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ABSTRACT

Multimodal Federated Learning (FL) integrates two crucial research
areas in IoT scenarios: utilizing complementary multimodal data
to enhance downstream inference performance and conducting de-
centralized training to safeguard privacy. However, existing studies
primarily focus on applying FL methods after multimodal feature
fusion, without fundamentally addressing multimodal FL across
both feature and sample spaces. A notable tradeoff persists between
the computational demands of multimodal information and the lim-
ited computing resources in IoT systems. To tackle this challenge,
we propose a Joint Horizontal and Vertical (JHV) FL algorithm
tailored for multimodal IoT systems. JHV employs vertical FL to
distribute computing tasks across multimodal IoT devices (feature
space) and horizontal FL to allocate tasks across multiple silos (sam-
ple space). Experimental results on two public multimodal datasets
show that JHV outperforms three baseline methods, demonstrating
its effectiveness for multimodal IoT systems, especially in rapid and
accurate downstream tasks like classification and prediction.
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1 INTRODUCTION

The Internet of Things (IoT) has rapidly evolved, connecting nu-
merous devices and sensors to enable seamless data exchange. In
multimodal IoT, these devices capture various data types from the
same sample [17]. Each IoT device, within its respective silo (e.g.,
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Figure 1: A multimodal IoT system involves problem decom-
position across feature space and sample space.

home or factory), may have one or multiple sensors gathering differ-
ent data modalities. For instance, as shown in Fig. 1, each IoT device
may have a single sensor type, such as a camera for images or a
microphone for audio. These collected multimodal data are then
uploaded to the edge server for feature extraction and downstream
inference. Compared to single-modal data, multimodal data pro-
vide more informative complementary features, thereby improving
inference performance [6], which is a key research direction.

Federated Learning (FL) has emerged as another pivotal research
direction in IoT due to its capability to expand the sample space
through distributed training with privacy protection [20]. This de-
centralized approach enables devices to collaboratively train models
without centrally aggregating sensitive raw data. In multimodal
IoT scenarios, characterized by data heterogeneity and privacy con-
cerns, FL is particularly promising as it aids in developing robust
and generalized models across multiple silos [8].

However, current research on FL in multimodal IoT scenarios
faces limitations due to the edge server’s limited computing re-
sources (e.g., memory or storage) and the underdeveloped comput-
ing capabilities of distributed IoT devices. While many IoT devices
now possess computational power, most FL approaches for multi-
modal IoT systems primarily treat them as sensors for data collec-
tion, relying on centralized data processing and model training at
the edge server [21]. In other words, these methods apply FL after
the multimodal feature fusion stage in a straightforward manner,
thereby overlooking the potential development of edge computing
resources within distributed IoT devices. Essentially, most exist-
ing methods for multimodal IoT systems treat multimodal inputs
as "single-modal" inputs with richer features and higher dimen-
sions, failing to fundamentally disentangle multimodalities in the
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multimodal FL problem [19]. Thus, we can summarize two chal-
lenges hindering the effectiveness of FL in multimodal IoT scenarios.
Firstly, edge servers in each silo often face constraints in computing
resources such as memory and storage, which impede real-time
parallel processing of multimodal data [8]. Secondly, the limited
data samples within each silo may cause the local model to perform
well within its own silo but result in poor performance across the
entire dataset spanning multiple silos.

In light of the above discussion, one key question arises: How
can we fundamentally disentangle multimodalities and leverage the
edge computing resources of IoT devices to alleviate the computing
burden on the edge server with privacy protection?

To address this question, we propose a Joint Horizontal and
Vertical (JHV) FL algorithm. This approach_leverages vertical FL
(VFL) to distribute computing resources across multimodal IoT de-
vices (feature space), addressing the first challenge, and horizontal
FL (HFL) to distribute computing resources across multiple silos
(sample space), addressing the second challenge. This innovative
algorithm requires careful consideration of both stale information
usage from the VFL component and perturbed gradients from the
HFL component, aspects that are not fully understood theoretically
and practically. In this paper, we not only theoretically analyze the
convergence of JHV but also empirically validate it on a real-world
testbed. Extensive experimental results from two public multimodal
datasets demonstrate that JHV outperforms three baselines, making
it practical for multimodal IoT systems requiring rapid and accurate
downstream inference tasks such as classification and prediction.

