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1 Introduction

The origin of the mass hierarchies and mixings among the three generations of fermions is
unexplained in the Standard Model (SM). One possible solution to address this so-called
flavor puzzle is the introduction of traditional flavor symmetries that allow for transformations
among fermions of different flavors. These symmetries are independent of moduli and are
known to provide explanations for the flavor structure of both the lepton and quark sectors [1–
7]. To achieve these results, models endowed with traditional flavor symmetries require the
introduction of two kinds of extra SM singlet scalars: i) flavons, whose vacuum expectation
value (VEV)s are responsible for the non-trivial flavor structure of fermions, and ii) driving
fields [8–15] that help to shape a suitable potential for obtaining the desired VEV pattern.
The traditional flavor symmetry framework based on non-Abelian discrete symmetries has
also proven helpful for dark matter (DM), where the flavor symmetry plays the role of a
stabilizer symmetry [16]. Furthermore, (not necessarily discrete) flavor symmetries can be
successfully combined to explain both DM and flavor anomalies from SM decays [17–19].

Another promising approach to explain the flavor parameters without introducing many
scalars is provided by so-called modular flavor symmetries [20–29]. This approach has
produced good fits for leptons [22, 25, 28, 30–41] and quarks [24, 42–53]. In this scenario,
instead of depending on flavon VEVs, Yukawa couplings are replaced by multiplets of modular
forms depending on the half-period ratio τ , which can be considered a complex modulus. The
basic problem then reduces to explaining why τ stabilizes at its best-fit value ⟨τ⟩, for which
being close to the symmetry-enhanced points τ = i, e2πi/3, i∞ can be advantageous [54–58].
Although this scheme has the potential to avoid the need for any additional scalar field, the
presence of flavons in addition to the modulus can be useful too (see, e.g., Model 1 of [20]
and [21]). Similarly to the traditional flavor case, modular flavor symmetries can also serve
as stabilizer symmetries for DM candidates [59–63]
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Modular flavor symmetries arise naturally in top-down constructions, such as magnetized
extra dimensions [64–77] or heterotic string orbifolds [78–89], where they combine with
traditional flavor symmetries, building an eclectic flavor group [90]. Remarkably, these
top-down approaches provide a natural scheme where not only realistic predictions arise [88],
but also the modulus τ can be stabilized close to symmetry-enhanced points [91–97].

Motivated by these observations, we propose a new supersymmetric model combined
with modular flavor symmetries, which simultaneously accomplishes the following:

1. Addressing the flavor puzzle, specifically the origin of the lepton masses and mixing
parameters;

2. Achieving the vacuum alignment for the flavons;

3. Providing a suitable DM candidate with the correct observed DM abundance, ΩDM =
0.265(7) [98].

In order to tackle these issues, we propose a simple supersymmetric model based on a
Γ3 ∼= A4 modular flavor symmetry. The model resembles Model 1 of [20], where the neutrino
masses arise from a Weinberg operator and the charged-lepton Yukawa couplings are given by
the VEV of a flavon. It also resembles the proposal of [99], which studies a DM candidate in
a non-modular A4 model without fitting flavor parameters. In our model, the flavon potential
is fixed by the flavor symmetry together with a U(1)R × Z2 symmetry, which determines
the couplings between the driving field and flavon superfields. The model gives a very good
fit to the leptonic flavor parameters, with a low value of χ2. Finally, we identify a Dirac
fermion composed by the Weyl fermionic parts of both the driving field and flavon superfields;
we perform a parameter scan for a correct DM abundance. The goal of this model is to
present a “proof of principle” that driving fields in modular supersymmetric flavor models
can account for both the flavon VEV ⟨ϕ⟩ and DM.

Our paper is organized as follows. In section 2, we review the basics of modular symmetries
and its application to solving the flavor puzzle. In section 3, we define our model. In section 4,
we present the numerical fit for the lepton flavor parameters. In section 5, we analyze
the relevant terms for DM production. We also argue why we need freeze-in (as opposed
to the more traditional freeze-out) mechanism for our model to work. We then present a
parameter scan for the available parameter space for our DM candidate. Finally, in section 6
we summarize our results and future directions for further constraints.

2 Modular symmetry

2.1 Modular groups and modular forms

The modular group Γ := SL(2,Z) is given by

Γ =


a b
c d

 ∣∣∣ a, b, c, d ∈ Z & ad− bc = 1

 , (2.1)
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and can be generated by

S =

 0 1
−1 0

 and T =

1 1
0 1

 , (2.2)

which satisfy the general presentation of Γ, ⟨S, T | S4 = (ST )3 = 1, S2T = TS2⟩. The
principle congruence subgroups of level N of Γ are defined as

Γ(N) := {γ ∈ Γ | γ = 1 mod N} , (2.3)

which are infinite normal subgroups of Γ with finite index. We can also define the in-
homogeneous modular group Γ := Γ/{±1} ∼= PSL(2,Z) and its subgroups Γ(N) with
Γ(2) := Γ(2)/{±1} and Γ(N) := Γ(N) for N > 2 (as −1 does not belong to Γ(N)). An
element γ of a modular group acts on the half-period ratio, modulus τ , as

γ τ = aτ + b

cτ + d
, where τ ∈ H (2.4)

and H is the upper complex half-plane,

H := {τ ∈ C | Im τ > 0} . (2.5)

