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Abstract—Robotic systems are typically composed of various
subsystems, such as localization and navigation, each encompass-
ing numerous configurable components (e.g., selecting different
planning algorithms). Once an algorithm has been selected for a
component, its associated configuration options must be set to the
appropriate values. Configuration options across the system stack
interact nontrivially. Finding optimal configurations for highly con-
figurable robots to achieve desired performance poses a significant
challenge due to the interactions between configuration options
across software and hardware that result in an exponentially large
and complex configuration space. These challenges are further
compounded by the need for transferability between different
environments and robotic platforms. Data efficient optimization
algorithms (e.g., Bayesian optimization) have been increasingly
employed to automate the tuning of configurable parameters in
cyber-physical systems. However, such optimization algorithms
converge at later stages, often after exhausting the allocated budget
(e.g., optimization steps, allotted time) and lacking transferability.
This article proposes causal understanding and remediation for
enhancing robot performance (CURE)—a method that identifies
causally relevant configuration options, enabling the optimization
process to operate in a reduced search space, thereby enabling
faster optimization of robot performance. CURE abstracts the
causal relationships between various configuration options and the
robot performance objectives by learning a causal model in the
source (a low-cost environment such as the Gazebo simulator) and
applying the learned knowledge to perform optimization in the
target (e.g., Turtlebot 3 physical robot). We demonstrate the ef-
fectiveness and transferability of CURE by conducting experiments
that involve varying degrees of deployment changes in both physical
robots and simulation.

Index Terms—Causal inference, optimization, robot testing,
robotics and cyber-physical systems.

I. INTRODUCTION

A ROBOTIC system is composed of hardware and software
components that are integrated within a physical machine.
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These components interact to achieve specific goals in a physical
environment. Unfortunately, robots are prone to a wide variety
of faults [1]. Incorrect configurations (called misconfigurations)
in robotic algorithms are one of the most prevalent causes of
such faults [2], [3], [4]. Misconfigurations can cause various
bugs [5], [6] leading to crashes, robots becoming unstable,
deviations from planned trajectory, controller faults, and nonre-
sponsiveness. Several studies have reported misconfigurations as
one of the key reasons for cyber-physical system failures. Such
misconfigurations caused 19.6% of autonomous aerial vehicles
(AAV) bugs [7], 27.25% of autonomous vehicle bugs [8] (a
faulty configuration in actuation layer even caused the vehicle
to collide with a static object on the curb [9]) and 55% of traffic
dispatch algorithm bugs [10]. All of these issues were fixed by
configuration changes.

Most robotic algorithms require customization through con-
figuration parameters to suit certain tasks and situations. For
example, most AAV controllers include a wide range of config-
urable parameters that can be customized to different vehicles,
flight conditions, or even particular tasks (e.g., when speed is
more important than energy use). Finding configurations that
optimize performance on a given task is a challenging problem
for designers and end users [11]. A developer might request a
feature such as “Create a tool to automatically tune naviga-
tion2 node parameters using state-of-the-art machine learning
techniques.” [12]. In another instance, a developer encounters
a planner performance issue [13] and asks “I have tuned this
for almost 5–6 hours. Sometimes it is going toward the goal but
still failing in the middle of the trajectory.” After several back-
and-forth communications, the algorithm designer concludes, “I
cannot provide personalized tuning assistance to every user.”
In addition, developers aim to maintain the performance of the
tuned parameters when deployment changes (e.g., from the robot
operating system (ROS) 1 to ROS 2) to avoid retuning. Specifi-
cally, the optimal configuration determined in one environment
often becomes suboptimal in another, as demonstrated in Fig. 1.

Our solution: In this work, we propose causal understanding
and remediation for enhancing robot performance (CURE), a
multiobjective optimization method that finds optimal configu-
rations for robotic platforms, converges faster than the state-of-
the-art, and transfers well from simulation to real robot and even
to new untrained platforms.CURE has two main phases. In Phase
1, CURE reduces the search space by eliminating configuration
options that do not affect the performance objective causally.
For this, we collect observational data in a low-cost source
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Fig. 1. Nontransferability of optimal configurations across different environ-
ments/platforms. (a) Optimal configuration for Turtlebot 3 in simulation differs
from its physical counterpart. (b) Optimal configuration for Turtlebot 3 is not
suitable in Husky.

environment, such as simulation. Then, a causal model is learned
on the basis of the data, representing the underlying causal
mechanisms that influence robot performance. We then estimate
the causal effects of options on performance objectives. Finally,
we reduce the search space to a subset of options that have
non-negligible causal effects. In Phase 2, CURE performs tradi-
tional Bayesian optimization in the target environment, but only
over the reduced search space, to find the optimal configuration.
We show that CURE not only finds the optimal configuration
faster than the state-of-the-art, but the learned causal model in
the simulation speeds up optimization in the real robot. The
results demonstrate that the learned causal model is transferable
across similar but different settings, that is, environments, mis-
sion/tasks, and for new robotic platforms. In other words, the
existence of a common abstract structure (the causal relations
between options, system-level variables, and performance ob-
jectives) is invariant across domains, and the behavior of specific
features of the environment remains constant across domains.

Evaluations: We evaluated CURE in terms of its effectiveness
and transferability across two tasks: navigation and manipula-
tion. The navigation task forms the core of our experiments,
using two highly configurable robotic systems (Husky and
Turtlebot 3) under varying degrees of deployment changes.
The manipulation task involves simulating a robot arm (Franka
Emika Panda) in Gazebo to demonstrate CURE’s adaptability
by complementing the effectiveness evaluation. We compared
CURE with traditional multiobjective Bayesian optimization
(MOBO) using the AX framework [14], and RidgeCV [15],
[16] integrated with MOBO to reduce the search space. Our
results indicate that compared to MOBO, CURE finds a con-
figuration that improves performance by 2× and achieves this
improvement with gains in efficiency of 4.6× when we transfer
the knowledge learned from Husky in simulation to Turtlebot 3
physical robot.

Contributions: The contributions of our work are as follows.
1) We propose CURE, a multiobjective optimization method

that operates in the reduced search space involving
causally relevant configuration options and allows faster
convergence.

2) We conducted a comprehensive empirical study by com-
paringCUREwith state-of-the-art optimization methods in

both simulation and real robots under different severities
of deployment changes, and studied effectiveness and
transferability.

3) The code and data are available at: https://github.com/
softsys4ai/cure

II. RELATED WORK

In this work, we focus on performance optimization through
the lens of causality. Specifically, we learn a causal model from a
low-cost environment and utilize causal knowledge to optimize
performance in the target system. This section groups related
work into four categories: optimizing robotic parameters, ma-
chine learning (ML) for performance modeling, transfer learning
strategies, and causal analysis in configurable systems.

A. Optimization Techniques in Robotic Configurations

Researchers have considered robotic algorithms as a closed-
box, as the objective functions in most robotic problems can
only be accessible through empirical experiments. Evolutionary
algorithms [17], [18] have been used to find optimal config-
urations in dynamic-window approach (DWA) [19] algorithm.
However, the application of evolutionary algorithms in robotic
systems is hindered by the limited availability of observations
and the difficulty in extracting meaningful information from
these observations due to the presence of noise. Approaches such
as variational heteroscedastic Gaussian process (GP) regres-
sion [20] and Bayesian optimization with safety constraints [21]
attempt to address these challenges, but struggle with high-
dimensional search spaces, yield only local improvements, and
lack transferability across different environments and platforms.
Furthermore, the complexity of environmental dynamics mod-
els, coupled with the biases introduced by optimization formula-
tion, poses significant challenges. Moreover, formalizing safety
constraints that allow for computationally efficient solutions,
specifically solutions in polynomial time with closed-form ex-
pressions, is complex if at all feasible.

