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Abstract. The discrete empirical interpolation method (DEIM) estimates a function from its
incomplete pointwise measurements. Unfortunately, DEIM suffers large interpolation errors when few
measurements are available. Here, we introduce Sparse DEIM (S-DEIM) for accurately estimating
a function even when very few measurements are available. To this end, S-DEIM leverages a kernel
vector which has been neglected in previous DEIM-based methods. We derive theoretical error
estimates for S-DEIM, showing its relatively small error when an optimal kernel vector is used. When
the function is generated by a continuous-time dynamical system, we propose a data assimilation
algorithm which approximates the optimal kernel vector using sparse observational time series. We
prove that, under certain conditions, data assimilated S-DEIM converges exponentially fast towards
the true state. We demonstrate the efficacy of our method on two numerical examples.
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1. Introduction. Estimating the full state of a system from partial observations
is needed in many fields such as control theory, fluid mechanics, imaging, meteorology,
and oceanography [29]. Methods that seek to accomplish this task go by various
names, such as state estimation [11], flow reconstruction [38], compressed sensing
[13], and optimal experimental design [33].

Among existing methods, the Discrete Empirical Interpolation Method (DEIM)
stands out for its simplicity and interpretability [10]. DEIM, and its later variant
Q-DEIM [14], use pointwise measurements of the state of the system to reconstruct
the full state as a linear combination of prescribed basis functions (or modes). As
we review in section 1.1, (Q-)DEIM first approximates the optimal sensor placement
for gathering pointwise observations. Given this data, it then determines the optimal
expansion coefficients in the prescribed basis in order to estimate the full state. Our
contributions here concern the latter step; we use the Q-DEIM algorithm [14] for
sensor placement.

Numerical evidence in [12] suggests that (Q-)DEIM performs best when the num-
ber of sensors are greater than or equal to the number of modes. However, in the
regime where the number of sensors are smaller than the number of modes, (Q-)DEIM
can incur large reconstruction errors. Unfortunately, one frequently encounters this
regime in practice since sensors can be quite expensive and furthermore their deploy-
ment in large numbers may face practical obstacles [12]. On the other hand, modes
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or basis functions are either prescribed analytically (e.g., polynomial interpolation)
or are obtain numerically (e.g., via proper orthogonal decomposition). As such, the
number of modes can be increased arbitrarily as needed.

This paper addresses the latter regime where the number of sensors is smaller
than the number of modes. We first introduce Sparse DEIM (S-DEIM) by making
use of the kernel vector which has been neglected in previous DEIM-based methods.
Our error estimates show that certain values of this kernel vector result in much more
accurate state estimation compared to (Q-)DEIM. However, determining the optimal
kernel vector from observations is nontrivial. In the case where the state is generated
by a continuous-time dynamical system, we propose a data assimilation method which
approximates the optimal kernel vector from observational time series. Therefore, our
contributions can be summarized as follows:

1. Sparse DEIM: We introduce S-DEIM for state reconstruction when the num-
ber of sensors is smaller than the number of modes.

2. Error estimates: We derive a number of error estimates for S-DEIM which
quantify its approximation accuracy and the optimal choice of the kernel
vector.

3. Ruling out two-stage state estimation: We prove that a two-stage state es-
timation using S-DEIM, although seemingly promising, fails to improve the
(Q-)DEIM reconstruction.

4. Data assimilation with S-DEIM: In the special case, where the state is gen-
erated by a dynamical system, we propose a data assimilation method for
estimating the optimal kernel vector in S-DEIM. Under certain assumptions,
we prove that our method converges exponentially fast towards the true state.

1.1. Related work. Due to its broad applications, a plethora of methods have
been developed for state reconstruction from sparse measurements. Broadly speak-
ing, these methods can be divided into two categories. One category of methods is
deterministic and relies on solving a least squares problem; DEIM belongs to this cat-
egory. The second category is based on Bayesian inference and yields a probabilistic
reconstruction [3, 22, 25]. Furthermore, recent years have seen a surge of methods
based on deep learning [1, 6] which overcome some drawbacks [31] of linear methods
such as DEIM. In this section, we only review previous work on (Q)-DEIM and refer
to [8, 17] for a broader review of other methods.