Our key contributions can be summarized as follows:

e We formulate the multimodal FL problem and fundamentally
disentangle it across both the feature space and sample space.

e We propose the JHV algorithm, which distributes computing
resources across multimodal IoT devices (feature space) and
multiple silos (sample space).

o We theoretically analyze the convergence of the proposed
JHV algorithm for non-convex objectives.

e We empirically validate the proposed JHV algorithm on a
deployed real-world testbed and evaluate its scalability and
generalization on a powerful computing cluster. Extensive
experimental results from two multimodal datasets demon-
strate its effectiveness and align with our theoretical analysis.

2 PROBLEM FORMULATION

We investigate a multimodal IoT system with M silos, where each
silo indexed by m contains N, samples (m € [M]). The total number
of samples across M silos is denoted as N = ZAW/{:l N,,,. Each silo
represents a home (or factory) equipped with an edge server and K
multimodal IoT devices. These devices are equipped with sensors
capable of collecting various data modalities such as images and
audio. These K IoT devices collectively have J sensors, where | > K,
capable of capturing data across different modalities corresponding
to the same sample. When K = J, each IoT device has only one type
of sensor (modality, e.g., image or audio), illustrated in Fig. 1.

In the m-th silo, the local dataset x;, € RNm*J g vertically
partitioned across K IoT devices along the modality axis (feature
space). Each IoT device k (k € [K]) may contain a varying number
of modalities. However, for simplicity, we assume each IoT device
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possesses the same number of modalities, specifically Il( modalities
per device. The i-th row of x,,, represents a data sample x},,. For each

[x,ln’, . xfnl, . -,xﬁ’i], the k-th IoT device holds a
disjoint subset of features, denoted as xfn’i. Each x?, is associated
with a corresponding label y?,. Let y,, denote the vector of all
sample labels within the m-th silo. Addltlonally,  represents the
local and partial dataset of the k-th IoT device Wlthln the m-th
silo, where the i-th row corresponds to the data features xf,;i. The
objective at the m-th silo level is to minimize:

sample x}, =

fm(G)mQXm;Ym) =

s SN L [00 hh (05t )+ b (0508 ) ] )
where ©,, = [90 91 91‘"95] represents the m-th silo-
level model, and £(-) denotes a loss function that combines the
embeddings {h¥, (6%,
we designate k = 0 as the edge server (i.e., head [2]) and define
1, (69,;x% ) := 09, for all x, where h?, () is equivalent to the identity
function. In the m-th silo, the partial derivative for the coordinate

partition an of the k-th IoT device can be expressed as follows:

kam(Qm;Xm;ym) =
oaia] -

Np, >
N Zick Vor £ [99n> him (9rln;xr1n ) :
The stochastic partial derivative of the coordinate partition %, for
the k-th IoT device can be expressed as follows:

kam(em;Bm) =
B Zies,, Vo £ |60k (Ol ) -

x,lﬁii)}lk(: | from all IoT devices. For simplicity,

- hK (eK

®3)
A ) )

where B, denotes a randomly sampled mini-batch of size B,,. We
may omit X, y, X, and ym from f(-) or fm )for brevity. Additionally,
we define X, (0% x55m) 1= (R (0 By o E (0% 55"}
as the set of embeddings of k-th IoT device associated with the mini-
batch By, where B!, represents the i-th sample in the mini-batch
B We consider Vi fg, (Om) and Vi fg, [0, - - -, hK (6K ; x:5m))
equivalent and use them interchangeably.
Thus, the global objective is to minimize the following:

1 M
f(©):= N > Nefm(©) (4)

m=1
where © = [90 6. 0k ... 6K] denotes the global full model,
and 6% = Z NmH denotes the partial model on the k-th

(type of) IoT dev1ce This objective evaluates how well the model fits
the entire dataset across K IoT devices and M silos, distinguishing
it from any existing HFL-type [15] or VFL-type [13] problem.

3 JHV ALGORITHM
3.1 VFL across K IoT Devices

At the beginning of each communication round (i.e., t mod Q = 0)
within the m-th silo, designated as t(, a mini-batch $,, is randomly
sampled from x,. Each IoT device conducts block coordinate sto-
chastic gradient descent on its local model parameters (i.e., H,kn) in
parallel for Q local iterations. Specifically, for the k-th IoT device to
compute the stochastic partial gradient regarding its features across
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partial modalities, it needs the embeddings computed by all other de-
vices k’ (k" # k), as well as its own k-th device embeddings h’,;(e,’i;‘).
Within each silo m, these embeddings from different IoT devices
are shared with the edge server and then distributed to all IoT de-
vices. We define ®,,°" = {(hk;(6),")) | k' # k}X-
embeddings from other devices k” # k; thus, the set of embeddings
used by the k-th device is @If,;t = {(ID,_nk’to; hk (Gslt, X ’")} which
inevitably contains stale information <I>,_nk’ ® during t > 1y itera-
tions in this round. For each iteration t, the k-th device updates Gk

