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ABSTRACT

Multimodal Federated Learning (FL) integrates two crucial research

areas in IoT scenarios: utilizing complementary multimodal data

to enhance downstream inference performance and conducting de-

centralized training to safeguard privacy. However, existing studies

primarily focus on applying FL methods after multimodal feature

fusion, without fundamentally addressing multimodal FL across

both feature and sample spaces. A notable tradeoff persists between

the computational demands of multimodal information and the lim-

ited computing resources in IoT systems. To tackle this challenge,

we propose a Joint Horizontal and Vertical (JHV) FL algorithm

tailored for multimodal IoT systems. JHV employs vertical FL to

distribute computing tasks across multimodal IoT devices (feature

space) and horizontal FL to allocate tasks across multiple silos (sam-

ple space). Experimental results on two public multimodal datasets

show that JHV outperforms three baseline methods, demonstrating

its effectiveness for multimodal IoT systems, especially in rapid and

accurate downstream tasks like classification and prediction.
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1 INTRODUCTION

The Internet of Things (IoT) has rapidly evolved, connecting nu-

merous devices and sensors to enable seamless data exchange. In

multimodal IoT, these devices capture various data types from the

same sample [17]. Each IoT device, within its respective silo (e.g.,

∗This work is supported in part by NSF under grants 2033681, 2006630, 2044991, 2319780

and 2319781.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0489-5/24/11. . . $15.00

…

Global 
Server

Multimodal
IoT Devices   

Edge   
Server

Silo 1 Silo M

Feature Space

Sa
m

pl
e

Sp
ac

e …
…

…
… … … …

Upload Download

…

Applicable for various 
smart home scenarios...

Figure 1: A multimodal IoT system involves problem decom-

position across feature space and sample space.

home or factory), may have one or multiple sensors gathering differ-

ent data modalities. For instance, as shown in Fig. 1, each IoT device

may have a single sensor type, such as a camera for images or a

microphone for audio. These collected multimodal data are then

uploaded to the edge server for feature extraction and downstream

inference. Compared to single-modal data, multimodal data pro-

vide more informative complementary features, thereby improving

inference performance [6], which is a key research direction.

Federated Learning (FL) has emerged as another pivotal research

direction in IoT due to its capability to expand the sample space

through distributed training with privacy protection [20]. This de-

centralized approach enables devices to collaboratively train models

without centrally aggregating sensitive raw data. In multimodal

IoT scenarios, characterized by data heterogeneity and privacy con-

cerns, FL is particularly promising as it aids in developing robust

and generalized models across multiple silos [8].

However, current research on FL in multimodal IoT scenarios

faces limitations due to the edge server’s limited computing re-

sources (e.g., memory or storage) and the underdeveloped comput-

ing capabilities of distributed IoT devices. While many IoT devices

now possess computational power, most FL approaches for multi-

modal IoT systems primarily treat them as sensors for data collec-

tion, relying on centralized data processing and model training at

the edge server [21]. In other words, these methods apply FL after

the multimodal feature fusion stage in a straightforward manner,

thereby overlooking the potential development of edge computing

resources within distributed IoT devices. Essentially, most exist-

ing methods for multimodal IoT systems treat multimodal inputs

as "single-modal" inputs with richer features and higher dimen-

sions, failing to fundamentally disentangle multimodalities in the
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multimodal FL problem [19]. Thus, we can summarize two chal-

lenges hindering the effectiveness of FL in multimodal IoT scenarios.

Firstly, edge servers in each silo often face constraints in computing

resources such as memory and storage, which impede real-time

parallel processing of multimodal data [8]. Secondly, the limited

data samples within each silo may cause the local model to perform

well within its own silo but result in poor performance across the

entire dataset spanning multiple silos.

In light of the above discussion, one key question arises: How

can we fundamentally disentangle multimodalities and leverage the

edge computing resources of IoT devices to alleviate the computing

burden on the edge server with privacy protection?

