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ABSTRACT

We present a basic framework for modeling collective mode effects in photocurrent measurements performed on two-dimensional materials using
nano-optical scanned probes. We consider photothermal, photovoltaic, and bolometric contributions to the photocurrent. We show that any one
of these can dominate depending on frequency, temperature, applied bias, and sample geometry. Our model is able to account for periodic spatial
oscillations (fringes) of the photocurrent observed near sample edges or inhomogeneities. For the case of a non-absorbing substrate, we find a
direct relation between the spectra measured by the photocurrent nanoscopy and its parental scanning technique near-field optical microscopy.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0192814
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1. INTRODUCTION occurring near sample edges and inhomogeneities.””” These fea-
tures have been attributed to collective modes, plasmon- and
phonon-polaritons, excited in graphene and underlying 2D sub-
strate materials. In this paper, we aim to formulate a theoretical
model for such collective mode effects.

Whereas modeling of s-SNOM has been actively pursued in the
past decade,'’”"” photocurrent nanoscopy has received less attention.
Theoretical analysis of the latter is more effortful because in addition
to the electromagnetic tip-sample coupling, one also has to account
for multiple possible mechanisms of the DC photocurrent genera-
tion. We focus on the case where the photocurrent scales linearly

nanoscopy. The instrumentation involved in such measurements Ymh the 1nc1dent. light 1ntensi'§y,t L€, as a sec.ond power of the
can also be utilized to perform scattering-type scanning near-field 1n.-plane AC elecFrlc field E(r)‘e et ¢.c Assuming the system con-
optical microscopy (s-SNOM). In s-SNOM, one detects light scat- t:a.ms only 1nver31on—'sym'metr1c {rlater{als, such a secoFld—(?rder non-
tered by the tip instead of the photocurrent. In practice, s-SNOM linear effect can arnse if the inversion symmetry is wglated by
and photocurrent nanoscopy are performed together, providing ~ Poundary conditions, structural defects, or externally applied fields.
complementary information about the system. This combination of ~ For example, nonvanishing photocurrent can exist if the carrier
techniques has been successfully applied to probe graphene and density n(r) in the scanned region is nonuniform. Photocurrent can
other two-dimensional (2D) materials’ demonstrating a spatial ~ also be generated if the magnitude or the phase of E(r) is spatially

Scanning photocurrent microscopy is traditionally performed
using a focused light beam.'™ In a modern variant of this tech-
nique, the focusing of incident light is achieved instead by a sharp
metal tip, as illustrated schematically in Fig. 1. Such a tip acts as an
optical antenna that couples a locally enhanced near-field to free-
space radiation. In the experiment, the tip is scanned and the dc
photocurrent current generated in the sample is measured as a
function of the tip position using electric contacts positioned some-
where on the sample periphery. Below, we refer to this technique as
scanning near-field photocurrent microscopy or photocurrent

resolution of ~20 nm, which is orders of magnitude better than the ~ dependent (the latter corresponds to a nonzero in-plane momen-
diffraction-limited traditional approach. tum).'* If there exists a DC electric field E°C(r) in the system, the
Recent photocurrent nanoscopy experiments revealed distinc- photocurrent can include terms that scale as E°C|E|*, which we also
tive spectral resonances and periodic interference patterns consider in our calculations. Altogether we examine three
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FIG. 1. Sketch of a theoretical model for photocurrent nanoscopy. The tip of a
scanned probe brought near the sample possesses a dipole moment of ampli-
tude p? induced by a focused light beam. The sample consists of a graphene
sheet of conductivity o(r) placed on a stack of layers with infout-of-plane permit-
tivities &:-(), £7(w), where i = 1,2, ..., M is the layer index. In the example
shown, M =2 and the bottom i =2 layer is a conductor to which a gate
voltage Vs can be applied. The electric field of the tip launches collective excita-
tions and modifies the current / in the circuit comprised of graphene, voltage
source V, and resistance R.

mechanisms of photocurrent generation: bolometric (BM), photo-
thermal (PT), and photovoltaic (PV). The relative importance of the
BM, PT, and PV effects depends on a system. In common bulk semi-
conductors, the Joule heating of charge carriers is suppressed by an
efficient cooling by optical phonons.”” The resultant PT current is
small and the photocurrent is mostly due to the PV effect. In gra-
phene, the linear quasiparticle dispersion combined with the high
optical phonon frequency inhibits electron cooling, which enhances
the PT contribution.'™'” Experiments performed on graphene p-n
junctions have demonstrated that in the absence of a bias, V =0,
the PT effect is typically the dominant photocurrent mechanism."®
However, the BM current quickly becomes the largest contribution
as the bias V is increased from zero."”

As we show in the remainder of this paper, collective mode
effects in photocurrent, which is the main target of our investigation,
can manifest themselves via all these three mechanisms. In Sec. I,
we introduce basic definitions and relations concerning the BM, PT,
and PV effects. In Sec. III, we present illustrative examples how col-
lective modes—plasmons and polaritons—can generate characteristic
spatial patterns detectable in photocurrent nanoscopy. In Sec. IV, we
study the collective mode signatures in the frequency dependence of
the PT photocurrent. We present the main equations of our model
in Sec. V. Further technical details are given in the Appendix.

Il. DEFINITIONS OF PHOTOVOLTAGES, CURRENTS,
AND CONDUCTIVITIES

The model system we study is shown schematically in Fig. 1.
The measured quantity is the total current I given by

v+ VP
[V

- , 1
R, +R W
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where V is the bias voltage applied between the contacts, V?H is
the photovoltage (discussed below), R, is the sample resistance in
the dark, and R is any additional resistance in series with R, e.g.,
the contact resistance. Assuming R remains constant under illumi-
nation, the photocurrent is proportional to VPH which is, in turn,
proportional to the local photoinduced electromotive force (EMF)
FPH(r). If this F*H(r), the EMF in the dark

EP() = BP0 — - 0, i € fx @)

and the linear-response DC conductivity oPC were all uniform, and

the sample were infinite, the two EMFs would be simply additive.
(Here uP€ is the equilibrium distribution of the chemical potential
and e = —|e| is the electron charge.) The photoinduced EMF
would drive an extra uniform current,

JPH = GPCRPH, 3)

In the practice of photocurrent nanoscopy, F*H(r) is nonuniform,
the sample is of finite size and may have an irregular shape. In
such a case Eq. (3) serves as a formal definition of j?H(r); however,
the actual current density is different because the total EMF must
readjust itself to ensure current conservation in the steady state.
Nevertheless, the relation between VP and F*H (or equivalently,
i) can be conveniently expressed using the Shockley-Ramo
theorem (see, e.g., Ref. 20),

I
v [, o = W @
Here, the repeated index i is meant to be the summed over,

jPw) = a"CWE ) )
is the current density in the dark, and IPC is the total dark current.
The auxiliary vector field w(r), which has the units of inverse
length in 2D, encodes all the geometric properties of the sample
and contacts and obeys the normalization relation

| wi®y(x)
Rg—Jdr—o_DC(r) . (6)

For example, y; =6x,i/W for a sample of length L in the
x-direction and width W in the y-direction, with two line-like con-
tacts located at x = 0 and x = L.

