
stage with an ACC of 92.7% and PR of 93.2%. Similarly,
N3 also demonstrates a significantly close performance
compared to W with an F1 of 91.4% and PR of 92%, which
outperforms other classes in terms of PR and F1. By con-
trast, the performance of stage N1 classification is the worst,
which is consistent with the results of existing related works.
To be specific, 39.8% of N1 epochs are being recognized
correctly, showing an F1 of 51%. On a similar note, REM
also shows a below-average performance with an F1 of
79.4% and ACC of 82.3%.

The uniqueness of the EEG characteristics in different
sleep stages may cause this phenomenon. Awareness is
still relatively intact at the Wake (W) stage, and a blend
of Alpha and Beta sub-bands characterize the EEG signal.
The N1 is the transition phase of the brain from the aware
state to the sleep state, during which the Alpha wave share
steadily declines, and the Theta wave begins to develop

Performance Metrics Across Folds

—_——
—
=
—
Precision Recall F1 Score Kappa
Metric

and replace Alpha waves, indicating that the EEG sig-
nal changes dramatically during this period. So, with its
steady characteristics, the W phase is more uncomplicated
to recognize than the N1 phase with its more varied EEG
signals. It should be noted that prior research [5] has dem-
onstrated that an imbalance in the number of categories
used during staging will impact the final accuracy, and the
class with fewer sample epochs will produce lower clas-
sification performance. We observe that the test dataset
of N1 is significantly lower than the other classes, which
aligns with the poor performance demonstrated by this
class. Since most of the real-life sleep datasets tend to be
imbalanced, i.e., the amount of data in the N1 class will
always be significantly smaller than the other classes. We
have not generated synthetic samples of the N1 class to
try and balance the data for each class. However, in future
works, we will explore and evaluate the use of synthetic
data. In some of the previous works, 5 classes have been
transformed into 4 classes where N1 has been merged
with N2. To evaluate the robustness of our model, we kept
N1 separate to analyze the performance of this particu-
lar class. Additionally, the reported performance metrics
of the SleepBoost are the worst-case or minimum pos-
sible metrics which also facilitated the comparison of the

Table 4 Class-wise

Sleep stage Test samples Correctly predicted ACC PR RE F1
performance of SleepBoost on samples
test data
w 2005 1858 92.7 86.3 93.2 89.5
N1 640 255 39.8 69.7 41.3 51.0
N2 4074 3687 90.5 90.1 90.3 90.2
N3 1282 1121 87.4 92.0 90.6 914
REM 1718 1414 823 77.2 82.5 79.4
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prevailing models (explained in Sect. 3.4) in an unbiased
and standardized way. We further reveal the hypnogram
comparison labeled by experts and the model’s prediction
for one subject of Sleep-EDF datasets in Fig. 4.

3.3 Importance of selecting relevant features

The proposed FEB in this study supports a multi-domain
integration of time and frequency domain features for each
unique epoch, extracting 41 features, and selecting relevant
features using the MI threshold score. Features with an MI
score greater than 0.23 are selected and fed into SleepBoost
for the classification of each epoch into their respective
sleep stages. There are 7 time-domain features and 16 fre-
quency-domain features (6 DFD and 10 DeFD) among the
23 selected features. The frequency domain data accounted
for a more significant proportion of the automated sleep
staging, followed by the time domain features. This may be
probably because different stages of sleep exhibited distinct
frequency and energy characteristics. In addition, the ratio
of DeFD features is the highest among the filtered features
of FEB, with a ratio of 8:17. Table 3 shows that SleepBoost,
along with all the base models, had superior performance
when trained and tested using the filtered features of FEB.
We discovered an average improvement of 0.97 in ACC,
1.37 in Macro-PR, 1.33 in Macro-RE, 1.30 in MF1, and
0.02 in K while employing the selected features of FEB
instead of using all the features. Figure 4 displays the AUC-
ROC, which corroborates the conclusion that the AUC value
for SleepBoost improved by 0.008 when trained using the
selected features (Fig. 4b) in comparison to when all the fea-
tures were used (Fig. 4a). A similar statement is also true for
most of the other baseline models utilized in the evaluation

study, as they also demonstrate better performance with the
selected features (refer to Table 3) Fig. 5.