To address this question, we propose a Joint Horizontal and

Vertical (JHV) FL algorithm. This approach leverages vertical FL

(VFL) to distribute computing resources across multimodal IoT de-

vices (feature space), addressing the first challenge, and horizontal

FL (HFL) to distribute computing resources across multiple silos

(sample space), addressing the second challenge. This innovative

algorithm requires careful consideration of both stale information

usage from the VFL component and perturbed gradients from the

HFL component, aspects that are not fully understood theoretically

and practically. In this paper, we not only theoretically analyze the

convergence of JHV but also empirically validate it on a real-world

testbed. Extensive experimental results from two public multimodal

datasets demonstrate that JHV outperforms three baselines, making

it practical for multimodal IoT systems requiring rapid and accurate

downstream inference tasks such as classification and prediction.

Our key contributions can be summarized as follows:

• We formulate the multimodal FL problem and fundamentally

disentangle it across both the feature space and sample space.

• We propose the JHV algorithm, which distributes computing

resources across multimodal IoT devices (feature space) and

multiple silos (sample space).

• We theoretically analyze the convergence of the proposed

JHV algorithm for non-convex objectives.

• We empirically validate the proposed JHV algorithm on a

deployed real-world testbed and evaluate its scalability and

generalization on a powerful computing cluster. Extensive

experimental results from two multimodal datasets demon-

strate its effectiveness and align with our theoretical analysis.

2 PROBLEM FORMULATION

We investigate a multimodal IoT system with𝑀 silos, where each

silo indexed by𝑚 contains𝑁𝑚 samples (𝑚 ∈ [𝑀]). The total number

of samples across 𝑀 silos is denoted as 𝑁 =
∑𝑀
𝑚=1 𝑁𝑚 . Each silo

represents a home (or factory) equipped with an edge server and 𝐾
multimodal IoT devices. These devices are equipped with sensors

capable of collecting various data modalities such as images and

audio. These𝐾 IoT devices collectively have 𝐽 sensors, where 𝐽 ≥ 𝐾 ,
capable of capturing data across different modalities corresponding

to the same sample. When 𝐾 = 𝐽 , each IoT device has only one type

of sensor (modality, e.g., image or audio), illustrated in Fig. 1.

In the 𝑚-th silo, the local dataset x𝑚 ∈ R𝑁𝑚× 𝐽 is vertically

partitioned across 𝐾 IoT devices along the modality axis (feature

space). Each IoT device 𝑘 (𝑘 ∈ [𝐾]) may contain a varying number

of modalities. However, for simplicity, we assume each IoT device

possesses the same number of modalities, specifically
𝐽
𝐾 modalities

per device. The 𝑖-th row of x𝑚 represents a data sample 𝑥𝑖𝑚 . For each

sample 𝑥𝑖𝑚 = [𝑥1,𝑖𝑚 , · · · , 𝑥𝑘,𝑖𝑚 , · · · , 𝑥𝐾,𝑖𝑚 ], the 𝑘-th IoT device holds a

disjoint subset of features, denoted as 𝑥𝑘,𝑖𝑚 . Each 𝑥𝑖𝑚 is associated

with a corresponding label 𝑦𝑖𝑚 . Let y𝑚 denote the vector of all

sample labels within the𝑚-th silo. Additionally, x𝑘𝑚 represents the

local and partial dataset of the 𝑘-th IoT device within the 𝑚-th

silo, where the 𝑖-th row corresponds to the data features 𝑥𝑘,𝑖𝑚 . The

objective at the𝑚-th silo level is to minimize:

𝑓𝑚(Θ𝑚 ; x𝑚 ; y𝑚) :=

1
𝑁𝑚

∑𝑁𝑚
𝑖=1 L

[
𝜃0𝑚, ℎ1𝑚

(
𝜃1𝑚 ;𝑥1,𝑖𝑚

)
, · · · , ℎ𝐾𝑚

(
𝜃𝐾𝑚 ;𝑥𝐾,𝑖𝑚

)
;𝑦𝑖𝑚

]
, (1)

where Θ𝑚 = [𝜃0𝑚, 𝜃1𝑚, · · · , 𝜃𝑘𝑚, · · · , 𝜃𝐾𝑚] represents the 𝑚-th silo-

level model, and L(·) denotes a loss function that combines the

embeddings {ℎ𝑘𝑚(𝜃𝑘𝑚 ;𝑥𝑘,𝑖𝑚 )}𝐾
𝑘=1

from all IoT devices. For simplicity,

we designate 𝑘 = 0 as the edge server (i.e., head [2]) and define

ℎ0𝑚(𝜃0𝑚 ;𝑥𝑖𝑚) := 𝜃0𝑚 for all 𝑥𝑖 , whereℎ0𝑚(·) is equivalent to the identity

function. In the𝑚-th silo, the partial derivative for the coordinate

partition 𝜃𝑘𝑚 of the 𝑘-th IoT device can be expressed as follows:

∇𝑘 𝑓𝑚(Θ𝑚 ; x𝑚 ; y𝑚) :=

1
𝑁𝑚

∑𝑁𝑚
𝑖=1 ∇𝜃𝑘𝑚

L
[
𝜃0𝑚, ℎ1𝑚

(
𝜃1𝑚 ;𝑥1,𝑖𝑚

)
, · · · , ℎ𝐾𝑚

(
𝜃𝐾𝑚 ;𝑥𝐾,𝑖𝑚

)
;𝑦𝑖𝑚

]
. (2)

The stochastic partial derivative of the coordinate partition 𝜃𝑘𝑚 for

the 𝑘-th IoT device can be expressed as follows:

∇𝑘 𝑓𝑚(Θ𝑚 ;B𝑚) := (3)

1
𝐵𝑚

∑
𝑖∈B𝑚

∇𝜃𝑘𝑚
L

[
𝜃0𝑚, ℎ1𝑚

(
𝜃1𝑚 ;𝑥1,𝑖𝑚

)
, · · · , ℎ𝐾𝑚

(
𝜃𝐾𝑚 ;𝑥𝐾,𝑖𝑚

)
;𝑦𝑖𝑚

]
,

where B𝑚 denotes a randomly sampled mini-batch of size 𝐵𝑚 . We

may omit x, y, x𝑚 and y𝑚 from 𝑓 (·) or 𝑓𝑚(·) for brevity. Additionally,

we define ℎ𝑘𝑚(𝜃𝑘𝑚 ; x
𝑘,B𝑚
𝑚 ) := {ℎ𝑘𝑚(𝜃𝑘𝑚 ;𝑥

𝑘,B1
𝑚

𝑚 ), · · · , ℎ𝑘𝑚(𝜃𝑘𝑚 ;𝑥
𝑘,B𝐵𝑚

𝑚
𝑚 )}

as the set of embeddings of 𝑘-th IoT device associated with the mini-

batch B𝑚 , where B𝑖
𝑚 represents the 𝑖-th sample in the mini-batch

B𝑚 . We consider ∇𝑘 𝑓B𝑚
(Θ𝑚) and ∇𝑘 𝑓B𝑚

[𝜃0𝑚, · · · , ℎ𝐾𝑚(𝜃𝐾𝑚 ; x
𝐾,B𝑚
𝑚 )]

equivalent and use them interchangeably.

Thus, the global objective is to minimize the following:

𝑓 (Θ) :=
1

𝑁

𝑀∑
𝑚=1

𝑁𝑚 𝑓𝑚(Θ), (4)

where Θ = [𝜃0, 𝜃1, · · · , 𝜃𝑘 , · · · , 𝜃𝐾 ] denotes the global full model,

and 𝜃𝑘 = 1
𝑁

∑𝑀
𝑚=1 𝑁𝑚𝜃𝑘𝑚 denotes the partial model on the 𝑘-th

(type of) IoT device. This objective evaluates howwell the model fits

the entire dataset across 𝐾 IoT devices and𝑀 silos, distinguishing

it from any existing HFL-type [15] or VFL-type [13] problem.

3 JHV ALGORITHM

3.1 VFL across K IoT Devices

At the beginning of each communication round (i.e., 𝑡 mod 𝑄 = 0)

within the𝑚-th silo, designated as 𝑡0, a mini-batch B𝑚 is randomly

sampled from x𝑚 . Each IoT device conducts block coordinate sto-

chastic gradient descent on its local model parameters (i.e., 𝜃𝑘𝑚) in

parallel for𝑄 local iterations. Specifically, for the 𝑘-th IoT device to

compute the stochastic partial gradient regarding its features across
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partial modalities, it needs the embeddings computed by all other de-

vices 𝑘′ (𝑘′ �= 𝑘), as well as its own 𝑘-th device embeddingsℎ𝑘𝑚(𝜃𝑘,𝑡𝑚 ).