As mentioned in Sec. I, we consider three contributions to the
photoinduced EMF FFH, The first one is due to the photothermal
(PT) effect,

FT = —8;0.T, (7)

where §j; is the tensor of Seebeck coefficients (same as the thermo-
power tensor). The electron temperature T that enters this equation
differs from the equilibrium ambient T, temperature because of AC
Joule heating. We assume that the relation between T — T, and the
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heating power oc|E|” is linear, so that the gradient of T is quadratic
in the incident AC field. Therefore, it is possible to express the PT
EMF FT and the corresponding current density /7 in terms of a
suitable rank-three tensor 0'5%,

jit =o"F" = o}, EE,. (8)
Since the temperature distribution is also affected by the sample
geometry and mechanisms of heat dissipation, this tensor may
depend on position r and various extrinsic factors. The relation
between 0'5;1;,, Sij and other material properties will be further elab-
orated on in Sec. V.

The second contribution we include is due to the bolometric
(BM) correction to the DC conductivity c°€. The corresponding
corrections to the EMF and the current density satisfy the equation

(-:)O.DC
M = gPCPM — o7 (T - Ty)FPC. )
The BM coefficient doPC/OT is briefly discussed in Sec. III. As
with the PT photocurrent, it is in principle possible to rewrite
Eq. (9) in terms of a certain rank-three tensor o> but we will not
do so.

Last, we consider the photovoltaic (PV) current,

(10)

V=P — GIVCRE % o %0 (u — ).
(It is also referred to as the photogalvanic current in some litera-
ture.) In Eq. (10), we split the PV response into the coherent part
(the first term), due to the AC electric field, and the incoherent
part (the second term), caused by the change of the chemical
potential x4 due to the heating T — Ty and/or the photoexcited
carrier density n — ny. Similar to the points made above about the
PT and BM currents, the sum of these two parts can also be

written using a certain tensor o},

#V =0l EE,. (11)
In turn, the full second-order conductivity tensor is the sum
(2) _ _PT PV
O-ilm = Oilm + Oilm* (12)

Having it defined in the present work allows us make a connection
with prior literature where such a tensor has been studied.”’ We
discuss this in Sec. V.

I1l. PHOTOCURRENT SIGNATURES OF COLLECTIVE
MODES IN IMAGING: THREE ILLUSTRATIVE EXAMPLES

A. Hot spots due to polaritonic rays

Optical phonon modes of 2D heterostructures are examples of
collective excitations, which may generate uncommon effects detect-
able by photocurrent nanoscopy. As one illustration, we consider a
model system consisting of twisted bilayer graphene (TBG) depos-
ited on a thin slab of hBN (Fig. 1). In our previous work,” the pho-
tocurrent in such a system has been experimentally found to exhibit

ARTICLE pubs.aip.org/aip/jap

characteristic spatial variations near the domain walls (DWs) of
TBG. These domain walls (also known as AB-BA boundaries or
“solitons”) form naturally in TBG if its twist angle is small enough.
Below, we discuss the modeling of these experiments and our theo-
retical predictions for observable collective mode signatures. We
give some additional background necessary to understand these
results but otherwise delay all the derivations until Sec. V.

An interesting property of hBN is its optical hyperbolicity: the
in- and out-of-plane permittivities of this material are of opposite
signs in certain frequency bands, known as Reststrahlen (RS)
bands, such as 1370 < ® < 1610cm™'. The optical hyperbolicity
enables the propagation of so-called hyperbolic phonon-polaritons
inside the slab.”»** A localized source, such as an s-SNOM tip, typ-
ically excites several of such polariton modes simultaneously, which
produces a spatial beats pattern with the period § given by the
formula

2 et
§="=22id L 13
Ag | V& (13)

Furthermore, inside the hBN slab, the electric field is strongly con-
centrated along certain zigzag trajectories, which we refer to as
polaritonic rays. Figure 2(a) illustrates such a zigzag pattern in the
cross-sectional plane and the corresponding concentric beats
pattern on the top surface of the slab.

The results presented below are obtained using the following
additional assumptions. First, we approximate the scanned probe
as a point-like dipole located at a distance z, above the sample as
shown in Fig. 2(a). Such an approximation, referred to as the
“point-dipole model,”'*” is commonly used in s-SNOM modeling.
Note that z; is really an adjustable parameter rather than the physi-
cal tip-sample distance. Usually, it is chosen to be of the order of
the curvature radius a ~ 30nm of the probe.

Second, we assume that the photocurrent is dominated by the
PT effect that arises due to the local minimum of the thermopower
S at the domain wall [Fig. 2(b)]. Finally, we assume that the
domain wall is infinitely long so that the sample and, therefore, the
photocurrent signal are translationally invariant in the longitudinal
direction.

The results obtained within this model are shown in the lower
part of Fig. 2(b). At frequencies outside its RS band, the hBN layer
is not hyperbolic and only two peaks of photocurrent signal as a
function of tip position x; are observed. They appear when x; is
approximately equal to the tip-sample separation z;. The qualitative
explanation is that at such x;, the Joule heating at the domain wall
is the largest, which generates the strongest photoresponse. Indeed,
the Joule heating is proportional to the square of the in-plane elec-
tric field produced by the dipole. It vanishes directly below the
dipole [which is the case in general, including the hyperbolic
regime, Fig. 2(a)] and is maximal at the lateral distance ~ z;.

At frequencies inside the RS band, our calculation predicts
additional peaks of photocurrent as a function of x;, which we have
referred to as the “hot spots” in the past. For a given o, these hot
spots are separated by intervals approximately equal to §. More
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FIG. 2. (a) A schematic of polariton propagation inside a slab of a hyperbolic
material (HM). The polariton is launched by a probe, which is modeled by a
point dipole a distance z; above the sample. The quantity plotted is the in-plane
field intensity, using the hBN optical constants from Ref. 22. (b) False color plot
of the photocurrent as a function of the tip distance x; from the domain wall and
the frequency o, showing multiple peaks inside the hyperbolic regime. The tip-
sample separation z; was taken to be 50 nm, equal to the hBN thickness. Radii
r from Eq. (14) for k = 0, 1, 2 are shown with solid lines as guides to the eye.

precisely, they appear when the tip position x; matches the radii

= \/% (k26> — 22) + % \/25 (K46* + zf) + 14k2228%,  (14)

of “hot rings” created by the polaritonic rays launched by the tip
[Fig. 2(a)]. If & is much larger than the tip-sample distance z;, our
calculation predicts multiple rings to be well resolved. At small &,
the rings overlap and only weak oscillations with the period &
remain. Only the first pair of hot spots has been observed in the
experiment.”® We expect that using cleaner samples and higher res-
olution probes may reveal additional ones.