as the set of

by computing the stochastic partial derivatives Vj fg, (<I>m ,ym'")
and applying a gradient step with step size 7. It is noteworthy
that each IoT device relies on a stale view of the silo-level model
to compute its partial gradient during multiple local iterations by
reusing the embeddings received at the start of each communica-
tion round, which may affect convergence. However, in Section 3.3,
we provide a theoretical analysis demonstrating that our proposed
JHV algorithm converges despite devices performing multiple local
iterations with inevitably stale information at this stage.

In addition to the inevitable use of stale information, another
significant deviation of JHV from previous VFL algorithms, such as
FedBCD [14], is its adoption of the edge server model (referred to as
the "head" [2], denoted as #9,) with trainable parameters, facilitating
the integration of arbitrary multimodal fusion networks. Moreover,
while we assume that both the edge server and all IoT devices have
the labels y, in each silo, we also consider scenarios where this
may not be the case. If labels are only available to one party (e.g.,
the edge server), it can still provide enough information for other
devices to compute gradients for certain model architectures [13].

3.2 HFL across M Silos

In IoT scenarios, the local datasets within each silo (e.g., homes or
factories) are influenced by available samples and various modali-
ties, resulting in significant variations in both sample size and multi-
modal data distribution across different silos. Non-Independent and
Identically Distributed (Non-IID) datasets may enable a silo-level
model to fit well locally but not generalize to the entire dataset
across M silos. To develop a global model that performs well across
entire multimodal IoT systems, we employ HFL across all M silos,
ensuring it operates concurrently with VFL conducted within each
silo. Specifically, at each communication point where t mod Q = 0,
the global server aggregates partial models across K IoT devices
from M silos. For the k-th IoT device, this aggregation is com-
puted as 65! = % Z%[:l NmG,I;;t, and then the updated models
0kt are broadcast back to all silos. Importantly, this aggregation
involves different types of IoT devices representing various modali-
ties (features). A key distinction of our proposed JHV from existing
multimodal FL methods is our fundamental disentanglement of
multimodal inputs, rather than treating them incrementally as a
"single-modal” input with richer features and higher dimensions.
While HFL already provides privacy benefits by avoiding the
sharing of raw data, we offer additional and more stringent solu-
tions. Within each silo, IoT devices share only embeddings and
compute partial derivatives related to their local models, thereby
further mitigating privacy concerns associated with the transmis-
sion of raw data. Furthermore, we can enhance security against
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sophisticated attacks using methods such as secure multi-party
computation [4] or homomorphic encryption [1].

Algorithm 1: JHV

Initialize: 0%, 05/~ vk € [K], Vm € [M] ;
fort=0,1,---,T —1do
if t mod Q = 0 then

# VFL
form =1,2,---,M in parallel do
fork=1,2,---,K in parallel do

L IoT device uploads Rk (Q,I;t, ]an )3

R R O RN (A
| Edge server sends @, to all K devices;
# HFL
fork =0,1,---,K in parallel do
Global server computes okt = % ZAm/IZI N,
| Global server sends 0% to all M silos;

okt

form =1,2,---, M in parallel do
fork =0,1,---,K in parallel do
L Qfﬁt — Gk’t;

form=1,2, ',M in parallel do
fork =0,1,---,K in parallel do
q)kt - { —k o, hk (ekt kBm)}’

m’m

k k Bm
| O8I O — Vit @y

3.3 Convergence Analysis

Considering that the proposed Algorithm 1 raises two concerns: (1)
multiple local iterations using inevitably stale information and (2)
significant variations in both sample size and multimodal data distri-
bution across multiple silos, which have not been fully understood
from a theoretical point, we provide the convergence analysis.

