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Abstract

Recently, doping guest materials such as quantum dots (QDs) into liquid crystals (LCs) has been of
great interest since their addition substantially enhances the properties of LC and opens new avenues
for scientific advancement. Here, we report the induction of homeotropic alignment in cells without
alignment layers of the negative dielectric nematic liquid crystal, N-(4-Methoxybenzylidene)-4-
butylaniline (MBBA) by doping with carbon dots (CDs ~2.8 £ 0.72 nm). The CDs-MBBA composites
(CDs concentration: 0.002,0.01, 0.03, 0.1 and 0.3 wt%) were investigated using optical polarising
microscopy, electro-optical and dielectric techniques. Polarizing optical micrographs and voltage
dependent optical transmission revealed the induced homeotropic alignment for all the composites
under investigation. Interestingly, the least concentrated sample, 0.002 wt% exhibited partial
homeotropic alignment. However, due to light leakage, the optical transmission value below threshold
voltage was relatively higher than the rest of the composites. MBBA is a negative dielectric material,
hence the application of a voltage across the cell was able to switch the alignment from adark toa
bright state for all composites. However, above a certain voltage (>threshold voltage), the bright state
produced some instabilities. The value of dielectric permittivity was observed to decrease with
increasing concentration, confirming the effect of CDs in producing homeotropic alignment in
MBBA. Measurements as a function of temperature were conducted to examine the thermal stability
of the induced alignment. The alignment was found to be stable throughout the nematic phase of
MBBA. The induction of such alignment without conventional alignment (i.e., rubbing of polyimides)
technique can be helpful in addressing the evolving display demands by making liquid crystal displays
(LCDs) and other display devices cost effective.

1. Introduction

In the world of display technologies, alignment of nematic liquid crystal (NLC) remains one of the most crucial
factors determining the optical effectiveness of the device. The NLC of calamitic molecules is the simplest LC
phase characterized by the long axis of the molecules orienting themselves on average in a specific direction
represented by a unit vectorn = —n [1, 2]. Alignment of NLC at a planar substrate can be majorly classified as
one of two types: homogeneous (planar) and homeotropic (vertical). Homogeneous alignment is when the
director (n) is oriented parallel to the substrate’s surface. When n is oriented perpendicular to substrate the LC is

© 2024 The Author(s). Published by IOP Publishing Ltd
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referred to as homeotropically aligned [3]. NLCs exhibit two types of dielectric anisotropy (Ae =g — ) i.e.,
positive (Ae > 0) and negative (Ae < 0), wherein €, and ¢ denote the perpendicular and parallel components
of the real dielectric permittivity, respectively [4, 5]. For the fabrication of vertical switching devices, a positive
anisotropic NLC is filled into a sample cell with two substrates that promote homogeneous alignment, while a
negative anisotropic NLC is employed in a sample cell with homeotropic alignment. A negative dielectric
anisotropy NLC has an extra advantage over its positive counterpart since its aligned at right angles to the
substrates hence it does not show a change in the inclination angle as the substrate is rotated in the plane [6].
They also exhibit wider viewing angle, improved reliability, shorter response time, higher optical contrast, and
fewer flicker issues [ 7] than positive anisotropy devices. This is why negative dielectric anisotropic NLC
materials are preferred for the fabrication of display devices by industries [8].