ARTICLE pubs.aip.org/aip/jap

B. Interference fringes due to the plasmons: PT and
BM effects

Plasmons are another example of collective modes that have
been imaged by both s-SNOM****”** and photocurrent nano-
scopy.”>”*” Such an imaging is typically done near sample boundar-
ies that reflect plasmons launched by the scanned probe. Near a
sample edge, the incident and reflected waves interfere, resulting in
a standing-wave pattern (or “fringes”) with spatial period 4,/2,
where 1, =27/q, is the plasmon wavelength and g, is the
plasmon momentum. Following the structure of Sec. III A, below
we present our modeling results for this effect but defer their deri-
vation until Sec. V. We begin the cases where the photocurrent is
generated by the PT and BM mechanisms. An example of PV plas-
monic fringes is presented later in Sec. III C.

1. Edge-reflected plasmons near a p-n junction

Rigorous calculation of the plasmon reflection from the edge
is computationally intensive.”” However, there is a simple model
where the reflection from the edge (y = 0) is approximated by the
method of images. For the tip located at r; = (x;, y¢), we place an
“image” tip at y; = —y;. The corresponding in-plane electric field is
the superposition of the source and image terms,

E(r, ;) = Ei(x — xt, y — y1) — Ee(x — X5 y + 1), (15)
where E;(x, y) is the in-plane field produced by the tip in an infi-
nite uniform sample. This approximation is reasonably accurate. Its
main deficiency concerns the position and the amplitude of the
very first fringe.

As an illustrative example of how plasmons show up in the PT
photocurrent signal, we consider the case where the sample con-
tains a p-n junction along the y axis, i.e., x = 0, which is normal to
the sample edge at y = 0. This geometry models the case studied
experimentally.”” We approximate the thermopower profile by a
step-like function of coordinate x. We also assume o°€ is uniform,
thereby neglecting the suppression of 6P in a neighborhood of the
junction. To obtain the temperature distribution, we again use the
method of images approximation,

T(r,x;) = Te(x — x1, y — yo) £ To(x — X1,y + y1)s (16)
where Ty(x, y) is the temperature profile in an infinite uniform
sample, the top (bottom) sign corresponds to a boundary with
vacuum (metal), and we set the ambient temperature T, to zero,
for simplicity. (The value of T, does not affect the result for the
photocurrent.)

The spatial distribution of the photocurrent signal computed
within this model is shown in Fig. 3. The photocurrent exhibits plas-
monic fringes as a function of the tip coordinate y, due to the inter-
ference of the tip-launched modes with their reflections off the edge,
as observed in the experiment.”””" It can be seen from Fig. 3(a) that
appreciable photocurrent is generated only when the lateral tip posi-
tion is close enough to the p-n junction, |x;| <. The cooling
length . is defined in Sec. V D. It was chosen to be [, ~ 1 um in this
calculation. The fringe periodicity does not depend on x¢; however,
the fringe amplitude decreases with x; [see Fig. 3(b)]. The decay law
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FIG. 3. (a) The photocurrent as a function of the tip position near a p-n junction. The periodic fringes are formed by interference of tip-launched plasmons with their reflec-
tions by the sample edge (gold line at the bottom). The scale bar is the cooling length I, = 1 um. The p-n junction is modeled as a sharp step-like discontinuity in thermo-
power (red curve in the top plot). The plasmon wavelength is A1, = 0.2/, on both sides of the junction, and nonuniformity of 4, at the junction is neglected. The substrate
is assumed to be a perfect heat conductor maintaining a constant temperature. (b) The linear cuts through panel (a) in the y-direction, parallel to the junction, at x; = 0

and x; = /.

of the excess temperature T;(x, y) (and so, photocurrent) as a func-
tion of distance is discussed in more detail in Sec. V D.

2. Biased sample

If the sample carries a DC current already in the absence of
light, another possible mechanism of photocurrent plasmonic fringes
is the BM effect. The scanned probe locally modifies the temperature
distribution, which causes a local variation in the conductivity. The
size of the BM effect is proportional to the derivative do"¢/OT,
which depends on details of electron scattering (see Sec. V). The total
BM photocurrent in a rectangular sample of size L x W is

VvV 9cPC

B
LW 0T

szr[T(r) — Tol. (17)

The results of our calculations done using this equation are plotted in
Fig. 4(a). They exhibit the now familiar A, /2 fringes near the contacts.
It appears that there are many similarities between the spatial features
observable in PT and BM photocurrent. In fact, I®™ in Eq. (17)
depends on the tip position in exactly the same way as the PT photo-
current in a sample with a linearly varying thermopower S(x, y) oc x.

In principle, photocurrent in a biased sample can also be gen-
erated through the PT because the source-drain bias causes self-
gating, ie., the carrier density change An~ CV/e across the
sample, with C being the capacitance. To show that the BM should
normally be more important than the PT, we compare the coeffi-
cients of Eqs. (17) and (80). Using Eq. (51) for the thermopower
and a rough estimate 9oP¢ /9T ~ oP¢/ T, we find

T

—~— L L.
M 12 ked,

(18)

Indeed, experiments show that the BM contribution typically domi-
nates over the PT one."”

C. Interference fringes due to the plasmons: Coherent
PV effect

The remaining contribution to the photocurrent introduced in
Sec. I is the PV term. The PV effect is a complicated phenomenon
that depends on many microscopic details of the system. Therefore,
as our final example, we study the appearance of plasmonic fringes
within a simple representative model. We assume again that our
graphene sample is uniformly doped, ¢PC = const and has the
shape of a L x W rectangle with contacts at x = 0 and x = L, as in
Fig. 1. In the absence of an applied bias voltage V, the chemical
potential and the thermopower are also uniform, u, S = const.
Hence, the BM, PT, and the thermal PV photocurrents all vanish.
What remains is the coherent PV current, which is given by
Eq. (10). A particularly simple result is obtained in the hydrody-
namic regime, where the largest contribution to o5l in the limit
o > T is given by the ponderomotive force BV (r), 1!