Assumption 1. There exist positive constants L < oo and Ly < o,
form € [M], k € [K], such that for all ® and ©’, the objective
function satisfies:

IVfm(©) = V(@) < Ll© - €], ©)
Vi fm(©) = Vi fm (@] < Le[|© - ©7]. (6)

Assumption 2. The stochastic partial derivatives are unbiased for
each mini-batch B:

E [Vifm(©; B)] = Vi fm(©). )
Assumption 3. There exist constants oy such that the variance of
the stochastic partial derivatives is bounded for a mini-batch B of
size B:

o2
_k

E [IIVkfin(©; B) = Vi fin(©)II?] < ®)

Assumption 4. There exists a constant & such that the expected
squared Euclidean norm of V. f(©; B) is uniformly bounded for all
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IoT devices K of size K:

52
E [IVifin(@: B)II?] < X ©
Theorem 1. Suppose Assumptions 1-4 hold, < m, then

the average squared gradient over P global rounds (i.e., T = Q X P
iterations) of Algorithm 1 is bounded:

b2l E |vr (@)

2[f(89)-f(") K+1 0%
s U oie ol (5

(10)

+ 2 o? 2
5+ 0 )iy S -
where f(©) is the optimal value of the global objective (4).

Remark 1. The convergence error in Theorem 1 arises from paral-
lel updates on coordinate blocks in Algorithm 1, which depend on
the communication frequency (Q), the number of IoT devices (K),
and the number of silos (M). The first term is determined by the dis-
parity between the initial model and the optimal model, diminishing
as the number of global rounds (P) approaches infinity. The remain-
ing terms denote errors arising from (1) multiple local iterations
using stale information in the VFL component, and (2) variance
in stochastic gradients in the HFL component. We further explore
these aspects in Section 4.3.4 through extensive experiments.

4 EXPERIMENTS

4.1 Real-World Testbed

We developed a prototype of our proposed JHV using a hardware
testbed consisting of two silos deployed in our lab under real-world
network conditions. Each silo is equipped with the following de-
vices: an NVIDIA Jetson TX2 (TX2), featuring an NVIDIA Pascal
GPU with 256 CUDA cores and 8GB LPDDR4 memory, running
Ubuntu 18.04; an NVIDIA Jetson Xavier NX (NX), featuring a 384-
core NVIDIA Volta GPU with 48 Tensor Cores and 8GB 128-bit
LPDDR4x memory, also running Ubuntu 18.04; and an edge server
with an Intel Core i7-11370 CPU, running Ubuntu 20.04. These de-
vices offer varying computational capabilities. The NVIDIA Jetson
devices can locally train deep learning models and communicate
with the edge server via 802.11ac WLAN. Due to limitations of
available lab devices, an edge server within the first silo handles
both its own training tasks and the model aggregation function of
the global server. Additionally, we strategically deployed heteroge-
neous IoT devices with varying computational capabilities within
each silo to accommodate natural variations in computation times
across different modalities in multimodal scenarios. The hardware
system setup is illustrated in Fig. 2.

4.2 Experimental Setup

4.2.1 Datasets. ModelNet10' comprises images of Computer-Aided
Design (CAD) models depicting various objects [18]. Each CAD
model is represented by 12 images captured from different cam-
era views. Notably, these images are not generated through data
augmentation techniques such as flipping or noise addition, mak-
ing ModelNet10 widely utilized as a multimodal dataset. Similar

!https://modelnet.cs.princeton.edu/
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Figure 2: Our real-world testbed deployment includes two
silos with heterogeneous devices: (a) Deployment diagram, (b)
Training methodology, and (c) Lab deployment environment.

to [12, 16], we split the dataset into 3,991 training samples and
908 testing samples for the task of multi-class classification across
10 object categories, such as bed, dresser, sofa, table, monitor, etc.
MIMIC-IIT? (Medical Information Mart for Intensive Care) dataset
contains anonymized information of patients admitted to critical
care units in a hospital [10]. We follow the data processing steps
outlined in [5] to obtain 14,681 training samples and 3,236 test
samples. Each sample comprises 48 time steps corresponding to 48
hours, with each time step having 76 features, such as demographic
information, vital signs, medications, etc. The objective is to predict
in-hospital mortality as a binary classification task.