In addition, we developed four variants of SleepBoost to
conduct a detailed ablation study to validate the importance
of proper feature selection and performance improvement by
utilizing the adaptive weight allocation during multi-level
ensemble. The SleepBoost variants are as follows:

e MaI: All features with trivial (balanced) weight allocation
during ensemble.

e M2: Selected features with trivial (balanced) weight allo-
cation during ensemble.

e M3: All features with adaptive weight allocation during
ensemble.

e M4: Selected features with adaptive weight allocation
during ensemble.

Figure 6 highlights the observed performance metrics
from all four variants while evaluating on same test epochs.
The radar curve in Fig. 6 demonstrates that in both the
case of balanced and adaptive weight allocation during
the ensemble, variants (M2 and M4) trained with selected
features outperformed variants trained with all extracted
features (M1 and M3). Alternatively, in both the case of
selected and all features, adaptive weight allocation out-
performed trivial weight allocation. In variants with all
extracted features (M1 and M3), M3 with adaptive weight
allocation outperformed M1 with balanced weight alloca-
tion. Similarly, in the case of variants with selected features
(M2 and M4), M4 with adaptive weight allocation outper-
formed M2 with balanced weight allocation. In summary,
feature extraction is critical along with selecting suitable fea-
tures, which has been achieved in this study by incorporating

- e oo ommo o - T»- H ceans - -

REM oo T. -r . oo T...
N3 n

N2 J

N1 . .

o oo w @ . e oo @

1 32 60 91 121 152 182 213 244 274 305 335 366 397 425 456 486 517 547 578 609 639 670 700 731 762 790 821 851 882 912 943 974

+ Predicted Stage —Actual Stage

Fig.4 Comparison of manual sleep stage labelling with SleepBoost model’s prediction. The actual label represents the result of manual staging

by experts, while the predicted label is the result of the SleepBoost model

@ Springer



2778

Medical & Biological Engineering & Computing (2024) 62:2769-2783

True Positive Rate

SVM (area = 0.703)
AdaBoost (area = 0.842)
RF (area = 0.902)

0.2 #°
e CatBoost (area = 0.900)
ad LGBoost (area = 0.910)
,/ = SleepBoost (area = 0.928)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

(a)

True Positive Rate

SVM (area = 0.670)
AdaBoost (area = 0.839)
RF (area = 0.908)

0.2 g
4% CatBoost (area = 0.907)
ad LGBoost (area = 0.920)
,/ = SleepBoost (area = 0.936)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
(©)

Fig.5 Comparison of area under the receiver operating curve (AUC-ROC) among the conventional models and SleepBoost. a Using all

extracted features; b using selected features of FEB

the MI score—based feature selection method. Additionally,
adaptive weight allocation performs better than the trivial
balanced weight allocation in tuning SleepBoost for the
classification.

We further evaluate whether our feature selection pro-
cedure using MI has a negative impact on the performance
of the classes with a small number of samples such as N1.

Accuracy
90

85
80/
5
70 Precision
65
60
N —

Recall

Kappa

F1-Score
==M] ==M2 ==M3 —e=Mi

Fig.6 Comparison of performance in different variants of Sleep-
Boost. M1 (all features+balanced weight), M2 (selected fea-
tures + balanced weight), M3 (all features + adaptive weight), and M4
(selected features + adaptive weight) represent four variants of Sleep-
Boost with the combinations of features and weight allocation
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Two important questions were raised in this process: (Q1)
Whether some of the features were important for Class i (for
example, REM) classification while not important for Class
j (for example, N1)? (Q2) While choosing the important
features based on all the classes, have we neglected some
of the features that were important for an individual class?