Modular forms f(τ) of positive modular weight k and level N are complex functions of τ ,
holomorphic in H, and transform as

f(τ) γ−→ f(γ τ) = (cτ + d)k f(τ) , γ ∈ Γ(N) . (2.6)

In this work, we restrict ourselves to even modular weights, k ∈ 2N, although it is known
that modular weights can be odd [28] or fractional [72, 100] in certain scenarios. Interestingly,
modular forms with fixed weight k and level N build finite-dimensional vector spaces, which
close under the action of Γ. It follows then that they must build representations of a finite
modular group that, for even modular weights, result from the quotient

ΓN := Γ/Γ(N) . (2.7)

Then, under a finite modular transformation γ ∈ Γ, modular forms of weight k are n-plets
(which are called vector-valued modular forms [101]) Y (τ) := (f1(τ), f2(τ), . . . , fn(τ))T of
ΓN , transforming as

Y (τ) γ−→ Y (γ τ) = (cτ + d)k ρ(γ)Y (τ) , (2.8)

where ρ(γ) ∈ ΓN is a representation of γ.

2.1.1 Finite modular group Γ3 ∼= A4

As our model is based on Γ3 ∼= A4, let us discuss some general features of this group and
its modular forms. Γ3 is defined by the presentation

Γ3 =
〈
S, T | S2 = (ST )3 = T 3 = 1

〉
. (2.9)
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1 1′ 1′′ 3 1 1′ 1′′ 3

ρ(S) 1 1 1 1
3


−1 2 2
2 −1 2
2 2 −1

 ρ(T ) 1 ω ω2


1 0 0
0 ω 0
0 0 ω2


Table 1. Irreducible representations of Γ3 ∼= A4. Here, ω := e2πi/3.

It has order 12 and the irreducible representations (in the complex basis) are given in table 1.
Besides 1a ⊗ 1b = 1c with c = a + b mod 3 and 1a ⊗ 3 = 3, where a, b, c = 0, 1, 2 count
the number of primes, we have the nontrivial product rule 3 ⊗ 3 = 1 ⊕ 1′ ⊕ 1′′ ⊕ 3S ⊕ 3A,
where S and A stand respectively for symmetric and antisymmetric. Considering two triplets
ρ = (ρ1, ρ2, ρ3)T and ψ = (ψ1, ψ2, ψ3)T, in our conventions the Clebsch-Gordan coefficients
of ρ ⊗ ψ are

(ρ⊗ ψ)1 = ρ1ψ1 + ρ2ψ3 + ρ3ψ2 , (ρ⊗ ψ)1′ = ρ1ψ2 + ρ2ψ1 + ρ3ψ3 ,

(ρ⊗ ψ)1′′ = ρ1ψ3 + ρ2ψ2 + ρ3ψ1 ,

(ρ⊗ ψ)3S
= 1√

3


2ρ1ψ1 − ρ2ψ3 − ρ3ψ2

2ρ3ψ3 − ρ1ψ2 − ρ2ψ1

2ρ2ψ2 − ρ3ψ1 − ρ1ψ3

 , (ρ⊗ ψ)3A
=


ρ2ψ3 − ρ3ψ2

ρ1ψ2 − ρ2ψ1

ρ3ψ1 − ρ1ψ3

 .

(2.10)

The lowest-weight modular forms of Γ3 furnish a triplet Y = (Y1, Y2, Y3)T of weight
kY = 2, whose components are given by [20]

Y1(τ) =
i
2π

η′ ( τ3 )
η
(
τ
3
) +

η′
(
τ+1

3

)
η
(
τ+1

3

) +
η′

(
τ+2

3

)
η
(
τ+2

3

) − 27η′(3τ)
η(3τ)

 ,

Y2(τ) = − i
π

η′ ( τ3 )
η
(
τ
3
) + ω2

η′
(
τ+1

3

)
η
(
τ+1

3

) + ω
η′

(
τ+2

3

)
η
(
τ+2

3

)
 ,

Y3(τ) = − i
π

η′ ( τ3 )
η
(
τ
3
) + ω

η′
(
τ+1

3

)
η
(
τ+1

3

) + ω2
η′

(
τ+2

3

)
η
(
τ+2

3

)
 ,

(2.11)

where η(τ) is the so-called Dedekind η function

η(τ) = q
1/24

∞∏
n=1

(1− qn) with q := e2πiτ . (2.12)

Higher-weight modular forms can be constructed from the tensor products of the weight
2 modular forms given in eq. (2.11).

2.2 Modular supersymmetric theories

We consider models with N = 1 global supersymmetry (SUSY), defined by the Lagrange
density

L =
∫

d2θ d2θ̄ K(Φ,Φ) +
(∫

d2 θW (Φ) + h.c.
)
, (2.13)
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where K(Φ,Φ) is the Kähler potential, W (Φ) is the superpotential, and Φ denotes collectively
all matter superfields φi of the theory and the modulus τ .

Under an element of the modular symmetry γ ∈ Γ, τ transforms according to eq. (2.4),
and matter superfields are assumed to transform as

φi
γ

// (cτ + d)−kiρi(γ)φi , (2.14)

where ki are also called modular weights of the field φi, which transform as ΓN multiplets.
Modular weights ki are not restricted to be positive integers because φi are not modular
forms. Analogous to eq. (2.8), the matrix ρi(γ) is a representation of the finite modular
flavor group ΓN .

