

View

Online


Export
Citation

RESEARCH ARTICLE | MARCH 08 2024

Modeling of plasmonic and polaritonic effects in
photocurrent nanoscopy
Special Collection: Thermal Transport in 2D Materials

A. Rikhter ; D. N. Basov ; M. M. Fogler

J. Appl. Phys. 135, 103101 (2024)
https://doi.org/10.1063/5.0192814

Articles You May Be Interested In

Generation of highly nonlinear nA-level photocurrent from on-chip nanogaps

J. Appl. Phys. (April 2025)

Nonlinear optical response and bistability of intersubband polariton in a planar microcavity: Role of
dynamic Coulomb coupling

J. Appl. Phys. (December 2024)

Photocurrent interference spectroscopy of solids and characterization of semiconductor solar-cell materials

J. Appl. Phys. (June 2024)

 17 July 2025 13:41:24

https://pubs.aip.org/aip/jap/article/135/10/103101/3269950/Modeling-of-plasmonic-and-polaritonic-effects-in
https://pubs.aip.org/aip/jap/article/135/10/103101/3269950/Modeling-of-plasmonic-and-polaritonic-effects-in?pdfCoverIconEvent=cite
https://pubs.aip.org/jap/collection/258901/Thermal-Transport-in-2D-Materials
javascript:;
https://orcid.org/0000-0002-1602-9452
javascript:;
https://orcid.org/0000-0001-9785-5387
javascript:;
https://orcid.org/0000-0001-8239-7221
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0192814&domain=pdf&date_stamp=2024-03-08
https://doi.org/10.1063/5.0192814
https://pubs.aip.org/aip/jap/article/137/15/153103/3344211/Generation-of-highly-nonlinear-nA-level
https://pubs.aip.org/aip/jap/article/136/21/213105/3324154/Nonlinear-optical-response-and-bistability-of
https://pubs.aip.org/aip/jap/article/135/24/243101/3299385/Photocurrent-interference-spectroscopy-of-solids
https://e-11492.adzerk.net/r?e=&s=f92Okj5IY7fNqKMniZ1sZPW9i78


Modeling of plasmonic and polaritonic effects in
photocurrent nanoscopy

Cite as: J. Appl. Phys. 135, 103101 (2024); doi: 10.1063/5.0192814

View Online Export Citation CrossMark
Submitted: 20 December 2023 · Accepted: 20 February 2024 ·
Published Online: 8 March 2024

A. Rikhter,1 D. N. Basov,2 and M. M. Fogler1,a)

AFFILIATIONS

1Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
2Department of Physics, Columbia University, New York, New York 10027, USA

Note: This paper is part of the special topic, Thermal Transport in 2D Materials.
a)Author to whom correspondence should be addressed: mfogler@ucsd.edu

ABSTRACT

We present a basic framework for modeling collective mode effects in photocurrent measurements performed on two-dimensional materials using
nano-optical scanned probes. We consider photothermal, photovoltaic, and bolometric contributions to the photocurrent. We show that any one
of these can dominate depending on frequency, temperature, applied bias, and sample geometry. Our model is able to account for periodic spatial
oscillations (fringes) of the photocurrent observed near sample edges or inhomogeneities. For the case of a non-absorbing substrate, we find a
direct relation between the spectra measured by the photocurrent nanoscopy and its parental scanning technique near-field optical microscopy.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0192814

I. INTRODUCTION

Scanning photocurrent microscopy is traditionally performed
using a focused light beam.1–4 In a modern variant of this tech-
nique, the focusing of incident light is achieved instead by a sharp
metal tip, as illustrated schematically in Fig. 1. Such a tip acts as an
optical antenna that couples a locally enhanced near-field to free-
space radiation. In the experiment, the tip is scanned and the dc
photocurrent current generated in the sample is measured as a
function of the tip position using electric contacts positioned some-
where on the sample periphery. Below, we refer to this technique as
scanning near-field photocurrent microscopy or photocurrent
nanoscopy. The instrumentation involved in such measurements
can also be utilized to perform scattering-type scanning near-field
optical microscopy (s-SNOM). In s-SNOM, one detects light scat-
tered by the tip instead of the photocurrent. In practice, s-SNOM
and photocurrent nanoscopy are performed together, providing
complementary information about the system. This combination of
techniques has been successfully applied to probe graphene and
other two-dimensional (2D) materials5–9 demonstrating a spatial
resolution of �20 nm, which is orders of magnitude better than the
diffraction-limited traditional approach.

Recent photocurrent nanoscopy experiments revealed distinc-
tive spectral resonances and periodic interference patterns

occurring near sample edges and inhomogeneities.6–9 These fea-
tures have been attributed to collective modes, plasmon- and
phonon-polaritons, excited in graphene and underlying 2D sub-
strate materials. In this paper, we aim to formulate a theoretical
model for such collective mode effects.

Whereas modeling of s-SNOM has been actively pursued in the
past decade,10–13 photocurrent nanoscopy has received less attention.
Theoretical analysis of the latter is more effortful because in addition
to the electromagnetic tip-sample coupling, one also has to account
for multiple possible mechanisms of the DC photocurrent genera-
tion. We focus on the case where the photocurrent scales linearly
with the incident light intensity, i.e., as a second power of the
in-plane AC electric field E(r)e�iωt þ c:c. Assuming the system con-
tains only inversion-symmetric materials, such a second-order non-
linear effect can arise if the inversion symmetry is violated by
boundary conditions, structural defects, or externally applied fields.
For example, nonvanishing photocurrent can exist if the carrier
density n(r) in the scanned region is nonuniform. Photocurrent can
also be generated if the magnitude or the phase of E(r) is spatially
dependent (the latter corresponds to a nonzero in-plane momen-
tum).14 If there exists a DC electric field EDC(r) in the system, the
photocurrent can include terms that scale as EDCjEj2, which we also
consider in our calculations. Altogether we examine three
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mechanisms of photocurrent generation: bolometric (BM), photo-
thermal (PT), and photovoltaic (PV). The relative importance of the
BM, PT, and PV effects depends on a system. In common bulk semi-
conductors, the Joule heating of charge carriers is suppressed by an
efficient cooling by optical phonons.15 The resultant PT current is
small and the photocurrent is mostly due to the PV effect. In gra-
phene, the linear quasiparticle dispersion combined with the high
optical phonon frequency inhibits electron cooling, which enhances
the PT contribution.16,17 Experiments performed on graphene p-n
junctions have demonstrated that in the absence of a bias, V ¼ 0,
the PT effect is typically the dominant photocurrent mechanism.18

However, the BM current quickly becomes the largest contribution
as the bias V is increased from zero.19

As we show in the remainder of this paper, collective mode
effects in photocurrent, which is the main target of our investigation,
can manifest themselves via all these three mechanisms. In Sec. II,
we introduce basic definitions and relations concerning the BM, PT,
and PV effects. In Sec. III, we present illustrative examples how col-
lective modes—plasmons and polaritons—can generate characteristic
spatial patterns detectable in photocurrent nanoscopy. In Sec. IV, we
study the collective mode signatures in the frequency dependence of
the PT photocurrent. We present the main equations of our model
in Sec. V. Further technical details are given in the Appendix.