B. Learning-Based Methods for Performance Modeling

Expanding on traditional optimization techniques, machine
learning methods offer diverse approaches to improve robotic
performance. Approaches such as learning from demonstra-
tion [22], learning human-aware path planning [23], and map-
ping sensory inputs to robot actions [24], [25] have been widely
applied to robot navigation beyond fine-tuning configuration
parameters, as opposed to heavily relying on human expertise.
These methods aim to replace classical methods, casting doubt
on the robustness, generality, and safety of the systems. To
provide a deeper understanding of performance behavior in
robotic algorithms, performance influence models [26], [27],
[28] can be used. These models predict system performance
by capturing important options and interactions that influence
performance behavior using machine learning and sampling
heuristics. However, performance influence models face limi-
tations in adapting to unexpected environments due to not being
able to capture changes in the performance distribution and often
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produce incorrect explanations [4]. In addition, the collection of
training data for these models is costly and requires extensive
human supervision.

C. Transfer Learning for Performance Modeling

Addressing the challenges of adapting to unexpected envi-
ronments and costly data collection in learning-based methods,
transfer learning accelerates optimization by selectively reusing
knowledge from previous tasks. Techniques such as simulation-
to-real learning [29], [30] and transferring Pareto frontiers
across different platforms [31] improve sampling efficiency and
improve training datasets. Each of these techniques uses the
predicted transfer learning frameworks based on correlational
analysis. However, changes in the environment and robotic
platform can cause a distribution shift. The ML models used
in these transfer learning approaches are vulnerable to spurious
correlations [32], [33].

D. Causal Analysis in Configurable Systems

While machine learning techniques excel in uncovering corre-
lations between variables, their ability to identify causal links is
limited [34]. Using the information encoded in causal models,
we can benefit from analyses that are only possible when we
explicitly employ causal models, such as interventional and
counterfactual analyses [34], [35]. Causal analysis has been used
for various debugging and optimization tasks in configurable
systems, including finding the root cause of intermittent failures
in database applications [36], detecting and understanding the
root causes of the defect [37], [38], and improving fault localiza-
tion [39]. The causality analysis in these studies is confined to a
single environment and platform, while our approach transfers
causal knowledge across different environments and platforms.
In robotic systems, the causal models learned in simulation are
used to find explanations for failures in real robots [4], [40].
However, such methods are limited to identifying root causes of
failures, whereas our approach extends beyond diagnosis to also
prescribe remedies, new configuration option values that rectify
the failure.

III. PROBLEM FORMULATION AND CHALLENGES

In this section, we first motivate our work by illustrating
how an optimal configuration found in one environment often
becomes suboptimal in another. We then formally define the
problem and describe the challenges.

A. Motivating Scenario

We motivate our work by demonstrating the nontransferability
of traditional Bayesian optimization through a simple experi-
ment for robot navigation. In particular, we explore two deploy-
ment scenarios: 1) Sim2Real: Transferring the optimal config-
urations for energy consumption identified from simulations to
the Turtlebot 3 physical robot [see Fig. 1(a)] Real2Real: Trans-
ferring the optimal configurations for position error1 identified

1defined as the Euclidean distance between goal position and robot’s actual
position

from Husky to Turtlebot 3 [see Fig. 1(b)]. In both scenarios, we
observe that the optimal configurations identified by Bayesian
optimization in the source environments fail to retain their
optimality in the target environment. We observe that energy
consumption increases by 2.57×, and a significant increase in
position error is observed by 8.64× 105 times.

B. Problem Formulation

Consider a highly configurable robot with d distinct configu-
rations. LetXi indicate the configuration parameter i, which can
be assigned a value from a finite domain Dom(Xi). In general,
Xi may be set to the following:

1) a real number (e.g., the number of iterative refinements in
a localization algorithm, the frequency of the controller)
within specified bounds, denoted asXi ∈ [Xi, X̄i], where
Xi and X̄i are the lower and upper bounds, respectively;

2) binary (e.g., whether to enable recovery behaviors);
3) categorical (e.g., planner algorithm names).
The configuration space is mathematically a Cartesian prod-

uct of all the domains of the parameters of interest X =
Dom(X1)× · · ·× Dom(Xd). Then, a configuration x, which
is in the configuration space x ∈ X, can be instantiated by
setting a specific value for each option within its domain,
x = 〈X1 = x1, X2 = x2, . . . , Xd = xd〉. Finding a configura-
tion that uniformly optimizes all objectives is typically not pos-
sible; instead, there is a tradeoff between them. Pareto optimal
solutions signify the prime balance among all objectives. In
the context of minimization, a configuration x is said to domi-
nate another configuration x′ if f(x) ≤ f(x′). A configuration
x ∈ X is called Pareto-optimal if it is not dominated by any
other configurationx′ ∈ X, wherex '= x′. The goal is to findx∗,
a configuration that gives rise to Pareto-optimal performance in
the multiobjective space (e.g., f1 : failure rate, f2 :mission time,
f3 : energy consumption), given some constraints (h : safety).
Here, we assume that the performance measure can be evaluated
in experiments for any configuration x, and we do not know the
underlying functional representation of the performance. The
problem can be generalized by defining an arbitrary number of
performance objectives (if they can be computed over a finite
time horizon). Mathematically, we represent performance objec-
tives as black-box functions that map from a configuration space
to a real-valued one: f(x) : X→ R. In practice, we learn f by
sampling the configuration space and collecting the observations
data, i.e., yi = f(xi) + εi with ε ∼ N(0,σ2). In other words, we
only partially know the response function through observations
D = {(xi, yi)}di=1, |D| + |X|. We define the problem formally
as follows:

x∗ = argmin
x∈X

f1(x), f2(x), . . . , fm(x), s.t. : h(x) ≥ 0 (1)

where x∗ ∈ X is a Pareto-optimal configuration and adhere to
the safety constraints.

C. Challenges

In this article, our objective is to propose a solution to address
the following key challenges.
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Fig. 2. CURE overview.

1) Software-Hardware Interactions and Exponentially
Growing Configuration Space: A robotic system consists
of software components (e.g., localization, navigation, and
planning), hardware components (e.g., computer and sensors
onboard), and middleware components (e.g., ROS), with most
components being configurable. The configuration space of only
100 parameters with only 10 possible values for each comprises
of 10100 possible configurations. (For comparison, the number
of atoms in the universe is estimated to be only 1082.) Therefore,
the task of finding Pareto-optimal configurations for highly
configurable robots and other cyberphysical systems is orders
of magnitude more difficult because of software-hardware
interactions, compared with software systems.

2) Reality Gap and Negative Transfer From STR: Robot
simulators have been extensively used in testing new behaviors
before the new component is used in real robots. However, the
measurements from simulators typically contain noise, and the
observable effect for some configuration options may not be the
same in a real robot operating in a real environment, and in some
cases, such effect may even have the opposite effect. Therefore,
any reasoning based on the model predictions learned based
on simulation data may become misleading. Such a reality gap
between the sim and real exists due to unobservable confounders
as a result of simplifications in the sim. Still, there exist stable
relationships between configuration options and performance
objectives in the two environments that can facilitate perfor-
mance optimization of real robots.