For simplicity, we assume a minimal Kähler potential1 of the form

K(Φ,Φ) = − log(−iτ + iτ̄) +
∑
i

(−iτ + iτ̄)−ki |φi|2 . (2.15)

Making use of eq. (2.14), we see that K(Φ,Φ) transforms under a modular transformation
γ ∈ Γ as

K(Φ,Φ) γ
// K(Φ,Φ) + log(cτ + d) + log(cτ̄ + d) . (2.16)

Thus, realizing that the Kähler potential is left invariant up to a global supersymmetric
Kähler transformation, in order for the Lagrange density of eq. (2.13) to be modular invariant,
we need the superpotential to be invariant under modular transformations, i.e.

W (Φ) γ
// W (Φ) . (2.17)

The superpotential W (Φ) has the general form

W (Φ) = µij(τ)φiφj + Yijk(τ)φiφjφk +Gijkℓ(τ)φiφjφkφℓ , (2.18)

where µij(τ), Yijk(τ) and Gijk(τ) are modular forms of level N . Because of eq. (2.17), each
term of eq. (2.18) must be modular invariant. Let us illustrate how we can achieve this by
taking the trilinear coupling Yijk(τ)φiφjφk. The Yukawa coupling Yijk transforms under
a modular transformation γ ∈ Γ as

Yijk(τ)
γ

// (cτ + d)kY ρY (γ)Yijk(τ) , (2.19)

where kY is the even integer modular weight of the modular form Yijk(τ). Then, for
Yijk(τ)φiφjφk to be invariant and using the superfield transformations of eq. (2.14), we
must demand that kY = ki + kj + kk and that the product ρY ⊗ ρi ⊗ ρj ⊗ ρk contains
an invariant singlet.

Since we shall be concerned with SUSY breaking, let us briefly discuss the soft-SUSY
breaking terms in the Lagrange density. They are given by

Lsoft = − 1
2
(
Maλ̂

aλ̂a + h.c
)
− m̃2

i
¯̂φiφ̂i −

(
Aijkφ̂

iφ̂jφ̂k +Bijφ̂
iφ̂j + h.c.

)
, (2.20)

1In principle, there could be further terms in the Kähler potential with an impact on the flavor predic-
tions [102], which are ignored here.
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L (Ec
1, E

c
2, E

c
3) Hd Hu ϕ3 ϕ1′ ζ3 ζ1′′ Y (τ)

SU(2)L 2 1 2 2 1 1 1 1 1
U(1)Y −1

2 1 −1
2

1
2 0 0 0 0 0

Γ3 ∼= A4 3 (1,1′′,1′) 1 1 3 1′ 3 1′′ 3
ki 1 0 −1 0 0 0 0 0 2
U(1)R 1 1 0 0 0 0 2 2 0
Z2 0 0 0 0 0 −1 0 −1 0

Table 2. Quantum numbers under the SM gauge groups, U(1)R, Z2 and Γ3, as well as modular
weights ki of the matter fields in our model. All fields are neutral under SU(3)color.

where Ma are the gaugino masses, λ̂a are the canonically normalized gaugino fields, and m̃i

are the soft-masses. We use a notation, where φ̂i stands for both the canonically normalized
chiral superfield and its scalar component [103]. We do not assume any specific source of
SUSY breaking, and thus the parameters in eq. (2.20) are free, in principle. However, in
our model B−terms are forbidden at tree level and the A-terms do not play a role in DM
production at tree-level, see section 5.

3 Dark modular flavon model

We propose a model of leptons, governed by the modular flavor group Γ3 ∼= A4. In our model,
the lepton doublets L transform as a flavor triplet and charged-lepton singlets Ec

i transform as
three distinct singlets under Γ3. The particle content of our model is summarized in table 2.

In our model, neutrino masses arise from the Weinberg operator

Wν = 1
Λ (HuLHuLY (τ))1 , (3.1)

where Λ is the neutrino-mass scale and Y (τ) is the modular-form triplet Y = (Y1, Y2, Y3)T of
weight 2 given by eq. (2.11). Note that there exists no other modular multiplet of weight 2 in
Γ3 ∼= A4. Hence, under our assumptions, the neutrino sector obtained from eq. (3.1) is highly
predictive as it only depends on the parameter τ , the VEV vu of Hu, and Λ.

The charged-lepton superpotential at leading order is

WCL = α1
Λϕ

Ec
1Hd(Lϕ3)1 + α2

Λϕ
Ec

2Hd(Lϕ3)1′ + α3
Λϕ

Ec
3Hd(Lϕ3)1′′ , (3.2)

where αi, i = 1, 2, 3, are dimensionless parameters, Λϕ denotes the flavor breaking scale,
and the subindices refer to the respective Γ3 singlet components of tensored matter states
in the parentheses. The charged-lepton mass matrix can be determined by the Γ3 triplet
flavon VEV ⟨ϕ3⟩ as in Model 1 of [20]. However, we have taken a different value of ⟨ϕ3⟩,
which eventually leads to a better fit.
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The flavon superpotential is given by

Wϕ = Λϕβ1ζ3ϕ3 + β2ζ3ϕ3ϕ3 + β3
Λϕ

ζ3ϕ3ϕ3ϕ3 + Λϕβ4ζ1′′ϕ1′ + β5
Λϕ

ζ1′′ϕ1′ϕ3ϕ3

+ β6
Λϕ

ζ3ϕ3ϕ1′ϕ1′ , (3.3)

where βi, i = 1, . . . , 6, are dimensionless couplings. This superpotential gives rise to the
desired VEV pattern with driving superfields ζr, r = 1′′, 3, and an extra flavon ϕ1′ , where
the subindices label the respective A4 representations. To fix the flavon superpotential,
we impose a symmetry U(1)R × Z2, similarly to [8, 99]. As usual, the U(1)R R-symmetry
forbids the renormalizable terms in the superpotential that violate lepton and/or baryon
numbers. We remark that the flavon superpotential eq. (3.3) is important for both finding
the correct vacuum alignment for the flavons, as discussed below, and for identifying a viable
DM candidate as described in section 5.