II. DEFINITIONS OF PHOTOVOLTAGES, CURRENTS,
AND CONDUCTIVITIES

The model system we study is shown schematically in Fig. 1.
The measured quantity is the total current I given by

I ¼ V þ VPH

Rg þ R
, (1)

where V is the bias voltage applied between the contacts, VPH is
the photovoltage (discussed below), Rg is the sample resistance in
the dark, and R is any additional resistance in series with Rg , e.g.,
the contact resistance. Assuming R remains constant under illumi-
nation, the photocurrent is proportional to VPH, which is, in turn,
proportional to the local photoinduced electromotive force (EMF)
FPH(r). If this FPH(r), the EMF in the dark

FDC
i (r) ¼ EDC

i (r)� 1
e
@iμ

DC(r), i [ {x, y}, (2)

and the linear-response DC conductivity σDC were all uniform, and
the sample were infinite, the two EMFs would be simply additive.
(Here μDC is the equilibrium distribution of the chemical potential
and e ¼ �jej is the electron charge.) The photoinduced EMF
would drive an extra uniform current,

jPHi ¼ σDCFPH
i : (3)

In the practice of photocurrent nanoscopy, FPH(r) is nonuniform,
the sample is of finite size and may have an irregular shape. In
such a case Eq. (3) serves as a formal definition of jPHi (r); however,
the actual current density is different because the total EMF must
readjust itself to ensure current conservation in the steady state.
Nevertheless, the relation between VPH and FPH (or equivalently,
jPH) can be conveniently expressed using the Shockley–Ramo
theorem (see, e.g., Ref. 20),

VPH ¼
ð
d2r FPH

i (r)ψDC
i (r), ψ i(r) ¼

1
IDC

jDCi (r): (4)

Here, the repeated index i is meant to be the summed over,

jDCi (r) ¼ σDC(r)FDC
i (r) (5)

is the current density in the dark, and IDC is the total dark current.
The auxiliary vector field ψ(r), which has the units of inverse
length in 2D, encodes all the geometric properties of the sample
and contacts and obeys the normalization relation

Rg ¼
ð
d2r

ψ i(r)ψ i(r)
σDC(r)

: (6)

For example, ψ i ¼ δx, i=W for a sample of length L in the
x-direction and width W in the y-direction, with two line-like con-
tacts located at x ¼ 0 and x ¼ L.

As mentioned in Sec. I, we consider three contributions to the
photoinduced EMF FPH. The first one is due to the photothermal
(PT) effect,

FPT
i ¼ �Sij@jT , (7)

where Sij is the tensor of Seebeck coefficients (same as the thermo-
power tensor). The electron temperature T that enters this equation
differs from the equilibrium ambient T0 temperature because of AC
Joule heating. We assume that the relation between T � T0 and the

FIG. 1. Sketch of a theoretical model for photocurrent nanoscopy. The tip of a
scanned probe brought near the sample possesses a dipole moment of ampli-
tude pz induced by a focused light beam. The sample consists of a graphene
sheet of conductivity σ(r) placed on a stack of layers with in/out-of-plane permit-
tivities ε?i (ω), ε

z
i (ω), where i ¼ 1, 2, . . . , M is the layer index. In the example

shown, M ¼ 2 and the bottom i ¼ 2 layer is a conductor to which a gate
voltage VG can be applied. The electric field of the tip launches collective excita-
tions and modifies the current I in the circuit comprised of graphene, voltage
source V , and resistance R.
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heating power /jEj2 is linear, so that the gradient of T is quadratic
in the incident AC field. Therefore, it is possible to express the PT
EMF FPT

i and the corresponding current density jPTi in terms of a
suitable rank-three tensor σPT

ilm,

jPTi ; σDCFPT
i ¼ σPT

ilmElE
*
m: (8)

Since the temperature distribution is also affected by the sample
geometry and mechanisms of heat dissipation, this tensor may
depend on position r and various extrinsic factors. The relation
between σPT

ilm, Sij, and other material properties will be further elab-
orated on in Sec. V.

The second contribution we include is due to the bolometric
(BM) correction to the DC conductivity σDC. The corresponding
corrections to the EMF and the current density satisfy the equation

jBMi ; σDCFBM
i ¼ @σDC

@T
(T � T0)F

DC
i : (9)

The BM coefficient @σDC=@T is briefly discussed in Sec. III. As
with the PT photocurrent, it is in principle possible to rewrite
Eq. (9) in terms of a certain rank-three tensor σBM

ilm but we will not
do so.

Last, we consider the photovoltaic (PV) current,

jPVi ; σDCFPV
i ¼ σPVC

ilm ElE
*
m � 1

e
σDC@i μ� μDC

� �
: (10)

(It is also referred to as the photogalvanic current in some litera-
ture.) In Eq. (10), we split the PV response into the coherent part
(the first term), due to the AC electric field, and the incoherent
part (the second term), caused by the change of the chemical
potential μ due to the heating T � T0 and/or the photoexcited
carrier density n� n0. Similar to the points made above about the
PT and BM currents, the sum of these two parts can also be
written using a certain tensor σPV

ilm,

jPVi ¼ σPV
ilmElE

*
m: (11)

In turn, the full second-order conductivity tensor is the sum

σ(2)
ilm ¼ σPT

ilm þ σPV
ilm: (12)

Having it defined in the present work allows us make a connection
with prior literature where such a tensor has been studied.21 We
discuss this in Sec. V.

III. PHOTOCURRENT SIGNATURES OF COLLECTIVE
MODES IN IMAGING: THREE ILLUSTRATIVE EXAMPLES

A. Hot spots due to polaritonic rays

Optical phonon modes of 2D heterostructures are examples of
collective excitations, which may generate uncommon effects detect-
able by photocurrent nanoscopy. As one illustration, we consider a
model system consisting of twisted bilayer graphene (TBG) depos-
ited on a thin slab of hBN (Fig. 1). In our previous work,23 the pho-
tocurrent in such a system has been experimentally found to exhibit

characteristic spatial variations near the domain walls (DWs) of
TBG. These domain walls (also known as AB-BA boundaries or
“solitons”) form naturally in TBG if its twist angle is small enough.
Below, we discuss the modeling of these experiments and our theo-
retical predictions for observable collective mode signatures. We
give some additional background necessary to understand these
results but otherwise delay all the derivations until Sec. V.

An interesting property of hBN is its optical hyperbolicity: the
in- and out-of-plane permittivities of this material are of opposite
signs in certain frequency bands, known as Reststrahlen (RS)
bands, such as 1370 , ω , 1610 cm�1. The optical hyperbolicity
enables the propagation of so-called hyperbolic phonon-polaritons
inside the slab.22,24 A localized source, such as an s-SNOM tip, typ-
ically excites several of such polariton modes simultaneously, which
produces a spatial beats pattern with the period δ given by the
formula

δ ¼ 2π
Δq

¼ �2id1

ffiffiffiffiffiffi
ε?1

p
ffiffiffiffiffi
εz1

p : (13)

Furthermore, inside the hBN slab, the electric field is strongly con-
centrated along certain zigzag trajectories, which we refer to as
polaritonic rays. Figure 2(a) illustrates such a zigzag pattern in the
cross-sectional plane and the corresponding concentric beats
pattern on the top surface of the slab.

The results presented below are obtained using the following
additional assumptions. First, we approximate the scanned probe
as a point-like dipole located at a distance zt above the sample as
shown in Fig. 2(a). Such an approximation, referred to as the
“point-dipole model,”10,25 is commonly used in s-SNOM modeling.
Note that zt is really an adjustable parameter rather than the physi-
cal tip-sample distance. Usually, it is chosen to be of the order of
the curvature radius a � 30nm of the probe.

Second, we assume that the photocurrent is dominated by the
PT effect that arises due to the local minimum of the thermopower
S at the domain wall [Fig. 2(b)]. Finally, we assume that the
domain wall is infinitely long so that the sample and, therefore, the
photocurrent signal are translationally invariant in the longitudinal
direction.