Within each silo𝑚, these embeddings from different IoT devices

are shared with the edge server and then distributed to all IoT de-

vices. We define Φ
−𝑘,𝑡0
𝑚 := {(ℎ𝑘

′

𝑚 (𝜃𝑘
′,𝑡0

𝑚 )) | 𝑘′ �= 𝑘}𝐾−1
𝑘 ′=0

as the set of

embeddings from other devices 𝑘′ �= 𝑘 ; thus, the set of embeddings

used by the 𝑘-th device is Φ𝑘,𝑡𝑚 = {Φ
−𝑘,𝑡0
𝑚 ;ℎ𝑘𝑚(𝜃𝑘,𝑡𝑚 ; x

𝑘,B𝑚
𝑚 )}, which

inevitably contains stale information Φ
−𝑘,𝑡0
𝑚 during 𝑡 > 𝑡0 itera-

tions in this round. For each iteration 𝑡 , the 𝑘-th device updates 𝜃𝑘𝑚
by computing the stochastic partial derivatives ∇𝑘 𝑓B𝑚

(Φ𝑘,𝑡𝑚 ; y
B𝑚
𝑚 )

and applying a gradient step with step size 𝜂. It is noteworthy
that each IoT device relies on a stale view of the silo-level model

to compute its partial gradient during multiple local iterations by

reusing the embeddings received at the start of each communica-

tion round, which may affect convergence. However, in Section 3.3,

we provide a theoretical analysis demonstrating that our proposed

JHV algorithm converges despite devices performing multiple local

iterations with inevitably stale information at this stage.

In addition to the inevitable use of stale information, another

significant deviation of JHV from previous VFL algorithms, such as

FedBCD [14], is its adoption of the edge server model (referred to as

the "head" [2], denoted as 𝜃0𝑚) with trainable parameters, facilitating

the integration of arbitrary multimodal fusion networks. Moreover,

while we assume that both the edge server and all IoT devices have

the labels y𝑚 in each silo, we also consider scenarios where this

may not be the case. If labels are only available to one party (e.g.,

the edge server), it can still provide enough information for other

devices to compute gradients for certain model architectures [13].

3.2 HFL across M Silos

In IoT scenarios, the local datasets within each silo (e.g., homes or

factories) are influenced by available samples and various modali-

ties, resulting in significant variations in both sample size and multi-

modal data distribution across different silos. Non-Independent and

Identically Distributed (Non-IID) datasets may enable a silo-level

model to fit well locally but not generalize to the entire dataset

across𝑀 silos. To develop a global model that performs well across

entire multimodal IoT systems, we employ HFL across all 𝑀 silos,

ensuring it operates concurrently with VFL conducted within each

silo. Specifically, at each communication point where 𝑡 mod 𝑄 = 0,

the global server aggregates partial models across 𝐾 IoT devices

from 𝑀 silos. For the 𝑘-th IoT device, this aggregation is com-

puted as 𝜃𝑘,𝑡 = 1
𝑁

∑𝑀
𝑚=1 𝑁𝑚𝜃𝑘,𝑡𝑚 , and then the updated models

𝜃𝑘,𝑡 are broadcast back to all silos. Importantly, this aggregation

involves different types of IoT devices representing various modali-

ties (features). A key distinction of our proposed JHV from existing

multimodal FL methods is our fundamental disentanglement of

multimodal inputs, rather than treating them incrementally as a

"single-modal" input with richer features and higher dimensions.

While HFL already provides privacy benefits by avoiding the

sharing of raw data, we offer additional and more stringent solu-

tions. Within each silo, IoT devices share only embeddings and

compute partial derivatives related to their local models, thereby

further mitigating privacy concerns associated with the transmis-

sion of raw data. Furthermore, we can enhance security against

sophisticated attacks using methods such as secure multi-party

computation [4] or homomorphic encryption [1].

