PUBLISHED FOR SISSA BY 4) SPRINGER

RECEIVED: September 12, 2024

REVISED: November 20, 2024
ACCEPTED: November 26, 202/
PUBLISHED: December 11, 2024

Modular flavored dark matter

Alexander Baur©,%* Mu-Chun Chen®,° V. Knapp-Pérez ©¢ and Saiil Ramos-Sanchez ©¢

@ Instituto de Fisica, Universidad Nacional Auténoma de México,
Cd. de México C.P. 04510, Mexico

bPhysik Department, Technische Universitit Miinchen,
James-Franck-Strafle 1, 85748 Garching, Germany

¢Department of Physics and Astronomy, University of California,

Irvine, CA 92697-4575, U.S.A.

E-mail: alexander.baur@tum.de, muchunc@uci.edu, vknapppe@uci.edu,
ramos@fisica.unam.mx

ABSTRACT: Discrete flavor symmetries have been an appealing approach for explaining the
observed flavor structure, which is not justified in the Standard Model (SM). Typically,
these models require a so-called flavon field in order to give rise to the flavor structure upon
the breaking of the flavor symmetry by the vacuum expectation value (VEV) of the flavon.
Generally, in order to obtain the desired vacuum alignment, a flavon potential that includes
additional so-called driving fields is required. On the other hand, allowing the flavor symmetry
to be modular leads to a structure where the couplings are all holomorphic functions that
depend only on a complex modulus, thus greatly reducing the number of parameters in the
model. We show that these elements can be combined to simultaneously explain the flavor
structure and dark matter (DM) relic abundance. We present a modular model with flavon
vacuum alignment that allows for realistic flavor predictions while providing a successful
fermionic DM candidate.
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1 Introduction

The origin of the mass hierarchies and mixings among the three generations of fermions is
unexplained in the Standard Model (SM). One possible solution to address this so-called
flavor puzzle is the introduction of traditional flavor symmetries that allow for transformations
among fermions of different flavors. These symmetries are independent of moduli and are
known to provide explanations for the flavor structure of both the lepton and quark sectors [1-
7]. To achieve these results, models endowed with traditional flavor symmetries require the
introduction of two kinds of extra SM singlet scalars: i) flavons, whose vacuum expectation
value (VEV)s are responsible for the non-trivial flavor structure of fermions, and ii) driving
fields [8-15] that help to shape a suitable potential for obtaining the desired VEV pattern.
The traditional flavor symmetry framework based on non-Abelian discrete symmetries has
also proven helpful for dark matter (DM), where the flavor symmetry plays the role of a
stabilizer symmetry [16]. Furthermore, (not necessarily discrete) flavor symmetries can be
successfully combined to explain both DM and flavor anomalies from SM decays [17-19].
Another promising approach to explain the flavor parameters without introducing many
scalars is provided by so-called modular flavor symmetries [20-29]. This approach has
produced good fits for leptons [22, 25, 28, 30—41] and quarks [24, 42-53]. In this scenario,
instead of depending on flavon VEVs, Yukawa couplings are replaced by multiplets of modular
forms depending on the half-period ratio 7, which can be considered a complex modulus. The
basic problem then reduces to explaining why 7 stabilizes at its best-fit value (7), for which

>™/3 ico can be advantageous [54-58].

being close to the symmetry-enhanced points 7 =1, e
Although this scheme has the potential to avoid the need for any additional scalar field, the
presence of flavons in addition to the modulus can be useful too (see, e.g., Model 1 of [20]
and [21]). Similarly to the traditional flavor case, modular flavor symmetries can also serve

as stabilizer symmetries for DM candidates [59-63]



Modular flavor symmetries arise naturally in top-down constructions, such as magnetized
extra dimensions [64-77] or heterotic string orbifolds [78-89], where they combine with
traditional flavor symmetries, building an eclectic flavor group [90]. Remarkably, these
top-down approaches provide a natural scheme where not only realistic predictions arise [88],
but also the modulus 7 can be stabilized close to symmetry-enhanced points [91-97].

Motivated by these observations, we propose a new supersymmetric model combined
with modular flavor symmetries, which simultaneously accomplishes the following:

1. Addressing the flavor puzzle, specifically the origin of the lepton masses and mixing
parameters;

2. Achieving the vacuum alignment for the flavons;

3. Providing a suitable DM candidate with the correct observed DM abundance, Qpy =
0.265(7) [98].

In order to tackle these issues, we propose a simple supersymmetric model based on a
I's &2 A4 modular flavor symmetry. The model resembles Model 1 of [20], where the neutrino
masses arise from a Weinberg operator and the charged-lepton Yukawa couplings are given by
the VEV of a flavon. It also resembles the proposal of [99], which studies a DM candidate in
a non-modular A4 model without fitting flavor parameters. In our model, the flavon potential
is fixed by the flavor symmetry together with a U(1)r X Zy symmetry, which determines
the couplings between the driving field and flavon superfields. The model gives a very good
fit to the leptonic flavor parameters, with a low value of x2. Finally, we identify a Dirac
fermion composed by the Weyl fermionic parts of both the driving field and flavon superfields;
we perform a parameter scan for a correct DM abundance. The goal of this model is to
present a “proof of principle” that driving fields in modular supersymmetric flavor models
can account for both the flavon VEV (¢) and DM.