Studies have shown that there are several techniques for obtaining alignment of NLCs at substrates. The
most commonly used method to obtain homogenous alignment is the traditional rubbing process in which the
substrates (often glass) are initially coated with a polyimide layer and later on rubbed using a synthetic cloth to
produce microgrooves that help in orienting the molecules towards a certain direction. However, this
conventional technique has some serious flaws such as generation of debris, local defects in displays due to
uneven degradation of rubbing rollers, formation of static charges, etc. Similarly, in order to achieve a
homeotropic alignment surface active agents like alkyl silanes, lecithin, etc are used [9, 10]. These methods have
been widely used by the display industries in the manufacturing of LC devices because of their cost effectiveness
and remain as a fast and simple method to obtain reliable alignment. Due to such reasons attaining a uniform
and reliable alignment of NLC materials remains a common theme of research in the LC community.
Researchers have proposed some other techniques of alignment for instance: atomic/ion-beam irradiation
[11-14], Photoalignment [15], UV-light irradiation [9], Oblique evaporation method [16], Electric/Magnetic
field [17], Langmuir—Blodgett (LB) film method [18], and dispersion of nanoparticles (NPs, particles with size
range between 1-100 nm in at least one of its dimensions) [19-24].

Achieving uniform alignment took a new resurgence since the development of NPs [19, 20, 25]. The change
in properties upon adding NPs to LC motivated scientists to mix NPs in NLCs and monitor their effect on NLC
properties. The result of this incorporation was promising and provided a ray of hope in eliminating the
conventional rubbing techniques. In an attempt to induce alignment, scientists have conducted various studies
on the subject of NPs dispersion in a negative dielectric NLC in an unaligned ITO sample cell. For instance, Jeng
et al [26] reported that the doping of POSS (polyhedral oligomeric silsesquioxane) NPs (0.7— 30 A)induced
homeotropic alignment in negative dielectric NLC (MLC6882, Ae = —3.1) ata concentration >3 wt%. Further
investigation also showed that such induced homeotropic alignment is attributed to the adhering of the POSS
NPs to the inner surface of the LC substrates as they diffuse into the cells [27]. Similarly, Chinky et al [28] has
reported the achievement of a good quality homeotropic alignment in NLC (M]98468, Ac = —4) by the doping
of ZnO NPs (<50 nm) whereby they observed alowered threshold voltage and enhanced contrast ratio
(~12.4%) of the composites at a concentration of 0.3%wt ZnO in NLC. In an exceptional work, Lim et al [29]
induced homeotropic alignment of a negative NLC (Ae = —4) by growing ZnO nanorods (L: 502 & 117.64 nm,
Dia: 24.1 + 4.25 nm) on the ITO coated substrates; for a concentration of 1.0 mM Zn(NOs3), the composite was
able to achieve a perfect and clear dark state. In a similar study, Dogra et al [30] did a comparison on the effect of
coating and doping silica NPs (~80 nm) on the alignment of NLC (LC-BYVA-01, Ae = —4.89). It was observed
that both produced an equally good quality homeotropic alignment in an ITO sample cell with no alignment
layers at a concentration of 0.3wt%.

Recently QDs have gained much attention due to their phenomenal optical and electronic properties.
Having a size ranging from 2—10 nm these QDs have garnered much attention since they are able to emit lights of
different colors under UV illumination [31, 32]. Toxicity is one of the major issues faced by the conventional
semiconducting QDs (CdS, CdSe, CdTe, etc) [33] and hence, more focus has been given to eco-friendly QDs
[34]. Since the results obtained using semiconducting QDs-NLCs composites were rather promising, scientists
then tried to explore the possibilities of dispersing ecofriendly QDs into a negative dielectric NLC and observed
the effect they produced in the alignment of the NLC when infiltrated into an unaligned ITO sample cell. In the
first of such investigations, Lee et al [35] reported that dropcasting a CulnS,-ZnS QDs (~2.2 nm) NLC
(Ae = —4.2) composite results in the formation of homeotropic alignment at 0.01 and 0.02 mol 1~
concentration of QDs. They attributed this to the formation of 1-D chain like QD clusters which act as
microgrooves on the substrates aiding the alignment of NLC matrix. Thereafter, Son et al [36] demonstrated the
tendency of octadecylamine-functionalized graphene QDs (O-GQDs ~1.48 nm) to self-assemble and form a
nanostructured layer at the interfacial surfaces with the ITO coating results in the spontaneous homeotropic
alignment of a negative NLC (Ae = —3.1). Moreover, the significantly modulated response time was also
reported by the authors for 0.05wt% GQDs-NLC composite.