4.2.2  Implementation and Reproducibility. For the ModelNet10
dataset, during the training process within each silo, we vertically
partition the local data along the 12-view axis into two vertical
partitions (feature space). The TX2 and NX each contain 6 of the 12
views. Subsequently, each IoT device trains a ResNet18 model with
a penultimate layer. The concatenated embeddings (features) are
then fed into the classifier layer (head) at the edge server, which
employs cross-entropy loss for class prediction. We employ 5-fold
cross-validation for hyperparameter selection, such as performing
grid search for the learning rate within the range [0.0001, 0.002].
For the MIMIC-III dataset, our preprocessing procedure parti-
tions the dataset into various prediction cases, with our experiments
specifically targeting the prediction of in-hospital mortality. Dur-
ing the training process within each silo, we vertically partition
the local data along the 76-features axis into K vertical partitions
(e.g., when K = 2, each partition contains 38 of the 76 features).
Each device trains an LSTM model with a linear layer. The concate-
nated embeddings (features) are then fed into the classifier layer
(head) at the edge server, which utilizes cross-entropy loss for class
prediction. We utilize 5-fold cross-validation for hyperparameter
selection, including a grid search for the learning rate within the
range [0.001,0.02]. Due to the imbalanced nature of the MIMIC-III
dataset, consisting of only 16% positive samples (indicating that
most patients did not die in the hospital for the in-hospital mortality
prediction task), we assess the generalization performance on the

Zhttps://mimic.mit.edu/
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test dataset using the F1 score as an evaluation metric. The F1 score
represents the harmonic mean of precision and recall, calculated
for the global model across the entire test dataset.

4.2.3 Baselines. Our baseline experiments cover three categories,
each potentially associated with several existing multimodal FL
methods. To vividly demonstrate the efficacy of our proposed JHV,
we use blue and red dashed boxes to represent VFL and HFL, respec-
tively, and gray dashed boxes to represent sample size, highlighting
their training differences, as depicted in Fig. 3.

Baseline 1: Local training with multimodal data [6], [7]. This base-
line corresponds to the traditional multimodal learning approach
for IoT systems. However, the computing resources of the edge
server in the IoT system are limited and cannot process all multi-
modal inputs in parallel. For example, when processing image or
video data, the GPU memory might become fully utilized, leading
to delays in processing other modal data, especially those requiring
real-time processing. Additionally, this baseline fails to expand the
training sample space while ensuring privacy.

Baseline 2: VFL with multimodal data [14], [3]. This baseline
corresponds to a form of multimodal FL methods that explores
VFL for distributed training of multimodal data. However, these
methods do not effectively address the challenge of limited samples
within each silo (home) in IoT scenarios.

Baseline 3: HFL with multimodal data [21], [19]. This baseline
corresponds to a form of multimodal FL that does not involve
disentangling the training of multimodal data across feature space.
Here, the multimodal input can be perceived as a "single modal
input” with richer information and higher dimensions. Besides, the
computing resources of the edge server within each silo are limited,
thus all multimodal inputs cannot be processed in parallel.

r
((& % :HFLE& !
PN - - 1 /\(M):
o 'VFL‘%: &2 OO
1 | A - - -
AN RN AR
Q@ _§ @ § e e & Q.6 9§
| Local | VFL HFL
t t=0Q t=Q
Baseline 1 Baseline 2 Baseline 3

Figure 3: Comparison between JHV and three baselines.

4.3 Results and Analysis

4.3.1 Convergence Performance: To fairly compare the conver-
gence performance between JHV and three baselines, we fixed
the communication frequency (Q = 5), the number of silos (M = 2),
and the number of IoT devices (K = 2), i.e., each device contains
only half of the sample space and half of the feature space as shown
in Fig. 2 (a). Each experiment was repeated 10 times.

As shown in the results in Fig. 4, based on the ModelNet10
dataset implemented on the testbed, JHV and Baseline 2 effectively
utilize distributed computing resources from two IoT devices (NX
and TX2) to accelerate convergence compared to Baseline 3 and
Baseline 1, respectively. Additionally, the convergence errors of JHV
and Baseline 3 are smaller than those of Baseline 2 and Baseline 1,
respectively, due to the utilization of HFL across two silos. Notably,
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in Section 4.3.3, implemented on a powerful computing cluster
which can flexibly vary K and M, the superiority of our JHV is
more apparent with larger values of K and M, where multimodal
data becomes more distributed in the feature space and sample
space, which is more common in real-world IoT scenarios.

GPU Usage
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—— Baseline 1
—— Baseline 2
— Baseline 3
—— Our JHV
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Figure 4: Comparison of con- Figure 5: Dynamic resources
vergence performance on the (GPU usage, bandwidth logs)
ModelNet10 dataset. in Silo 2, shown in Fig. 2 (c).