. e

V) =" FV(r), FY(r)=-—5 VE& . (19
mo

Therefore, the current is proportional to the difference of field

intensities at the contacts. If the field on the contact is the sum of

the external field Ee~™' + c.c. and the field F(r) created by the tip,
the PV current is

x=L
xr) oc cos(gp|x — x| + @)

x=0

IPVC( (20)

Here, ¢ is a phase shift which contains the reflection coefficient
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FIG. 4. (a) Spatially periodic photocurrent near a contact due to the BM mecha-
nism. The signal is normalized to its maximum value. Computational parameters
are the same as in Fig. 3, with the red curve illustrating a reduced cooling
length [, = 400 nm. Inset: schematic of the sample with temperature oscillations
which arise due to the standing-wave pattern formed by the field near the edge.
The tip is represented by the inverted pyramid. (b) Fringes near a contact of an
unbiased sample, due to the PVC. The current is normalized to its maximum.
The red curve corresponds to a plasmon damping rate of wz =2, and the
black curve corresponds to a damping rate wz = 10. Inset: schematic of the
sample geometry, where fringes of period 4, come from the ponderomotive
force FPV.

from the contact, as well as any phase shift depending on the prop-
erties of the tip. Equation (20) is plotted in Fig. 4(b). When the tip
is located halfway between the source and drain, the photocurrent
vanishes, since then the tip-sample system is inversion-symmetric.
The spatial period of the fringes is A, = 27/q,, which is twice the
period of the standing waves observed in the PT, BM, and in

ARTICLE pubs.aip.org/aip/jap

TABLE I. Summary of the studied photocurrent mechanisms producing interference
fringes.

Effect type Photocurrent scaling Fringe period
PT E’AS Apl2

PV E?exp(—x,/L) Ap

BM E* E°¢ Apl2

s-SNOM. This qualitative difference is a result of the interference
between the external and the tip-launched field, in contrast to the
interference between the launched and reflected waves in PT or
s-SNOM (see Table I). More complicated models would be neces-
sary to accurately model plasmon reflection from the contact’ or
the effect of probe shape and composition'” on the photocurrent.

IV. PHOTOCURRENT SPECTRAYVS s-SNOM SPECTRA

In Sec. III, we dealt with the tip-position dependence of the
photocurrent. Collective mode effects have also been observed in
the frequency dependence of both photocurrent nanoscopy’ and
the s-SNOM measurements.” It is interesting to ask whether the
frequency dependencies obtained through these two techniques can
be related to one another. Below, we discuss one case where such a
mathematical relation can be established.

The s-SNOM signal is a measure of the dipole moment
induced on the probe by the sample.”” For a long and thin probe

oriented normal to the surface, this signal is proportional to the
out-of-plane component of the probe dipole moment p?,
Ssnom(@) = Cip*(w), 21

with some frequency-independent constant of proportionality C;.
The total power dissipated by the probe driven by an external field
Eext = Ege ™ +c.c. can also be expressed through its dipole
moment,

Piot(0) = olmp(®) - Eext. (22)
PT, BM, and PVT photocurrents depend on the excess temperature,
which is proportional to the Joule heating T — Ty oc |E*. In fact,
we can show that for the setup examined in Sec. III A, i.e., the tip
near a domain wall in TBG, the PT photocurrent is proportional to
the total Joule heating,

Sec(@) = GP(@), P(0) = szrp(r, o) 23)

[see Egs. (32), (73), and (76)]. As with C;, constant C, has no fre-
quency dependence.

Within the quasistatic approximation, radiation losses are neg-
ligible, so the dissipation is dominated by losses in the sample.
Furthermore, if dielectric losses are negligible compared to the
Joule heating, Py,(@) ~ P(w) by conservation of energy. The equal-
ity of losses in the sample and the dissipation by the polarizable
probe provides an elegant connection between the s-SNOM signal
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Ssnom and photocurrent Spc,

Spc(w) oc @ImSsnom (@). (24)
Although we worked within the simple point-dipole approximation
in Sec. I1I, this correspondence only requires Eq. (21) to be applica-
ble, allowing more complicated models developed for s-SNOM
modeling'”™"* to be extended to near-field photocurrent
techniques.

Finite dielectric losses lead to deviations from Eq. (21) and so
Eq. (24). A rough validity condition for Eq. (21) can be obtained
from the point-dipole model of the tip.'” It is given by

Ime(w) < @Reo(a)). (25)
wa

where a is the radius of curvature of the tip and € is the permittiv-

ity of the substrate.

To illustrate how well Eq. (24) works in a concrete example,
we consider a system where graphene layer is deposited on SiO,
substrate near a p-n junction. The modeled s-SNOM signal, PT
photocurrent, and their ratio are illustrated in Fig. 5. The peak in
the signal due to the graphene plasmon, observed both in
s-SNOM™* and photocurrent,” is present in both measurements.
This sample satisfies the low-loss condition [Eq. (25)] away from
the phonon resonances of SiO, that occur near ® = 800 and
1120 cm 1. (The latter is not visible in Fig. 5.)

The above discussion suggests that a photocurrent signal
relates more directly to the properties of the 2D conductor and less
to those of the substrate, potentially making photocurrent measure-
ments more suitable for extracting properties of conducting layers
embedded in complicated heterostructures.

700 900

w (cm'l)

500

FIG. 5. A comparison of the total power dissipated by the heterostructure
(upper curve) and in the graphene layer alone (lower curve), normalized to their
respective maxima. The former is proportional to the imaginary part of the
sSNOM signal Ssnom, and the latter is proportional to the photocurrent /PT.
The plasmon resonance in graphene results in a broad peak in both signals at
o ~ 700cm~" for the Fermi energy of graphene uDC = 1800cm~". The dip
in the photocurrent occurs at the phonon resonance @ = 800cm~" of the SiO,
substrate.
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V. MODEL
A. Optical response of a layered medium

In this section, we go over the computational aspects of our
modeling. We start with presenting the set of equations we have
used to compute the optical response of the systems discussed in
Sec. IV. All those model systems are layered heterostructures of the
type depicted in Fig. 1. We number the layers sequentially top to
bottom. The vacuum half-space above the sample is layer 0. The
bottom substrate, which we also treat as semi-infinite, is layer
M > 1. We allow for a uniaxial anisotropy of the layer materials,
such that the in- and out- of plane permittivities £, of layer m
may be unequal. Additionally, if any of the constituent materials
can be considered 2D, we do not assign it an index. Instead, we
model it as a zero-thickness sheet of ac conductivity ¢,,,(®) at the
interface of layers m and n = m + 1. (If no such 2D material is
present at that interface, then ¢,,, = 0.)