DEIM was originally proposed by Chaturantabut and Sorensen [10] for reduced-
order modeling of dynamical systems generated by nonlinear differential equations.
Later, it became clear that the same methodology can also be used for estimating the
full state of the system from its sparse sensor measurements [29].

The original work of Chaturantabut and Sorensen [10] also proposed a method for
optimal sensor placement. However, this method was not invariant under reordering of
the basis functions. Drma¢ and Gugercin [14] proposed Q-DEIM to address this issue.
Q-DEIM uses QR factorization with column pivoting to approximate the optimal
placement of the sensors. Furthermore, the theoretical upper bound for Q-DEIM
error is sharper than the one derived in [10]. There are several other generalizations
of DEIM, including its application to weighted inner product spaces [15], tensor-
based DEIM [17, 24], DEIM for classification [18], and its generalization for state
reconstruction on manifolds [30] as opposed to a linear subspace.

(Q-)DEIM is well-known to be sensitive to measurement error. Peherstorfer,
Drmag¢, and Gugercin [32] carry out a probabilistic analysis to quantify the recon-
struction error of DEIM when the observations are noisy. A similar analysis, in the
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context of D-optimal design, is carried out in [23, 29]. Callaham, Maeda, and Brun-
ton [8] propose several methods which regularize the underlying DEIM optimization
problem in order to decrease its sensitivity to noise. Unlike DEIM, their modified
optimization problems do not necessarily have a closed-form solution. As a result,
their computational cost can be significantly higher than that of DEIM.

DEIM was originally developed under the assumption that the number of sensors
n is equal to the number of modes m used in the linear expansion [10]. However,
DEIM can easily be generalized to the case where the number of sensor and modes
are different (n # m). Numerical evidence suggests that the (Q-)DEIM reconstruction
is most accurate when the number of sensors is greater than or equal to the number
of modes (n >m) [12]. This regression regime has been studied extensively. In fact,
when n > m, DEIM coincides with gappy proper orthogonal decomposition (POD)
which was discovered much earlier [2, 7, 16, 37]. Peherstorfer, Drma¢, and Gugercin
[32] showed that gappy POD is more robust to observational noise compared to DEIM
with n = m. Recently, Lauzon et al. [26] proposed a point selection algorithm for
optimal placement of additional sensors in gappy POD (also see [34]).

The opposite regime, where fewer sensors are available compared to modes (n <
m), has received relatively little attention. As we mentioned earlier, this regime
arises frequently in practice since procurement and deployment of sensors can be
quite expensive. The present work develops the method of S-DEIM to address this
regime: fewer sensors than modes.

1.2. Outline. The remainder of this paper is organized as follows. In section 2,
we discuss the problem set-up and review some relevant aspects of (Q-)DEIM. In
section 3, we present our S-DEIM method and its error analysis. In section 4, we
present a computable method for S-DEIM in the case where the states are generated
by a continuous-time dynamical system. Section 5 contains our numerical examples.
Our concluding remarks are presented in section 6.

2. Preliminaries and set-up. We consider bounded functions u: Q — R, x >
u(x), where Q1 C R? is the spatial domain over which the function u is defined. We
assume that the function u belongs to a Banach space Y. Consider a complete basis
{¢:}32, in U, so that

m

(2.1) ﬂ}glooz;f%%(x) = u(x)

1=
for appropriate coefficients ¢; € R, where the convergence is uniform in the norm ||- ||
associated with the Banach space U.

Consider a finite truncation of the series in (2.1),
m
(2.2) u(x) =Y cii(x),
i=1

for some m > 0. We would like to find the coefficients ¢; such that @~ u, where the
approximation is understood in an appropriate sense. In order to find the coefficients
¢; some additional information about the function u is needed. We assume that the
function values are measured at a sparse set of distinct points S := {s;}]-; C Q.
In practice, these measurements are obtained by n sensors located at the points s;.
Given the measurements u(s;), we would like to reconstruct the function u over the
entire domain ).
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Therefore, the problem statement can be informally summarized as follows: Given
the basis functions {¢1(x),...,¢mn(x)} and the measurements {u(s1),...,u(s,)}, find
the coefficients ¢; in (2.2) so that @~ wu.