Algorithm 1: JHV

Initialize: 𝜃0,𝑡=0𝑚 , 𝜃𝑘,𝑡=0𝑚 , ∀𝑘 ∈ [𝐾], ∀𝑚 ∈ [𝑀] ;

for 𝑡 = 0, 1, · · · ,𝑇 − 1 do

if 𝑡 mod 𝑄 = 0 then
# VFL

for𝑚 = 1, 2, · · · , 𝑀 in parallel do

for 𝑘 = 1, 2, · · · , 𝐾 in parallel do

IoT device uploads ℎ𝑘𝑚(𝜃𝑘,𝑡𝑚 ; x
𝑘,B𝑚
𝑚 ) ;

Φ
𝑡0
𝑚 ← {𝜃0,𝑡𝑚 , ℎ1𝑚(𝜃1,𝑡𝑚 ), · · · , ℎ𝐾𝑚(𝜃𝐾,𝑡𝑚 )};

Edge server sends Φ
𝑡0
𝑚 to all 𝐾 devices;

# HFL

for 𝑘 = 0, 1, · · · , 𝐾 in parallel do

Global server computes 𝜃𝑘,𝑡 = 1
𝑁

∑𝑀
𝑚=1 𝑁𝑚𝜃𝑘,𝑡𝑚 ;

Global server sends 𝜃𝑘,𝑡 to all𝑀 silos;

for𝑚 = 1, 2, · · · , 𝑀 in parallel do

for 𝑘 = 0, 1, · · · , 𝐾 in parallel do

𝜃𝑘,𝑡𝑚 ← 𝜃𝑘,𝑡 ;

for𝑚 = 1, 2, · · · , 𝑀 in parallel do

for 𝑘 = 0, 1, · · · , 𝐾 in parallel do

Φ𝑘,𝑡𝑚 ← {Φ
−𝑘,𝑡0
𝑚 ;ℎ𝑘𝑚(𝜃𝑘,𝑡𝑚 ; x

𝑘,B𝑚
𝑚 )};

𝜃𝑘,𝑡+1𝑚 ← 𝜃𝑘,𝑡𝑚 − 𝜂∇𝑘 𝑓B𝑚
(Φ𝑘,𝑡𝑚 ; y

B𝑚
𝑚 );

3.3 Convergence Analysis

Considering that the proposed Algorithm 1 raises two concerns: (1)

multiple local iterations using inevitably stale information and (2)

significant variations in both sample size andmultimodal data distri-

bution across multiple silos, which have not been fully understood

from a theoretical point, we provide the convergence analysis.

Assumption 1. There exist positive constants 𝐿 < ∞ and 𝐿𝑘 < ∞,

for 𝑚 ∈ [𝑀], 𝑘 ∈ [𝐾], such that for all Θ and Θ′, the objective

function satisfies:

‖∇𝑓𝑚(Θ) − ∇𝑓𝑚(Θ′)‖ ≤ 𝐿‖Θ − Θ′ ‖, (5)

‖∇𝑘 𝑓𝑚(Θ) − ∇𝑘 𝑓𝑚(Θ′)‖ ≤ 𝐿𝑘 ‖Θ − Θ′ ‖. (6)

Assumption 2. The stochastic partial derivatives are unbiased for

each mini-batch B:

E [∇𝑘 𝑓𝑚(Θ;B)] = ∇𝑘 𝑓𝑚(Θ). (7)

Assumption 3. There exist constants 𝜎𝑘 such that the variance of

the stochastic partial derivatives is bounded for a mini-batch B of

size 𝐵:

E
[
‖∇𝑘 𝑓𝑚(Θ;B) − ∇𝑘 𝑓𝑚(Θ)‖2

]
≤

𝜎2
𝑘

𝐵
. (8)

Assumption 4. There exists a constant 𝛿 such that the expected

squared Euclidean norm of ∇𝑘 𝑓𝑚(Θ;B) is uniformly bounded for all
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IoT devices K of size 𝐾 :

E
[
‖∇𝑘 𝑓𝑚(Θ;B)‖2

]
≤

𝛿2

𝐾
. (9)

Theorem 1. Suppose Assumptions 1–4 hold, 𝜂 ≤ 1
max{𝐿,𝐿𝑘 }

, then

the average squared gradient over 𝑃 global rounds (i.e., 𝑇 = 𝑄 × 𝑃
iterations) of Algorithm 1 is bounded:

1
𝑃
∑𝑃−1
𝑡=0 E

[

∇𝑓 (
Θ𝑡 )

2]

≤
2[𝑓 (Θ0)−𝑓 (Θ∗ )]

𝜂𝑃 + 2𝜂2𝑄2∑𝐾
𝑘=0

𝐿2
𝑘

(
𝐾+1
𝑀

𝜎2
𝑘
𝐵

+(𝐾+1
𝑀 + 1)𝛿

2

𝐾

)
+𝜂𝐿 1

𝑀
∑𝐾
𝑘=0

(
𝜎2
𝑘
𝐵 + 𝛿2

𝐾 ), (10)

where 𝑓 (Θ∗) is the optimal value of the global objective (4).