The flavon VEV is then attained by demanding that SUSY remains unbroken at a first
stage, i.e. we require vanishing F -terms. Recall that the F -term scalar potential in a global
supersymmetric theory is given schematically by

V = F iKiȷ̄F̄
ȷ̄ , (3.4)

where

F i = −∂W
∂Φi , F̄ ȷ̄ = F j∗ and Kiȷ̄ = (Kiȷ̄)−1 = (−iτ + iτ)kiδij̄ . (3.5)

Recall that a superfield Φ can be expanded in its components as [104, Equation 2.117]

Φ = Φ(x)− iθσµθ̄∂µΦ(x)−
1
4θ

2θ̄2∂2Φ(x) +
√
2θψΦ(x)

+ i√
2
θ2∂µψΦ(x)σµθ̄ + θ2FΦ(x) , (3.6)

where we have used the notation that Φ represents both the superfield and its scalar component,
ψΦ is the fermionic component and FΦ is the F -term. For SUSY to be preserved, we must
have ⟨FΦ⟩ = 0. We assume that the only possible sources of SUSY breaking are given either
by τ or a hidden sector. Thus, we demand

〈
Fφi

〉
= 0, for all i, where φi represents the

matter fields in our model (cf. eq. (2.13)). We solve these F -term equations at the VEV’s
of the flavons ϕ3 and ϕ1′ and Higgs fields,

⟨ϕ3⟩ =: v3 (1, a, b)T , ⟨ϕ1′⟩ =: v1′ , ⟨Hu⟩ =: vu and ⟨Hd⟩ =: vd . (3.7)

where we assume a, b, v3, v1′ ∈ R. All F -term equations are trivially satisfied except the
ones corresponding to the driving fields given by

⟨Fζ3i
⟩ = 0 and ⟨Fζ1′′ ⟩ = 0 , (3.8)

where ζ3i, i = 1, 2, 3, are the three components of the triplet. Thus, we obtain the following
relations

β2 = c2(a, b)β1
Λϕ
v3

, β3 = c3(a, b)β1
Λ2
ϕ

v2
3
,

β5 = c5(a, b)β4
Λ2
ϕ

v2
3
, β6 = c6(a, b)β1

Λ2
ϕ

v2
1′
,

(3.9)
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where ci(a, b), for i = 2, 3, 5, 6, are coefficients that depend only on the values of a, b. The
numerical values of a, b dictate the charged lepton mass matrix. Hence, they are determined
by the fit to the flavor parameters that we do in section 4. Through the flavor parameter
fit, we have found values of ⟨ϕ3⟩ , ⟨ϕ1′⟩ that satisfy simultaneously eq. (3.9), thus yielding
vacuum alignment.

Finally, we assume that the flavon VEV scale from eq. (3.7) is below Λϕ, such that

v3 = v1′ = 0.1Λϕ . (3.10)

Furthermore, we identify the DM candidate as a Dirac fermion built as a combination of
the Weyl components of ζi and ϕi with the scalar component of the flavon ϕi serving as a
mediator. The parameters in eq. (3.10) shall play an important role in finding the current
DM abundance since they set the couplings in eq. (3.3).

4 Flavor fit

Having defined our model of modular flavored dark matter, we next assess its capability
to reproduce the experimentally observed charged-lepton masses, neutrino squared mass
differences, and the mixing parameters of the PMNS matrix while providing predictions
for yet undetermined observables, such as the three absolute neutrino masses, the Dirac
CP phase, and the two Majorana phases.

The explicit neutrino mass matrix can be determined from eq. (3.1). By calculating
the tensor products to obtain the symmetry invariant part, we find that the neutrino mass
matrix is predicted to be

Mν = v2
u

Λ


2Y1 −Y3 −Y2

−Y3 2Y2 −Y1

−Y2 −Y1 2Y3

 . (4.1)

The charged-lepton mass matrix MCL arises from eq. (3.2). Substituting the flavon VEVs
as defined in eq. (3.7) and calculating the tensor products, we arrive at

MCL = vdv3
Λϕ


α1 α1b α1a

α2a α2 α2b

α3b α3a α3

 = 0.1vd


α1 α1b α1a

α2a α2 α2b

α3b α3a α3

 , (4.2)

where we have used eq. (3.10). The values of vu and vd are determined by the Higgs VEV,
v =

√
v2
u + v2

d = 246GeV, and tan β = vu
vd

, which we assume to be tan β = 60. The neutrino
mass scale is determined by Λ, while we choose α3 to set the mass scale of charged leptons.
By using the standard procedure (see e.g. ref. [98]), one arrives at the lepton masses and the
PMNS mixing matrix. For our model, the resulting 12 flavor observables depend on 6 real
dimensionless parameters Re τ , Im τ , a, b, α1/α3, and α2/α3, as well as two dimensionful
overall mass scales v2

u/Λ and 0.1vdα3.
To show that the model can accommodate the observed flavor structure of the SM

lepton sector, we scan its parameter space and compare the resulting flavor observables to
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observables best-fit values
me/mµ 0.00473± 0.00004
mµ/mτ 0.0450± 0.0007
yτ 0.795± 0.012
∆m2