CDs are one such eco-friendly QDs that are of increasing interest [37]. CDs are able to portray themselves as
apotential competitor to the traditional QDs because of its budget friendly and simple routes of synthesis, low
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(a)
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Figure 1. Molecular Structure of (a) MBBA, NLC and (b) Carbon dots (CDs) [44].

toxicity, surface passivation, eco-friendliness, surface functionalization, and an overall level of fluorescence
comparable to their semiconducting counterparts [33]. Interestingly, CDs are being used to tune the physical
properties of NLCs. For instance, the first work was reported by Urbanski et al [38] where they dispersed carbon
QDs (CQDs, 2.5 + 0.5 nm) in NLC (Felix-2900-03) material which was eventually infiltrated into a planar
aligned ITO coated sample cell. Planar alignment was recorded for concentrations up to 2.5wt% and beyond
which at 5wt% a combination of homeotropic and partial planar alignment was observed. The homeotropic
alignment was stable only deep in the nematic phase (low temperature) and turned to planar alignment at higher
temperatures just like the rest of the lesser concentrated composites (<2.5wt%). The authors attributed this
observed homeotropic alignment to the increased pretilt angle (~8°) produced as a result of CDs having settled
at the planar anchored interfaces. Rastogi et al [39] doped oil palm leaf (OPL) based carbon NPs (5.67 nm) in
NLC (E 48, Ae = +12.5), and they utilized graphene oxide NPs (0.4 wt%) as an aligning layer in ITO sample cells
to achieve homeotropic alignment of the composites. Addition of OPL NPs produced planar alignment, and the
brightest state was obtained for the highest concentration of 0.3 wt/wt%. In their another work [40], they have
reported the homogenous distribution of CQDs (4—6 nm) in the same host NLC (E 48, Ae = +12.5) optically
and in yet another study [41] using the same materials they tried injecting the CQDs-NLC composites in an
unaligned sample cell and reported irregularities and low contrast in the alignment obtained, so they filled the
composites in planar aligned sample cells and found improved molecular alignment, contrast and uniform
dispersion of CQDs in the NLC under investigation. A change in the color of the composites was attributed to
the variation in the birefringence with temperature. Most recently, we have reported the impact of
organosoluble CDs (~7—8 nm) on the alignment of planar anchored 5CB, NLC, and demonstrated that for
concentration >0.3wt% the CDs were able to induce a uniform and stable homeotropic alignment throughout
the nematic phase [42]. Moreover, tunable ionic conductivity in these CDs-5CB composites was also recently
reported by our group [43].

Summing up the above review gives a clear indication that currently there are no reports on the induction of
stable homeotropic alignment in a negative dielectric NLC material using CDs. In this work we report induced
homeotropic alignment in a negative dielectric NLC (MBBA) using CDs in an ITO sample cell without
alignment layers. Interestingly, induced homeotropic alignment of NLC was observed even at the very low
concentration of dopant CDs (i.e. 0.002 wt%). Moreover, the confirmation of induced homeotropic alignment
and its stability throughout the nematic phase were studied by using polarizing optical microscope, electro-
optical techniques, and dielectric spectroscopy.