3) Multiple Objectives: It is common to find multiple per-
formance objectives in mission specifications (e.g., mission
time, energy, and safety). Typically, the objectives involved
in the specification are independent of each other [41], but in
some cases they can be correlated and conflicting; for exam-
ple, faster task completion could lead to higher energy con-
sumption. Therefore, finding the optimal configuration (for a
given robotic platform in a specific environment and for a
specific task) should be treated as a multiobjective optimization
problem.

4) Costly Acquisition of Training Data and the Safety Critical
Nature of Robotic Systems: Algorithm parameters can be man-
ually adjusted by experiments on real robots or by using massive
amounts of training data when the robotic system contains
elements that are difficult to hard-code (e.g., computer vision
components) [42]. However, collecting training data from real
robots is time-consuming and often requires constant human
supervision [43]. To guarantee the safe behavior of the robot,
the practitioner must either meticulously select configurations
that are safe or acquire an ample amount of representative data
that lead to safe behavior.

IV. CAUSAL UNDERSTANDING AND REMEDIATION FOR

ENHANCING ROBOT PERFORMANCE

To solve the optimization problem described in Section III, we
propose a novel approach, calledCURE. The high-level overview
of CURE is shown in Fig. 2. CURE works in two phases. In
Phase I, CURE reduces the search space for the optimization
problem using data from the source environment, while in Phase
II, CURE performs a black-box optimization in the reduced
search space on the target platform. To elaborate on the details,
in Phase I, CURE learns a structural causal model that enforces
structural relationships and constraints between variables using
performance evaluations from the source platform (e.g., Husky
in simulation). Specifically, we learn a causal model for a set
of random samples2 taken in the source environment.3 The
configuration options are then ranked by measuring their aver-
age causal effect (ACE) on the performance objectives through
causal interventions. Options with the largest causal effect are
selected to reduce the search space. Next, in Phase II, CURE

2Instead of random samples, other partial designs (e.g., Latin Hypercube)
could have been used, however, we experimentally found that random samples
give rise to more reliable conditional independence tests in the structure learning
algorithm.

3Here, the source environment could be a simulator like Gazebo or another
robotic platform. The assumption is that the source is an environment in which
we can intervene at a lower cost.
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performs a black-box optimization in the reduced search space
given a fixed sampling budget in the target platform (e.g., the
physical Turtlebot 3). Specifically, CURE searches for Pareto-
optimal configurations in the target, iteratively fits a surrogate
model to the samples, and selects the next sample based on
an acquisition function until the budget is exhausted. CURE’s
high-level procedure is described in Algorithm 1.

A. Phase I: Reducing the Search Space Via Causal Inference

Phase I begins by recording performance metrics for s initial
configurations {(x1, y1), . . . , (xs, ys)} in the source environ-
ment (Algorithm 1: lines 1–2). We define the following three
types of variables to learn the causal structure:

1) software-level configuration options (e.g., hyperparame-
ters in different algorithms [44]) and hardware-level op-
tions (e.g., sensor frequency),

2) intermediate performance metrics (e.g., different system
events in ROS) that map the influence of configuration
options on performance objectives, and

3) end-to-end performance objectives (e.g., task completion
rate, mission time).

We also define structural constraints (e.g.,Xi ! Xj) over the
causal structure to incorporate domain knowledge that facilitates
learning with low sample sizes.4

To discover the causal structure, we use an existing structure
learning algorithm fast causal inference (FCI). We select FCI
because 1) it can identify unobserved confounders [35], [45],
and 2) it can handle variables of various typologies, such as
nominal, ordinal, and categorical given a valid conditional in-
dependence test. Algorithm 2 describes the details of our causal
learning procedure. It starts by constructing an undirected fully
connected graph G, where the nodes represent the variables
(options, intermediate variables, performance metrics). Next, we
evaluate the independence of all pairs of variables conditioned
on all remaining variables using Fisher’s z test [46] to remove
the edges between independent variables. Finally, a partial
ancestral graph (PAG) is generated (Algorithm 2: line 2), ori-
enting the undirected edges using the edge orientation rules [35],
[45], [47].

A PAG is composed of directed, undirected, and partially
directed edges. The partially directed edges must be fully re-
solved to discover the true causal relationships. We employ
the information-theoretic LatentSearch algorithm proposed by
Kocaoglu [48] to orient partially directed edges in PAG through
entropic causal discovery (line 3). For each partially directed
edge, we follow two steps: (i) establish if we can generate a latent
variable (with low entropy) to serve as a common cause between
two vertices; (ii) if such a latent variable does not exist, then pick
the direction which has the lowest entropy. For the first step, we
assess whether there could be an unmeasured confounder (say
Z) that lies between two partially oriented nodes (say X and
Y ). LatentSearch outputs a joint distribution q(X,Y, Z) that can
be used to compute the entropy H(Z) of the unmeasured con-
founderZ. Following the Kocaoglu guidelines, we set an entropy

4 e.g., there should not be any causal connections between configuration
options and their values are determined independently.

Algorithm 1: CURE.

threshold θr = 0.8× min{H(X), H(Y )}. If the entropy H(Z)
of the unmeasured confounder falls below this threshold, then
we declare that there is a simple unmeasured confounderZ (with
a low enough entropy) to serve as a common cause between X
and Y and accordingly replace the partial edge with a bidirected
(↔) edge. When there is no latent variable with sufficiently low
entropy, there are two possibilities: 1) the variable X causes Y ;
then there is an arbitrary function f(·) such that Y = f(X,E),
where E is an exogenous variable (independent of X) that
accounts for system noise; or 2) the variable Y causes X; then
there is an arbitrary function g(·) such that X = g(Y, Ẽ), where
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Algorithm 2: Causal Model Learning.

Ẽ is an exogenous variable (independent of Y ) that accounts for
noise in the system. The distribution of E and Ẽ can be inferred
from the data. With these distributions, we measure the entropies
H(E) andH(Ẽ). IfH(E) < H(Ẽ), then it is simpler to explain
X causes Y (that is, the entropy is lower when Y = f(X,E))
and we choose X → Y . Otherwise, we choose Y → X .

The final causal model is an acyclic-directed mixed graph
(ADMG). When interpreting a causal model, we view the nodes
as variables and the arrows as the assumed direction of causality,
whereas the absence of an arrow shows the absence of direct
causal influence between variables. To quantify the influence of
a configuration option on a performance objective, we need to
locate the causal paths. A causal path PX!Y is a directed path
that originates from a configuration option X to a subsequent
nonfunctional property S (e.g., planner failed) and ends at
a performance objective Y . For example, X → S → Y
denotes X causes Y through a subsequent node S on the path.
We discover PX!Y by backtracking the nodes corresponding
to each of the performance objectives until we reach a node
without a parent. We then measure the ACE, by measuring
the causal effects of the configuration options on the perfor-
mance metrics and taking the average over the causal paths.
We then rank the configuration options according to their ACE:
{(Xi,CEXi)}di=1, where CEXi ≥ CEXi+1 for all i3d. Finally,
we select a subset of configuration options with the highest ACE:
{Xi | (Xi,CEXi), 1 ≤ i ≤ K}, K ≤ d, and reduce the search
space to X̃ ⊂ X (Algorithm 1: lines 4–5).