In general, the optical response of the system is determined by
the reflection coefficients * of polarizations a = p or s. However,
in the near-field limit, only the p-polarization reflection coefficient
rP = rP(q, ®) is important. This quantity can be computed from
the following recursion formula:”’

p p
» (l_rj,j+1) (I—Tj+1)j)rj+1

=1, — (26)
] J+1 - >
H rf+1,jrj+1 — exp(—2ik%, dji1)
v g
1= /& >
J J 2 8§+1
where g is the in-plane momentum, d; is the thickness of layer j,
and rL, is the reflection coefficient of the interface between layers n

and m,

ATiCmnq

Em — &y +
P _m n 2] — 1L ez
rnm(q’ CU) - Amic g’ Em = En VEm
®

(28)
Em + &, +

The recursion starts with j = M — 1 for which ry_; = r};_, ,, and
continues to progressively smaller j. The reflection coefficient of the
entire system is given by ro. For real g < w/c, the reflection coeffi-
cient has an absolute value smaller than unity. Away from this radi-
ative zone, function r”(q, @) may have poles at some complex g
that have relatively small imaginary parts. Such poles define the dis-
persion of the propagating collective modes of the system whose
effect on photocurrent we want to study.

An illustrative example of function r#(g, ) is shown in Fig. 6.
It is computed for a heterostructure consisting of a doped mono-
layer graphene placed on a 50nm-thick hBN crystal, which is, in
turn, placed on a bulk SiO, substrate. At low frequencies ® < wro
(Region I), the dispersion of this system contains a single branch,
which is basically the plasmon mode of graphene. However, there
is also a weak feature present near @ = 1100 cm ™!, which is due to
the interface phonon of hBN and SiO,. In a range of intermediate
frequencies wro < ® < wro (Region II) where hBN acts as a
hyperbolic material, with Reel(w) < 0 < Ree*(w), there are
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multiple dispersion branches. These are known as hyperbolic
phonon-polaritons. More precisely, these modes result from
hybridization of the graphene plasmon with phonon-polaritons of
hBN, and so they should be referred to as the hyperbolic plasmon-
phonon polaritons. At high frequencies @ > w0, there is only a
single plasmon branch. Our goal in this paper has been to under-
stand the effect of these collective modes on photocurrent mea-
sured by scanned probes.

Let us now discuss the electric field produced by such a probe.
Computing this field from a realistic model can be quite laborious.
Instead, as common in the s-SNOM literature,'*'>*>** we model
the tip of the probe by a polarizable dipole of amplitude p°z posi-
tioned a distance z; from the sample. If z; < c¢/w, the field pro-
duced by the tip can be computed within the quasi-static
approximation. The scalar potential produced by the tip in the
half-space z > 0 above the sample is the superposition of the bare
and the reflected dipole potentials,

@(q, 2) = @(q, |z — z|) — *(q, ©)@(q, z + z1), (29)

(g, 2) = 27p: o4l
=)

(30)
In turn, the in-plane field E(r) = —V®(r, 0) and the local Joule
heating p(r) in the 2D layer where the photocurrent is produced
are given by

. [*dq 5=
E(r) = rJ z—qq2¢(q, 0)/1(gr), (31)
0 47
2000
1800
21600 wrLo
g
2
3 1400 wro
1200
1000
0 0.5 1
q (105 cm™1)

FIG. 6. The reflection coefficient ImrP(q, @) of a graphene-hBN-SiO, hetero-
structure. The maxima in this pseudocolor plot correspond to the dispersions of
hybridized collective modes known as the plasmon-phonon polaritons. The
modes in Regions | and Ill are plasmon-like. Region II, where hBN acts as a
hyperbolic optical medium, contains multiple dispersion lines of waveguide
polariton modes. These waveguide modes exhibit avoided crossings with the
graphene plasmon. The small peak near @ = 1170cm~" in Region Il is due to
the phonon mode of the hBN/SIO, interface. The graphene chemical potential is
1P% = 2400 cm~", and the hBN thickness is d; = 50 nm.
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1
p(r) = E Reo’(f: Cl))|E(l‘)|2, (32)
where ], (z) is the Bessel function of the first kind of order v. Here,
we assume that the AC conductivity o(r, ®) of the 2D layer varies
slowly on the scale of z;.

B. Plasmonic response of the 2D layer

The continuity equation for a time-harmonic perturbation of
frequency o to the charge density p = en is
—lCOp + 6,‘ i = 0. (33)
The collective excitations of the system, e.g., plasmon-phonon
modes illustrated by Fig. 6 invariably involve oscillations of j and p.
We can center our attention on the 2D layer and consider the rest
of the system an environment. It is then possible to take a point of
view that all collective excitations are 2D plasmons renormalized
by the environment. Within this approach, the derivation of the
mode spectra goes as follows. First, we find the reflection coefficient
r,(g, ®) of the system without the conducting 2D layer on top, by
the procedure explained above. All of the charges above the sample
are now considered the sources of an external potential @, which
is computed similar to Eq. (29) except with rP(g, ®) replaced by
7,(g, ®). The total in-plane potential ® = ®;,q + Dey; is the sum of
this @y and the potential ®;,g induced by the 2D layer’s own
charge p,

Bipalq, @) = jo—’; [1 = 7:(q ©)Ip(g, ). (349

(Here we again assume the quasi-static limit g > w/c.) Combining
these equations, we arrive at

(b(q) Ct)) = &)ext(qa w)/«‘:‘zn(q, ), (35)
where the function
1 —1,(qp ®) 276 (0
em(g o) =1 - —L~ (@)g (36)

&0 iw

has the physical meaning of the effective 2D permittivity of the
conducting layer. The relation between Tps r;, and g;p is

l—rl]7

1—r,= (37)

€D

The imaginary part of r, characterizes the losses of the system. For
a general multilayer structure, the low-loss condition can be
expressed as

Imry(g, @) > Im {EZD [r; (g, ) — 1} }, (38)

at g~ a~!, where a is the radius of curvature of the near-field

probe [see Eqs. (26) and (34)]. For a graphene layer at the interface
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of two semi-infinite media, one recovers Eq. (25). The sought
mode dispersions are the poles of r, or equivalently, the zeros of
£,0(g, ). At a given w, these zeros occur at momenta g, that solve
the equation

_ £ i
1 —1,(gp, 0) 270(w)

ap (39)

In general, such g, are complex and the corresponding collective
modes are well defined (underdamped) only if Img, < Reg,.
Within the Drude model [Eq. (48)], Imo/Rec = w/Ty, so the nec-
essary condition for underdamped plasmons to exist is @ > I'y.