2.1. Finite-dimensional discretization. In practice, it is often sufficient to
know the function u over a dense enough grid G := {x;}¥; C Q. We assume that N
is large enough so that u(x;), ¢=1,2,..., N, amounts to a high-resolution discretiza-
tion of the function uw. This allows us to transform the problem from the infinite-
dimensional function space to a finite-dimensional setting. We stack the function
values over the high-resolution grid G into a vector

(2.3) u= [u(x1),u(xs),...,u(xy)] €RYN.

Note, however, that the function values are not known over the entire high-resolution
grid G. Instead of interpolating the function u over the entire domain §2, we would
like to find its values over the grid G.

Similarly, we discretize the basis functions ¢; and define

(2.4) b= [0i(x1),0:(%2), ..., di(xn)]  ERN, i=1,2,...,m.

We also define the basis matrix ®,,, = [¢1 || - |@,,] € RV *™. We assume that the
basis vectors are orthonormalized, so that @, ®,, =1,,. Finally, approximation (2.2)
is discretized to define

(2.5) = [a(x1), d@(xs),. .., d(xn)]  €RY,

so that 1 = ®c, where c = [c1,¢ca,...,¢n] T € R™ is the vector of unknown coefficients.

Recall that we seek to infer the coefficients ¢ from the observational data {u(s1),
u(s2),...,u(s,)} which are obtained at the sensor locations S = {s;}7_; C G. We
define the vector of observations y € R™ as

(2.6) y= [u(sl),u(SQ),...,u(sn)f+E,

where € € R™ is a vector of errors accounting for observational noise. In the following,
we only consider the ideal case where the observational noise is negligible and set
€ = 0. Nonetheless, in section 5 where our numerical results are presented, we study
the effects of noise empirically.

It is convenient to envision the sensor measurements as a linear map from the
full state u to the observations y. To this end, we define the selection operator
S, : R" — RY which is an N x n matrix whose columns are a subset of the standard
basis {e1,es,...,ex} on RY. More specifically, let {i,is,...,i,} denote a subset of
the index set {1,2,...,N} such that x; = s; for k = 1,2,...,n. In other words,
the distinct indices i are chosen so that x;, coincides with the sensor locations sy.
Consequently, defining the selection matriz S, = [e;,|---|e;, ], we have

(2.7) y=5 u

Therefore, S, : RV — R™ returns the smaller vector y whose entries coincide with
the entries of the full state vector u at the sensor locations x;, =s;. Conversely, S,y
returns a vector in RY whose entries are zero except the ones corresponding to the
sensor locations. In principle, S,y is a reconstruction of the full state; however, this
reconstruction is very inaccurate since it zeros out all the entries where no sensors
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TABLE 1
The quantities and terminology used in this paper.

Symbol Description

N High-fidelity resolution

n Number of sensors

m Number of modes (basis functions)
ucRY Unknown state

y €eR? Known observations

Sp € RN X7 Selection matrix, y = S,] u

O =[dq] - |@,,] ERVX™ Basis matrix

aeRN Reconstructed state
aeRN Orthogonal reconstruction, &1 = <I>m<1>;rnu
ceR™ Expansion coefficients, u = ®,,c
Dinyn = B (S @) T ST € RVXN DEIM operator

are present. The selection matrix S,, plays an important role in DEIM. In particular,
the optimal sensor placement can be equivalently expressed in terms of the selection
matrix, as we describe in section 2.2. In the following, we often omit the subscripts
m and n, unless they are necessary for clarity. The quantities and terminology that
are used repeatedly in this paper are summarized in Table 1.

2.2. Vanilla DEIM. We refer to DEIM and Q-DEIM methods [10, 14] as vanilla
DEIM to distinguish them from S-DEIM introduced in section 3. Here, we first review
vanilla DEIM for the special case where the number of sensors and modes are equal,
n =m (section 2.2.1). This is the setting in which vanilla DEIM is used most often.
Towards the end of this section, we discuss the implications of using vanilla DEIM
with fewer sensors than modes, n < m (section 2.2.2). DEIM was originally derived
in a reduced-order modeling framework. Here, we present a different, but equivalent,
derivation which is more natural for interpolation problems.