Our paper is organized as follows. In section 2, we review the basics of modular symmetries
and its application to solving the flavor puzzle. In section 3, we define our model. In section 4,
we present the numerical fit for the lepton flavor parameters. In section 5, we analyze
the relevant terms for DM production. We also argue why we need freeze-in (as opposed
to the more traditional freeze-out) mechanism for our model to work. We then present a
parameter scan for the available parameter space for our DM candidate. Finally, in section 6
we summarize our results and future directions for further constraints.

2 Modular symmetry

2.1 Modular groups and modular forms

The modular group I' := SL(2,Z) is given by

b
r = {(ad) ’a,b,c,dGZ&ad—bc:l} , (2.1)
c



and can be generated by

(0 1) (1 1)
S = and T = , (2.2)
~10 01

which satisfy the general presentation of T, (S,T | S* = (ST)? = 1,S?T = TS?). The
principle congruence subgroups of level N of I" are defined as

I'(N) == {yeT'|y=1 mod N}, (2.3)

which are infinite normal subgroups of I' with finite index. We can also define the in-
homogeneous modular group T' := T'/{£1} = PSL(2,Z) and its subgroups I'(N) with
T(2) := T'(2)/{£1} and T(N) := T'(N) for N > 2 (as —1 does not belong to I'(N)). An
element v of a modular group acts on the half-period ratio, modulus 7, as

b
VT = %, where 7€ H (2.4)

and H is the upper complex half-plane,

H = {reC|Im7>0}. (2.5)

Modular forms f(7) of positive modular weight k£ and level N are complex functions of 7,
holomorphic in H, and transform as

f(r) == fyr) = (er+a)* f(r), 7y €T(). (2.6)

In this work, we restrict ourselves to even modular weights, k£ € 2IN, although it is known
that modular weights can be odd [28] or fractional [72, 100] in certain scenarios. Interestingly,
modular forms with fixed weight k& and level N build finite-dimensional vector spaces, which
close under the action of I'. It follows then that they must build representations of a finite
modular group that, for even modular weights, result from the quotient

Ty := T/T(N). (2.7)

Then, under a finite modular transformation v € I') modular forms of weight k are n-plets
(which are called vector-valued modular forms [101]) Y () := (f1(7), fa(7), .., fu(7))T of
I'y, transforming as

Y(r) == Y(y7) = (er+d)f p(7) Y (r), (2.8)
where p(y) € T'y is a representation of +.

2.1.1 Finite modular group I's = A4

As our model is based on I's = Ay, let us discuss some general features of this group and
its modular forms. I's is defined by the presentation

Iy = <S,T 182 = (ST)® = T3 = 11>. (2.9)



1 1 1”7 3 1 1 1”7 3
-12 2 100
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Table 1. Irreducible representations of I's = A,. Here, w := ™/,

It has order 12 and the irreducible representations (in the complex basis) are given in table 1.
Besides 1* ® 1° = 1¢ with ¢ = a + b mod 3 and 1* ® 3 = 3, where a,b,¢ = 0,1,2 count
the number of primes, we have the nontrivial product rule 3 ®3 =1®1" ®1" ®35H 34,
where S and A stand respectively for symmetric and antisymmetric. Considering two triplets
p = (p1,p2,p3)" and ¢ = (1,v2,13)", in our conventions the Clebsch-Gordan coefficients
of p® Y are

(P @)1 = pry1 + paths + p3ia, (p @)1 = priba + path1 + paiis,
(p @)1 = p1bs + patha + p3i,
2p191 — p2tb3 — p3ihe p23 — p32 (2.10)
(p@Y)3g = 3 2p3103 — prpe — p2tn |5 (P ®Y)3, = | prep2 — pathr
2p2tP2 — p3th1 — P13 p3th1 — p1s

The lowest-weight modular forms of I's furnish a triplet Y = (Y1, Ys, ¥3)T of weight
ky = 2, whose components are given by [20]

i |03 (TTH Ul (TTZ) 271 (37)
O [ () () e ]
R R A A G WG W) -
O [ ) ) o
_ i, ) e ()]
BT O e e |
where 7(7) is the so-called Dedekind 7 function
n(r) = ¢7* ﬁ(l—q") with q =¥ (2.12)
n=1

Higher-weight modular forms can be constructed from the tensor products of the weight
2 modular forms given in eq. (2.11).
2.2 Modular supersymmetric theories

We consider models with N/ = 1 global supersymmetry (SUSY), defined by the Lagrange
density

L = /d29d2éf<(q>,5)+ (/dZQW(<1>)+h.c.> : (2.13)



where K (®, ®) is the Kéhler potential, W (®) is the superpotential, and ® denotes collectively
all matter superfields ¢’ of the theory and the modulus 7.