The potential of a plasma wave launched by a local source
(such as an s-SNOM tip) is given by the plasmon pole contribution
in Eq. (35),

D(r) ~ VtH(()l)(qPr), (40)

Vo< | g, (1)

where H((Jl)(z) is the Hankel function of the first kind. For an arbi-
trary sample-gate separation d;, Eq. (40) remains universally valid
in the range of distances z; < r < (Imqp)f1 but Eq. (41) may be
modified. If such distances play the dominant role in the photocur-
rent response and the absolute magnitude of this response is not
of primary interest, then it is permissible to use the simple
Egs. (40)-(41) to find the potential ®(r) (see Sec. I1I C).

If the 2D layer resides on a hyperbolic film of thickness d,
e.g, ifef <0, &8 >0, then r;(q, o) is given by
iqd

* ro1€ — 1721

= 42
P el1S — g1y (42)

In this case, Eq. (39) has an infinite number of roots, each repre-
senting a different plasmon-phonon eigenmode, see region II in
Fig. 6. The solutions are separated by the constant value

in /&
di /el

We can use Eq. (42) to find the in-plane components of the electric
field,

Aq (43)

E(r, z) = 3p,(1 — ro1)

il (44)
X |eo(r) + (1 + ro1)ra Z (roira)te(n) |,
k=1
where
e(r) = (—iz; + ké)r (45)

[(—iz + k8) =2 >

Since |1 + r;| > 1 in the hyperbolic regime, the largest term in the

ARTICLE pubs.aip.org/aip/jap

series is the k = 1 term. These fields have maxima at the concentric
rings of radius rx, given by Eq. (14). If the slab were made of a non-
hyperbolic material, then 6 would be imaginary and the only real
roots of Eq. (14) would be ry =%. For instance, in an isotropic
material, § = 2id and the rings are absent. The effect of e, for large
k is negligible in this case, since the image dipoles become progres-
sively further from the origin.

C. Second-order response of a 2D layer

If the electric field is not too strong, the response of the
system can be studied by expanding all quantities of interest in
power series of the electric field. For example, the current density
has the expansion j = j¥) 4-j® + - ... The second term, quadratic
in E, can be expressed in terms of the second-order nonlinear con-
ductivity 0'512,2‘ (ki, w15 ky, @,) entering Eq. (12). For the DC photo-
current generated by a monochromatic field E(r)e ™' +c.c. of
frequency o, the parameter choice w, = —w, = @ is appropriate,
such that

d%, d%
]'5'2)(1') = J# 0',(12,,)1(1(1, —w; ky, o)

% By (—kp)Ep(kp)e® )T, (46)

where

Ek) = szre—"k" E(r). (47)

The functional form of 0512,21 is highly system-dependent. One par-
ticular case attracting much interest recently is where the electrons
behave collectively, as a fluid.*® This regime is realized when the
momentum-conserving electron—electron  scattering rate T,
exceeds the momentum relaxation rate I'q. In this hydrodynamic
regime, the derivation of the second-order non-linear response
simplifies greatly. We summarize it in Appendix A.

The first-order ac conductivity is given by the Drude formula

'y c pc  €n 'l
= o =——.
Fd—ia) m l"d

o(o) (48)

>

For the second-order current, we find the following combination of
terms:

j(z) — jPT +jPVT +jPVC. (49)
The first term is the PT current,
T = P >y (50)
en

Comparing with Eq. (7), we see that the thermopower coefficient S
is equal to the entropy per unit charge,

s:i_ﬁ@l(aﬂ>l

= — . 51
en 3 en \Onj/, 1)
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(a)
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electrons |K, T
zeig}

phonons |k, 17
I @

substrate |ks,Ts

FIG. 7. (a) A schematic of the tip-generated heating. Heat from the electrons at
temperature T is transferred to the lattice with a mean free path of /.. The heat
from the lattice at temperature T; is then transferred to the substrate over a phonon
mean free path /. The heat diffuses through the three-dimensional substrate with
temperature T, which is coupled to a heat bath at a fixed temperature Tj.
(b) A sketch of the temperature profile produced by a point source for lp > .

The last equation is Mott’s formula for a degenerate Fermi gas with
a constant scattering rate I'y. The next term in Eq. (49) is the
thermal PV current,

DC 5
VT = —eDVn — % <—“) VT. (52)

or

Last, the third term in Eq. (49) is what we previously called the
coherent part of the PV current. After a lengthy but straightforward
derivation, one finds (see, e.g., Ref. 21)

en 1
m? T2 + @?

1 2 . .
X {1"_d V|E\2—5Im[E (V-E)+ (E xE)]}. (53)

PVC
j =

ARTICLE pubs.aip.org/aip/jap

This expression is well known in plasma physics where it is attrib-
uted to the ponderomotive force.”" For @ > T'y, the largest term is
the first term in the curly brackets, which is Eq. (19).

In the regime of ourzyrimary interest @ > Ty, the results for

the PV and PT parts of O-Elm simplify to

831’[
Ok, 05 ks, — ) = —ic® —— (ki + ka)Spm,  (54)

m=

1 1 (Ou
Vo — (2, 55
E S o (8T)n (55)

1

T (56)

:F_E.

Under the assumption I'y < I'y made earlier, the PT component is
the dominant one. Note that the extra factor of 2 in the first term
of Eq. (55) compared to Eq. (53) appears when we make the transi-
tion from the real to the Fourier space. In addition, the derivative
Ou/0T < 1 entering the second term in Eq. (55) is very small for
a degenerate 2D Fermi liquid T < |u].

In the scenario considered in Sec. III C, only the PVC contrib-
utes to the photocurrent. Assuming @ >> I'y, the current through a
resistor R can be obtained from integrating Eq. (53),

R ecPC
Ve = - ——— | O[E(x, 1)*d?r, 57
R—|—Rgma)2LJ <|E(r, ) d"r (57)
where Ry = L/(WoPC) is the resistance of the sample. This integral
immediately simplifies to
R eO‘DC w L
Ve =— J dy|[E(x, )I*[ 58
R R, mo'L Jg y| [E(r, )], (58)

which indicates that I'VC is determined solely by the electric field

E, at the contacts. In Eq. (58), we took into account that the con-

tacts are equipotential so that E, = —0,® must vanish. The tip-

dependent contribution to the field comes from the interference
between the tip-generated and external fields,

pve 2R ed™E =t

R+R, mo’L

Re(v,e’%l"—"fl) (59)

x=0

which is Eq. (20) with ¢ = arg(V}).