2.2.1. Equal number of sensors and modes. One can seek the optimal co-
efficients ¢ by solving the optimization problem,

2.8 in [|[®c—u?

(2.8) in || @c — ull,

where ||-|| denotes the Euclidean 2-norm. This problem has a unique solution ¢ = ® "u,
leading to the reconstruction @ = ®® "u which is the nearest point in R[®] (range of
®) to the state u. This motivates the following definition.

DEFINITION 1 (orthogonal reconstruction). For a basis matriz ® € RN*™ and

a vector u € RN, we refer to the orthogonal projection ot = ®® " u as the orthogonal
reconstruction of u. We refer to the corresponding error £, (u) = |0 — u|| as the
truncation error.

The orthogonal reconstruction u is not computable from observations since it
requires the knowledge of the entire state u. Note that the optimization problem
(2.8) does not use the observational data y. One can incorporate the observational
data by adding them as constraints to the optimization problem, and solve

(2.9a) min ||®c — ul|?,
ceR™
(2.9b) such that S'®c=y.
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Recalling that y = ST u, the solution to this constraint optimization problem is given
by (see, e.g., refs. [5, 27])

(2.10) c=[02" -2'5(STePTS)" ST (2" —1Iy)] u.

It is easy to verify that ST®c =y, and therefore, the reconstruction u = ®c agrees
with the observations y = ST u at the sensor locations.

Unfortunately, expression (2.10) is still not computable since it relies on the entire
state u. However, in the special case where ST @ is invertible, this expression simplifies
to

(2.11) c=(ST®)"1STu=(5"®) y,

which is now computable from known selection matrix S, basis matrix ®, and the
observations y. We note that when ST ® is invertible, the constraint set (2.9b) con-
tains the single point ¢ = (ST ®)~ly, and therefore, the solution to the optimization
problem is trivial.

Expression (2.11) leads to the vanilla DEIM reconstruction,

(2.12) u=>0c=0(S"0) ly.
The reconstruction error | — u|| can be bounded from above with a multiple of

the truncation error.

LEMMA 1 (vanilla DEIM error estimate [10]). Assume that the number of sensors
and the number of modes are equal, n = m, and that the matriz ST® € R™*" s
invertible. The vanilla DEIM reconstruction (2.12) satisfies

(2.13) @ —u < [I(ST@) 2 Em(w),
where £, () = ||u — || is the truncation error, @ = ®®u is the orthogonal recon-
struction of u, and || - || denotes the 2-norm (or spectral norm) of the matriz.

The truncation error &, decreases monotonically with the number of basis vectors
m. Therefore, to decrease the vanilla DEIM reconstruction error, we ideally would
need to use as many basis vector as possible. However, since n = m, the number of
basis vectors m is limited by the number of available sensors.

So far, we have said nothing about the choice of the selection matrix S which
determines the sensor locations. In vanilla DEIM, inequality (2.13) is used to inform
the choice of the selection matrix. Ideally, the selection matrix should be chosen
such that the prefactor ||(ST®)~1||2 is minimal, and therefore, the error upper bound
(2.13) is as small as possible. Unfortunately, minimizing ||(ST®)~!||o over all selec-
tion matrices is combinatorially hard, and therefore, intractable in most applications.
Therefore, one instead uses a greedy algorithm to obtain a suboptimal, yet acceptable,
selection matrix S. The state-of-the-art uses QR factorization with column pivoting
of ®". Since sensor placement is not the focus of this paper, we refer to [14] for
further details and only state the QR algorithm using MATLAB’s syntax:

(2.14) [~,~,I]= qr(® ', ‘vector’); I=eye(N); 8=I(:,Z(1:n)).

The set Z(1:n) contains the indices {iy,...,i,} of the columns of the identity matrix
I which form the selection matrix S. The DEIM algorithm with QR factorization
for sensor placement is often referred to as Q-DEIM. Here, we refer to both methods
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(DEIM and Q-DEIM) as vanilla DEIM to distinguish them from the S-DEIM method
introduced in section 3.