B. Phase II: Performance Optimization Through Black-Box
Optimization With Limited Budget

In the configuration optimization phase (lines 6–18), we
search for Pareto optimal configurations using an active learning
approach that operates in the reduced search space in the target
environment. Here, the target environment is typically the target
robotic platform that we want to optimize. The assumption is that
any intervention in the target environment is costly and that we
typically assume a small sampling budget. In some situations, we
could assume that the cost of measuring configurations varies.
For example, if the likelihood of violating safety confidence is
high for a specific configuration, we could assign a higher cost to

Fig. 3. Example of 1D GP model: GPs provide mean estimates and uncertainty
in estimations, i.e., variance.

that configuration because it may damage the robot. We leave this
assumption for future work. Specifically, we start by bootstrap-
ping optimization by randomly sampling the reduced configura-
tion space to produce an initial designD = {x1, . . . ,xn}, where
xi ∈ X̃. After obtaining the measurements regarding the initial
design,CURE then fits a GP model to the design pointsD to form
our belief about the underlying response function. The while
loop in Algorithm 1 iteratively updates the belief until the budget
runs out: As we accumulate the dataS1:t = {(xi, yi)}ti=1, where
yi = fT (xi) + εi with ε ∼ N(0,σ2), a prior distributionPr(fT )
and the likelihood function Pr(S1:t|fT ) form the posterior dis-
tribution: Pr(fT |S1:t) ∝ Pr(S1:t|fT ) Pr(fT ). We describe the
steps of Phase II as follows.

1) Bayesian Optimization With GP: Bayesian optimization
is a sequential design strategy that allows us to perform global
optimization of black-box functions [49]. The main idea of this
method is to treat the black-box objective function f(x) as a
random variable with a given prior distribution and then optimize
the posterior distribution of f(x), given experimental data. In
this work, we use GPs to model this black-box objective function
at each point x ∈ X. That is, let S1:t be the experimental data
collected in the first t iterations, and let xt+1 be a candidate
configuration that we can select to run the next experiment. Then,
the probability that this new experiment could find an optimal
configuration using the posterior distribution will be assessed

Pr(ft+1|S1:t,xt+1) ∼ N(µt(xt+1),σ
2
t (xt+1))

where µt(xt+1) and σ2
t (xt+1) are suitable estimators of the

mean and standard deviation of a normal distribution used to
model this posterior. The main motivation behind the choice
of GPs as prior here is that it offers a framework in which
reasoning can be based not only on mean estimates, but also
on variance, providing more informative decision making. The
other reason is that all the computations in this framework are
based on a solid foundation of linear algebra. Fig. 3 illustrates
Bayesian optimization based on GP using a one-dimensional
response surface. The blue curve represents the unknown true
posterior distribution, while the mean is shown in green, and the
confidence interval 95% is shaded. Stars indicate measurements
carried out in the past and recorded in S1:t (i.e., observations).
The configuration corresponding to x1 has a large confidence
interval due to the lack of observations in its neighborhood.
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On the contrary, x4 has a narrow confidence since neighboring
configurations have been experimented with. The confidence
interval in the neighborhood of x2 and x3 is not large, and
correctly our approach does not decide to explore these zones.
The next configuration xt+1, indicated by a small circle on the
right side of x4, is selected based on a criterion that will be
defined later. A GP is a distribution over functions, specified by
its mean and covariance

y = f(x) ∼ GP(µ(x), k(x,x′)) (2)

where k(x,x′) defines the distance between x and x′. Assume
S1:t = {(x1:t, y1:t)|yi := f(xi)} to be the collection of obser-
vations t. The function values are drawn from a multivariate
Gaussian distributionN(µ,K), where µ := µ(x1:t)

K :=





k(x1,x1) . . . k(x1,xt)
...

. . .
...

k(xt,x1) . . . k(xt,xt)



 . (3)

In the while loop in CURE, given the observations we accumu-
lated so far, we intend to fit a new GP model

[
f1:t
ft+1

]
∼ N

(
µ,

[
K+ σ2I k

kᵀ k(xt+1,xt+1)

])
(4)

where k(x)ᵀ = [k(x,x1) k(x,x2) . . . k(x,xt)] and I is
identity matrix. Given (4), the new GP model can be drawn
from this new Gaussian distribution

Pr(ft+1|S1:t,xt+1) = N(µt(xt+1),σ
2
t (xt+1)) (5)

where

µt(x) = µ(x) + k(x)ᵀ(K+ σ2I)−1(y − µ) (6)

σ2
t (x) = k(x,x) + σ2I− k(x)ᵀ(K+ σ2I)−1k(x). (7)

These posterior functions are used to select the next point xt+1.
2) Configuration Selection Criteria: The selection criteria

is defined as u : X → R that selects xt+1 ∈ X, should f(·) be
evaluated next (step 7)

xt+1 = argmax
x∈X

u(x|M, S1:t). (8)

Although there are several different criteria in the literature
for multiobjective optimization [50], [51], [52], CURE utilizes
expected hypervolume improvement (EHVI). EHVI has demon-
strated its strength in balancing exploration and exploitation,
and in producing Pareto fronts (PFs) with excellent coverage
and faster optimization [53]. EHVI operates by assessing the
expected improvement of a given point in the solution space in
terms of the hypervolume (HV) measure—a widely accepted
metric for comparing the quality of solutions in multiobjective
optimization. EHVI is particularly useful in robotic applica-
tions, where the solution landscape can be highly complex and
multidimensional. The steps of Algorithm 1 are illustrated in
Fig. 4. First, an initial design based on random sampling is
produced [see Fig. 4(a)]. Second, a GP model is fitted to the
initial design [see Fig. 4(b)]. The model is then used to calculate
the selection criteria [see Fig. 4(c)]. Finally, the configuration

Fig. 4. Illustration of configuration parameter optimization. (a) Initial obser-
vations. (b) GP model fit. (c) Choosing the next point. (d) Refitting a new GP
model.

that maximizes the selection criteria is used to run the next
experiment and provide data to reconstruct a more accurate
model [see Fig. 4(d)].

3) Model Fitting: Here, we provide some practical consid-
erations to make GPs applicable for configuration optimization.
In CURE, as shown in Algorithm 1, the covariance function
k : X×X→ R dictates the structure of the response function
that we fit to the observed data. For integer variables, we
implemented the Matérn kernel [54]. The main reason behind
this choice is that along each dimension of the configuration
response functions, a different level of smoothness can be
observed. Matérn kernels incorporate a smoothness parameter
ν > 0 that allows greater flexibility in modeling such functions.
The following is a variation of the Matérn kernel for ν = 1/2

kν=1/2(xi,xj) = θ20 exp(−r) (9)

where r2(xi,xj) = (xi − xj)ᵀΛ(xi − xj) for some positive
semidefinite matrix Λ. For categorical variables, we implement
the following [55]:

kθ(xi,xj) = exp
(
Σd

#=1(−θ#δ(xi '= xj))
)