The results obtained within this model are shown in the lower
part of Fig. 2(b). At frequencies outside its RS band, the hBN layer
is not hyperbolic and only two peaks of photocurrent signal as a
function of tip position xt are observed. They appear when xt is
approximately equal to the tip-sample separation zt . The qualitative
explanation is that at such xt , the Joule heating at the domain wall
is the largest, which generates the strongest photoresponse. Indeed,
the Joule heating is proportional to the square of the in-plane elec-
tric field produced by the dipole. It vanishes directly below the
dipole [which is the case in general, including the hyperbolic
regime, Fig. 2(a)] and is maximal at the lateral distance � zt .

At frequencies inside the RS band, our calculation predicts
additional peaks of photocurrent as a function of xt , which we have
referred to as the “hot spots” in the past. For a given ω, these hot
spots are separated by intervals approximately equal to δ. More
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precisely, they appear when the tip position xt matches the radii

rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
8

k2δ2 � z2t
� �þ 1

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 k4δ4 þ z4t
� �þ 14k2z2t δ

2
qr

, (14)

of “hot rings” created by the polaritonic rays launched by the tip
[Fig. 2(a)]. If δ is much larger than the tip-sample distance zt , our
calculation predicts multiple rings to be well resolved. At small δ,
the rings overlap and only weak oscillations with the period δ
remain. Only the first pair of hot spots has been observed in the
experiment.26 We expect that using cleaner samples and higher res-
olution probes may reveal additional ones.

B. Interference fringes due to the plasmons: PT and
BM effects

Plasmons are another example of collective modes that have
been imaged by both s-SNOM6,24,27,28 and photocurrent nano-
scopy.26,29 Such an imaging is typically done near sample boundar-
ies that reflect plasmons launched by the scanned probe. Near a
sample edge, the incident and reflected waves interfere, resulting in
a standing-wave pattern (or “fringes”) with spatial period λp=2,
where λp ¼ 2π=qp is the plasmon wavelength and qp is the
plasmon momentum. Following the structure of Sec. III A, below
we present our modeling results for this effect but defer their deri-
vation until Sec. V. We begin the cases where the photocurrent is
generated by the PT and BM mechanisms. An example of PV plas-
monic fringes is presented later in Sec. III C.

1. Edge-reflected plasmons near a p-n junction

Rigorous calculation of the plasmon reflection from the edge
is computationally intensive.27 However, there is a simple model
where the reflection from the edge (y ¼ 0) is approximated by the
method of images. For the tip located at rt ¼ (xt , yt), we place an
“image” tip at yi ¼ �yt . The corresponding in-plane electric field is
the superposition of the source and image terms,

E(r, rt) ¼ Et(x � xt , y � yt)� Et(x � xt , y þ yt), (15)

where Et(x, y) is the in-plane field produced by the tip in an infi-
nite uniform sample. This approximation is reasonably accurate. Its
main deficiency concerns the position and the amplitude of the
very first fringe.

As an illustrative example of how plasmons show up in the PT
photocurrent signal, we consider the case where the sample con-
tains a p-n junction along the y axis, i.e., x ¼ 0, which is normal to
the sample edge at y ¼ 0. This geometry models the case studied
experimentally.29 We approximate the thermopower profile by a
step-like function of coordinate x. We also assume σDC is uniform,
thereby neglecting the suppression of σDC in a neighborhood of the
junction. To obtain the temperature distribution, we again use the
method of images approximation,

T(r, rt) ¼ Tt(x � xt , y � yt)+ Tt(x � xt , y þ yt), (16)

where Tt(x, y) is the temperature profile in an infinite uniform
sample, the top (bottom) sign corresponds to a boundary with
vacuum (metal), and we set the ambient temperature T0 to zero,
for simplicity. (The value of T0 does not affect the result for the
photocurrent.)

The spatial distribution of the photocurrent signal computed
within this model is shown in Fig. 3. The photocurrent exhibits plas-
monic fringes as a function of the tip coordinate yt due to the inter-
ference of the tip-launched modes with their reflections off the edge,
as observed in the experiment.29,30 It can be seen from Fig. 3(a) that
appreciable photocurrent is generated only when the lateral tip posi-
tion is close enough to the p–n junction, jxt j & lc. The cooling
length lc is defined in Sec. V D. It was chosen to be lc � 1 μm in this
calculation. The fringe periodicity does not depend on xt ; however,
the fringe amplitude decreases with xt [see Fig. 3(b)]. The decay law

FIG. 2. (a) A schematic of polariton propagation inside a slab of a hyperbolic
material (HM). The polariton is launched by a probe, which is modeled by a
point dipole a distance zt above the sample. The quantity plotted is the in-plane
field intensity, using the hBN optical constants from Ref. 22. (b) False color plot
of the photocurrent as a function of the tip distance xt from the domain wall and
the frequency ω, showing multiple peaks inside the hyperbolic regime. The tip-
sample separation zt was taken to be 50 nm, equal to the hBN thickness. Radii
rk from Eq. (14) for k ¼ 0, 1, 2 are shown with solid lines as guides to the eye.
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of the excess temperature Tt(x, y) (and so, photocurrent) as a func-
tion of distance is discussed in more detail in Sec. V D.

2. Biased sample

If the sample carries a DC current already in the absence of
light, another possible mechanism of photocurrent plasmonic fringes
is the BM effect. The scanned probe locally modifies the temperature
distribution, which causes a local variation in the conductivity. The
size of the BM effect is proportional to the derivative @σDC=@T ,
which depends on details of electron scattering (see Sec. V). The total
BM photocurrent in a rectangular sample of size L�W is

IBM ¼ � V
LW

@σDC

@T

ð
d2r [T(r)� T0]: (17)

The results of our calculations done using this equation are plotted in
Fig. 4(a). They exhibit the now familiar λp=2 fringes near the contacts.
It appears that there are many similarities between the spatial features
observable in PT and BM photocurrent. In fact, IBM in Eq. (17)
depends on the tip position in exactly the same way as the PT photo-
current in a sample with a linearly varying thermopower S(x, y)/ x.

In principle, photocurrent in a biased sample can also be gen-
erated through the PT because the source–drain bias causes self-
gating, i.e., the carrier density change Δn � CV=e across the
sample, with C being the capacitance. To show that the BM should
normally be more important than the PT, we compare the coeffi-
cients of Eqs. (17) and (80). Using Eq. (51) for the thermopower
and a rough estimate @σDC=@T � σDC=T , we find

IPT

IBM
� T2

μ2
1

kFd1
� 1: (18)

Indeed, experiments show that the BM contribution typically domi-
nates over the PT one.19

C. Interference fringes due to the plasmons: Coherent
PV effect

The remaining contribution to the photocurrent introduced in
Sec. I is the PV term. The PV effect is a complicated phenomenon
that depends on many microscopic details of the system. Therefore,
as our final example, we study the appearance of plasmonic fringes
within a simple representative model. We assume again that our
graphene sample is uniformly doped, σDC ¼ const and has the
shape of a L�W rectangle with contacts at x ¼ 0 and x ¼ L, as in
Fig. 1. In the absence of an applied bias voltage V , the chemical
potential and the thermopower are also uniform, μ, S ¼ const.
Hence, the BM, PT, and the thermal PV photocurrents all vanish.
What remains is the coherent PV current, which is given by
Eq. (10). A particularly simple result is obtained in the hydrody-
namic regime, where the largest contribution to σPT

ilm in the limit
ω � Γd is given by the ponderomotive force eFPV(r),21,31

jPVC(r) ¼ σDC FPV(r), FPV(r) ¼ � e
mω2

∇ E(r, t)j j2: (19)