2. Experimental details

2.1. Materials used and preparation of CDs-NLC composites

In this work, we employed the negative dielectric NLC material, MBBA (N-(4-Methoxybenzylidene)-4-
butylaniline) purchased from Tokyo Chemical Industry (India) Pvt. Ltd, division of Tokyo Chemical Industry.
It was used as received and the molecular structure is shown in figure 1(a). Organosoluble functionalized CDs
produced by the one pot selective synthesis mechanism [44] were used as dopants which was fully characterized
by Mahesh et al [45], its formation and structure was studied by Minervini et al [46] as shown in figure 1(b).
Additionally, we have also characterized the size of CDs employed using HRTEM which is discussed in results
section. The phase sequence of MBBA is reported as: 1 (41 °C) N (22 °C) Cr, here I, N and Cr symbolizes
isotropic, nematic and crystal phases, respectively [47]. For the preparation of composites, we initially blended
CDs in chloroform to prepare a0.1 wv % solution that was subsequently added into 5 mg of MBBA at various
proportions in order to make five distinct concentrations 0.002, 0.01, 0.03, 0.1 and 0.3 wt% of CDs. These
prepared composites were ultrasonicated for two hours to obtain a homogenized mixture whereafter they were
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Figure 2. Schematic diagram of the electro-optical set up used for voltage-dependent optical transmission measurement.
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Figure 3. (a) HRTEM image and (b) Particle size distribution of CDs. The scale bar is 20 nm.

heated for one hour in the oven at 70 °C to evaporate the chloroform from the composites. These composites
were finally infiltrated into unaligned ITO sample cells (i.e., without rubbed polyimide) of thickness 4 pm
purchased from Instec Inc., USA for the optical, dielectric and electro-optical investigations.

2.2. Characterization techniques

To investigate the alignment of CDs-MBBA composites and pure MBBA, a cross-polarized optical microscope
(CENSICO International 13809, India) in conjunction with an image camera (AmScope, FMA050) was
employed. An LCR meter (nF, ZM2376, Japan) with a frequency range of 100 Hz—5.5 MHz and an oscillator
voltage of 300 mV was used to conduct the dielectric measurements with and without an external LC orienting
voltage. A customized hot stage linked to a circulating water bath (Thermotech, AQS-WB-200, India) that
provides an accuracy of +-0.5 °C was used for regulating the temperature of the unaligned ITO sample cells.
Electro-optical measurement i.e., voltage-dependent optical transmission [5, 27, 28] was done using diode laser
power supply (Optochem International, 3V, 635 nm, India) passed through the LC cells placed between two
cross polarisers linked with a dual output DC regulated power supply (50V/5A). Further, the transmitted light is
fed to the photodetector (Indosaw, SK045, India) and then directed to a digital microammeter (Nisco India
Limited, DMA-02, India) for measurement of voltage-dependent optical transmission intensity (figure 2). The
size distribution of CDs has been obtained using high resolution transmission electron microscope (HRTEM,
Tecnai G20, USA) applied with an accelerating voltage of 200 kV.

3. Results and discussions

3.1. HRTEM analysis of carbon dots

Figure 3(a) demonstrates the acquired image of CDs using HRTEM where the particles are observed to have a
quasi-spherical morphology. The average size of CDs has been analyzed using Image]J software where more than
50 particles are considered for the estimation. Thereafter, the acquired data was processed in Origin software
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Figure 4. Cross-polarised optical textures for (a) 0.00 wt%, (b) 0.002 wt%, (c) 0.01wt%, (d) 0.03 wt%, (e) 0.1wt% and (f) 0.3 wt% of
CDs-MBBA composites at T =32 °C. P and A indicate the polarizer and analyzer, respectively. The scale bar is 100 pm.

and an average distribution was obtained (figure 3(b)). The histogram made for particle size distribution is best
fitted with Gaussian function and the size of CDs is confirmed to be 2.8 nm with a standard deviation of £0.72.