D. Thermal response

The energy relaxation of electrons involves their interaction
with multiple degrees of freedom such as the phonons of the 2D
layer and the substrate. In this section, we consider a model where
we assign separate temperatures to these two subsystems. This can
be a reasonable approximation if far-from-equilibrium effects
(phonon wind, phonon amplification, hot electrons, etc.) can be
neglected.”” ™' We introduce the electron-phonon coupling cons-
tant g and the inverse of the Kapitza resistance of the graphene-
substrate interface y and write the following three-temperature heat
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transfer equations:
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electron density n = 5 x 10! cm?. Second, to estimate g and ,, we
assume that T is higher than the Bloch-Griineisen temperature,

—kV2T + g(T — T) = p(x), (60)
Ty = 2hkpc = 54K X /n /(1012 cm™2). (69)
KV 4 (T = Tl ) 8T =D =0 (61 In this regime, the electron cooling power g due to scattering by
acoustic phonons is given by'**’
—x (V2 + )T =0. (62)
B3 o Ty
The Joule heating power p(r) produced by the scanned probe acts T o hpv2 T a7, o T2 (70)

as a localized heat source, as shown in Fig. 7(a). The electronic and
lattice thermal conductivities, x and x;h, define three characteristic
lengths,

where ¢ is the sound velocity, S is the coupling constant for the
strain-induced effective gauge potential, p is the graphene mass
density per unit area, and ¢, is the electron specific heat per unit
area. In the second equation in Eq. (70), we introduced the

b=/ (63)
g momentum relaxation time ze — ph due to electron-phonon scat-
tering, which enables us to relate the length scales I, and . Indeed,
I3 from Egs. (68) and (70), we obtain
I, = 2.6, /vete pnl ;G (71)
KS
k :7' (65) Assuming that the DC conductivity is dominated by electron—

Depending on their values relative to each other and the distance r
from the source, qualitatively different scaling laws for the excess
electron temperature AT(r) = T(r) — T, emerge, as discussed
below. For definiteness, we consider the case where electron

cooling into the substrate heat sink is efficiently mediated by gra- I. =max(l, ) =1, > 1. (72) 3
phene phonons: x;>> x and y > g. For graphene on SiO,, these %
assumptions can be justified using the following parameter Finally, we find [, = 50 nm for an SiO, substrate, which is signifi- §
estimates:*>~** cantly shorter than /; and . The electronic cooling length I, is 3
determined mostly by the doping of the graphene and the elec- =
e W tron-phonon coupling, whereas J; also depends on the interfacial ®

K1 = Kiph =034 X107 o, (66) resistance between the graphene and the substrate. We expect the

effect of the substrate to have the largest impact on the thermal

. o m?K w transport properties of the system through the length [; for a con-

v =42x 107 =, ke =10 (67)  ducting substrate like gold, this length could exceed I,. In this work,

In Eq. (66), we employ the commonly reported “bulk” thermal
conductivity x3p, which is calculated by modeling graphene as a
thin film of thickness & = 0.335nm. The phonon mean free path
Ipn corresponding to the chosen value k3p = 1000 Wm™! K is*
) ph ~200nm. These parameter values vyield the estlmate
~ (v ky) 2 _ 120 nm, which is substantially shorter than the
typlcal values of the cooling length reported for encapsulated gra-
phene systems. As discussed below, this is due to the fact that the
limiting step in the cooling process is the energy exchange between
electrons and phonons of graphene.
To get the remaining parameters in Egs. (63)-(65), we first
use the Widemann-Franz law,

2

32 (68)

W
ToPC ~ 0.6 x 1077 <~ 0.2x7,

where we took T = 300K and oP¢ = (2kgl)(e?/h) ~ 200¢%/h, cor-
responding to the transport mean-free path of [~ 250nm at

phonon scattering so that [ ~ vpre — ph, we estimate [, ~ 1 um at
T = 300 K. The length I, is much larger than I because at T > Tpg
the electron-phonon scattering is quasi-elastic. The net cooling
length is determined by the larger of I, and I;. In the present case,

we consider only the case I; < I.. For such interrelations among
these characteristic length scales, the behavior of the excess electron
temperature AT = T — T, generated by a local heat source is
sketched in Fig. 7(b). In particular, at short distances, AT is
described by the equation

AT(r) o< Ky (li)

where Ky(z) is the MacDonald function. This temperature profile
has a narrow region of exponential decay for r > .. At large dis-
tances, however, we find the inverse-distance law

(73)

r>>lclnl—c

L (74)

1
AT(r) o< —,
r

Our derivation of these formulas is presented in Appendix B.
Having defined a model for the temperature, we can now
extract the parameter JoPC/OT in Eq. (17) experimentally by
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measuring non-Ohmic corrections to the current as a function of S(x) = (AS/L)x + Sy, we get
V in the absence of light. Using our model for heat transfer Eq.

73), the corresponding correction is of the form AS (F _
Y poname 15 =™ FJ T(x — x) d, (80)
0

\% V? , Kk, (0P ) -

I=—— <1 — —2), V=51 ( ) . (75) which has the same x; dependence as Eq. (17). In deriving all these
Ry +R Vo & or results we assumed, for simplicity, that the temperature of the con-

tacts and the adjacent graphene regions is maintained at the

The cubic nonlinearity predicted by this formula implies that when ambient value To, and so the possible difference in the thermopower

V is periodically modulated at some small frequency Q, the current of the contacts and graphene does not contribute to °T.

I contains the third harmonic of this frequency. Measuring this

3Q-signal can then be used to obtain the bolometric coefficient VI. CONCLUSION

9oPC/OT.
To generate a net PT photocurrent, a spatially inhomogeneous In this paper, we demonstrated applications of several
thermopower S is required. We limit ourselves to one-dimensional minimal models for scanning near-field photocurrent measure-

(1D) inhomogeneities and consider three examples: S(x) having a ments on graphene-based }}eterostructure.s where the effects of
sharp peak, S(x) exhibiting a step-like change, and S(x) being a plasmon- and phonon-polaritons may be important. Such collec-

linear function of a spatial coordinate x. Such profiles of S(x) can tive modes can generate interference patterns near sample edges
originate from a stacking defect (domain wall) in a multilayered and other inhomogeneities and exhibit distinctive spectral reso-
material, a doping inhomogeneity (e.g., a p-n junction in graphene), nances. Our models reproduce these interference patterns and elu-
or self-gating in a voltage-biased device. If the dc conductivity cidate the role of the thermal properties of the heterostructure on
oPC(x) is a slowly varying function of position, the local thermo- the collected signal. We also studied a coherent photovoltaic contri-
electric coefficient 6PCS can be estimated from Eq. (51). Assuming bution to the photocurrent induced by the scanned probe.
again that the source and drain contacts are long conducting strips ~ Additionally, we derived a simple relation connecting the frequency
located at x = 0 and x = L (Fig. 1), so that y, = 8,;/W in Eq. (4), dependence of these measurements to that of the parent technique
the PT photocurrent can be written in the form of s-SNOM for the case where dielectric losses in the substrate are
negligible.
L We focused mostly on effects that are quadratic in an applied
Ipp = _lJ PC(x)S(x) 0, T (x)dx, (76) electric field. On the other hand, a non-perturbative regime of 3
L), strong applied bias’® may be an interesting direction for further