Under an element of the modular symmetry v € I', 7 transforms according to eq. (2.4),
and matter superfields are assumed to transform as

o L (er+d)Fipi(y) ¢ (2.14)

where k; are also called modular weights of the field ¢’, which transform as I'y multiplets.
Modular weights k; are not restricted to be positive integers because ¢’ are not modular
forms. Analogous to eq. (2.8), the matrix p;(7y) is a representation of the finite modular
flavor group I'y.

For simplicity, we assume a minimal Kéhler potential! of the form

K(®,®) = —log(—ir +i7) + Z(—iT +i7) 7|2 . (2.15)

1

Making use of eq. (2.14), we see that K(®, ®) transforms under a modular transformation
v € T as

K(®,®) - K(®,®)+log(cr +d) +log(cr + d) . (2.16)

Thus, realizing that the Kéhler potential is left invariant up to a global supersymmetric
Kéhler transformation, in order for the Lagrange density of eq. (2.13) to be modular invariant,
we need the superpotential to be invariant under modular transformations, i.e.

W(®) — W(®). (2.17)
The superpotential W (®) has the general form
W(2) = pii(1)e'e + Yigr(r)e'@? " + Gigre(r)0'd oF " (2.18)

where p;;(7), Yijre(7) and Gyji(7) are modular forms of level N. Because of eq. (2.17), each
term of eq. (2.18) must be modular invariant. Let us illustrate how we can achieve this by
taking the trilinear coupling Y (7)¢'e’ ©*. The Yukawa coupling Yijr transforms under
a modular transformation v € I as

Yir(t) == (e + )" py(7) Yigu(7), (2.19)

where ky is the even integer modular weight of the modular form Yj;.(7). Then, for
Yiik(T)p' 0l " to be invariant and using the superfield transformations of eq. (2.14), we
must demand that ky = k; + k; + kj, and that the product py ® p; ® p; ® pp contains
an invariant singlet.

Since we shall be concerned with SUSY breaking, let us briefly discuss the soft-SUSY
breaking terms in the Lagrange density. They are given by

1 A —. . . . . .
Lo = =5 (Mad?2? +hc) —m2'0" — (Apd'@ ¢ + Biyd'd? +he) . (2:20)

In principle, there could be further terms in the Kéhler potential with an impact on the flavor predic-
tions [102], which are ignored here.



L (E{,E5E5) Hqy Hy ¢3 ov 3 Gr Y(7)
SU@2), 2 1 2 2 1 1 1 1 1
Ul)y —3 1 -z 3 0 0 0 0 O
ry~4 3 (1,1"1) 1 1 3 1 3 1" 3
k; 1 0 -1 0 0 0 0 0 2
U(1)r 1 1 o 0 0 0 2 2 0
Zs 0 0 o 0 0 -1 0 -1 0

Table 2. Quantum numbers under the SM gauge groups, U(1)gr, Zs and I's, as well as modular
weights k; of the matter fields in our model. All fields are neutral under SU(3)color-

where M, are the gaugino masses, A are the canonically normalized gaugino fields, and m;
are the soft-masses. We use a notation, where ¢’ stands for both the canonically normalized
chiral superfield and its scalar component [103]. We do not assume any specific source of
SUSY breaking, and thus the parameters in eq. (2.20) are free, in principle. However, in
our model B—terms are forbidden at tree level and the A-terms do not play a role in DM
production at tree-level, see section 5.

3 Dark modular flavon model

We propose a model of leptons, governed by the modular flavor group I's & A4. In our model,
the lepton doublets L transform as a flavor triplet and charged-lepton singlets E; transform as
three distinct singlets under I's. The particle content of our model is summarized in table 2.

In our model, neutrino masses arise from the Weinberg operator

1
WV—K

(H,LH,LY (1)) , (3.1)
where A is the neutrino-mass scale and Y (7) is the modular-form triplet Y = (Y1, Y2, ¥3)T of
weight 2 given by eq. (2.11). Note that there exists no other modular multiplet of weight 2 in
I's = A,. Hence, under our assumptions, the neutrino sector obtained from eq. (3.1) is highly
predictive as it only depends on the parameter 7, the VEV v, of H,, and A.

The charged-lepton superpotential at leading order is

«Q

(0]
Wer = —;Efﬂd(qug)l + 2

Ay

a3

ESHy(Ls)y + A
¢

A ESHg(L$3)1r (3.2)

where «;, 7 = 1,2,3, are dimensionless parameters, Ay denotes the flavor breaking scale,
and the subindices refer to the respective I's singlet components of tensored matter states
in the parentheses. The charged-lepton mass matrix can be determined by the I's triplet
flavon VEV (¢3) as in Model 1 of [20]. However, we have taken a different value of (¢3),
which eventually leads to a better fit.