3.2. Optical texture and electro-optical studies
Figure 4 exhibits the optical textures of Pure MBBA and CDs-MBBA composites in an unaligned ITO sample cell
at T =32 °C. figure 4(a) displays a Schlieren texture generally observed in the samples exhibiting the N phase
which confirms that filling of MBBA in the cell did not induce any type of alignment to the NLC molecules.
Surprisingly, the addition of CDs in NLC generates a partial homeotropic alignment even at the lowest
concentration of 0.002 wt% (figure 4(b)). As the concentration of CDs is increased to 0.01 wt%, the darkness of
texture slightly improved albeit some defects are seen (figure 4(c)). Interestingly, 0.03 and 0.1 wt% composites
showed absolute dark texture (figures 4(d) & (e)) demonstrating excellent homeotropic alignment induced by
CDs in MBBA, NLC. However, increasing the concentration to 0.3 wt% shows the presence of some defects in
the optical texture (figure 4(f)) that could be attributed to the plausible aggregation of CDs due to their higher
concentration. Absence of any alignment layer on the substrates surface facilitates the CDs interaction with ITO
inducing homeotropic alignment. We anticipate that the plausible interaction of CDs with ITO substrates plays
amajor role in controlling the arrangement of molecules. It is worth pointing out here that 0.002wt%
concentration of CDs turns out to be the lowest concentration reported till now which could induce
homeotropic alignment in a negative dielectric NLC material.

The interaction between MBBA LC molecules and CDs have been demonstrated through a schematic model
in figure 5 where initially the MBBA molecules are in unaligned state as observed in the optical texture in
figure 4(a). Since the alkyl groups in CD make them more hydrophobic than bare ITO layer, we believe that the
hydrophilic components like carboxyl and hydroxyl groups organizes themselves on the ITO layer and the
hydrophobic alkyl group arranges themselves towards the LC molecules [36]. The alkyl groups that comes in
contact with LC molecules produce not only their reorientation to homeotropic state but also gives them proper
stability to maintain this alignment amidst varying thermal effects. The self-assembly nature of LC molecules
helps in penetrating this state of alignment in the bulk of the sample. For lower concentrations (<0.03 wt%), the
coverage of CDs on the ITO layer is very less due to which the LC molecules fail to show a complete reorientation
thereby inducing light leakages in the sample. However, for increased concentrations (=>0.03 wt%) as depicted in
schematic, the sedimentation of larger number of CDs covers a greater ITO area. This wide coverage leads to the
formation of a hydrophobic surface similar to those generated by conventional PI layers that control the
orientation of LC molecules [36]. Hence, the similarity of CDs in acting as conventional PI layers produces a
well-defined uniform homeotropic alignment at high concentrations thereby eliminating the costly alignment
layers. Moreover, the dipolar interaction among CDs and MBBA molecules could be another probable reason
for the observed induced homeotropic alignment.

Furthermore, in a negative dielectric material applying voltage enables the molecules to switch from
homeotropic to planar state. Figure 6 demonstrates the effect of varying voltage on the textures of CDs-MBBA
composites.
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Glass substrate

Liquid Crystal molecule

Unaligned State

Carbon Dots

Low concentration (0.002wt%):
Partial homeotropic alignment

High concentration (0.1wt%):
Complete homeotropic alignment

Figure 5. Schematic model representing the induced homeotropic alignment produced by the interaction of MBBA LC molecules
with Carbon dots in an ITO coated glass substrate with no alignment layer.

0.002wt%

Figure 6. Optical textures for varying voltages (a) 0 V, (b)4 V, (¢)6 V, (d) 8 Vand (e) 15 V of CDs-MBBA composites at a constant
temperature of T =32 °C. P and A indicate the polarizer and analyzer, respectively. The scale bar is 100 pm.
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Figure 7. Voltage dependent optical transmission of CDs-MBBA composites at T = 32 °C.