Now we turn our attention to some properties of the vanilla DEIM reconstruction
(2.12). Recalling that y = STu, we have 1 = ®(ST®)"1STu. Defining the DEIM
operator D =®(ST®)"1ST, we have i =Du. We note that the DEIM operator D) is
an oblique projection, parallel to the null space of ST, onto the range of ® [15]. The
following well-known result outlines some other properties of the DEIM operator.

LEMMA 2 (see [15]). Consider the DEIM operator D = ®(ST®)~1ST with equal
numbers of sensors and modes, m =n. We have the following:
1. Interpolation property: STD=ST.
2. Projection property: DOO®T = dd T,

The interpolation property implies that the observations y = STu corresponding
to the DEIM reconstruction agree with the true observations y = STu. In other
words, the interpolation property implies that the reconstruction reproduces exact
values at the sensor locations, although it can incur errors elsewhere.

The projection property implies that the vanilla DEIM reconstruction of the or-
thogonal projection is exact, D = 1. In particular, if u € R[®], then its vanilla DEIM
reconstruction returns the exact state since Du =u.

2.2.2. Different number of sensors and modes. In this section, we comment
on the application of vanilla DEIM when the number of sensors and modes are not
equal, n # m. In this case, the matrix S, ®,, is no longer square, and therefore,
its inverse is not well-defined. Instead, one replaces the inverse with the Moore—
Penrose pseudoinverse (S, ®,,)", so that the expansion coefficients are given by ¢ =
(S, ®,,)y. Note that this coefficient vector is the minimum-norm solution to (2.9b).
The corresponding vanilla DEIM reconstruction is given by u = Dy, ,u, where the
DEIM operator is now defined by Dy, ,, = ®,,,(S,] ®,,)*S,l. To obtain the selection
matrix S,, one uses the same QR factorization with column pivoting as outlined in
(2.14).

In practice, the matrix S ®,,, often has full rank. In keeping with previous studies
[10, 15], we make this assumption throughout this paper.

Assumption 1. For a given basis matrix ®,,, let the selection matrix S, be
determined by the Q-DEIM algorithm (2.14). We assume that S,] ®,, has full rank,
i.e., rank[S,! ®,,] = min{n, m}.

Remark 1 (see [15]). Unfortunately, when n # m, some of the nice properties of
vanilla DEIM fall apart:

1. If n < m (underdetermined, fewer sensor than modes), the interpolation prop-
erty, S D, , = S, , still holds. However, the projection property fails, i.e.,
D n®m @, # @, @) . Furthermore, the error upper bound (2.13) is no longer
valid.

2. If n > m (overdetermined, more sensor than modes), the interpolation prop-
erty fails, i.e., S,/ D,,, # S]. But the projection property and the error
upper bound are still valid.

These statements are summarized in Table 2.
Our main focus in this paper is on the underdetermined case where the number of
sensors is smaller than the number of modes, n < m. In this regime, under Assump-

tion 1, the pseudoinverse (S, ®,,)7" is, in fact, a right inverse: (S, ®,,)(S, @,,)* =1,.
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TABLE 2
Vanilla DEIM properties with various number of sensors n and modes m.

n=m n>m n<m
Interpolation property v X v
Projection property v v X
Error upper bound v v X
[ u
High-resolution
States
RY &
a
@ T
Rl §
o7 g
Basis Sensor
Coefficients S T ) Measurements
Rm P T u /—\ Rn
Z
— °
4
o) o N
S & (ST@)"
Q

F1G. 1. Mappings between the high-resolution space RN, the measurement space R™, and the
coefficient space R™. The matriz Py is shorthand for PR[(STé)ﬂ’ i.e., orthogonal projection onto

the range of (ST<I>)+. Note that the mappings in this figure do not necessarily commute.

In section 3, where we introduce sparse DEIM, we show that the appropriate error
upper bound is more complicated than (2.13) and involves the null space of S,! ®,,.

3. Sparse DEIM. Vanilla DEIM uses the expansion coefficients ¢ = (ST ®)Ty
which are the minimum-norm solution to the least squares problem,

: T e 2
(3.1) Qoin [|S° ®c —y|".