Therefore, the current is proportional to the difference of field
intensities at the contacts. If the field on the contact is the sum of
the external field E e�iωt þ c:c: and the field F(r) created by the tip,
the PV current is

IPVC(xt)/ cos(qpjx � xt j þ w)

����
x¼L

x¼0

: (20)

Here, w is a phase shift which contains the reflection coefficient

FIG. 3. (a) The photocurrent as a function of the tip position near a p–n junction. The periodic fringes are formed by interference of tip-launched plasmons with their reflec-
tions by the sample edge (gold line at the bottom). The scale bar is the cooling length lc ¼ 1 μm. The p-n junction is modeled as a sharp step-like discontinuity in thermo-
power (red curve in the top plot). The plasmon wavelength is λp ¼ 0:2lc on both sides of the junction, and nonuniformity of λp at the junction is neglected. The substrate
is assumed to be a perfect heat conductor maintaining a constant temperature. (b) The linear cuts through panel (a) in the y-direction, parallel to the junction, at xt ¼ 0
and xt ¼ lc .
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from the contact, as well as any phase shift depending on the prop-
erties of the tip. Equation (20) is plotted in Fig. 4(b). When the tip
is located halfway between the source and drain, the photocurrent
vanishes, since then the tip-sample system is inversion-symmetric.
The spatial period of the fringes is λp ¼ 2π=qp, which is twice the
period of the standing waves observed in the PT, BM, and in

s-SNOM. This qualitative difference is a result of the interference
between the external and the tip-launched field, in contrast to the
interference between the launched and reflected waves in PT or
s-SNOM (see Table I). More complicated models would be neces-
sary to accurately model plasmon reflection from the contact32 or
the effect of probe shape and composition12 on the photocurrent.

IV. PHOTOCURRENT SPECTRAVS s-SNOM SPECTRA

In Sec. III, we dealt with the tip-position dependence of the
photocurrent. Collective mode effects have also been observed in
the frequency dependence of both photocurrent nanoscopy33 and
the s-SNOM measurements.34 It is interesting to ask whether the
frequency dependencies obtained through these two techniques can
be related to one another. Below, we discuss one case where such a
mathematical relation can be established.

The s-SNOM signal is a measure of the dipole moment
induced on the probe by the sample.25 For a long and thin probe
oriented normal to the surface, this signal is proportional to the
out-of-plane component of the probe dipole moment pz ,

SSNOM(ω) ¼ C1p
z(ω), (21)

with some frequency-independent constant of proportionality C1.
The total power dissipated by the probe driven by an external field
Eext ¼ E0e�iωt þ c:c: can also be expressed through its dipole
moment,

PtotðωÞ ¼ ωImpðωÞ � Eext: (22)

PT, BM, and PVT photocurrents depend on the excess temperature,
which is proportional to the Joule heating T � T0 / jEj2. In fact,
we can show that for the setup examined in Sec. III A, i.e., the tip
near a domain wall in TBG, the PT photocurrent is proportional to
the total Joule heating,

SPC ωð Þ ¼ C2P ωð Þ, P ωð Þ ¼
ð
d2rp(r, ω) (23)

[see Eqs. (32), (73), and (76)]. As with C1, constant C2 has no fre-
quency dependence.

Within the quasistatic approximation, radiation losses are neg-
ligible, so the dissipation is dominated by losses in the sample.
Furthermore, if dielectric losses are negligible compared to the
Joule heating, Ptot(ω) � P(ω) by conservation of energy. The equal-
ity of losses in the sample and the dissipation by the polarizable
probe provides an elegant connection between the s-SNOM signal

FIG. 4. (a) Spatially periodic photocurrent near a contact due to the BM mecha-
nism. The signal is normalized to its maximum value. Computational parameters
are the same as in Fig. 3, with the red curve illustrating a reduced cooling
length lc ¼ 400 nm. Inset: schematic of the sample with temperature oscillations
which arise due to the standing-wave pattern formed by the field near the edge.
The tip is represented by the inverted pyramid. (b) Fringes near a contact of an
unbiased sample, due to the PVC. The current is normalized to its maximum.
The red curve corresponds to a plasmon damping rate of ωτ ¼ 2, and the
black curve corresponds to a damping rate ωτ ¼ 10. Inset: schematic of the
sample geometry, where fringes of period λp come from the ponderomotive
force FPV.

TABLE I. Summary of the studied photocurrent mechanisms producing interference
fringes.

Effect type Photocurrent scaling Fringe period

PT E2ΔS λp/2
PV E2exp(�xt=L) λp
BM E2 EDC λp/2
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SSNOM and photocurrent SPC,

SPC ωð Þ/ ωImSSNOM ωð Þ: (24)

Although we worked within the simple point-dipole approximation
in Sec. III, this correspondence only requires Eq. (21) to be applica-
ble, allowing more complicated models developed for s-SNOM
modeling10–12 to be extended to near-field photocurrent
techniques.

Finite dielectric losses lead to deviations from Eq. (21) and so
Eq. (24). A rough validity condition for Eq. (21) can be obtained
from the point-dipole model of the tip.10 It is given by

ImεðωÞ � 4πε0
ωa

Reσ ωð Þ: (25)

where a is the radius of curvature of the tip and ε is the permittiv-
ity of the substrate.

To illustrate how well Eq. (24) works in a concrete example,
we consider a system where graphene layer is deposited on SiO2

substrate near a p-n junction. The modeled s-SNOM signal, PT
photocurrent, and their ratio are illustrated in Fig. 5. The peak in
the signal due to the graphene plasmon, observed both in
s-SNOM34 and photocurrent,35 is present in both measurements.
This sample satisfies the low-loss condition [Eq. (25)] away from
the phonon resonances of SiO2 that occur near ω ¼ 800 and
1120 cm�1.36 (The latter is not visible in Fig. 5.)

The above discussion suggests that a photocurrent signal
relates more directly to the properties of the 2D conductor and less
to those of the substrate, potentially making photocurrent measure-
ments more suitable for extracting properties of conducting layers
embedded in complicated heterostructures.

V. MODEL

A. Optical response of a layered medium

In this section, we go over the computational aspects of our
modeling. We start with presenting the set of equations we have
used to compute the optical response of the systems discussed in
Sec. IV. All those model systems are layered heterostructures of the
type depicted in Fig. 1. We number the layers sequentially top to
bottom. The vacuum half-space above the sample is layer 0. The
bottom substrate, which we also treat as semi-infinite, is layer
M � 1. We allow for a uniaxial anisotropy of the layer materials,
such that the in- and out- of plane permittivities ε?,z

m of layer m
may be unequal. Additionally, if any of the constituent materials
can be considered 2D, we do not assign it an index. Instead, we
model it as a zero-thickness sheet of ac conductivity σmn(ω) at the
interface of layers m and n ¼ mþ 1. (If no such 2D material is
present at that interface, then σmn ¼ 0.)

In general, the optical response of the system is determined by
the reflection coefficients rα of polarizations α ¼ p or s. However,
in the near-field limit, only the p-polarization reflection coefficient
rp ¼ rp(q, ω) is important. This quantity can be computed from
the following recursion formula:37

rj ¼ r pj,jþ1 �
1� r pj,jþ1

� �
1� r pjþ1,j

� �
r jþ1

r pjþ1,jr jþ1 � exp(�2ikzjþ1d jþ1)
, (26)

kzjþ1 ¼
ffiffiffiffiffiffiffiffiffi
ε?jþ1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

c2
� q2

εzjþ1

s
, (27)

where q is the in-plane momentum, d j is the thickness of layer j,
and r pnm is the reflection coefficient of the interface between layers n
and m,

r pnm(q, ω) ¼
εm � εn þ 4πiσmnq

ω

εm þ εn þ 4πiσmnq
ω

, εm ¼
ffiffiffiffiffiffi
ε?m

q ffiffiffiffiffiffi
εzm

p
: (28)

The recursion starts with j ¼ M � 1 for which rM�1 ¼ r pM�1,M and
continues to progressively smaller j. The reflection coefficient of the
entire system is given by r0. For real q , ω=c, the reflection coeffi-
cient has an absolute value smaller than unity. Away from this radi-
ative zone, function rp(q, ω) may have poles at some complex q
that have relatively small imaginary parts. Such poles define the dis-
persion of the propagating collective modes of the system whose
effect on photocurrent we want to study.