As observed in figure 6, application of a voltage could switch the molecules to a bright state however, for all
the CDs-MBBA composites these bright states did not have any uniformity. They also produced instabilities in
the texture at high voltages [27, 28]. The analysis of such behavior led to the conclusion on the non-availability of
any pre-existing alignment layers in the sample cells allowing the molecules to orient in random directions when
an external voltage is applied and this eventually disrupts the bright state with instabilities. ITO substrates with
some pretilt angle are beneficial because when the molecules are switching to the bright state the pretilt will align
the molecules to form a planar alignment rather than arranging themselves randomly. Four and two brush
defects can be seen in the texture when applied with voltage indicating the nematic phase of the LC molecule. It
can also be observed that for the highest concentration 0.3wt%, the switch can be seen happening for voltages
above 4V implying an increase in the threshold voltage. For comparison, the voltage dependent optical textures
of Pure MBBA and 0.1 wt% CDs-MBBA composite filled homeotropically anchored ITO sample cells are
demonstrated in figure S1. It appears that the quality of homeotropic alignment in unaligned ITO sample cell
filled with 0.1 wt% composite is better than Pure MBBA and 0.1 wt% composite filled in homeotropic aligned
ITO sample cells. However, the switched planar state does not have proper planar alignment (figure S1) as in case
of unaligned ITO sample cells with CDs-MBBA composites (figure 6).

Figure 7 shows the variation in the intensity of transmitted light with changing voltage, and the alignment
allows a change from a dark to a bright transmitted light state. However, stability of the bright state doesn’t
remain uniform, and the intensity falls back to the ground state at higher voltages [27]. Due to light leakage, the
intensity of 0.002 wt% composite is higher than the remaining composites as previously demonstrated through
optical texture (figure 4(b)). An increased threshold voltage (V) is associated with increasing concentration of
CDs. AV, 0f 4.1 Vis observed for 0.3wt% composite, whereas it is lower for the remaining composites; this is
analogous to the voltage dependent optical texture shown in figure 6. The observed increase in Vy, could be
attributed to the enhancement in homeotropic anchoring of host MBBA molecules by the increasing
concentration of dopant CDs (figure 5). A temperature dependent study was conducted to check the stability of
the homeotropic alignment induced by CDs in CDs-MBBA composites and it was seen that the alignment is
highly stable throughout the N phase range as shown in figure S2.

3.3. Dielectric spectroscopic study

Dielectric studies are usually conducted to investigate and understand the dynamics of molecules in NLC

materials and their composites with nanomaterials [48—54]. Here, the dielectric measurements were done on the

unaligned ITO sample cells filled with CDs-MBBA composites with homeotropic alignment induced by CDs.
Figure 8 represents the frequency dependent variation of dielectric permittivity of CDs-MBBA composites at

a constant temperature of 32 °C. At low frequency region (<10° Hz) a slight increase in &’ can be observed that is

attributed to the low frequency relaxation of the composites and ionic effects. Thereafter, the value of ¢’ remains
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Figure 8. Frequency dependent real dielectric permittivity (¢ /) of CDs-MBBA composites at T = 32 °C (Inset shows the enlarged
image).
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Figure 9. (a) Frequency dependent dielectric loss (¢”) for CDs-MBBA composites, and (b) Concentration dependent short axis
relaxation frequency at T =32 °C.

constant with changing frequency until 10° Hz and decreases for frequency above 10> Hz. The inset of figure 8
shows that with increasing concentration of CDs the value of ¢/ decreases, whereby for 0.002 wt% the observed
value is 4.88 while for 0.3 wt% a value of 4.65 is observed. This can be attributed to the quality of homeotropic
alignment produced by CDs with increasing concentration. Since the host LC used here is a negative dielectric
material the value of the parallel component of the real dielectric permittivity () has to be lower than the
perpendicular component (g | ).

To confirm the induced homeotropic alignment, dielectric loss (¢”) was examined and as can be noticed in
figure 9(a) that all composites manifested the short axis relaxation peak [5]. A shift in the relaxation peak towards
lower frequency side can be seen with increasing CDs concentration. From figure 9(b) we can observe that the
relaxation peak for 0.002 wt% isat 1.2 x 10° Hz which decreases to 0.1 x 10° Hz for 0.03 wt% and 0.1 wt% due
to increased homeotropic alignment induced by CDs. However, for 0.3 wt%, the relaxation peak frequency
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Figure 10. Voltage dependent real dielectric permittivity (¢ /) of CDs-MBBA composites for a constant frequency of 10 kHz at
T=32°C.
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Figure 11. Temperature dependent real dielectric permittivity (¢”) of CDs-MBBA composites at a constant frequency of 10 kHz.

shifts back to the value exhibited by 0.002wt%. Analysis of the dielectric loss gives a valid credibility on the
induced homeotropic alignment by CDs in host MBBA, NLC.