Remark 1. The convergence error in Theorem 1 arises from paral-

lel updates on coordinate blocks in Algorithm 1, which depend on

the communication frequency (𝑄), the number of IoT devices (𝐾),
and the number of silos (𝑀). The first term is determined by the dis-

parity between the initial model and the optimal model, diminishing

as the number of global rounds (𝑃 ) approaches infinity. The remain-

ing terms denote errors arising from (1) multiple local iterations

using stale information in the VFL component, and (2) variance

in stochastic gradients in the HFL component. We further explore

these aspects in Section 4.3.4 through extensive experiments.

4 EXPERIMENTS

4.1 Real-World Testbed

We developed a prototype of our proposed JHV using a hardware

testbed consisting of two silos deployed in our lab under real-world

network conditions. Each silo is equipped with the following de-

vices: an NVIDIA Jetson TX2 (TX2), featuring an NVIDIA Pascal

GPU with 256 CUDA cores and 8GB LPDDR4 memory, running

Ubuntu 18.04; an NVIDIA Jetson Xavier NX (NX), featuring a 384-

core NVIDIA Volta GPU with 48 Tensor Cores and 8GB 128-bit

LPDDR4x memory, also running Ubuntu 18.04; and an edge server

with an Intel Core i7-11370 CPU, running Ubuntu 20.04. These de-

vices offer varying computational capabilities. The NVIDIA Jetson

devices can locally train deep learning models and communicate

with the edge server via 802.11ac WLAN. Due to limitations of

available lab devices, an edge server within the first silo handles

both its own training tasks and the model aggregation function of

the global server. Additionally, we strategically deployed heteroge-

neous IoT devices with varying computational capabilities within

each silo to accommodate natural variations in computation times

across different modalities in multimodal scenarios. The hardware

system setup is illustrated in Fig. 2.

4.2 Experimental Setup

4.2.1 Datasets. ModelNet101 comprises images of Computer-Aided

Design (CAD) models depicting various objects [18]. Each CAD

model is represented by 12 images captured from different cam-

era views. Notably, these images are not generated through data

augmentation techniques such as flipping or noise addition, mak-

ing ModelNet10 widely utilized as a multimodal dataset. Similar

1https://modelnet.cs.princeton.edu/
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Figure 2: Our real-world testbed deployment includes two

siloswith heterogeneous devices: (a) Deployment diagram, (b)

Trainingmethodology, and (c) Lab deployment environment.

to [12, 16], we split the dataset into 3,991 training samples and

908 testing samples for the task of multi-class classification across

10 object categories, such as bed, dresser, sofa, table, monitor, etc.

MIMIC-III2 (Medical Information Mart for Intensive Care) dataset

contains anonymized information of patients admitted to critical

care units in a hospital [10]. We follow the data processing steps

outlined in [5] to obtain 14,681 training samples and 3,236 test

samples. Each sample comprises 48 time steps corresponding to 48

hours, with each time step having 76 features, such as demographic

information, vital signs, medications, etc. The objective is to predict

in-hospital mortality as a binary classification task.

4.2.2 Implementation and Reproducibility. For the ModelNet10

dataset, during the training process within each silo, we vertically

partition the local data along the 12-view axis into two vertical

partitions (feature space). The TX2 and NX each contain 6 of the 12

views. Subsequently, each IoT device trains a ResNet18 model with

a penultimate layer. The concatenated embeddings (features) are

then fed into the classifier layer (head) at the edge server, which

employs cross-entropy loss for class prediction. We employ 5-fold

cross-validation for hyperparameter selection, such as performing

grid search for the learning rate within the range [0.0001, 0.002].
For the MIMIC-III dataset, our preprocessing procedure parti-

tions the dataset into various prediction cases, with our experiments

specifically targeting the prediction of in-hospital mortality. Dur-

ing the training process within each silo, we vertically partition

the local data along the 76-features axis into 𝐾 vertical partitions

(e.g., when 𝐾 = 2, each partition contains 38 of the 76 features).