(10)

where d is the number of dimensions (i.e., the number of con-
figuration parameters), θ# adjust the scales along the function
dimensions, and δ is a function gives the distance between two
categorical variables using Kronecker delta [55], [56]. TL4CO
uses different scales {θ#, & = 1 . . . d} on different dimensions
as suggested in [54] and [56], this technique is called automatic
relevance determination. After learning the hyperparameters
(step 6), if the &th dimension turns out to be irrelevant, then
θ# will be a small value and, therefore, will be discarded. This
is particularly helpful in high-dimensional spaces where it is
difficult to find the optimal configuration. Although the kernel
controls the structure of the estimated function, the prior mean
µ(x) : X → R provides a possible offset for our estimate. By
default, this function is set to a constant µ(x) := µ, which
is inferred from observations [56]. However, the prior mean
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function is a way of incorporating expert knowledge, and if it
is available, then we can use this knowledge. Fortunately, we
have collected extensive experimental measurements and based
on our datasets, we observed that, for robotic systems, there is
typically a significant distance between the minimum and the
maximum of each function (see Figs. 17 and 18). Therefore, a
linear mean function µ(x) := ax+ b allows for more flexible
structures and provides a better fit for the data than a constant
mean. We only need to learn the slope for each dimension and the
offset (denoted µ# = (a, b)). Due to the heavy learning compu-
tation (step 12 in Algorithm 1), this process is computed only for
every Nlth iteration. To learn the hyperparameters of the kernel
and also the prior mean functions, we maximize the marginal
likelihood [56] of the observations S1:t. To do that, we train the
GP model (6) with S1:t. We optimize the marginal likelihood
using multistarted quasi-Newton hill climbers [54]. For this
purpose, we used the Ax + BoTorch library. Using the kernel
defined in (10), we learn θ := (θ0:d, µ0:d,σ2), which comprises
the hyperparameters of the kernel and the mean functions. The
learning is performed iteratively, resulting in a sequence of θi

for i = 1 . . . 1Nmax
N!

2.

V. EXPERIMENTS AND RESULTS

To evaluate this work, we answer the following research
questions (RQs).

1) RQ1 (Effectiveness): How effective is CURE in the follow-
ing:
1) ensuring optimal performance;
2) utilizing the budget;
3) respecting the safety constraints compared to the base-

lines?
2) RQ2 (Transferability): How does the effectiveness of

CURE change when the severity of deployment changes
varies [e.g., environment and platform change (PC)]?

We answered these questions in a robot navigation task,
using Husky and Turtlebot 3 platforms. In addition, to illustrate
adaptability of CURE to different tasks, we also demonstrate
RQ1 on a robot manipulation task, using the Franka Emika
Panda platform in Gazebo.

A. Experimental Setup

1) Robot Navigation: We simulate Husky and Turtlebot 3
in Gazebo to collect the observational data by measuring the
performance metrics (e.g., planner failed) and performance ob-
jectives (e.g., energy consumption) under different configuration
settings to train the causal model. Note that we use simulator data
to evaluate the transferability of the causal model to physical
robots, but CURE also works with data from physical robots. We
deploy the robot in a controlled indoor environment and direct
the robot to navigate autonomously to the target locations [see
Fig. 5(a)]. The robot was expected to encounter obstacles and
narrow passageways, where the locations of the obstacles were
unknown prior to deployment. The mission was considered
successful if the robot reached each of the target locations. We
fixed the goal tolerance parameters (xy_goal_tolerance=0.2,
and yaw_goal_tolerance=0.1) to determine whether a target

Fig. 5. Simulated environments for Husky and Turtlebot 3. The dashed lines
in (b) show the trajectory of the dynamic obstacles. (a) Husky in Gazebo. (b)
Turtlebot 3 in Gazebo.

was reached. We defined the following properties for the ROS
navigation stack [44].

1) Task completion rate: Tcr =
(
∑

Taskscompleted)/(
∑

Tasks).
2) Traveled distance: Distance traveled from start to

destination.
3) Mission time: Total time to complete a mission.
4) Position error: Euclidean distance between the actual

target position and the position reached by the robot,
Edist =

√∑n
i=1(ti − ri)2, where t and r denote the target

and position reached by the robot, respectively.
5) Recovery executed: Number of rotate recovery and clear

costmap recovery executed per mission.
6) Planner failed: Number of times the planner failed to

produce a path during a mission.
2) Robot Manipulation: We simulate the Franka Emika

Panda in Gazebo and perform a pick-and-place task us-
ing the Moveit [57] motion planning framework. To learn
a causal model, we measure the following performance ob-
jectives under different configuration settings: 1) Average
trajectory jerk: Rate of change of acceleration, averaged
across all joints and time steps, we define average jerk =
1
N

∑N
t=1

√∑7
j=1(

aj(t)−aj(t−1)
∆t )2, where N is the total number

of time steps, aj(t) is the acceleration of joint j at time t, and ∆t
is the time interval between consecutive time steps; and 2) Task
execution time: The total execution time from picking up an
object to placing.

B. Evaluation

To learn a causal model from the source (a low-cost en-
vironment), we generated the values for the configurable pa-
rameters using random sampling and recorded the performance
metrics (the intermediate layer of the causal model that maps
the influence of the configuration options to the performance
objective) for different values of the configurable parameters.
We use a budget of 200 iterations for each method. When
running each method for the same budget, we compare the
Pareto front (PF) and Pareto HV. The PF is the set of objective
vectors corresponding to all Pareto-optimal configurations in
the configuration spaceX. The Pareto HV is commonly used to
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measure the quality of an estimated PF [58], [59]. We define the
PF and HV as follows:

PF = {(fj(x))mj=1 | x ∈ X is Pareto-optimal} (11)

HV(x∗, f ref) = Λ




⋃

x∗
n∈x∗

m∏

j=1

[fj(x
∗
n), f

ref
j ]



 (12)

where HV(x∗, f ref) resolves the size of the dominated space
covered by a nondominated set x∗, f ref refers to a user-defined
reference point in the objective space, and Λ(.) refers to the
Lebesgue measure. In our experiments, we fixed the f ref points
to the maximum observed values of each objective among all
the methods.

To compare the efficiency of each method, we define an
efficiency metric η = (

∑n
k=1 Tk)/(

∑n
k=1 k), where Tk is a

binary variable taking values 0 or 1, denoting the success of
a task during the kth iteration. We also compare the number of
unsuccessful execution (e.g., when the robot failed to complete
a task) and the number of constraint violations (e.g., when the
robot completed the task but violated a constraint). We compared
CURE with the following baselines.

1) MOBO: We implement MOBO using AX [14]—an opti-
mization framework that can optimize discrete and con-
tinuous configurations.

2) RidgeCV [15], [16]: A feature extraction method that
selects the important features based on the highest absolute
coefficient. We use RidgeCV to determine the important
configuration options and generate a reduced search space,
which consists of only the important configuration op-
tions. We then perform an optimization using MOBO on
the reduced search space.

C. RQ1: Effectiveness

We evaluated the effectiveness of CURE in finding an optimal
configuration compared to the baselines. We collect observa-
tional data by running a mission 1000 times from Husky in sim-
ulation under different configuration settings and recorded the
performance objectives. In Fig. 6, the histograms of performance
objectives are depicted along the diagonal line, while scatter
plots illustrating pairs of performance objectives are displayed
outside the diagonal. The histograms of performance objectives,
namely planner failed, recovery executed, obstacle distance, and
energy, have shapes similar to one half of a Gaussian distribution.
Scatter plots depicting different pairs of performance objectives,
such as mission time, distance traveled, and energy, exhibit
positive linear relationships. We selected energy and position
error as the two performance objectives given the imperative
to incorporate uncorrelated objectives in the multiobjective op-
timization framework, underscored by their lowest correlation
coefficient, ensuring the diversity of the optimization criteria. We
then learn a causal model using observational data. The search
space was reduced according to the estimated causal effects
on performance objectives and constraints by selecting top K

Fig. 6. Correlation between different performance objectives derived from
observational data.