The flavon superpotential is given by

Wy = Ny B1(3¢3 + B2(3¢3¢3 + ﬁ@3¢3¢3¢3 + Ay BaCrrdprr + fiﬁﬂ%@s(ﬁs

28 Cgnbuon (33
¢

where 5;, i = 1,...,6, are dimensionless couplings. This superpotential gives rise to the
desired VEV pattern with driving superfields ¢,., r = 1”, 3, and an extra flavon ¢y/, where
the subindices label the respective A4 representations. To fix the flavon superpotential,
we impose a symmetry U(1)g x Zg, similarly to [8, 99]. As usual, the U(1)g R-symmetry
forbids the renormalizable terms in the superpotential that violate lepton and/or baryon
numbers. We remark that the flavon superpotential eq. (3.3) is important for both finding
the correct vacuum alignment for the flavons, as discussed below, and for identifying a viable
DM candidate as described in section 5.

The flavon VEV is then attained by demanding that SUSY remains unbroken at a first
stage, i.e. we require vanishing F-terms. Recall that the F-term scalar potential in a global
supersymmetric theory is given schematically by

V = F'K;F7, (3.4)

where

i ow ] jx i7 - . - ks
Fl=—or,  F=F and K7 = (K ' = (—ir +ir)"d; . (3.5)

Recall that a superfield ® can be expanded in its components as [104, Equation 2.117]
_ 1 .-
® = &(z) — 00”00, (z) — 192928%(1‘) + V2009 ()

+ \}5028“%(30)0#9‘ + 02 Fa () | (3.6)

where we have used the notation that ® represents both the superfield and its scalar component,
g is the fermionic component and Fg is the F-term. For SUSY to be preserved, we must
have (Fp) = 0. We assume that the only possible sources of SUSY breaking are given either
by 7 or a hidden sector. Thus, we demand <F¥,i> = 0, for all i, where (' represents the
matter fields in our model (cf. eq. (2.13)). We solve these F-term equations at the VEV’s
of the flavons ¢3 and ¢y and Higgs fields,

(3) =tv3(1,a,0)",  (¢1)=tvr, (H)=tv, and (Hg)=tvq. (3.7)

where we assume a, b, v3, v € R. All F-term equations are trivially satisfied except the
ones corresponding to the driving fields given by

<F<32> = O a‘nd <FCI//> = 0 bl (38)
where (3;, ¢ = 1,2, 3, are the three components of the triplet. Thus, we obtain the following
relations A2

A
o = e@h)f® B = b,
3
A2 A2 (3.9)
Bs = csla, 5)54% 7 Bs = ce(a, b)ﬁlff ,
'U3 Ull



where ¢;(a,b), for i = 2,3,5,6, are coefficients that depend only on the values of a,b. The
numerical values of a, b dictate the charged lepton mass matrix. Hence, they are determined
by the fit to the flavor parameters that we do in section 4. Through the flavor parameter
fit, we have found values of (¢3), (¢1/) that satisfy simultaneously eq. (3.9), thus yielding
vacuum alignment.

Finally, we assume that the flavon VEV scale from eq. (3.7) is below Ay, such that

vy = vy = 01A¢ (310)

Furthermore, we identify the DM candidate as a Dirac fermion built as a combination of
the Weyl components of (; and ¢; with the scalar component of the flavon ¢; serving as a
mediator. The parameters in eq. (3.10) shall play an important role in finding the current
DM abundance since they set the couplings in eq. (3.3).

4 Flavor fit

Having defined our model of modular flavored dark matter, we next assess its capability
to reproduce the experimentally observed charged-lepton masses, neutrino squared mass
differences, and the mixing parameters of the PMNS matrix while providing predictions
for yet undetermined observables, such as the three absolute neutrino masses, the Dirac
CP phase, and the two Majorana phases.

The explicit neutrino mass matrix can be determined from eq. (3.1). By calculating
the tensor products to obtain the symmetry invariant part, we find that the neutrino mass
matrix is predicted to be

, |2V —Y3 Y2
M, = UXU Y3 2V, -Y; | (4.1)
=Y, =Y 2Y;3

The charged-lepton mass matrix Mcy, arises from eq. (3.2). Substituting the flavon VEVs
as defined in eq. (3.7) and calculating the tensor products, we arrive at

a1 a1b aja a1 a1b aia
VU3
MCL = T Q20 Q9 OéQb = 0.11)d Qoa QO OéQb ) (42>
¢
asb asa as asb aza ag

where we have used eq. (3.10). The values of v,, and vy are determined by the Higgs VEV,
v=/v2+ v?l = 246 GeV, and tan g = Z—‘;, which we assume to be tan 8§ = 60. The neutrino
mass scale is determined by A, while we choose a3 to set the mass scale of charged leptons.
By using the standard procedure (see e.g. ref. [98]), one arrives at the lepton masses and the
PMNS mixing matrix. For our model, the resulting 12 flavor observables depend on 6 real
dimensionless parameters Re7, Im7, a, b, ay/as, and as/ag, as well as two dimensionful
overall mass scales v2/A and 0.1lvgas.