However, the general solution to this least squares problem is given by
(3.2) c(z)=(ST®) 'y +z VzeN[STP],

where N denotes the null space. Note that ¢(0) corresponds to the vanilla DEIM
reconstruction. If the number of sensors are equal to or greater than the number of
modes, n > m, then we have N[ST®] = {0} and the vanilla DEIM reconstruction is
the only choice. However, when the number of sensors is smaller than the number of
modes, n < m, the null space N[ST®] is an (m — n)-dimensional subspace of R™ and
z # 0 is a possibility. This motivates the following definition.

DEFINITION 2 (S-DEIM reconstruction). Assume there are fewer sensors than
modes, n <m. For any nonzero z € N (ST ®|, we refer to

(3.3) u(z) = dc(z) = &(ST®) Ty + &z =Du + gz,
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High-resolution States RN

<

78[4)(5' T‘Z’) +
/

F1G. 2. Orthogonal decomposition of R[®] with fewer sensors than modes, n < m. Dashed
black lines represent orthogonal projections, whereas the dashed orange line represents an oblique
projection. (Figure in color online.)

as the S-DEIM reconstruction of u. We refer to z € N'[ST®| as a kernel vector.

The main question is whether there exists 0 # z € N'[ST ®] such that the corre-
sponding S-DEIM reconstruction u(z) is a better approximation of u than the vanilla
DEIM reconstruction u(0)?

We first note that, under Assumption 1, the addition of z # 0 does not change
the value of the reconstructed field at the sensor locations. More precisely,

(3.4) STu(z)=STo(STo)ty + S dz=y VzcN[S ®],

which implies that any S-DEIM reconstruction agrees with the data from sensor mea-
surements, i.e., S-DEIM respects the interpolation property. As a result, the available
sensor data cannot be immediately used to inform the best choice of the kernel vector
z. Here, we defer the choice of z to sections 3.1 and 4, and first derive error estimates
for the S-DEIM reconstruction with an arbitrary kernel vector z € N[ST ®].

Before presenting our main error estimate in Theorem 1, we need some preliminary
results.

LEMMA 3. Range of (ST ®)T is the orthogonal complement of the null space of
STd, ie.,
(3.5) R™=R[(ST®)F@N[ST®] and R[(ST®)T] LN[ST P

Proof. This is a well-known consequence of the fundamental theorem of linear
algebra (see, e.g., [35]) and the fact that R[(ST®)*]=R[(ST®)T]. d

As depicted in Figure 2, Lemma 3 implies that the range of ® can be decomposed
into two orthogonal subspaces as follows.

COROLLARY 1. The range of ® admits the following orthogonal decomposition:
(3.6) R[®]|=R[®(ST®)T| @ PN[ST®] and R[®(ST®)T] LON[ST ],

where ®N[ST®] = {ueRY :u=dz, zc N[S' ]}

Proof. This follows from the fact that the columns of ® are orthonormal. In
particular, it is injective and it preserves the Euclidean inner product (®'® =1,,). O
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DEFINITION 3 (kernel matrix). Let {z1,22,...,Zm—n} C R™ be an orthonormal
basis for N[ST®]. We refer to the matriz Z = [z1|22| -+ - |Zm—n] as a kernel matrix.

The following lemma gives the best choice of the kernel vector z € N[ST®] in
terms of the kernel matrix Z.

LEMMA 4. The optimization problem,

(3.7) z= argmin |u(z) —ul?
2EN[ST 3]

has a unique solution given by z=ZZ " ®"u, where Z is a kernel matriz.

Proof. Consider a kernel matrix Z and note that, for any z € N[ST®], there
exists a unique & € R™™" such that z = Z€. Therefore, optimization problem (3.7)
can be equivalently written as

(3.8) min || ®(ST®) Ty +®Z¢ —u|?.

seR‘nl—Tl,
Since ®Z has full column rank, the solution is unique. Furthermore, since (®2)* =
ZTdT, the solution is given by

(3.9) E=7"0"Tu-27"3 oS Td)y.