We investigate these questions by calculating feature
importance when only considering a single class, termed
as Local MI Score (LMIS), versus when considering all
classes, termed as Global MI Score (GMIS). Then, we com-
pare the LMIS and GMIS of each feature in the case of all
of the five classes and present the result in Fig. 7. Note that
to eliminate the bias from sample inadequacy among some
classes (for example, N1), both scores are scaled within the
range of the minimum and maximum values of MI when all
classes are considered, which ensures a fair comparison. The
green dots indicate that both LMIS and GMIS are higher
than the threshold for that feature, meaning the locally sig-
nificant feature has also been successfully considered sig-
nificant on a global scale. In contrast, the red dots indicate
situations where LMIS is higher, while GMIS is lower than
the threshold for that feature, suggesting that the locally
significant feature has been overlooked in the global set of
significant features.

This evaluation answers the earlier questions and adds sev-
eral interesting findings. Firstly, there is a difference in feature
importance for a specific class which has been illustrated in
Fig. 7. For example, in N1 (6) and N2 (7) classes, a higher
number of time domain features are important unlike N3 (2)
and REM (3). There is a feature set that is important for all
the classes. However, there are also features which are only
dependent for a particular class but independent for other
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classes. For example, feature ES is dependent only for N1
and N3 but independent for all other classes. Similarly, T10 is
important for Wake, N2, and REM but not for others. Moreo-
ver, the score of importance also varies from class to class for
a particular feature. Secondly, while choosing the important
features based on the GMIS, we have neglected a few of the
features that are important for some of the classes like N1 (2)
and N3 (6). For our future direction, we aim to try and mitigate
this by exploring feature selection techniques that account for
class imbalance or by employing alternative measures that can
better capture the unique dependencies of features on minor-
ity classes. Techniques such as weighted MI, where weights
are adjusted based on class proportions, or conditional feature
selection methods might provide a more nuanced approach
to retaining important features for all classes, including those
with fewer samples. However, we were able to capture all the
locally important features for Wake, N2, and REM classes,
and most of the locally important features for N1 (13 out of
15) and N3 (16 out of 22) classes. These findings demonstrate
that the feature selection based on GMIS is able to provide a
better model performance despite undermining a few of the
locally important features for N1 and N3 classes.

This investigation shows that feature engineering and
selection is not only important to reduce the complexity of
the model but also helps improve performance by feeding
the right data to the model. These answers also open doors
for further exploration in the domain of feature selection
while classifying sleep stages and demonstrate the need for

the growth of transparency to bridge the gap between medi-
cal practitioners and computer scientists. While the deep
learning model does not provide this transparency, linear
models can be useful to achieve this attribute.

3.4 Comparison of SleepBoost
with the state-of-the-art deep learning models

Deep learning (DL) is a machine learning technique that
transforms a specific input into a representation learned
by the model’s hidden layers instead of being developed
beforehand, resulting in the consumption of scaled data.
In contrast, most traditional machine learning (ML) mod-
els, including linear and tree-based models, do not create
internal representations from the raw data. These models
rely on learning relations on the supplied representations
of the data fed into the model. Consequently, such models
required extracted features from an EEG epoch to classify
the sleep stage. We argue that classical ML models are
capable of state-of-the-art performance or are on par with
the DL models when deployed using relevant features. To
validate this argument, we compared the performance of
the recognized DL models with SleepBoost on the Sleep-
EDF-20 dataset and summarized the result in Table 5.
SleepBoost outperforms the DL models in terms of all
the performance metrics and shows a promising future
scope of exploring more conventional ML models in the
domain of ASSC.