Each device trains an LSTM model with a linear layer. The concate-

nated embeddings (features) are then fed into the classifier layer

(head) at the edge server, which utilizes cross-entropy loss for class

prediction. We utilize 5-fold cross-validation for hyperparameter

selection, including a grid search for the learning rate within the

range [0.001, 0.02]. Due to the imbalanced nature of the MIMIC-III

dataset, consisting of only 16% positive samples (indicating that

most patients did not die in the hospital for the in-hospital mortality

prediction task), we assess the generalization performance on the

2https://mimic.mit.edu/
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test dataset using the F1 score as an evaluation metric. The F1 score

represents the harmonic mean of precision and recall, calculated

for the global model across the entire test dataset.

4.2.3 Baselines. Our baseline experiments cover three categories,

each potentially associated with several existing multimodal FL

methods. To vividly demonstrate the efficacy of our proposed JHV,

we use blue and red dashed boxes to represent VFL and HFL, respec-

tively, and gray dashed boxes to represent sample size, highlighting

their training differences, as depicted in Fig. 3.

Baseline 1: Local training with multimodal data [6], [7]. This base-

line corresponds to the traditional multimodal learning approach

for IoT systems. However, the computing resources of the edge

server in the IoT system are limited and cannot process all multi-

modal inputs in parallel. For example, when processing image or

video data, the GPU memory might become fully utilized, leading

to delays in processing other modal data, especially those requiring

real-time processing. Additionally, this baseline fails to expand the

training sample space while ensuring privacy.

Baseline 2: VFL with multimodal data [14], [3]. This baseline

corresponds to a form of multimodal FL methods that explores

VFL for distributed training of multimodal data. However, these

methods do not effectively address the challenge of limited samples

within each silo (home) in IoT scenarios.

Baseline 3: HFL with multimodal data [21], [19]. This baseline

corresponds to a form of multimodal FL that does not involve

disentangling the training of multimodal data across feature space.

Here, the multimodal input can be perceived as a "single modal

input" with richer information and higher dimensions. Besides, the

computing resources of the edge server within each silo are limited,

thus all multimodal inputs cannot be processed in parallel.

Baseline 1 Baseline 2 Baseline 3 Our JHV

VFL HFL VFL
HFLLocal

… … … …

HFL HFL

VFL VFL VFL

Figure 3: Comparison between JHV and three baselines.

4.3 Results and Analysis

4.3.1 Convergence Performance: To fairly compare the conver-

gence performance between JHV and three baselines, we fixed

the communication frequency (𝑄 = 5), the number of silos (𝑀 = 2),

and the number of IoT devices (𝐾 = 2), i.e., each device contains

only half of the sample space and half of the feature space as shown

in Fig. 2 (a). Each experiment was repeated 10 times.

As shown in the results in Fig. 4, based on the ModelNet10

dataset implemented on the testbed, JHV and Baseline 2 effectively

utilize distributed computing resources from two IoT devices (NX

and TX2) to accelerate convergence compared to Baseline 3 and

Baseline 1, respectively. Additionally, the convergence errors of JHV

and Baseline 3 are smaller than those of Baseline 2 and Baseline 1,

respectively, due to the utilization of HFL across two silos. Notably,

in Section 4.3.3, implemented on a powerful computing cluster

which can flexibly vary 𝐾 and 𝑀 , the superiority of our JHV is

more apparent with larger values of 𝐾 and𝑀 , where multimodal

data becomes more distributed in the feature space and sample

space, which is more common in real-world IoT scenarios.

Figure 4: Comparison of con-

vergence performance on the

ModelNet10 dataset.

Figure 5: Dynamic resources

(GPU usage, bandwidth logs)

in Silo 2, shown in Fig. 2 (c).

4.3.2 Dynamic Resource Usage: Another key challenge addressed

in deploying JHV on the testbed is the resource dynamics in real-

world systems. We utilized the package jetson-stats3 from Jet-

Pack 4.6.1 to record the GPU usage of the hardware system and

speedtest-cli4 to measure the bandwidth. As shown in Fig. 5, we

recorded the dynamic resource changes of one of the silos during

half an hour of continuous operation. We observed that the NX

experienced more "waiting" states compared to the TX2 due to

varying computing capabilities during synchronous communica-

tion. Moreover, the bandwidth of different devices within the same

time slot fluctuated within a dynamic range. These findings also

inspire our future work on asynchronous communication.