Next, we use the fact that ®T® =1, and Z (ST ®)* =0. The latter identity follows
from Lemma 3: R(Z) = N[ST®] L R[(ST®)*]. Therefore, we have £ = ZT® u and
2 =ZZT®"u. Note that, although the kernel matrix Z is not necessarily unique,
ZZT is the orthogonal projection onto N[ST ®], and therefore, % is unique. d

Lemma 4 gives the best choice of the kernel vector z which minimizes the error
of the S-DEIM reconstruction u(z). Unfortunately, the optimal kernel vector z =
ZZT®Tu is not computable from observations since it requires the entire state u. In
section 4, we propose a computable method for estimating the optimal kernel vector.
But first, we state our main error estimates of the S-DEIM reconstruction for arbitrary
kernel vectors.

THEOREM 1 (S-DEIM error). Let the number of sensors be smaller than the
number of modes, n < m. ForuecRY, let 1 =®® " u denote its orthogonal projection
onto R[®]. Let u(z) denote the S-DEIM reconstruction for an arbitrary kernel vector
zeN[ST®], and z2=2Z"®"u as in Lemma 4. Then

(3.10) lu—8(2)|* = Ju—al* + [[D(u—&)|* + |2 - 2> VzeN[SP].

Proof. First, we write u — U(z) = u — @ + @ — u(z) where @ = ®®"u and
u(z) = ®c(z) both belong to R[®]; therefore, i — u(z) € R[®]. On the other hand,
u— = (I — ®®")u is orthogonal to R[®]. Therefore,

(3.11) lu—0(2)[* = lu—a+a—0(z)|* = u—al* + [[a—u(z)]*.

Next, we focus on 1—1(z). Recall from Lemma 3 that R™ = N [ST®]aR[(ST @) ]
and that the two subspaces are orthogonal. Write ® "u € R™ as its unique orthogonal
decomposition,

(312) @TUZPR[(ST¢)+]¢TU+27
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where z € N[ST®] is unique. Note that the orthogonal projection Pri(s7a)+) onto
R[(ST®)*] can be written as

(3.13) PrisTa)r = (ST®)T(ST®),
which implies
(3.14) 0=20 " u=0(S"®)"(ST®)® u+ Pz =DPd u+ &z =Di + Pz

As a side note, we mention that, if n =m and S’ ® is invertible, then D®® " = PP .
However, in our case where n < m, the identity does not hold (cf. Remark 1).
Returning to the proof and recalling that u(z) = ®c(z) =Du + Pz, we have

[t —1(z)||* = |Da — Du + &z — dz|?
= |Da — Dul? + |9z — ®z|?
(3.15) =|Da —Dul® + |1z — z?,
where we used the fact that ®z — &z € ®N[ST®] and DOP"u — Du € R[®(ST )]

are orthogonal (cf. Corollary 1).
It remains to show that z= 227" ®"u. Recall from (3.12) and (3.13) that

(3.16) dTu=(ST®)"STod Tu+ 2.

For any z € N[ST®| there exists a unique & € R"~™ such that 2 = Z€. Substituting

this in the above equation, and noting that NS T ®] is orthogonal to R[(ST ®)T], we

obtain £=2TdTu. 0
Theorem 1 has a number of important consequences. For instance, if the true

state u belongs to the range of ®, then there exists an exact S-DEIM reconstruction.

COROLLARY 2. Let the number of sensors be smaller than the number of modes,
n<m. IfueR(®), then the S-DEIM reconstruction with z=2=ZZT® u is ezact:
u(z) =u.

Proof. Choose z=1% in Theorem 1. Since u € R[®], we have i = u, and therefore,
|lu—u(z)||=0. d

Remark 2. Corollary 2 shows that, if u € R[®], then the S-DEIM reconstruction
is exact. Note, however, that when n < m the vanilla DEIM reconstruction Du is
not exact, Du # u, even if u € R[®]. This is due to the fact that the vanilla DEIM
reconstruction fails to preserve the projection property as discussed in Remark 1, i.e.,
DOPT £ PP,

Although D is not an orthogonal projection, it is straightforward to verify that
DP®T =d(STP)F(STP)P " is an orthogonal projection onto R[®(ST®)F]. As a re-
sult, even if @1 # u, Dt = D®® "u is the orthogonal projection of u onto R[®(S T ®)*].
Figure 2 shows this schematically.