Fig. 7. Penalty function.

configuration options (e.g., {EnergytopK} ∪ {PoseErrortopK} ∪
{SafetytopK}) and performed optimization using Algorithm 1.

1) Setting: For the Husky robot, we set the objective thresh-
oldsEnergyTh = 40Wh andPoseErrorTh = 0.18m. We com-
pute the HV using (12) by setting the f ref points at 400 for
energy and 35 for position error within the coordinate system.
We incorporate the safety constraint h(x) by defining a test
case, where the robot must maintain a minimum distance from
obstacles to avoid collisions. We incorporate a user defined
penalty function (see Fig. 7) for each instance 0 ≤ αh(x) ≤ 1
that penalizes Tcr if h(x) is violated. In Fig. 7, Th1 is a soft
constraint threshold and Th2 is a hard constraint threshold. That
is, we penalize Tcr gradually if Th1 > h(x) > Th2 and give
the maximum penalty if h(x) < Th2 to ensure safety. In our
experiments, we set Th1 = 0.25 and Th2 = 0.18. We defined
the safety constraint: Tcr − 1

N

∑N
k=0 αkh(x) ≥ θ, where θ is

a user-defined threshold. In our experiments, we set θ = 0.8.
For the manipulation task, we set the f ref points at 16 for task
execution time and 113 for average trajectory jerk.
2) Results: CURE performed better than MOBO and

RidgeCV-MOBO in finding a PF with a higher HV, as shown
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Fig. 8. Effectiveness of CURE and baseline methods for the navigation task:
(a) PF; (b) HV, (c) efficiency; and (d) safety penalty response obtained by CURE
and other approaches for Husky in simulation. The vertical green line in (b)
shows the number of initial trails before fitting the GP model.

in Fig. 8. In our experiments, we observed a comparable PF
between CURE and MOBO [see Fig. 8(a)], which can be at-
tributed to MOBO’s exploration of an extensive search space
that includes all possible configuration options. On the contrary,
CURE confines its exploration to a reduced search space, com-
posing only configuration options with a greater causal effect
on performance objectives. Although CURE and MOBO have a
similar PF, CURE achieved a higher HV with a less amount of
budget [see Fig. 8(b)]. Fig. 9 illustrates the budget utilization of
CURE and baseline methods. CURE demonstrated better budget
utilization, as reflected in the increased density of purple-colored
data points surrounding the PF and the achievement of a higher
Tcr in fewer iterations compared to the baseline methods. When
comparing the penalty response given, we observed CURE se-
lected configuration options that achieved the lower penalty,
as shown in Fig. 8(d). Furthermore, CURE outperformed the
baselines in terms of efficiency, achieving a 1.3× improvement
over MOBO and achieved this improvement 2× faster compared
to MOBO [as shown in Fig. 8(c)]. RidgeCV-MOBO, however,
underperformed, mainly because it was unable to identify the
core configuration options influencing the performance objec-
tives [see Figs. 8(b), (c) and 9(b)]. Moreover, CURE continu-
ously outperformed the baselines in the manipulation task (see
Fig. 10). Therefore, CURE is more effective in finding optimal
configurations compared to the baselines.

D. RQ2: Transferability

Understanding CURE’s sensitivity to different degrees of de-
ployment changes, such as transfer of the causal model learned
from a source platform (e.g., Gazebo simulation) to a target

platform (e.g., real robot), is critical. Sensitivity analysis is
especially crucial for such scenarios, considering that distribu-
tion shifts can occur during deployment changes. We answer
RQ2 through an empirical study. We examine different levels of
severity in deployment changes, where severity is determined
by the number of changes involved. For example, a deployment
change is considered more severe when both the robotic platform
and the operating environment change, as opposed to changes
limited solely to the environment.

1) Setting: We consider Husky and Turltebot 3 in simulation
as the source and Turtlebot 3 physical robot as the target. We
evaluate two deployment scenarios (see Fig. 11): (i) STR: We
trained the causal model using Algorithm 2 on observational data
obtained by conducting a mission 1000 times using Turtlebot 3
in Gazebo environment [see Fig. 5(b)]. The robot was expected
to encounter dynamic obstacles [the trajectories of the obstacles
are shown in Fig. 5(b)]. The mission was considered successful
if Turtlebot 3 reached each of the target locations. Subsequently,
we used the causal model learned from simulation (environment
A) to the Turtlebot 3 physical robot for performance optimization
in two distinct environments (environment B and C). (ii) STR
and PC: We consider the change of two categories, the STR
and robotic PC. In particular, we applied the causal model used
in RQ1 (learned using Husky in simulation) to the Turtlebot 3
physical robot in a real environment, as shown in Fig. 11. We
use the identical experimental setting for the Husky as described
in Section V-C. For Turtlebot 3, we set the objective thresholds,
EnergyTh = 2Wh andPoseErrorTh = 0.1m. We compute the
HV using (12) by setting the f ref points at 19.98 for energy and
3 for position error within the coordinate system. We also set
Th1 = 0.25 and Th2 = 0.15 in the penalty function (see Fig. 11).

2) Results: As shown in Fig. 12, CURE continuously outper-
forms the baselines in terms of HV [see Fig. 12(a)], PF [see
Fig. 12(b)], efficiency [see Fig. 12(c)], penalty response [see
Fig. 12(d)], and violations and failures [see Fig. 12(e)] for
each severity changes. Specifically, compared to MOBO, CURE
finds a configuration with 1.5× higher HV in STR setting
(low severity), and 2× higher HV when we change the plat-
form in addition to sim-to-real (high severity). Moreover, CURE
achieved efficiency gains of 2.2×, and 4.6× over MOBO with
low and high severity of deployment changes, respectively.
To provide insights into the factors contributing to CURE’s
enhanced performance, we compared constraint violation θV
and task failure TF , revealing reductions of 48% in θV , while
also demonstrating 28% lower TF under high severity changes
compared to RidgeCV-MOBO. Therefore, we conclude that
CURE performs better compared to the baseline methods as the
deployment changes become more severe.

VI. PERFORMANCE AND SENSITIVITY ANALYSIS OF CURE

To explain CURE’s advantages over other methods, we con-
ducted a case study employing the same experimental setup de-
scribed in Section V-C. We also demonstrate CURE’s sensitivity
by varying the top K values. Our key findings are discussed in
the following.
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Fig. 9. CURE demonstrates a denser surface response near the PF and achieved higher Tcr in fewer iterations for the navigation task, resulting in better budget
utilization compared to baselines. (a) MOBO. (b) RidgeCV-MOBO. (c) CURE.

Fig. 10. Effectiveness of CURE and baseline methods for the manipulation
task. (a) HV. (b) Efficiency.

Fig. 11. STR: applying the knowledge of the learned causal model using
Turtlebot 3 in simulation to the Turtlebot 3 physical robot. STR and PC:
transferring the causal model learned using Husky in simulation to the Turtlebot
3 physical robot.