21/10−5 [eV2] 7.41+0.21
−0.20

∆m2
32/10−3 [eV2] −2.487+0.027

−0.024

sin2 θ12 0.307+0.012
−0.011

sin2 θ13 0.02222+0.00069
−0.00057

sin2 θ23 0.568+0.016
−0.021

δℓCP/π 1.52+0.13
−0.15

Table 3. Experimental central values and 1σ uncertainties for the masses and mixing parameters of
the lepton sector. The data for the neutrino oscillation parameters is taken from the global analysis
NuFIT v5.3 [105] for inverted ordering taking the Super-Kamiokande data into account. The charged-
lepton mass ratios and the tau Yukawa coupling yτ are taken from ref. [106] with MSUSY = 10TeV,
tan β = 60, and η̄b = 0.

experimental data, with the best-fit values shown in table 3. As an approximate measurement
of the goodness of our fit, we introduce a χ2 function

χ2 =
∑
i

χ2
i , (4.3)

consisting of a quadratic sum of one-dimensional chi-square projections for each observable.
Here, we assume that the uncertainties of the fitted observables are independent of each other
and do not account for the small correlations among experimental errors of sin2 θ23 and other
quantities. For the mixing angles and the neutrino squared mass differences, we determine the
value of χ2

i directly from the one-dimensional projections determined by the global analysis
NuFIT v5.3 [105], which are available on their website. This is necessary to account for the
strong non-Gaussianities in the uncertainties of the mixing parameters in the PMNS matrix.
For these observables, we refrain from considering corrections from renormalization group
running, given that their contribution is expected to be small compared to the size of the
experimental errors. For the charged-lepton masses, we determine the value of χ2

i by

χi = µi,exp. − µi,model
σi

, (4.4)

where µi,model denotes the resulting value for the ith observable of the model, while µi,exp.
and σi refer to its experimentally observed central value and the size of the 1σ uncertainty
interval given in table 3, respectively. The total value of χ2 for all considered observables
may then be interpreted to indicate an agreement with the experimental data at a

√
χ2 σ

confidence level (C.L.).
To scan the parameter space of the model and minimize the χ2 function, we use the

dedicated code FlavorPy [107]. We find that the model is in agreement with current
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Figure 1. Regions in moduli space that yield fits with χ2 ≤ 25. The green, yellow, and orange
colored regions may be interpreted as the 1σ, 2σ, and 3σ confidence intervals, respectively, while the
opaque red fades out until the 5σ barrier is reached. The best-fit point of eq. (4.5) is marked by x.
The unshaded area corresponds to the fundamental domain of SL(2,Z).

experimental observations. The best-fit point in the parameter space of our model is at

τ = −0.0119 + 1.005i , a = −0.392 , b = 0.380 , 0.1α3vd = 0.130GeV
α1
α3

= −22.0 , α2
α3

= 4.78× 10−3 ,
v2
u

Λ = 0.0221 eV , (4.5)

where we obtain χ2 = 0.08, meaning that all resulting observables are within their experimental
1σ interval, cf. also eq. (4.7). In figure 1, we present the regions in moduli space that yield
results with χ2 ≤ 25.

For the specific values given in eq. (4.5), the relations among the couplings of the flavon
superpotential of eq. (3.9) read

β2 = 4.27β1 , β3 = 83.5β1 , β5 = 142β4 , β6 = 121β1 . (4.6)

Any values of β1 and β4 then solve the F -term equations of the driving fields, cf. eq. (3.8),
and ensure the specific vacuum alignment of eq. (4.5). The resulting observables at the
best-fit point given in eq. (4.5) lie well within the 1σ intervals of the experimental data
shown in table 3, and read

me/mµ = 0.00473 , mµ/mτ = 0.0451 , yτ = 0.795 ,
sin2 θ12 = 0.306 , sin2 θ13 = 0.02231 , sin2 θ23 = 0.568 ,
δℓCP/π = 1.52 rad , η1/π = 1.41 rad, η2/π = 0.351 rad ,

m1 = 49meV , m2 = 50meV , m3 = 0.75meV .

(4.7)

Moreover, the resulting sum of neutrino masses, the neutrino mass observable in 3H beta
decay, and the effective neutrino mass for neutrinoless double beta decay, are∑

mi = 100meV , mβ = 50meV , and mββ = 48meV , (4.8)
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Figure 2. The effective neutrino mass for neutrinoless double beta decay as a function of the lightest
neutrino mass. The experimentally allowed region within 3σ for inverted ordering is the region between
the two dashed lines, while the region allowed in our model is represented by the colored area. The
gray-shaded areas are excluded by KamLAND-Zen [110] or cosmological bounds [108, 111]. We remark
that the KamLAND-Zen upper limit for the effective neutrino mass mββ depends on the used nuclear
matrix element estimate. While all estimates applied by the KamLAND-Zen collaboration give rise
to an upper bound of the effective mass to be below 156meV (dark gray area), only some estimates
yield limits that are smaller than 36meV (light gray area) [110]. Hence, we find that the sample point
marked by x is only challenged by some nuclear matrix element estimates while still being allowed
according to the majority of estimates.

which are consistent with their latest experimental bounds
∑
mi < 120meV [108], mβ <

800meV [109], and mββ < 156meV [110]. It is to be noted that our predicted value of the
effective neutrino mass mββ is challenged by experimental bounds determined with certain
nuclear matrix element estimates [110], as illustrated in figure 2.