To show that the model can accommodate the observed flavor structure of the SM
lepton sector, we scan its parameter space and compare the resulting flavor observables to



observables best-fit values

me/my, 0.00473 £ 0.00004
my/mr 0.0450 £ 0.0007
Yr 0.795 £ 0.012

Am3,/107° [eV?]  7.41703%

Am2, /1073 [éV?]  —2.48710:021

sin2 01 0.307+5:017
sin® 013 0.02222(-00057
sin? 63 0.56870:05%

Sep /T 1.52+013

Table 3. Experimental central values and 1o uncertainties for the masses and mixing parameters of
the lepton sector. The data for the neutrino oscillation parameters is taken from the global analysis
NuFIT v5.3 [105] for inverted ordering taking the Super-Kamiokande data into account. The charged-
lepton mass ratios and the tau Yukawa coupling y, are taken from ref. [106] with Mgysy = 10 TeV,
tan 5 = 60, and 7, = 0.

experimental data, with the best-fit values shown in table 3. As an approximate measurement

of the goodness of our fit, we introduce a y? function
x> = >xi, (4.3)
7

consisting of a quadratic sum of one-dimensional chi-square projections for each observable.
Here, we assume that the uncertainties of the fitted observables are independent of each other
and do not account for the small correlations among experimental errors of sin® 693 and other
quantities. For the mixing angles and the neutrino squared mass differences, we determine the
value of x? directly from the one-dimensional projections determined by the global analysis
NuFIT v5.3 [105], which are available on their website. This is necessary to account for the
strong non-Gaussianities in the uncertainties of the mixing parameters in the PMNS matrix.
For these observables, we refrain from considering corrections from renormalization group
running, given that their contribution is expected to be small compared to the size of the
experimental errors. For the charged-lepton masses, we determine the value of x7 by

i = Hiexp. — Mimodel ’ (44)
or}

where 1; model denotes the resulting value for the ith observable of the model, while 1 exp.
and o; refer to its experimentally observed central value and the size of the 1o uncertainty
interval given in table 3, respectively. The total value of x? for all considered observables
may then be interpreted to indicate an agreement with the experimental data at a \/x2 o
confidence level (C.L.).

To scan the parameter space of the model and minimize the x? function, we use the
dedicated code FlavorPy [107]. We find that the model is in agreement with current



1.4 1.010
13 1008
1.2 1.006 %
=11 1.004
1.0 1.002
0.9 1.000
0806 —04  —02 00 02 04 06 "% 015 —0010 —0005 0000 0005 0010 0015
Re 7 Re 1
E | |
01 4 9 16 25
X

Figure 1. Regions in moduli space that yield fits with x? < 25. The green, yellow, and orange
colored regions may be interpreted as the 1o, 20, and 30 confidence intervals, respectively, while the
opaque red fades out until the 50 barrier is reached. The best-fit point of eq. (4.5) is marked by x.
The unshaded area corresponds to the fundamental domain of SL(2,Z).

experimental observations. The best-fit point in the parameter space of our model is at

7= —0.0119+1.005i, a=—0.392, b= 0.380 0.1asvg = 0.130 GeV
2
M _ 990, X2 _ 478 %1073, Y —0.0221eV, (4.5)
a3 (6%} A

where we obtain y2 = 0.08, meaning that all resulting observables are within their experimental
1o interval, cf. also eq. (4.7). In figure 1, we present the regions in moduli space that yield
results with y? < 25.

For the specific values given in eq. (4.5), the relations among the couplings of the flavon
superpotential of eq. (3.9) read

Po = 4.270 , P3 = 83.5081 , Bs = 14203, , Be = 121p; . (4.6)

Any values of 8; and (4 then solve the F-term equations of the driving fields, cf. eq. (3.8),
and ensure the specific vacuum alignment of eq. (4.5). The resulting observables at the
best-fit point given in eq. (4.5) lie well within the 1o intervals of the experimental data
shown in table 3, and read

me/m, = 0.00473 , m,/m, = 0.0451 , yr = 0.795 ,
sin® 012 = 0.306 , sin?f13 = 0.02231,  sin®#fy3 = 0.568 , (1)
Sep/m=152rad,  mi/m = 1.41 rad, n2/m = 0.351 rad '
m1 = 49meV , mg = b0 meV , ms3 = 0.75meV .

Moreover, the resulting sum of neutrino masses, the neutrino mass observable in *H beta
decay, and the effective neutrino mass for neutrinoless double beta decay, are

Zmi = 100meV , mg = 50meV , and mpgg = 48 meV , (4.8)

,10,
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10~ 1073 1072 1071 10° 7x 1071 8 x 1071

Figure 2. The effective neutrino mass for neutrinoless double beta decay as a function of the lightest
neutrino mass. The experimentally allowed region within 3¢ for inverted ordering is the region between
the two dashed lines, while the region allowed in our model is represented by the colored area. The
gray-shaded areas are excluded by KamLAND-Zen [110] or cosmological bounds [108, 111]. We remark
that the KamLAND-Zen upper limit for the effective neutrino mass mgg depends on the used nuclear
matrix element estimate. While all estimates applied by the KamLAND-Zen collaboration give rise
to an upper bound of the effective mass to be below 156 meV (dark gray area), only some estimates
yield limits that are smaller than 36 meV (light gray area) [110]. Hence, we find that the sample point
marked by x is only challenged by some nuclear matrix element estimates while still being allowed
according to the majority of estimates.

which are consistent with their latest experimental bounds > m; < 120meV [108], mg <
800 meV [109], and mpgg < 156 meV [110]. It is to be noted that our predicted value of the
effective neutrino mass mgg is challenged by experimental bounds determined with certain
nuclear matrix element estimates [110], as illustrated in figure 2.