An illustrative example of function rp(q, ω) is shown in Fig. 6.
It is computed for a heterostructure consisting of a doped mono-
layer graphene placed on a 50nm-thick hBN crystal, which is, in
turn, placed on a bulk SiO2 substrate. At low frequencies ω , ωTO

(Region I), the dispersion of this system contains a single branch,
which is basically the plasmon mode of graphene. However, there
is also a weak feature present near ω ¼ 1100 cm�1, which is due to
the interface phonon of hBN and SiO2. In a range of intermediate
frequencies ωTO , ω , ωLO (Region II) where hBN acts as a
hyperbolic material, with Reε?ðωÞ , 0 , Reεz ωð Þ, there are

FIG. 5. A comparison of the total power dissipated by the heterostructure
(upper curve) and in the graphene layer alone (lower curve), normalized to their
respective maxima. The former is proportional to the imaginary part of the
sSNOM signal SSNOM, and the latter is proportional to the photocurrent IPT .
The plasmon resonance in graphene results in a broad peak in both signals at
ω � 700 cm�1 for the Fermi energy of graphene μDC ¼ 1800 cm�1. The dip
in the photocurrent occurs at the phonon resonance ω ¼ 800 cm�1 of the SiO2
substrate.
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multiple dispersion branches. These are known as hyperbolic
phonon-polaritons. More precisely, these modes result from
hybridization of the graphene plasmon with phonon-polaritons of
hBN, and so they should be referred to as the hyperbolic plasmon–
phonon polaritons. At high frequencies ω . ωLO, there is only a
single plasmon branch. Our goal in this paper has been to under-
stand the effect of these collective modes on photocurrent mea-
sured by scanned probes.

Let us now discuss the electric field produced by such a probe.
Computing this field from a realistic model can be quite laborious.
Instead, as common in the s-SNOM literature,10,12,25,34 we model
the tip of the probe by a polarizable dipole of amplitude pz ẑ posi-
tioned a distance zt from the sample. If zt � c=ω, the field pro-
duced by the tip can be computed within the quasi-static
approximation. The scalar potential produced by the tip in the
half-space z � 0 above the sample is the superposition of the bare
and the reflected dipole potentials,

~Φ(q, z) ¼ ~w(q, jz � zt j)� rp(q, ω)~w(q, z þ zt), (29)

~w(q, z) ¼ 2πpz
ε0

e�qjzj: (30)

In turn, the in-plane field E(r) ¼ �∇Φ(r, 0) and the local Joule
heating p(r) in the 2D layer where the photocurrent is produced
are given by

E(r) ¼ r̂
ð1
0

dq
2π

q2 ~Φ(q, 0)J1(qr), (31)

pðrÞ ¼ 1
2
Reσðr; ωÞjEðrÞj2; (32)

where Jν(z) is the Bessel function of the first kind of order ν. Here,
we assume that the AC conductivity σ(r, ω) of the 2D layer varies
slowly on the scale of zt .

B. Plasmonic response of the 2D layer

The continuity equation for a time-harmonic perturbation of
frequency ω to the charge density ρ ¼ en is

�iωρþ @iji ¼ 0: (33)

The collective excitations of the system, e.g., plasmon–phonon
modes illustrated by Fig. 6 invariably involve oscillations of j and ρ.
We can center our attention on the 2D layer and consider the rest
of the system an environment. It is then possible to take a point of
view that all collective excitations are 2D plasmons renormalized
by the environment. Within this approach, the derivation of the
mode spectra goes as follows. First, we find the reflection coefficient
r*p(q, ω) of the system without the conducting 2D layer on top, by
the procedure explained above. All of the charges above the sample
are now considered the sources of an external potential Φext, which
is computed similar to Eq. (29) except with rp(q, ω) replaced by
r*p(q, ω). The total in-plane potential Φ ¼ Φind þ Φext is the sum of
this Φext and the potential Φind induced by the 2D layer’s own
charge ρ,

~Φind(q, ω) ¼ 2π
ε0q

[1� r*p(q, ω)]~ρ(q, ω): (34)

(Here we again assume the quasi-static limit q � ω=c.) Combining
these equations, we arrive at

~Φ(q, ω) ¼ ~Φext(q, ω)=ε2D(q, ω), (35)

where the function

ε2D(q, ω) ¼ 1� 1� r*p(qp, ω)

ε0

2πσ ωð Þq
iω

(36)

has the physical meaning of the effective 2D permittivity of the
conducting layer. The relation between rp, r*p, and ε2D is

1� rp ¼
1� r*p
ε2D

: (37)

The imaginary part of rp characterizes the losses of the system. For
a general multilayer structure, the low-loss condition can be
expressed as

Imrpð�q; ωÞ � Im ε2D r	p ð�q; ωÞ � 1
h in o

; (38)

at �q � a�1, where a is the radius of curvature of the near-field
probe [see Eqs. (26) and (34)]. For a graphene layer at the interface

FIG. 6. The reflection coefficient Imr pðq; ωÞ of a graphene-hBN-SiO2 hetero-
structure. The maxima in this pseudocolor plot correspond to the dispersions of
hybridized collective modes known as the plasmon–phonon polaritons. The
modes in Regions I and III are plasmon-like. Region II, where hBN acts as a
hyperbolic optical medium, contains multiple dispersion lines of waveguide
polariton modes. These waveguide modes exhibit avoided crossings with the
graphene plasmon. The small peak near ω ¼ 1170 cm�1 in Region III is due to
the phonon mode of the hBN/SiO2 interface. The graphene chemical potential is
μDC ¼ 2400 cm�1, and the hBN thickness is d1 ¼ 50 nm.
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of two semi-infinite media, one recovers Eq. (25). The sought
mode dispersions are the poles of rp or equivalently, the zeros of
ε2D(q, ω). At a given ω, these zeros occur at momenta qp that solve
the equation

qp ¼ ε0
1� r*p(qp, ω)

iω
2πσ ωð Þ : (39)

In general, such qp are complex and the corresponding collective
modes are well defined (underdamped) only if Imqp � Reqp.
Within the Drude model [Eq. (48)], Imσ=Reσ ¼ ω=Γd , so the nec-
essary condition for underdamped plasmons to exist is ω � Γd .

The potential of a plasma wave launched by a local source
(such as an s-SNOM tip) is given by the plasmon pole contribution
in Eq. (35),

Φ(r) ≃ VtH
(1)
0 (qpr), (40)

Vt /
ð
q2pΦext(r)d

2r, (41)

where H(1)
0 (z) is the Hankel function of the first kind. For an arbi-

trary sample-gate separation d1, Eq. (40) remains universally valid
in the range of distances zt � r � ðImqpÞ�1 but Eq. (41) may be
modified. If such distances play the dominant role in the photocur-
rent response and the absolute magnitude of this response is not
of primary interest, then it is permissible to use the simple
Eqs. (40)–(41) to find the potential Φ(r) (see Sec. III C).