We remark that the model can be consistent with both octants of θ23, while only being
compatible with Dirac CP-violating phases in the range of 1.36 < δℓCP < 1.55 at a 3σ C.L.,
as shown in figure 3. Moreover, the inverted-ordering neutrino masses are predicted to lie
within the narrow ranges

48meV < m1 < 50meV , 49meV < m2 < 51meV , 0.72meV < m3 < 0.78meV , (4.9)

at a 3σ C.L. The numerical analysis suggests that the model prefers a neutrino spectrum with
inverted ordering. For a normal-ordering spectrum we only obtain a match with experimental
data just barely in the 3σ interval with χ2 ≈ 7.

5 DM abundance

Let us start by identifying the DM candidate. Since the flavon field only couples to charged
leptons, the phenomenological implications for DM in our model are determined by the
charged-lepton Yukawa interactions and the flavon potential. The interactions between the
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Figure 3. Predicted regions in the space of sin2 θ23 and δℓCP with χ2 ≤ 25 in our model. The black
lines indicate the regions that are experimentally admissible at a 1, 2, and 3σ C.L. as obtained by the
global analysis NuFIT v5.3 [105].

SM charged leptons and the flavon scalar ϕ3 are given by

LCL = −
3∑
i=1

vd
2 αi ψEC

i
(ψEϕ3)1 + h.c (5.1)

−→ −
3∑
i=1

vd
2 αi ψEC

i

(
ψE

(
ϕ3 + v3(1, a, b)T

))
1
+ h.c. ,

where ψE denotes the fermionic part of the charged-lepton component of L. In the last line,
we develop the flavon ϕ3 in the vacuum with its VEV given by v3(1, a, b)T , see eq. (3.7).
From the leading flavon superpotential terms in eq. (3.3),2 we obtain

Lϕ = − 1
2Λϕβ1 (ψζ3ψϕ3)1 − 1

2β2 (ψζ3ψϕ3ϕ3)1 − 1
2Λϕβ4

(
ψζ1′′ψϕ1′

)
1
+ h.c. (5.2)

→ − 1
2Λϕβ1 (ψζ3ψϕ3)1 − 1

2β2
(
ψζ3ψϕ3

(
ϕ3 + v3(1, a, b)T

))
1

− 1
2Λϕβ4

(
ψζ1′′ψϕ1′

)
1
+ h.c.

= − 1
2Λϕβ1 (ψζ3ψϕ3)1 − 4.27

2 β1
(
ψζ3ψϕ3

(
ϕ3 + v3(1, a, b)T

))
1

− 1
2Λϕβ4

(
ψζ1′′ψϕ1′

)
1
+ h.c. ,

where ϕ3 is again expanded around its VEV in the second line and we use the relations
of eq. (4.6) in the last line.

The DM candidate is the lowest mass-state Dirac fermion built as a linear combination
of the Weyl components of the driving fields and flavon fields, ψζi

, ψϕi
, whereas the mediator

is a linear combination of the flavon scalars. The particle content relevant for DM production
is outlined in table 4. After the Higgs and the flavons acquire VEVs as given in eq. (3.7),3

the symmetry group of table 2 gets broken down to U(1)EM × U(1)R.
2We ignore the terms suppressed by Λϕ.
3The reheating temperature is chosen to be TR = 150 GeV such that DM production begins after Electroweak

(EW) symmetry breaking. Recall that the EW symmetry breaking temperature of crossover is around 160 GeV
with a width of 5 GeV [112]. We acknowledge that higher reheating temperatures are also possible, in which
case, the production of DM happens before EW symmetry breaking. We leave this possibility for future work.

– 12 –



J
H
E
P
1
2
(
2
0
2
4
)
0
9
1

ψEi ψEC
i

ϕ3,i ϕ1′ ψϕ3,i
ψζ3,i

ψϕ1′ ψζ1′′

U(1)EM −1 +1 0 0 0 0 0 0
U(1)R 0 0 0 0 −1 +1 −1 +1

Table 4. Particle content for DM production.

αm β2

ψEi
ψζℓ

ψEC
j

ψϕn

ϕk

(a) DM production diagram.

∼ β2αm

m2
ϕ

ψEi
ψζℓ

ψEC
j

ψϕn

(b) Effective DM production dia-
gram.

Figure 4. (a). The indices i, j,m indicate the three possible charged-lepton flavor states, while
the indices n, k, ℓ indicate the three possible components of the triplet plus the non-trivial singlet
of flavons and driving fields. DM is identified as the lowest mass-state of ψζℓ

, ψϕn . The mediator
is the scalar flavon ϕk. (b) Since the effective mass of the flavon scalar is expected to be very big,
mϕ ≫ mEi

,mψϕζ
, then the diagram shrinks to an effective 4−fermion interaction. This leads to a

preferred freeze-in scenario.