We remark that the model can be consistent with both octants of 63, while only being
compatible with Dirac CP-violating phases in the range of 1.36 < (557; < 1.55 at a 30 C.L.,
as shown in figure 3. Moreover, the inverted-ordering neutrino masses are predicted to lie
within the narrow ranges

48meV < mi < 50meV, 49meV < mg < 51lmeV, 0.72meV < msz < 0.78meV , (4.9)
at a 30 C.L. The numerical analysis suggests that the model prefers a neutrino spectrum with

inverted ordering. For a normal-ordering spectrum we only obtain a match with experimental
data just barely in the 3o interval with y? ~ 7.

5 DM abundance

Let us start by identifying the DM candidate. Since the flavon field only couples to charged
leptons, the phenomenological implications for DM in our model are determined by the
charged-lepton Yukawa interactions and the flavon potential. The interactions between the

— 11 —
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Figure 3. Predicted regions in the space of sin? fo3 and 5ép with 2 < 25 in our model. The black
lines indicate the regions that are experimentally admissible at a 1, 2, and 30 C.L. as obtained by the
global analysis NuFIT v5.3 [105].

SM charged leptons and the flavon scalar ¢3 are given by

3
Low = = Flaitbpe (pea), +he (5.1)
=1

— -y Saivpe (v (6 +va(La,b)T)) +he.,
=1

where 1 denotes the fermionic part of the charged-lepton component of L. In the last line,
we develop the flavon ¢3 in the vacuum with its VEV given by v3(1,a,b)”, see eq. (3.7).
From the leading flavon superpotential terms in eq. (3.3),2 we obtain

1 1 1
Lo = = 5AsB1 (Wathon)y — 582 (Vervonds)y — 5AoBa (V¥ ), +he  (5.2)
1 1
= = 5 Ao (Weys,)y — 5P (Veses (63 +us(la b))

- %A¢ﬁ4 (Yents, ), +hec.
= - %Aqﬁﬁl (Yes¥ps)y — 4.2727& (1/143%3 (¢>3 + v3(1,a, b)T))l

. %A¢ﬁ4 (Yeuntsy ), +he,

where ¢3 is again expanded around its VEV in the second line and we use the relations
of eq. (4.6) in the last line.

The DM candidate is the lowest mass-state Dirac fermion built as a linear combination
of the Weyl components of the driving fields and flavon fields, ¥¢,,1¢,, whereas the mediator
is a linear combination of the flavon scalars. The particle content relevant for DM production
is outlined in table 4. After the Higgs and the flavons acquire VEVs as given in eq. (3.7),
the symmetry group of table 2 gets broken down to U(1)gy x U(1)g.

%We ignore the terms suppressed by Ag.

3The reheating temperature is chosen to be Tk = 150 GeV such that DM production begins after Electroweak
(EW) symmetry breaking. Recall that the EW symmetry breaking temperature of crossover is around 160 GeV
with a width of 5 GeV [112]. We acknowledge that higher reheating temperatures are also possible, in which
case, the production of DM happens before EW symmetry breaking. We leave this possibility for future work.
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wEi wEg ¢3,i o w¢3,i 1/’(3,1' ¢¢>1/ wg’lu
Ulga -1 +1 0 0 0 0 0 0
U(1)g 0 0 0 0 -1 +1 -1 +1

Table 4. Particle content for DM production.

Yo Von 2o Von
>¢k
(%70 ~ ,8204771
i 2
wEi ¢C@ ¢Ez 1/}<Z
(a) DM production diagram. (b) Effective DM production dia-
gram.

Figure 4. (a). The indices i, j,m indicate the three possible charged-lepton flavor states, while
the indices n, k, ¢ indicate the three possible components of the triplet plus the non-trivial singlet
of flavons and driving fields. DM is identified as the lowest mass-state of 1¢,,%4,. The mediator
is the scalar flavon ¢y. (b) Since the effective mass of the flavon scalar is expected to be very big,
mg > mg,, My, , then the diagram shrinks to an effective 4—fermion interaction. This leads to a
preferred freeze-in scenario.