4.3.3 Scalability and Generalization: To further assess the scalabil-

ity and generalizability of our proposed JHV, we set up more silos

(𝑀 = 10) and more devices (𝐾 = 2, 4, 19) on a powerful computing

cluster with 4× 12-core Intel Xeon Gold 6126 CPUs, 1× Tesla V100,

and 3× Tesla P100 GPUs, and evaluated JHV using another public

multimodal dataset, MIMIC-III. Notably, while the computing re-

sources employed here may differ from those typically found in IoT

systems, this is due to the complexity of our multimodal datasets,

which far exceed that of typical IoT scenarios. The selected dataset

is also not confined to IoT scenarios but encompasses more com-

plex, general multimodal scenarios, as it includes up to 76 features

corresponding to the same data sample. Considering that commu-

nication latency within the internal cluster cannot be measured as

accurately as in the testbed using wall clock time, we introduce a

normalized time unit to scale time accumulation appropriately. This

time scale is based on the average message size of each transmission

in VFL and HFL, along with the median network speed in the US

in April 2024 [9]. To fairly compare the convergence performance

between JHV and three baselines, we first set the communication

frequency (𝑄 = 5), number of silos (𝑀 = 10), and number of devices

(𝐾 = 2). Each experiment was repeated 10 times.

As illustrated in Fig. 6 using the MIMIC-III dataset, JHV and

Baseline 2 effectively utilize distributed computing resources from

3https://github.com/rbonghi/jetson_stats
4https://pypi.org/project/speedtest-cli/
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𝐾 devices to expedite convergence compared to Baseline 3 and Base-

line 1, respectively. Furthermore, the convergence errors of JHV

and Baseline 3 are smaller than those of Baseline 2 and Baseline 1,

respectively, due to the utilization of HFL across 𝑀 silos, which ex-

pands the sample space while protecting privacy. We also observed

that as the accumulated time increases sufficiently, the convergence

error of Baseline 3 tends to approach that of our proposed JHV.

Similarly, the convergence error of Baseline 1 tends to approach

that of Baseline 2. This observation is intuitive because their respec-

tive sample spaces are consistent, as illustrated in the gray dotted

box in Fig. 3. The key distinction lies in our JHV approach, which

optimizes the distribution of computing resources comprehensively

across both feature and sample spaces on all available devices.

Figure 6: Comparison of con-

vergence performance on the

MIMIC-III dataset.

Figure 7: The impact of 𝑄 and

𝐾 on the MIMIC-III dataset

(Q=5/10, K=2/4/19).

4.3.4 Ablation Study: We further varied 𝑄 and 𝐾 to evaluate their

impact on convergence performance, considering real-world factors

such as communication cost constraints or the number of available

IoT devices. This exploration aims to validate if the experimental

results align with our theoretical analysis in Section 3.3. We do

not vary the number of silos (𝑀) here, as fixing the total number

of samples 𝑁 while varying 𝑀 also changes the Non-IID degree,

complicating a fair assessment of its impact on convergence perfor-

mance. As depicted in Fig. 7, we maintained a fixed total number

of iterations; thus, a larger 𝑄 implies a lower communication fre-

quency, resulting in poorer convergence performance, which aligns

with our theoretical results in Theorem 1. Compared to the impact

of 𝑄 , the effect of 𝐾 is relatively minor. As 𝐾 decreases, both the

convergence error and variance tend to decrease slightly. This ob-

servation also aligns with intuition and the theoretical results in

Theorem 1, as a smaller 𝐾 suggests that data are more "pooled"

together in the feature space. In practical scenarios, the influence

of the 𝐾 factor is generally moderate, assuming that the number of

IoT devices within each home is typically not very large [11].

5 CONCLUSION

In conclusion, we propose the JHV algorithm, which uniquely lever-

ages VFL to distribute computing resources across multimodal IoT

devices and HFL to distribute computing resources across multiple

silos. We not only theoretically analyze the convergence of JHV but

also empirically deploy and verify it on a real-world testbed. Ex-

perimental results on two public multimodal datasets demonstrate

that JHV outperforms three baselines, thereby making it practi-

cal for multimodal IoT systems that require rapid and accurate

downstream inference such as classification and prediction.
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