If the 2D layer resides on a hyperbolic film of thickness d1,
e.g., if ε?1 , 0, εz1 . 0, then r*p(q, ω) is given by

r*p ¼
r01eiqδ � r21
eiqδ � r01r21

: (42)

In this case, Eq. (39) has an infinite number of roots, each repre-
senting a different plasmon–phonon eigenmode, see region II in
Fig. 6. The solutions are separated by the constant value

Δq ¼ iπ
d1

ffiffiffiffiffi
εz1

p
ffiffiffiffiffiffi
ε?1

p : (43)

We can use Eq. (42) to find the in-plane components of the electric
field,

E(r, zt) ¼ 3pz(1� r01)

� e0(r)þ (1þ r01)r21
X1
k¼1

(r01r21)
k�1ek(r)

" #
,

(44)

where

ek(r) ¼ (�izt þ kδ)r

�izt þ kδð Þ2�r2
� 	5=2 : (45)

Since j1þ r01j . 1 in the hyperbolic regime, the largest term in the

series is the k ¼ 1 term. These fields have maxima at the concentric
rings of radius rk, given by Eq. (14). If the slab were made of a non-
hyperbolic material, then δ would be imaginary and the only real
roots of Eq. (14) would be r0 ¼ zt

2 . For instance, in an isotropic
material, δ ¼ 2id and the rings are absent. The effect of ek for large
k is negligible in this case, since the image dipoles become progres-
sively further from the origin.

C. Second-order response of a 2D layer

If the electric field is not too strong, the response of the
system can be studied by expanding all quantities of interest in
power series of the electric field. For example, the current density
has the expansion j ¼ j(1) þ j(2) þ � � �. The second term, quadratic
in E, can be expressed in terms of the second-order nonlinear con-
ductivity σ(2)

ilm k1, ω1; k2, ω2ð Þ entering Eq. (12). For the DC photo-
current generated by a monochromatic field E(r)e�iωt þ c:c: of
frequency ω, the parameter choice ω2 ¼ �ω1 ¼ ω is appropriate,
such that

j(2)i rð Þ ¼
ð
d2k1d2k2
(2π)4

σ(2)
ilm(k1, � ω; k2, ω)

� ~E
*
l (�k1)~Em(k2)e

i(k1þk2)�r, (46)

where

~E(k) ;
ð
d2re�ik�r E(r): (47)

The functional form of σ(2)
ilm is highly system-dependent. One par-

ticular case attracting much interest recently is where the electrons
behave collectively, as a fluid.38 This regime is realized when the
momentum-conserving electron–electron scattering rate Γee

exceeds the momentum relaxation rate Γd . In this hydrodynamic
regime, the derivation of the second-order non-linear response
simplifies greatly. We summarize it in Appendix A.

The first-order ac conductivity is given by the Drude formula

σ ωð Þ ¼ Γd

Γd � iω
σDC, σDC ¼ e2n

m
1
Γd

: (48)

For the second-order current, we find the following combination of
terms:

j(2) ¼ jPT þ jPVT þ jPVC: (49)

The first term is the PT current,

jPT ¼ �σDC s
en

∇T: (50)

Comparing with Eq. (7), we see that the thermopower coefficient S
is equal to the entropy per unit charge,

S ¼ s
en

¼ π2

3
k2BT
en

@μ

@n


 ��1

T

: (51)
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The last equation is Mott’s formula for a degenerate Fermi gas with
a constant scattering rate Γd . The next term in Eq. (49) is the
thermal PV current,

jPVT ¼ �eD∇n� σDC

e
@μ

@T


 �
n

∇T: (52)

Last, the third term in Eq. (49) is what we previously called the
coherent part of the PV current. After a lengthy but straightforward
derivation, one finds (see, e.g., Ref. 21)

jPVC ¼ � e3n
m2

1

Γ2
d þ ω2

� 1
Γd

∇jEj2 � 2
ω
Im E* ∇ � Eð Þ þ E* � E

� �� 	� 

: (53)

This expression is well known in plasma physics where it is attrib-
uted to the ponderomotive force.31 For ω � Γd , the largest term is
the first term in the curly brackets, which is Eq. (19).

In the regime of our primary interest ω � Γd , the results for
the PV and PT parts of σ(2)

ilm simplify to

σX
ilm k1, ω; k2, � ωð Þ ≃ �icX

e3n
m2ω2

(k1i þ k2i)δ lm, (54)

cPV ¼ 1
2Γd

þ 1
ΓE

@μ

@T


 �
n

, (55)

cPT ¼ 1
ΓE

: (56)

Under the assumption ΓE � Γd made earlier, the PT component is
the dominant one. Note that the extra factor of 2 in the first term
of Eq. (55) compared to Eq. (53) appears when we make the transi-
tion from the real to the Fourier space. In addition, the derivative
@μ=@T � 1 entering the second term in Eq. (55) is very small for
a degenerate 2D Fermi liquid T � jμj.

In the scenario considered in Sec. III C, only the PVC contrib-
utes to the photocurrent. Assuming ω � Γd , the current through a
resistor R can be obtained from integrating Eq. (53),

IPVC ¼ � R
Rþ Rg

eσDC

mω2L

ð
@x E(r, t)j j2d2r, (57)

where Rg ¼ L=(WσDC) is the resistance of the sample. This integral
immediately simplifies to

IPVC ¼ � R
Rþ Rg

eσDC

mω2L

ðW
0
dy [E(r, t)]2
�� ��x¼L

x¼0
, (58)

which indicates that IPVC is determined solely by the electric field
Ex at the contacts. In Eq. (58), we took into account that the con-
tacts are equipotential so that Ey ¼ �@yΦ must vanish. The tip-
dependent contribution to the field comes from the interference
between the tip-generated and external fields,

IPVC ≃ � 2R
Rþ Rg

eσDCE0
mω2L

Re Vte
iqpjx�xt j

� �����
x¼L

x¼0

, (59)

which is Eq. (20) with w ¼ arg(Vt).

D. Thermal response

The energy relaxation of electrons involves their interaction
with multiple degrees of freedom such as the phonons of the 2D
layer and the substrate. In this section, we consider a model where
we assign separate temperatures to these two subsystems. This can
be a reasonable approximation if far-from-equilibrium effects
(phonon wind, phonon amplification, hot electrons, etc.) can be
neglected.39–41 We introduce the electron–phonon coupling cons-
tant g and the inverse of the Kapitza resistance of the graphene–
substrate interface γ and write the following three-temperature heat

FIG. 7. (a) A schematic of the tip-generated heating. Heat from the electrons at
temperature T is transferred to the lattice with a mean free path of le. The heat
from the lattice at temperature Tl is then transferred to the substrate over a phonon
mean free path ll . The heat diffuses through the three-dimensional substrate with
temperature Ts, which is coupled to a heat bath at a fixed temperature T0.
(b) A sketch of the temperature profile produced by a point source for le � ll.
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transfer equations:

�κ∇2T þ g(T � Tl) ¼ p(r), (60)

�κl∇2Tl þ γ(Tl � Tsjz¼0)þ g(Tl � T) ¼ 0, (61)

�κs ∇2 þ @2
z

� �
Ts ¼ 0: (62)

The Joule heating power p(r) produced by the scanned probe acts
as a localized heat source, as shown in Fig. 7(a). The electronic and
lattice thermal conductivities, κ and κlh, define three characteristic
lengths,

le ¼
ffiffiffi
κ

g

r
, (63)

ll ¼
ffiffiffiffiffiffiffiffiffiffiffi
κl

γ þ g

r
, (64)

ls ¼ κs

γ
: (65)