Interactions in egs. (5.1) and (5.2) allow for processes as shown in the diagrams in
figure 4(a). Furthermore, we also consider the scalar potential

= 37WK2-58W*

v dp;  Op

+ Y |igdsl® + [mgr|? (5.3)

*
7 =123

where we have added the soft-masses my for the flavon scalars. We assume that my is the
same for the four scalars and should be of order of the SUSY breaking scale. It has been shown
in [113] that for modular A4 supersymmetric models, the SUSY breaking scale is constrained
to be above 6 TeV. Therefore, we choose values of order mg = 20 — 1000 TeV. Furthermore,
the A-term in eq. (2.20) does not play a significant role in DM production at tree-level since
the production of DM through flavon scalar annihilations are suppressed due to the low
reheating temperature we consider; therefore, we also ignore the A-term in our analysis.
It turns out that the correct DM relic abundance can be obtained with a freeze-in
scenario [114] in this model (cf. [99] where a freeze-out production mechanism is utilized).
This can be seen as follows. First, note that the effective scalar flavon mass my is obtained by
diagonalizing the mass matrix obtained from eq. (5.3). If we assume that my > mg,, my,,,
where mp,, my,. = mpm ~ AyB1 represent the mass of the charged leptons and the DM
respectively, then the mediator mass (mg ~ Mg + my, 4>c) is much larger than the DM and the
charged-lepton masses. Therefore, the diagram figure 4(a) reduces to the effective 4—fermion

operator as indicated in figure 4(b) with a coupling of ~ 22%= . In a freeze-out mechanism, if
m

¢
the rate (ov) at which DM is annihilated decreases, then the amount of DM relic abundance
increases. Since we must require o < 4w to retain perturbativity, and we expect a; = —6.97,
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as explained at the end section 4, then

2 2
Baoum,

2
Mg

(ov) ~ 3 (5.4)
¢

‘88

Using micrOMEGAs 5.3.41 [115-117], we find that for the chosen values of A, and mg, too
much DM is produced. Since increasing mg or lowering 2 would only decrease (ov), the DM
abundance can not be decreased to the observed DM abundance in a freeze-out scenario.*
On the other hand, for a freeze-in scenario, we have the opposite behavior. Specifically, if
(ov) decreases, the amount of produced DM also decreases. So, we can choose smaller 32 or
larger my values to obtain the observed relic abundance of DM in the Universe.

We now proceed to present the predictions of our model for the DM abundance after
performing a parameter scan. We use micrOMEGAs 5.3.41 [115-117] for the DM abundance
computation and FeynRules 2.0 [118] to create the CalcHEP [119] model files. As mentioned
earlier, we assume tan § = 60 and a low reheating temperature of Tg = 150 GeV.

From our discussion we see that we have 4 free parameters to determine the DM in

our model:
1. the scalar flavon soft-mass m,
2. the flavor breaking scale Ay,
3. the coupling f; in eq. (3.3), and
4. the coupling 4 in eq. (3.3).

We fix 1076 < By, 84 < 107* and 20 TeV < g, Ay < 1000 TeV. These bounds for the
couplings (1, B4 respect the perturbativity of all the couplings g; (cf. eq. (4.6)).

In figure 5 we show the prediction for DM relic abundance as a function of 8; and fy,
for Ay > my (figure 5(a)), my = Ay (figure 5(b)), and my < Ay (figure 5(c)). The unshaded
region indicates the excluded parameter space where too much DM is produced. We see
that all plots in figure 5 exhibit similar behavior. It is possible to have a coupling up to
B4, 1 = 1074, but not at the same time. This is consistent with the fact that freeze-in normally
requires small couplings [114]. Furthermore, the abundance increases as we increase either (;
or 34, which is consistent with the fact that the DM relic abundance increases with (ov).

Figure 6 shows the predicted DM relic abundance as a function of mg and Ay for
B1 > P4 (figure 6(a)), f1 = Ba (figure 6(b)), and 1 < B4 (figure 6(c)). The unshaded space
represents the excluded parameter space. We observe a similar behavior for the three plots in
figure 6. The DM abundance decreases if either mg or Ay grows. Furthermore, a soft-mass
of mg = 20TeV and a simultaneous flavon breaking-scale Ay = 20TeV is excluded in all
cases for the chosen values of other parameters.

Finally, in figure 7 we show the correlation between the minimum scalar flavon mass
Mgy and DM mass mpy for fixed values of 51 > B4 (figure 7(a)), f1 = Ba (figure 7(b)),
and 31 < B4 (figure 7(c)). By comparing figures 6 and 7, we find that for a given value of the

“If we had chosen high enough reheating temperatures, then the A—terms of eq. (2.20) would have
dominated the production of DM. In this case, the connection between DM and flavor parameters is weakened.
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Figure 5. Predicted DM relic abundance as a function of log,, (81) and log;, (54) with fixed values
of mg and Ay at some benchmark values. We choose T = 150 GeV. The dashed black line denotes
the relic DM abundance Qpy = 0.265.

soft-mass m, the minimum scalar flavon mass mg,,,, constrained by the DM relic abundance
can be derived. We see that the scalar flavon mass can be as low as ~ 63 TeV for all cases
illustrated in figure 7. Moreover, the DM mass can be as low as ~ 16 GeV for f; = 6 x 107°
and B4 = 10~%. Note that the big mass splitting between the mediator and the DM, as seen in
figure 7, is a consequence from the big soft-mass contribution from supersymmetry breaking
to the mediator mass (see discussion before eq. (5.4)). A mechanism for supersymmetry
breakdown is beyond the scope of this work and must be explored elsewhere.