Interactions in eqs. (5.1) and (5.2) allow for processes as shown in the diagrams in
figure 4(a). Furthermore, we also consider the scalar potential

V = ∂W

∂φi
Kiȷ̄∂W

∗

∂φ∗
ȷ̄

+
∑

i=1,2,3
|m̃ϕϕ3,i|2 + |m̃ϕϕ1′ |2 , (5.3)

where we have added the soft-masses m̃ϕ for the flavon scalars. We assume that m̃ϕ is the
same for the four scalars and should be of order of the SUSY breaking scale. It has been shown
in [113] that for modular A4 supersymmetric models, the SUSY breaking scale is constrained
to be above 6TeV. Therefore, we choose values of order m̃ϕ = 20− 1000TeV. Furthermore,
the A-term in eq. (2.20) does not play a significant role in DM production at tree-level since
the production of DM through flavon scalar annihilations are suppressed due to the low
reheating temperature we consider; therefore, we also ignore the A-term in our analysis.

It turns out that the correct DM relic abundance can be obtained with a freeze-in
scenario [114] in this model (cf. [99] where a freeze-out production mechanism is utilized).
This can be seen as follows. First, note that the effective scalar flavon mass mϕ is obtained by
diagonalizing the mass matrix obtained from eq. (5.3). If we assume that m̃ϕ ≫ mEi ,mψϕζ

,
where mEi ,mψϕζ

= mDM ∼ Λϕβ1 represent the mass of the charged leptons and the DM
respectively, then the mediator mass (mϕ ∼ m̃ϕ +mψϕζ

) is much larger than the DM and the
charged-lepton masses. Therefore, the diagram figure 4(a) reduces to the effective 4−fermion
operator as indicated in figure 4(b) with a coupling of ∼ β2αm

m2
ϕ

. In a freeze-out mechanism, if
the rate ⟨σv⟩ at which DM is annihilated decreases, then the amount of DM relic abundance
increases. Since we must require β2 ≪ 4π to retain perturbativity, and we expect α1 = −6.97,
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as explained at the end section 4, then

⟨σv⟩ ∼
∣∣∣∣∣β2αm
m2
ϕ

∣∣∣∣∣
2

≪
∣∣∣∣∣ 88m2

ϕ

∣∣∣∣∣
2

. (5.4)

Using micrOMEGAs 5.3.41 [115–117], we find that for the chosen values of Λϕ and m̃ϕ, too
much DM is produced. Since increasing mϕ or lowering β2 would only decrease ⟨σv⟩, the DM
abundance can not be decreased to the observed DM abundance in a freeze-out scenario.4

On the other hand, for a freeze-in scenario, we have the opposite behavior. Specifically, if
⟨σv⟩ decreases, the amount of produced DM also decreases. So, we can choose smaller β2 or
larger mϕ values to obtain the observed relic abundance of DM in the Universe.

We now proceed to present the predictions of our model for the DM abundance after
performing a parameter scan. We use micrOMEGAs 5.3.41 [115–117] for the DM abundance
computation and FeynRules 2.0 [118] to create the CalcHEP [119] model files. As mentioned
earlier, we assume tan β = 60 and a low reheating temperature of TR = 150GeV.

From our discussion we see that we have 4 free parameters to determine the DM in
our model:

1. the scalar flavon soft-mass m̃ϕ,

2. the flavor breaking scale Λϕ,

3. the coupling β1 in eq. (3.3), and

4. the coupling β4 in eq. (3.3).

We fix 10−6 ≤ β1, β4 ≤ 10−4 and 20TeV ≤ m̃ϕ, Λϕ ≤ 1000TeV. These bounds for the
couplings β1, β4 respect the perturbativity of all the couplings βi (cf. eq. (4.6)).

In figure 5 we show the prediction for DM relic abundance as a function of β1 and β4,
for Λϕ > m̃ϕ (figure 5(a)), m̃ϕ = Λϕ (figure 5(b)), and m̃ϕ < Λϕ (figure 5(c)). The unshaded
region indicates the excluded parameter space where too much DM is produced. We see
that all plots in figure 5 exhibit similar behavior. It is possible to have a coupling up to
β4, β1 = 10−4, but not at the same time. This is consistent with the fact that freeze-in normally
requires small couplings [114]. Furthermore, the abundance increases as we increase either β1
or β4, which is consistent with the fact that the DM relic abundance increases with ⟨σv⟩.

Figure 6 shows the predicted DM relic abundance as a function of m̃ϕ and Λϕ for
β1 > β4 (figure 6(a)), β1 = β4 (figure 6(b)), and β1 < β4 (figure 6(c)). The unshaded space
represents the excluded parameter space. We observe a similar behavior for the three plots in
figure 6. The DM abundance decreases if either m̃ϕ or Λϕ grows. Furthermore, a soft-mass
of mϕ = 20TeV and a simultaneous flavon breaking-scale Λϕ = 20TeV is excluded in all
cases for the chosen values of other parameters.

Finally, in figure 7 we show the correlation between the minimum scalar flavon mass
mϕMIN and DM mass mDM for fixed values of β1 > β4 (figure 7(a)), β1 = β4 (figure 7(b)),
and β1 < β4 (figure 7(c)). By comparing figures 6 and 7, we find that for a given value of the

4If we had chosen high enough reheating temperatures, then the A−terms of eq. (2.20) would have
dominated the production of DM. In this case, the connection between DM and flavor parameters is weakened.
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Figure 5. Predicted DM relic abundance as a function of log10 (β1) and log10 (β4) with fixed values
of m̃ϕ and Λϕ at some benchmark values. We choose TR = 150GeV. The dashed black line denotes
the relic DM abundance ΩDM = 0.265.

soft-mass m̃ϕ, the minimum scalar flavon mass mϕMIN constrained by the DM relic abundance
can be derived. We see that the scalar flavon mass can be as low as ∼ 63TeV for all cases
illustrated in figure 7. Moreover, the DM mass can be as low as ∼ 16GeV for β1 = 6× 10−5

and β4 = 10−4. Note that the big mass splitting between the mediator and the DM, as seen in
figure 7, is a consequence from the big soft-mass contribution from supersymmetry breaking
to the mediator mass (see discussion before eq. (5.4)). A mechanism for supersymmetry
breakdown is beyond the scope of this work and must be explored elsewhere.