An orientating voltage was applied to understand the variation of permittivity as the molecules switched
orientation from the homeotropic to the planar state (figure 10). As seen from the graph, the switched planar
state was not stable. The value of permittivity increases with voltage initially and then reaches a saturation state;
however, the graph shows that the state of saturation is not constant but exhibits a drop in value that we accredit
to the instabilities creeping in the texture at higher voltages. When the applied voltage is greater than 8V, the
permittivity of the composite decreases, which is due to the non-availability of a pre-existing anchoring on the
substrates and also due to the inherent property of CDs to show an enhanced conductivity [55]. Enhancement in
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the conductivity by the doping of CDs can play a significant role in the instability produced in textures at high
voltages; the textures reveal that application of high external voltage is not favorable for the CDs used in this
system. A relatively lesser threshold voltage was observed for all composites except for 0.3wt% which
corroborates well with the optical texture shown in figure 6.

After conducting dielectric studies at a single temperature, we explored the effect of varying temperature on
the value of ¢/ of CDs-MBBA composites. As can be observed in figure 11, the value of permittivity remained
relatively independent (+/—4%) of wt% CDs with changing temperature in the N phase. This is attributed to
the thermal stability in the homeotropic alignment produced by CDs. This stability has been shown optically
also in figure S2. Moreover, the clearing temperature (Ty_) for pure unaligned MBBA sample was found to be
40 °C which got reduced by ~2 °C in case of lower concentrations (<0.03 wt%) however for higher
concentrations the Ty exhibited an increase (figure 11). For 0.3 wt% concentration, the Ty_; became 40 °C akin
to that of pure sample (tablel, Supplementary). Such induced homeotropic alignment of a negative dielectric
NLC that are thermally stable even at such low concentration of CDs can be used in the fabrication of thermal
sensors and adaptive lenses.

4, Conclusion

In the present work, we have demonstrated induced homeotropic alignment of a negative dielectric NLC
(MBBA) when doped with organosoluble CDs that has been filled in a sample cell with ITO electrodes but
without alignment layers. Such induced homeotropic alignment has been confirmed through polarizing optical
microscope, dielectric spectroscopy, and electro-optical techniques. Optical textures confirmed the induced
homeotropic alignment even at the lowest concentration of 0.002 wt% and an increase in concentration of CDs
to 0.1wt% produced a better homeotropic state in the composites. Application of external voltage was able to
switch these homeotropically aligned composites to their bright states with some instabilities. Switching was
observed electro-optically and it was seen that the composite with the highest CDs concentration (0.3 wt%)
produced an increased Vy, that is attributed to the stronger homeotropic alignment induced by CDs. Through
dielectric measurements, we also observed that the value of dielectric permittivity decreased by ~5% with
increasing concentration since MBBA being a negative dielectric NLC material. The 0.3wt% composite showed
the least value of permittivity out of all the composites under all studied conditions. Attainment of such induced
homeotropic alignment at low concentrations of CDs (<0.3 wt%) certainly manifests the effective interaction of
CDs with LC material specially in the absence of any alignment layers. The short axis relaxation of the molecule
was also probed, and it was observed that all composites demonstrated homeotropic alignment due to the
observance of short axis peak and a shift in the relaxation peak was observed with increasing concentration of
CD less than 0.1%. Such induced homeotropic alignment remained thermally stable which was confirmed both
dielectrically and optically. Such thermally stable induced homeotropic alignment can be useful in LCDs, optical
shutters, smart windows, and photonic devices.
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