To conclude this section, let us comment on the bounds from direct detection for this
model. The energy-independent cross section for the scattering process ¢ e~ — 1 e~ between
a DM particle ¢ and the electron e~ is given by (cf. [120, Equations (9) and (10)])

Hz " a? 52

Gop = , 5.5
v m (qrzef—mi)2 59

where gref = agpme is the reference momentum (with the electromagnetic fine-structure
constant agps =~ 1/137 and the electron mass m.), Heqs denotes the reduced mass of the DM
candidate and the electron, o and 3 are respectively the mediator-electron and mediator-DM
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Figure 6. Predicted DM relic abundance as a function of log;, (me/GeV) and log,, (Ay/GeV) with
fixed values of 81 and 4 at some benchmark values. We choose Tg = 150 GeV. The dashed black line
denotes the relic DM abundance Qpy = 0.265.

couplings, and my is the mediator mass. Assuming m, = 1GeV, o = 1073, f =10"* and
mg = 20 TeV (consistent with couplings shown in eq. (4.5) and figures 5-7), we obtain

Geyp ~ 1070 cm? | (5.6)
which is unfortunately found below the direct detection bounds from XENONI1T [121], for
a DM mass of 1 GeV. It is known that the detection bounds can change depending on the
energy-dependence of the cross section, or on the form of the so-called DM form factor

Fpm(q)-
significantly increase to become experimentally detectable (see [122, figure 3]). This implies

However, we do not expect the energy-independent cross section in eq. (5.6) to

that the DM features of our model require new experimental settings.

6 Conclusion

We constructed a flavor model based on the finite modular group I's = A4 that simultaneously
explains the flavor parameters in the lepton sector and accounts for the observed DM relic

abundance in the Universe. The 12 lepton flavor parameters are determined by 8 real
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Figure 7. Predicted DM relic abundance as a function of the minimum mediator scalar flavon mass
logo (Mg /GeV) and DM mass log;, (mpm/GeV) for fixed 81 and f4 at some benchmark values.
We fix T = 150 GeV. The dashed black line denotes the relic DM abundance Qpy = 0.265.

parameters: the two components of the modulus VEV, the four flavon VEVs, (¢;), and two
dimensionful parameters that set the mass scales of charged-lepton and neutrino masses. We
identify a DM candidate composed of the fermionic parts of the flavon superfields and the
driving superfields. The mediator is the scalar part of the flavon superfield which interacts
with the charged-lepton sector of the SM. We obtain a good fit to the lepton flavor parameters
(3 charged lepton masses, 3 mixing angles, 1 CP phase, 2 neutrino squared mass differences)
with x? = 0.08 for an inverted-hierarchy neutrino spectrum. The lepton flavor fit fixes the
couplings of the charged leptons to the DM mediator as well as the flavon VEVs (¢;). These
VEVs satisfy the F-term equations to retain supersymmetry at high energies, determining
thereby the coupling between our DM candidate and the mediator. Interestingly, our model
exhibits 4 additional degrees of freedom that are left free and serve to achieve a DM relic
abundance which does not exceed the observed value Qcpy = 0.265. These parameters are 2
dimensionless couplings 31, 84, the flavor breaking scale Ay, and the soft-mass for the flavon
mg. We find that if the mediator mass is assumed to be much larger than the DM and the
charged-lepton masses, then the appropriate DM production mechanism is freeze-in rather
than freeze-out. We observe that a viable DM relic abundance can be generated in regions
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of the parameter space constrained by 1076 < £, 84 < 1074, 20 TeV < mg, Ay < 1000 TeV,
tan 8 = 60, and Tr = 150 GeV.

Although some amount of tuning is necessary in our model to identify the best parameter
values, we point out that it is the choice of charges and modular weights that render the
right flavon superpotential, which in turn delivers the alignment of the flavon VEVs (¢;).
Further, the phenomenologically viable value of the modulus VEV (7) might be achieved
through mechanisms as in [97]. The flavor structure of our model, that includes the flavon
superpotential, determines the properties of our DM candidate. In particular, a different
choice of flavor parameters in eqs. (4.5) and (4.6), which set the flavor predictions, strongly
influences the mass and production (e.g. freeze-in vs. freeze-out) of DM in our model.

As a feasible outlook of our findings, it would be interesting to study the possibility
of applying this new scenario in top-down models such as [88]. Furthermore, as the flavor
sector of our model only accounts for leptons, it should be extended to the quark sector as
a first direct step. In addition, in our scenario we expect the DM-nucleon cross section to
be too small to be directly compared with LUX [123], DEAP-3600 [124], PandaX-II [125],
DarkSide [126], EDELWEISS [127] and any other currently envisaged experiments of this
type. One should hence explore additional indirect evidence of our proposal. We leave these
intriguing questions for upcoming work.
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