~ investigations. The effects of band structure and especially geomet-
where T(x) is the line-integrated excess temperature, rical phases*””** on photocurrent also warrant study in the novel
context of near-field measurements. We hope that our modeling of &
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_ collective mode phenomena in the photocurrent response will be
T(x) = JAT("> y)dy. (77) useful in these and other future studies.
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APPENDIX A: HYDRODYNAMIC EQUATIONS Eje ker-iot 4 ¢ ¢ Straightforward algebraic manipulations (see

The hydrodynamic equations including terms up to second Ref. 21) give the dc current as

order in the external field are

.PVC 631’1 [5 <k1i + kz,')
i = Im -
on . (mu) =0 (A1) l 2m(@* +T) il
ot ’ 1 1
+—=Sim(ku + kar) — = Su(kim + kam)
1) 1)
Ju 1 e u 1
S+ V)u= Tu———vp+= (E + 8 B), (A2) 2 S (s — kZi)} EuEam, (A9)
mn m c ®
on, which is equivalent to Eq. (53) of the main text.
ot +V-q=j -E—Tgne. (A3) Our results for the current are not yet final because we still

need to find the time-averaged electron temperature, which can be
Here, u = j/en is the flow velocity, P is the pressure, and #, is the ~ done using Eqs. (A6) and (A7). To this end, we need to solve the
energy density. For simplicity, we treat I'; and the energy relaxation equation
rate Ty < I’y as T-independent constants, and so our model
misses a possible BM effect. The hydrodynamic mass is —xkV*T 4 neyTg(T — Tp) = (j - E). (A10)
m = Tikp /v, where vg is the Fermi velocity, kp = |47n/g|'/? is the
Fermi momentum, and g is the spin-valley degeneracy (¢ =4 in The angular brackets (---) denote the time average. Note that the

graphene). We neglect viscosity of the electron fluid in Eq. (A2) time derivative drops out in the DC limit. Since we neglect terms
because it affects the results only to the order O(k?), where k is a quadratic in momentum k and higher than second order in the
characteristic momentum, assumed to be a small quantity. field, we can drop the entire V -q term as well and obtain the
Using the Gibbs-Duhem relation, the pressure gradient in simple solution
Eq. (A2) can be related to the temperature and chemical potential
i 2
gradients, AT =T — Ty = = Reo(w)E]E;. (A11)
E
VP =sVT + nVyu, (A4) N
At this point, we can express the second-order current solely in >
where s is the entropy per particle. The first term contains the terms of the incident electric field, that is, we can determine the &
Seebeck coefficient and the PTE [Eq. (50)]. The chemical potential second-order nonlinear conductivity, which is given by Eq. (54) of §
gradient can be split into the n- and T-dependent parts, the main text. a
@
du ou R
Vu=(=—)| V — | VT. A5
= (an), oo (30, 9
APPENDIX B: HEAT KERNEL
The first term is responsible for diffusion which gives a contribu- . .
. . 2 . We consider a system of electrons in graphene thermally
tion proportional to k*, and the second term is the PVT, cf. Eq. . . .
(52). We also have the equations coupled to a phonon bath, with the latter in contact with a three-
dimensional substrate. The differential equations describing this
dn, = neydT, (A6) system are
where cy is the specific heat per particle and —xV2T(r) +g[T(r) - Ty(r)] =j - E, (B1)
a= <01+ (e Lo o RVl - TEL {0 - T 0] =0 B
2
where « is the thermal conductivity. —k's(V2 + 2 ) T(r, 2) = 0. (B3)
Letting the field be of the form E(r, t) = E(r)e ™ + c.c., the
terms linear in E give We will find Green’s function for the electronic temperature T
using a two-dimensional Fourier transform. Equations (B1)-(B3)
en are
—iojV = —Ty4jV + —E (A8)
xq*T(q) + g[T(q) — Ti(q)] = P, (B4)
which results in the Drude conductivity Eq. (48) of the main text.
We first derive the form of the PVC current from Eq. (A2). s - - - -
We assume an incident field of the form E(r, t) = E e i rHiot 4 x1q° Ti(@) +g[Ti(@) — Te(@)] + 7[Ti(1) — Ti(q, 0)] =0, (BS)
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K (612 - aZZ) Ts(qr Z) - Oxk'sasz(q) Z)’z:O + VTs(q: 0) - 7Tl(q)
(B6)

We first consider the case of constant substrate temperature
T.(q, 0) = Ty. We consider a point source P =1 in Eq. (B4) and
change variables qr = u. Using the expressions for the cooling
lengths introduced in Eq. (63), we find

O S
. , B7
O P ey (87)
with the roots
“Zi = (B8)
In the case [; > I, or vice versa, [, = min(l,, [;), so
~ 1 1
T(u) ~ ——. B9
W~ (B9)
The inverse Fourier transform is
1 (® ~ 1 r
T(r) = —J duuT(u) Jo(u) = —Ko[ — ). (B10)
27 J, 2rk I

If [, = I; = I, Eq. (B10) still holds provided that g < y.

If one allows for an inhomogeneous temperature in the sub-
strate, Eq. (B3) must be included. We consider the experimentally
relevant case j =1, =1, > I, where I is defined in Eq. (65).
Straightforward algebraic manipulations give the following repre-
sentation of the temperature in the Fourier domain for a point

source:
A I L
; 1 (u —2+—)(1+u—)+u—
T(u) = — l — : : - (B11)
Ku(1 +uf)(u3,%+u+§) +uli 4+
If r < I, I, then Eq. (B11) is
N 11 1
Tw) ===, Th)=—=—Inr, r< I, . (B12)
K u? 2mic
For r > I;, we neglect terms containing l;‘ to obtain
~ 1 u
T(u) ~ — <. (B13)

2 31’
Kud+ul + 5+
T

For r < I, the last term in the denominator is negligible, and we
recover Eq. (B10). As r increases past I, this term is no longer
small. Taking Eq. (B11) for r > I, we find

- 1 1
Tu) ~ ———, I.. Bl14
(u) P r> 1 (B14)
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The Fourier transform is

1 rKs rKs
10 =2 [1 () - 7 ()): (B15)
where H,(z), Y, (z) are the Struve function of the first kind and the
Bessel function of the second kind of order v, respectively.
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