To conclude this section, let us comment on the bounds from direct detection for this
model. The energy-independent cross section for the scattering process ψ e− → ψ e− between
a DM particle ψ and the electron e− is given by (cf. [120, Equations (9) and (10)])

σ̄eψ =
µ2
eψ

π

α2β2

(q2
ref −m2

ϕ)2 , (5.5)

where qref = αEMme is the reference momentum (with the electromagnetic fine-structure
constant αEM ≈ 1/137 and the electron mass me), µeψ denotes the reduced mass of the DM
candidate and the electron, α and β are respectively the mediator-electron and mediator-DM
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Figure 6. Predicted DM relic abundance as a function of log10 (m̃ϕ/GeV) and log10 (Λϕ/GeV) with
fixed values of β1 and β4 at some benchmark values. We choose TR = 150GeV. The dashed black line
denotes the relic DM abundance ΩDM = 0.265.

couplings, and mϕ is the mediator mass. Assuming mψ = 1GeV, α = 10−3, β = 10−4 and
mϕ = 20TeV (consistent with couplings shown in eq. (4.5) and figures 5–7), we obtain

σ̄eψ ∼ 10−66 cm2 , (5.6)

which is unfortunately found below the direct detection bounds from XENON1T [121], for
a DM mass of 1GeV. It is known that the detection bounds can change depending on the
energy-dependence of the cross section, or on the form of the so-called DM form factor
FDM(q). However, we do not expect the energy-independent cross section in eq. (5.6) to
significantly increase to become experimentally detectable (see [122, figure 3]). This implies
that the DM features of our model require new experimental settings.

6 Conclusion

We constructed a flavor model based on the finite modular group Γ3 ∼= A4 that simultaneously
explains the flavor parameters in the lepton sector and accounts for the observed DM relic
abundance in the Universe. The 12 lepton flavor parameters are determined by 8 real
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Figure 7. Predicted DM relic abundance as a function of the minimum mediator scalar flavon mass
log10 (mϕMIN/GeV) and DM mass log10 (mDM/GeV) for fixed β1 and β4 at some benchmark values.
We fix TR = 150 GeV. The dashed black line denotes the relic DM abundance ΩDM = 0.265.

parameters: the two components of the modulus VEV, the four flavon VEVs, ⟨ϕi⟩, and two
dimensionful parameters that set the mass scales of charged-lepton and neutrino masses. We
identify a DM candidate composed of the fermionic parts of the flavon superfields and the
driving superfields. The mediator is the scalar part of the flavon superfield which interacts
with the charged-lepton sector of the SM. We obtain a good fit to the lepton flavor parameters
(3 charged lepton masses, 3 mixing angles, 1 CP phase, 2 neutrino squared mass differences)
with χ2 = 0.08 for an inverted-hierarchy neutrino spectrum. The lepton flavor fit fixes the
couplings of the charged leptons to the DM mediator as well as the flavon VEVs ⟨ϕi⟩. These
VEVs satisfy the F -term equations to retain supersymmetry at high energies, determining
thereby the coupling between our DM candidate and the mediator. Interestingly, our model
exhibits 4 additional degrees of freedom that are left free and serve to achieve a DM relic
abundance which does not exceed the observed value ΩCDM = 0.265. These parameters are 2
dimensionless couplings β1, β4, the flavor breaking scale Λϕ, and the soft-mass for the flavon
m̃ϕ. We find that if the mediator mass is assumed to be much larger than the DM and the
charged-lepton masses, then the appropriate DM production mechanism is freeze-in rather
than freeze-out. We observe that a viable DM relic abundance can be generated in regions
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of the parameter space constrained by 10−6 ≤ β1, β4 ≤ 10−4, 20TeV ≤ m̃ϕ, Λϕ ≤ 1000TeV,
tan β = 60, and TR = 150GeV.

Although some amount of tuning is necessary in our model to identify the best parameter
values, we point out that it is the choice of charges and modular weights that render the
right flavon superpotential, which in turn delivers the alignment of the flavon VEVs ⟨ϕi⟩.
Further, the phenomenologically viable value of the modulus VEV ⟨τ⟩ might be achieved
through mechanisms as in [97]. The flavor structure of our model, that includes the flavon
superpotential, determines the properties of our DM candidate. In particular, a different
choice of flavor parameters in eqs. (4.5) and (4.6), which set the flavor predictions, strongly
influences the mass and production (e.g. freeze-in vs. freeze-out) of DM in our model.

As a feasible outlook of our findings, it would be interesting to study the possibility
of applying this new scenario in top-down models such as [88]. Furthermore, as the flavor
sector of our model only accounts for leptons, it should be extended to the quark sector as
a first direct step. In addition, in our scenario we expect the DM-nucleon cross section to
be too small to be directly compared with LUX [123], DEAP-3600 [124], PandaX-II [125],
DarkSide [126], EDELWEISS [127] and any other currently envisaged experiments of this
type. One should hence explore additional indirect evidence of our proposal. We leave these
intriguing questions for upcoming work.
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