Depending on their values relative to each other and the distance r
from the source, qualitatively different scaling laws for the excess
electron temperature ΔT(r) ¼ T(r)� T0 emerge, as discussed
below. For definiteness, we consider the case where electron
cooling into the substrate heat sink is efficiently mediated by gra-
phene phonons: κl � κ and γ � g. For graphene on SiO2, these
assumptions can be justified using the following parameter
estimates:42–44

κl ¼ κ3Dh ¼ 0:34� 10�6 W
K
, (66)

γ�1 ¼ 4:2� 10�8 m2 K
W

, κs ¼ 1:0
W
mK

: (67)

In Eq. (66), we employ the commonly reported “bulk” thermal
conductivity κ3D, which is calculated by modeling graphene as a
thin film of thickness h ¼ 0:335 nm. The phonon mean free path
l ph corresponding to the chosen value κ3D ¼ 1000Wm�1 K�1 is43

l ph � 200 nm. These parameter values yield the estimate
ll ≃ (γ�1κl)

1=2 ¼ 120 nm, which is substantially shorter than the
typical values of the cooling length reported for encapsulated gra-
phene systems. As discussed below, this is due to the fact that the
limiting step in the cooling process is the energy exchange between
electrons and phonons of graphene.

To get the remaining parameters in Eqs. (63)–(65), we first
use the Widemann–Franz law,

κ ¼ π2

3e2
TσDC � 0:6� 10�7 W

K
� 0:2κl , (68)

where we took T ¼ 300K and σDC ¼ (2kFl)(e2=h) � 200e2=h, cor-
responding to the transport mean-free path of l � 250 nm at

electron density n ¼ 5� 1012 cm2. Second, to estimate g and le, we
assume that T is higher than the Bloch–Grüneisen temperature,

TBG ¼ 2�hkFc ¼ 54K�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n = (1012 cm�2)

p
: (69)

In this regime, the electron cooling power g due to scattering by
acoustic phonons is given by16,45

g ¼ π

2
n2β2

�hρv2F
¼ 3

4π2
cv

τe�ph

T2
BG

T2
, (70)

where c is the sound velocity, β is the coupling constant for the
strain-induced effective gauge potential, ρ is the graphene mass
density per unit area, and cv is the electron specific heat per unit
area. In the second equation in Eq. (70), we introduced the
momentum relaxation time τe� ph due to electron–phonon scat-
tering, which enables us to relate the length scales le and l. Indeed,
from Eqs. (68) and (70), we obtain

le ¼ 2:6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vFτe�phl

q TBG

T
: (71)

Assuming that the DC conductivity is dominated by electron–
phonon scattering so that l � vFτ e� ph, we estimate le � 1 μm at
T ¼ 300K. The length le is much larger than l because at T � TBG

the electron–phonon scattering is quasi-elastic. The net cooling
length is determined by the larger of le and ll . In the present case,

lc ; max(le, ll) ¼ le � ll: (72)

Finally, we find ls ¼ 50 nm for an SiO2 substrate, which is signifi-
cantly shorter than ll and le. The electronic cooling length le is
determined mostly by the doping of the graphene and the elec-
tron–phonon coupling, whereas ll also depends on the interfacial
resistance between the graphene and the substrate. We expect the
effect of the substrate to have the largest impact on the thermal
transport properties of the system through the length ls; for a con-
ducting substrate like gold, this length could exceed le. In this work,
we consider only the case ls � le. For such interrelations among
these characteristic length scales, the behavior of the excess electron
temperature ΔT ¼ T � T0 generated by a local heat source is
sketched in Fig. 7(b). In particular, at short distances, ΔT is
described by the equation

ΔT(r)/ K0
r
lc


 �
, (73)

where K0(z) is the MacDonald function. This temperature profile
has a narrow region of exponential decay for r . lc. At large dis-
tances, however, we find the inverse-distance law

ΔT(r)/ 1
r
, r � lc ln

lc
ls
: (74)

Our derivation of these formulas is presented in Appendix B.
Having defined a model for the temperature, we can now

extract the parameter @σDC=@T in Eq. (17) experimentally by
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measuring non-Ohmic corrections to the current as a function of
V in the absence of light. Using our model for heat transfer Eq.
(73), the corresponding correction is of the form

I ¼ V
Rg þ R

1� V2

V2
0


 �
, V2

0 ¼ κ

l2c
L2

@σDC

@T


 ��1

: (75)

The cubic nonlinearity predicted by this formula implies that when
V is periodically modulated at some small frequency Ω, the current
I contains the third harmonic of this frequency. Measuring this
3Ω-signal can then be used to obtain the bolometric coefficient
@σDC=@T .

To generate a net PT photocurrent, a spatially inhomogeneous
thermopower S is required. We limit ourselves to one-dimensional
(1D) inhomogeneities and consider three examples: S(x) having a
sharp peak, S(x) exhibiting a step-like change, and S(x) being a
linear function of a spatial coordinate x. Such profiles of S(x) can
originate from a stacking defect (domain wall) in a multilayered
material, a doping inhomogeneity (e.g., a p-n junction in graphene),
or self-gating in a voltage-biased device. If the dc conductivity
σDC(x) is a slowly varying function of position, the local thermo-
electric coefficient σDCS can be estimated from Eq. (51). Assuming
again that the source and drain contacts are long conducting strips
located at x ¼ 0 and x ¼ L (Fig. 1), so that ψ i ¼ δx,i=W in Eq. (4),
the PT photocurrent can be written in the form

IPT ¼ � 1
L

ðL
0
σDC(x)S(x) @x �T(x)dx, (76)

where �T(x) is the line-integrated excess temperature,

�T(x) ;
ð
ΔT(x, y)dy: (77)

Suppose now that thermopower S(x) has a sharp dip of characteris-
tic depth ΔS and width w � lc that we can approximate by
S(x) ¼ �wΔS δ(x)þ S0. This is reasonable for, e.g., a domain wall
(DW) defect whose width is typically much smaller than the
cooling length. Substituting this S(x) into the equations above, and
assuming that function �T depends mainly on the distance between
x and xt , so that �T(x, xt) ! �T(x � xt), we obtain

IPTDW(xt) ¼ σDC w
L
ΔS @x �T(�xt): (78)

This expression was used to obtain Fig. 2(b). Next, for the thermo-
power profile S(x) ¼ ΔSΘ(x)þ S0 characteristic of a p-n junction,
we find

IPTp�n ¼ σDC ΔS
L

�T(�xt): (79)

The plot in Fig. 3(a) was obtained using the equation above,
together with Eqs. (32), (40), and (73). Finally, for a linear profile,

S(x) ¼ (ΔS=L)x þ S0, we get

IPTSG ¼ σDC ΔS
L2

ðL
0

�T(x � xt) dx, (80)

which has the same xt dependence as Eq. (17). In deriving all these
results we assumed, for simplicity, that the temperature of the con-
tacts and the adjacent graphene regions is maintained at the
ambient value T0, and so the possible difference in the thermopower
of the contacts and graphene does not contribute to IPT.

VI. CONCLUSION

In this paper, we demonstrated applications of several
minimal models for scanning near-field photocurrent measure-
ments on graphene-based heterostructures where the effects of
plasmon- and phonon-polaritons may be important. Such collec-
tive modes can generate interference patterns near sample edges
and other inhomogeneities and exhibit distinctive spectral reso-
nances. Our models reproduce these interference patterns and elu-
cidate the role of the thermal properties of the heterostructure on
the collected signal. We also studied a coherent photovoltaic contri-
bution to the photocurrent induced by the scanned probe.
Additionally, we derived a simple relation connecting the frequency
dependence of these measurements to that of the parent technique
of s-SNOM for the case where dielectric losses in the substrate are
negligible.