A. CURE’s Efficient Budget Utilization Is Attributed to a
Comprehensive Evaluation of the Core Configuration Options

For a more comprehensive understanding of the optimiza-
tion process, we visually illustrate the response surfaces of
three pairs of options, each with varying degrees of ACE in
energy. Fig. 13(b) contains options with high ACE values,
while Fig. 13(d) contains only options with lower ACE values.
Options with ACE values close to the median are presented in
Fig. 13(c). We observe that response surfaces with higher ACE

values are more complex compared to those with lower ACE
values. Fig. 13(b)–(d) also shows that CURE explored a range
of configurations within the range by systematically varying
configurations associated with higher ACE values than those
associated with lower ones. In particular, because they have the
lowest ACE, the pair of options involving trans_stopped_vel
and max_scaling_factor was not considered byCURE in the opti-
mization process, avoiding allocating the budget to less effective
options. In contrast, both MOBO and RidgeCV-MOBO wasted
the budget exploring less effective options [see Fig. 13(d)]. Note
that the option pair involving Min_vel_x and scalling_speed in
Fig. 13(b), which exhibits the highest ACE, was not identified
by RidgeCV-MOBO. We also observe that due to having a larger
search space (entire configuration space), MOBO struggled to
explore regions effectively (exhibits a more denser data dis-
tribution) compared to CURE. In our previous study [4], we
evaluated the accuracy of the key configuration options iden-
tified using causal inference through a comprehensive empirical
study. Therefore, CURE strategically prioritize core configura-
tion options with high ACE values, ensuring efficient budget
utilization and demonstrating a better understanding of such
complex behavior, while bypassing less effective options.

B. CURE Leverages the Knowledge Derived From the Causal
Model Learned on the Source Platform

In Fig. 13(a), we compare the adjacency matrix between
causal graphs learned from the source and target platforms,
respectively. We compute the adjacency matrix A from a causal
graph G = (V,E), where V is the set of vertices and E is the
set of edges, as follows:

A[i][j] =

{
1, if (i, j) ∈ E

0, otherwise
(13)

where (i, j) represents the edge from vertex i to vertex j.
In particular, both causal graphs share a significant overlap,
providing a rationale for CURE’s enhance performance when
transferring the causal model learned from a source (e.g., Husky
in simulation) to a target (e.g., Turtlebot 3 physical platform).
Therefore, a causal model developed on one platform or en-
vironment can be leveraged as prior knowledge on another,

Authorized licensed use limited to: University of South Carolina. Downloaded on July 17,2025 at 15:32:43 UTC from IEEE Xplore.  Restrictions apply. 



2836 IEEE TRANSACTIONS ON ROBOTICS, VOL. 41, 2025

Fig. 12. Transferability of CURE and baseline methods for the navigation task: (a) HV; (b) PF; (c) Efficiency; (d) safety penalty response; and (e) θV and TF ;
under varying severity of deployment changes.

Fig. 13. (a) Significant overlap between causal structures (common edges
are represented as purple squares) developed in Husky (Gs) and Turtlebot 3
(Gt). Unique edges are represented as green and yellow squares in Gs and
Gt, respectively. (b), (c), and (d) Contour plot with options of different causal
effects. The color bar indicates the energy values, where lower values indicate
better performance.

demonstrating the cross-platform applicability and usefulness
of the acquired causal understanding.

C. How Sensitive Is CURE When the Value of Top K Varies?

We investigate CURE’s performance with different K val-
ues and how it affects the optimization process. We conduct

Fig. 14. Sensitivity of CURE under different top K values.

a single-objective optimization on the Turtlebot 3 platform to
demonstrate the sensitivity of CURE. As shown in Fig. 14, there
is a tradeoff between the topK values and the iterations required
to achieve high-quality solutions. Smaller K values allow the
optimization process to quickly find low energy values but may
limit exploration, leading to early plateauing. Conversely, larger
K values enable more extensive exploration, leading to more
gradual improvements and potentially better solutions, but re-
quiring more iterations. This is because, when the search space is
smaller, the optimization process can exploit known good areas
more effectively. In contrast, a larger search space requires more
exploration, which extends the optimization process. One ap-
proach for selectingK is to define a threshold on the ACE values
and select options that exceed this threshold. This can be done
by using a threshold defined as {X | XACE > µACE + σACE},
where µACE is the mean and σACE is the standard deviation of the
ACE values. Alternatively, a threshold based on the percentile
of ACE values can be employed, such as selecting options with
ACE values greater than the 75th percentile. We leave this
selection up to the practitioner as user preferences may vary
depending on the task, environment, and robotic system.
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VII. DISCUSSION

A. Usability of CURE

The design we have proposed is general and extendable to
other robotic systems but would require some engineering effort.
In particular, to apply CURE to a novel problem, the practitioner
must identify the following:

1) configuration options;
2) performance metrics;
3) key performance indicators (KPIs).
Note that the abstraction level of the variables in the causal

model depends on the practitioner and can go all the way down to
the hardware level. In defining the metrics and KPIs, guidelines
provided by the National Institute of Standards and Technology
can be used [60], [61]. These guidelines help classify variables
as nonmanipulable in the three-layer causal model design [4],
which simplifies the performance modeling process by allowing
a clear distinction between configurable and performance vari-
ables. Moreover, we provide various performance metrics and
performance objectives for mobile robot navigation and robot
manipulation tasks in Section V.

B. Limitations

1) Causal Model Error: The NP-hard complexity of causal
discovery introduces a challenge [62], implying that the iden-
tified causal model may not always represent the ground-truth
causal relationships among variables. It is crucial to recognize
the potential for discrepancies between the causal structure dis-
covered and the actual structures. However, such causal models
can still be employed to achieve better performance compared to
ML-based approaches in systems optimization [63] and debug-
ging tasks [4], because causal models avoid capturing spurious
correlations [45].

2) Potential Biases When Transferring the Causal Model:
Caution must be exercised when reusing the entire causal graph
learned from the source platform, as differences between causal
graphs in the two platforms [as indicated by the green and yellow
squares in Fig. 13(a), representing edges unique to the source
and target, respectively] can induce bias. It is crucial to discover
new causal connections [indicated by the yellow squares in
Fig. 13(a)] on the target platform based on observations. Given
the small number of edges to be discovered, this task can easily
be accomplished with a limited number of observational samples
from the target platform.

C. Future Directions

1) Incorporating Causal Gaussian Process (CGP): Using
CGP in the optimization process has the potential to capture
the behavior of the performance objective better compared to
traditional GP [64]. Unlike GP, CGP represents the mean using
interventional estimates via do-calculus. This characteristic ren-
ders CGP particularly useful in scenarios with a limited amount
of observational data or in areas where observational data is not
available.

2) Updating the Causal Model at Run-Time: There is poten-
tial in employing an active learning mechanism that combines

Fig. 15. CURE demonstrates a better understanding about the performance
behavior compared to MOBO. The actual function was derived from 1000
observational samples. The color bar indicates energy values.

the source causal modelGs with a new causal modelGt learned
from a small number of samples from the target platform. This
approach is particularly promising considering the limitations
discussed In Section VII-B.