4.3.2  Dynamic Resource Usage: Another key challenge addressed
in deploying JHV on the testbed is the resource dynamics in real-
world systems. We utilized the package jetson-stats® from Jet-
Pack 4.6.1 to record the GPU usage of the hardware system and
speedtest-cli? to measure the bandwidth. As shown in Fig. 5, we
recorded the dynamic resource changes of one of the silos during
half an hour of continuous operation. We observed that the NX
experienced more "waiting" states compared to the TX2 due to
varying computing capabilities during synchronous communica-
tion. Moreover, the bandwidth of different devices within the same
time slot fluctuated within a dynamic range. These findings also
inspire our future work on asynchronous communication.

4.3.3  Scalability and Generalization: To further assess the scalabil-
ity and generalizability of our proposed JHV, we set up more silos
(M = 10) and more devices (K = 2,4, 19) on a powerful computing
cluster with 4x 12-core Intel Xeon Gold 6126 CPUs, 1x Tesla V100,
and 3x Tesla P100 GPUs, and evaluated JHV using another public
multimodal dataset, MIMIC-III. Notably, while the computing re-
sources employed here may differ from those typically found in IoT
systems, this is due to the complexity of our multimodal datasets,
which far exceed that of typical IoT scenarios. The selected dataset
is also not confined to IoT scenarios but encompasses more com-
plex, general multimodal scenarios, as it includes up to 76 features
corresponding to the same data sample. Considering that commu-
nication latency within the internal cluster cannot be measured as
accurately as in the testbed using wall clock time, we introduce a
normalized time unit to scale time accumulation appropriately. This
time scale is based on the average message size of each transmission
in VFL and HFL, along with the median network speed in the US
in April 2024 [9]. To fairly compare the convergence performance
between JHV and three baselines, we first set the communication
frequency (Q = 5), number of silos (M = 10), and number of devices
(K = 2). Each experiment was repeated 10 times.

As illustrated in Fig. 6 using the MIMIC-III dataset, JHV and
Baseline 2 effectively utilize distributed computing resources from

*https://github.com/rbonghi/jetson_stats
“https://pypi.org/project/speedtest-cli/
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K devices to expedite convergence compared to Baseline 3 and Base-
line 1, respectively. Furthermore, the convergence errors of JHV
and Baseline 3 are smaller than those of Baseline 2 and Baseline 1,
respectively, due to the utilization of HFL across M silos, which ex-
pands the sample space while protecting privacy. We also observed
that as the accumulated time increases sufficiently, the convergence
error of Baseline 3 tends to approach that of our proposed JHV.
Similarly, the convergence error of Baseline 1 tends to approach
that of Baseline 2. This observation is intuitive because their respec-
tive sample spaces are consistent, as illustrated in the gray dotted
box in Fig. 3. The key distinction lies in our JHV approach, which
optimizes the distribution of computing resources comprehensively
across both feature and sample spaces on all available devices.
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Figure 6: Comparison of con- Figure 7: The impact of Q and
vergence performance on the K on the MIMIC-III dataset
MIMIC-III dataset. (Q=5/10, K=2/4/19).

4.3.4 Ablation Study: We further varied Q and K to evaluate their
impact on convergence performance, considering real-world factors
such as communication cost constraints or the number of available
IoT devices. This exploration aims to validate if the experimental
results align with our theoretical analysis in Section 3.3. We do
not vary the number of silos (M) here, as fixing the total number
of samples N while varying M also changes the Non-IID degree,
complicating a fair assessment of its impact on convergence perfor-
mance. As depicted in Fig. 7, we maintained a fixed total number
of iterations; thus, a larger Q implies a lower communication fre-
quency, resulting in poorer convergence performance, which aligns
with our theoretical results in Theorem 1. Compared to the impact
of Q, the effect of K is relatively minor. As K decreases, both the
convergence error and variance tend to decrease slightly. This ob-
servation also aligns with intuition and the theoretical results in
Theorem 1, as a smaller K suggests that data are more "pooled”
together in the feature space. In practical scenarios, the influence
of the K factor is generally moderate, assuming that the number of
IoT devices within each home is typically not very large [11].

5 CONCLUSION

In conclusion, we propose the JHV algorithm, which uniquely lever-
ages VFL to distribute computing resources across multimodal IoT
devices and HFL to distribute computing resources across multiple
silos. We not only theoretically analyze the convergence of JHV but
also empirically deploy and verify it on a real-world testbed. Ex-
perimental results on two public multimodal datasets demonstrate
that JHV outperforms three baselines, thereby making it practi-
cal for multimodal IoT systems that require rapid and accurate
downstream inference such as classification and prediction.
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