We focused mostly on effects that are quadratic in an applied
electric field. On the other hand, a non-perturbative regime of
strong applied bias46 may be an interesting direction for further
investigations. The effects of band structure and especially geomet-
rical phases47,48 on photocurrent also warrant study in the novel
context of near-field measurements. We hope that our modeling of
collective mode phenomena in the photocurrent response will be
useful in these and other future studies.
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APPENDIX A: HYDRODYNAMIC EQUATIONS

The hydrodynamic equations including terms up to second
order in the external field are

@n
@t

þ ∇ � nuð Þ ¼ 0, (A1)

@u
@t

þ u � ∇ð Þu ¼ �Γdu� 1
mn

∇P þ e
m

Eþ u
c
� B

� �
, (A2)

@nε
@t

þ ∇ � q ¼ j � E� ΓEnε: (A3)

Here, u ¼ j=en is the flow velocity, P is the pressure, and nε is the
energy density. For simplicity, we treat Γd and the energy relaxation
rate ΓE � Γd as T-independent constants, and so our model
misses a possible BM effect. The hydrodynamic mass is
m ¼ �hkF=vF , where vF is the Fermi velocity, kF ¼ j4πn=gj1=2 is the
Fermi momentum, and g is the spin-valley degeneracy (g ¼ 4 in
graphene). We neglect viscosity of the electron fluid in Eq. (A2)
because it affects the results only to the order O(k2), where k is a
characteristic momentum, assumed to be a small quantity.

Using the Gibbs–Duhem relation, the pressure gradient in
Eq. (A2) can be related to the temperature and chemical potential
gradients,

∇P ¼ s∇T þ n∇μ, (A4)

where s is the entropy per particle. The first term contains the
Seebeck coefficient and the PTE [Eq. (50)]. The chemical potential
gradient can be split into the n- and T-dependent parts,

∇μ ¼ @μ

@n


 �
T

∇nþ @μ

@T


 �
n

∇T: (A5)

The first term is responsible for diffusion which gives a contribu-
tion proportional to k2, and the second term is the PVT, cf. Eq.
(52). We also have the equations

dnε ¼ ncVdT , (A6)

where cV is the specific heat per particle and

q ¼ �κ∇T þ nε þ 1
2
mnu2


 �
u, (A7)

where κ is the thermal conductivity.
Letting the field be of the form E(r, t) ¼ E(r)e�iωt þ c:c:, the

terms linear in E give

�iω j(1) ¼ �Γd j
(1) þ e2n

m
E, (A8)

which results in the Drude conductivity Eq. (48) of the main text.
We first derive the form of the PVC current from Eq. (A2).

We assume an incident field of the form E(r, t) ¼ E1e�ik1�rþiωt þ

E1e�ik2�r�iωt þ c:c: Straightforward algebraic manipulations (see
Ref. 21) give the dc current as

jPVCi ¼ e3n

2m2(ω2 þ Γ2
d)

δlm
k1i þ k2i

iΓd


 ��

þ 1
ω
δim k1l þ k2lð Þ � 1

ω
δil k1m þ k2mð Þ

þ 1
ω
δlm k1i � k2ið Þ

�
E1lE2m, (A9)

which is equivalent to Eq. (53) of the main text.
Our results for the current are not yet final because we still

need to find the time-averaged electron temperature, which can be
done using Eqs. (A6) and (A7). To this end, we need to solve the
equation

�κ∇2T þ ncVΓE(T � T0) ¼ j � Eh i: (A10)

The angular brackets � � �h i denote the time average. Note that the
time derivative drops out in the DC limit. Since we neglect terms
quadratic in momentum k and higher than second order in the
field, we can drop the entire ∇ � q term as well and obtain the
simple solution

ΔT ; T � T0 ¼ 2
ΓE

Re σðωÞE	
i Ei: (A11)

At this point, we can express the second-order current solely in
terms of the incident electric field, that is, we can determine the
second-order nonlinear conductivity, which is given by Eq. (54) of
the main text.

APPENDIX B: HEAT KERNEL

We consider a system of electrons in graphene thermally
coupled to a phonon bath, with the latter in contact with a three-
dimensional substrate. The differential equations describing this
system are

�κ∇2T(r)þ g T(r)� Tl(r)½ 
 ¼ j � E, (B1)

�κl∇2Tl(r)þ g Tl(r)� T(r)½ 
,þ γ Tl(r)� Ts(r, 0)½ 
 ¼ 0, (B2)

�κs ∇2 þ @2
z

� �
Ts(r, z) ¼ 0: (B3)

We will find Green’s function for the electronic temperature T
using a two-dimensional Fourier transform. Equations (B1)–(B3)
are

κq2~T(q)þ g ~T(q)� ~Tl(q)
� 	 ¼ ~P, (B4)

κlq
2~Tl(q)þ g ~Tl(q)� ~Te(q)

� 	þ γ ~Tl(r)� ~Ts(q, 0)
� 	 ¼ 0, (B5)
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κs q2 � @2
z

� �
~Ts(q, z) ¼ 0,κs@z ~Ts(q, z)

��
z¼0 þ γ~Ts(q, 0) ¼ γ~Tl(q):

(B6)

We first consider the case of constant substrate temperature
Ts(q, 0) ¼ T0. We consider a point source ~P ¼ 1 in Eq. (B4) and
change variables qr ¼ u. Using the expressions for the cooling
lengths introduced in Eq. (63), we find

~T(u) ¼ 1
κ

u2 þ r2

l2l

u2 þ u2�
� �

u2 þ u2þð Þ , (B7)

with the roots

u2+ ¼ 1
2

r2

l2l
þ r2

l2e
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

l2e
� r2

l2l


 �2

þ 4gr4

l2eκl

s" #
: (B8)

In the case ll � le or vice versa, lc ¼ min(le, ll), so

~T(u) � 1
κ

1

u2 þ r2
l2c

: (B9)

The inverse Fourier transform is

T(r) ¼ 1
2π

ð1
0
du u~T(u) J0(u) ¼ 1

2πκ
K0

r
lc


 �
: (B10)

If le � ll ¼ lc, Eq. (B10) still holds provided that g � γ.
If one allows for an inhomogeneous temperature in the sub-

strate, Eq. (B3) must be included. We consider the experimentally
relevant case ll ¼ le ¼ lc � ls, where ls is defined in Eq. (65).
Straightforward algebraic manipulations give the following repre-
sentation of the temperature in the Fourier domain for a point
source:

~T(u) ¼ 1
κu

u2 l2c
r2 þ g

γ

� �
1þ u ls

r

� �þ u ls
r

1þ u ls
r

� �
u3 l2s

r2 þ uþ g
γ

� �
þ u2 ls

r þ rls
l2c

: (B11)

If r � lc, ls, then Eq. (B11) is

~T(u) � 1
κ

1
u2

, T(r) ¼ � 1
2πκ

ln r, r � ls, lc: (B12)

For r � ls, we neglect terms containing ls
r to obtain

~T(u) � 1
κ

u

u3 þ u r2
l2c
þ r3 ls

l4c

, ls � r: (B13)

For r � lc, the last term in the denominator is negligible, and we
recover Eq. (B10). As r increases past lc, this term is no longer
small. Taking Eq. (B11) for r � lc, we find

~T(u) � 1
κu

1
uþ rκs

κ

, r � lc: (B14)

The Fourier transform is

T(r) ¼ 1
4κ

H0
rκs

κ

� �
� Y0

rκs

κ

� �h i
, (B15)

where Hν(z), Yν(z) are the Struve function of the first kind and the
Bessel function of the second kind of order ν, respectively.
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