3) Dynamically selecting top K at Run-Time: In our frame-
work, K is a hyperparameter and its value is defined by the
practitioner. Motivated by Fig. 14, there is potential for imple-
menting a dynamic selection approach. This approach would
start with a lower K and progressively increase the K if the
objective reaches a plateau.

VIII. CONCLUSION

In this article, we presented CURE, a multiobjective optimiza-
tion method that identified optimal configurations for robotic
systems. CURE converged faster than the baseline methods and
demonstrated effective transferability from simulation to real
robots, and even to new untrained platforms. CURE constructs
a causal model based on observational data collected from a
source environment, typically a low-cost setting such as the
Gazebo simulator. We then estimate the causal effects of config-
uration options on performance objectives, reducing the search
space by eliminating configuration options that have negligi-
ble causal effects. Finally, CURE employs traditional Bayesian
optimization in the target environment, but confines it to the
reduced search space, thus efficiently identifying the optimal
configuration. Empirically, we have demonstrated that CURE
not only finds the optimal configuration faster than the baseline
methods, but the causal models learned in simulation accelerate
optimization in real robots. Moreover, our evaluation shows the
learned causal model is transferable across similar but different
settings, encompassing different environments, mission/tasks,
and new robotic systems.

APPENDIX A
ADDITIONAL DETAILS

A. Background and Definitions

1) Configuration SpaceX: ConsiderXi as the ith configura-
tion option of a robot, which can be assigned a range of values
(e.g., categorical, Boolean, and numerical). The configuration
spaceX is a Cartesian product of all options and a configuration
x ∈ X in which all options are assigned specific values within
the permitted range for each option. Formally, we define the
following.

1) Configuration option: X1, X2, . . . , Xd.
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TABLE I
CONFIGURATION OPTIONS IN MOVE BASE

TABLE II
CONFIGURATION OPTIONS IN COSTMAP COMMON

TABLE III
CONFIGURATION OPTIONS IN COSTMAP COMMON INFLATION

2) Option value: x1, . . . , xd.
3) Configuration: x = 〈X1 = x1, . . . , Xd = xd〉.
4) Configuration space: X = Dom(X1)× · · ·× Dom(Xd).
2) Partial Ancestral Graph: Each edge in the PAG denotes

the ancestral connections between the vertices. A PAG is com-
posed of the following types of edges.

1) A B: The vertex A causes B.
2) A B: There are unmeasured confounders between the

vertices A and B.
3) A B: A causes B, or there are unmeasured con-

founders that cause both A and B.
4) A B: A causes B, or B causes A, or there are

unmeasured confounders that cause both A and B.
For a comprehensive theoretical foundation on these ideas,

we refer the reader to [47], [65], [66]
3) Causal ModelG: A causal model is an ADMG [67], [68],

which encodes performance variables, functional nodes (which
defines functional dependencies between performance variables
such as how variations in one or multiple variables determine
variations in other variables), causal links that interconnect
performance nodes with each other via functional nodes. An
ADMG is defined as a finite collection of vertices, denoted by
V , and directed edges Ed (ordered pairs Ed ⊂ V × V , such that
(v, v) '∈ Ed for any vertex v), together with bidirected edges,

TABLE IV
CONFIGURATION OPTIONS IN DWAPLANNERROS

denoted byEb (unordered pairs of elements ofV ). If (v, w) ∈ Eb
then v ↔ w, and if in addition (v, w) ∈ Ed then v↔→ w.

4) Causal Paths PX!Y : We define P = 〈v0, v1, . . . , vn〉 so
that the following conditions hold.

1) vo is the root cause of the functional fault and vn = yF .
2) ∀ 0 ≤ i ≤ n, vi ∈ V and ∀ 0 ≤ i ≤ n, (vi, vi+1) ∈

(Ed ∨ Eb).
3) ∀ 0 ≤ i ≤ j ≤ n, vi is a counterfactual cause of vj .
4) |P | is maximized.
5) Why Do Robotic Systems Fail?: A robotic system may

fail to perform a specific task or deteriorate from the desired
performance due to the following.

1) Hardware faults: Physical faults of the robot’s equipment
(e.g., faulty controller).
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TABLE V
CONFIGURATION OPTIONS IN MOVEIT CHMOP PLANNING

TABLE VI
ACE VALUES OF THE CONFIGURATION OPTIONS

Fig. 16. θV and TF for RQ1.

2) Software faults: Faulty algorithms and/or faulty imple-
mentations of correct algorithms (e.g., incorrect cognitive
behavior of the robot).

3) Interaction faults: Failures that result from uncertainties
in their environments.

The software stack is typically composed of multiple compo-
nents (e.g., localization and navigation), each with a plethora
of configuration options (different planner algorithms and/or
parameters in the same planner algorithm). Similarly to software
components, hardware components also have numerous config-
uration options. Incorrect configurations can cause a functional
fault (the robot cannot perform a task successfully) or a non-
functional fault (the robot may be able to finish tasks, but with
undesired performance).

6) Nonfunctional Fault: The nonfunctional faults (inter-
changeably used as performance faults) refer to cases where
the robot can perform the specified task but cannot meet the
specified performance requirements of the task specification.
For example, the robot reached the target location(s); however,
it consumed more energy. We define the nonfunctional prop-
erty N = {p1, . . . , pn}, where p1, . . . , pn represents different
nonfunctional properties of the robotic system (e.g., energy,
mission time) and pj is the value of jthN. The specified perfor-
mance goal is denoted as pjs. Performance failure occurs when
pj '|= pjs. Extending the previous scenario, let Ei be the energy
consumption during task i and let T i be the mission completion
time. The specified performance goals for the task are indicated
as Es−>t <= en, Ts−>t <= tt, respectively. A nonfunctional
fault can be defined as NF = (Ei > en) ∨ (T i > tt).

B. Additional Details About Experimental Setup

1) Configuration Options in ROS Nav Core and Moveit:
Table I–IV show the configuration space for each component
in the ROS navigation stack and Table V shows the configura-
tion space in Moveit chomp planning used in our experiments.
We fixed the goal tolerance parameters (xy_goal_tolerance and
yaw_goal_tolerance) to determine if a target was reached. Com-
plex interactions between options (intra or inter components)
give rise to a combinatorially large configuration space.

C. Additional Details for Evaluation

1) RQ1 Additional Details: We also compared θV and TF ,
revealing reductions of 8.5% in θV , while also demonstrating
lower 13.5% TF compared to MOBO as shown in Fig. 16.
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Fig. 17. Pairwise interactions between high ACE configuration options, per-
formance objectives, and constraints, derived from observational data. (a) Inter-
action with energy. (b) Interaction with position error. (c) Interaction with Tcr.
(d) Interaction with safety constraint.

Fig. 18. Pairwise interactions between low ACE configuration options, per-
formance objectives, and constraints, derived from observational data. (c) Inter-
action with Tcr. (d) Interaction with safety constraint.

2) ACE Values of Configuration Options: Table VI shows the
corresponding ACE values of the configuration options on the
performance objectives and constraints. We set the top K = 5,
represented by blue. Note that CURE reduces the search space
from 34 configuration options to 10 by eliminating configuration
options that do not affect the performance objective causally.

3) Observational Data Additional Details: In Figs. 17
and 18, we visualize the interactions between core configuration
options (pairwise) and their influence on the energy, position

error, task success rate, and the safety constraint from the
observational data. We observe that the surface response of
configuration options with higher ACE values is complex than
those with lower ACE values.
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