Table 5 Comparison of

; Year Model Accuracy F1-Score K
performance with the state-

of-the-art methods evaluated 2020 FKSVM-SRN [2] 82.22 _ _
32&2?31;?1 ﬁ?g{je%%fngt' 2021 1D-CNN + Hidden Markov Model [46] 83.23 75.03 0.76
variants has been scored on 2021 CNN-TCN-CRF [50] 82.46 - 0.78
the test dataset (as described in 2018 CNN 1-Max Pool [26] 82.60 74.20 0.76
Table 1) 2021 C-C/R-R SleepNet [22] 84.29 79.81 0.78
2021 TinySleepNet [41] 83.10 78.10 0.77
2017 DeepSleepNet [40] 82.00 76.90 0.76
2019 IITNet [35] 84.00 78.00 0.78
2021 AttnSleep [5] 84.40 78.10 0.79

2020 CNN + Attention [53] 82.80 77.80 -
2019 SleepEEGNet [19] 82.83 77.02 0.77
2018 ARNN-SVM [29] 82.50 72.01 0.76

2021 RobustSleepNet [7] - 78.60 -
2020 SeqSleepNet+, DeepSleepNet+ [Expanded ~ 81.00 77.50 0.73

with Transfer Learning][30]

2019 SeqSleepNet [27] 85.50 80.00 0.79
Proposed SleepBoost (M1) 80.10 74.81 0.76
SleepBoost (M2) 84.83 78.53 0.79
SleepBoost (M3) 81.60 77.01 0.77
SleepBoost (M4) 86.30 80.90 0.81

Bold - indicates the best value
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One of the recent works [42] also showed results aligning
with the findings of our study, where a CatBoost-based lin-
ear model was developed, and decent results were achieved
compared to the recognized DL models. Here we provide a
more detailed comparison of our work with [42] which has
achieved promising results for sleep stage classification. In [42],
the authors used a linear model based on categorical boosting
with 131 features extracted from a time and frequency domain
from multiple windows resulting in 1048 features in total. In
general, they used a combination of EEG, EOF, and EMG data.
In our work, we extracted a total of only 41 time and frequency
domain features from a single 30-s window and used only EEG
data. Moreover, we employed the feature engineering block for
feature selection using mutual information to select the impor-
tant features. The selected features are then fed into the multiple
tree-based ensemble model to predict the sleep stages. In terms
of method, the feature engineering of both works is different.
Unlike [42], we evaluate the effectiveness of feature selection
through a detailed ablation study to demonstrate which features
are important for a specific class (LMIS) as well as for all of the
classes (GMIS). Furthermore, both [42] and our work demon-
strate that linear models should be explored more in terms of
providing further transparency in classification which is lacking
in the deep learning models.

4 Conclusion and future directions

Sleep and/or wake cycle alterations are common in neurode-
generative diseases (ND), posing significant challenges in their
early detection and management. Our research diverges from
the prevalent deep learning (DL) focus, showcasing the efficacy
of a traditional approach for automatic sleep stage classifica-
tion (ASSC). Using the Sleep-EDF dataset’s EEG signals, our
feature engineering block (FEB) extracted 41 features, refining
down to 23 through mutual information. SleepBoost, our main
contribution, outperformed both baseline ensemble and leading
DL models. Its lightweight design offers ease of training and
deployment, and its transparency bolsters trust—a paramount
consideration in medical applications, especially crucial in the
sensitive domain of neurodegeneration, where understanding
and interpreting sleep patterns can provide valuable insights
into disease progression and patient well-being.

Challenges arose, notably in distinguishing between the W
and N1 stages and between REM and N1 EEG waves due to
their similarities. These challenges are particularly pertinent
in neurodegenerative contexts, where sleep disturbances may
present subtly but have profound implications. Our results high-
light the potential of traditional machine learning in sleep scor-
ing and advocate for its parallel consideration with DL models.

Future research can explore simpler models in ASSC for
optimal portability and efficiency. Such models would be par-
ticularly valuable in the context of neurodegenerative diseases,

where ease of use and interpretability are key. Additionally,
investigating the specific impacts of various sleep stages on
neurodegenerative disease progression can further enhance our
understanding and management of these conditions.
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