Theorem 1 also leads to an upper bound for the S-DEIM reconstruction error.
This upper bound is a generalization of (2.13) to the case where the number of sensors
is smaller than the number of modes.

COROLLARY 3 (error estimate for S-DEIM). Let the number of sensors be smaller
than the number of modes, n <m. The S-DEIM reconstruction satisfies

(3.17) [0(z) —ull < [|(ST@)" |2 Em(u) + ||z — 2| ¥z NS @],

where E,,(n) = |[G—u| is the truncation error and z=ZZ ' ®"u is the optimal kernel
vector.
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Proof. We recall from the proof of Theorem 1 that u(z) = Du+ ®z and 4 =
D+ ®z. Therefore, we have u(z) —u= (I-D)(t—u) + ®(z — z). Using the triangle
inequality, we obtain

[a(z) —uf| < [|(T=D)(a - )| +[[@(z - 2)]
(3.18) < D2 Em(u) + [z — 2],

where in the last inequality, we used the fact that D is a nonzero and nonidentity
projection, D? =D. Any such projection satisfies ||D||2 = ||[I—D|| [21, 36]. Finally, we
use the fact that the DEIM operator D = ®(ST®)* ST satisfies D[]z < [|(ST®)*|2
since ||®[l2 =S |2 = 1. 0

When the number of sensors is equal to the number of modes, n = m, we have
N[ST®] = {0}, and therefore, z =12 =0. As a result, the last term on the right-hand
side of (3.17) vanishes. In this special case, the error upper bound coincides with the
one in Lemma 1 for vanilla DEIM. However, when n < m, the correct upper bound
is the one given in (3.17) involving the difference between the kernel vector z and its
optimal value z.

Remark 3. The error upper bound (3.17) highlights an important advantage of
S-DEIM over underdetermined vanilla DEIM (n < m). Assume that a kernel vector
z is chosen such that the kernel error is small, ||z — z|| < e. By increasing the number
of modes m, the S-DEIM reconstruction error will eventually become smaller than e.
This is because the truncation error &, (u) is a monotonically decreasing function of m.
Furthermore, for a fixed number of sensors, the spectral norm ||(S,] ®,,)% |2 decreases
as m increases (This follows from interlacing inequalities for singular values; see, e.g.,
Theorem 7.3.9 of [19]). Such a small error cannot be guaranteed for underdetermined
vanilla DEIM since z = 0, and therefore, the upper bound is always larger than ||z]|.

In this section, we largely sidestepped the choice of the kernel vector z. In sec-
tion 4, we propose a computable method for obtaining an optimal kernel vector z
which minimizes the S-DEIM reconstruction error. But first, in section 3.1 below, we
discuss a promising idea for selecting the kernel vector and show that it unfortunately
fails to lead to any improvement over vanilla DEIM.

3.1. Withholding measurements would not work. Assume that n distinct
sensor measurements are available. We split these measurements into two batches with
n1 and n9 measurement in each so that n; +ne =n. We withhold the n, measurements
at first and use ny sensor measurements to obtain the S-DEIM reconstruction u(z)
with an unknown kernel vector z. Then the remaining ny withheld measurements are
used to compute the kernel vector z.

To describe the method more precisely, consider a selection matrix S €
which identifies the position of n distinct sensors. This selection matrix, for instance,
can be obtained by the column pivoted QR factorization (2.14). We split the selection
matrix into two blocks, S = [S; Sa], where S; € R¥*™ corresponds to the first
batch of ny sensors and Sy € RV*™2 corresponds to the second batch. Note that
we use the shorthand notation S; for §,,. Furthermore, we assume, without loss of
generality, that the first batch corresponds to the first n; columns of S. We write the
measurements y as

Ran

(3.19) y= M |
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where y; € R™ denotes the measurements from the first batch of sensors and yo € R™2
denotes the remaining measurements. Note that y; = S, u, i = 1,2, where u is the
unknown true state.

With this set-up, and only using the first n; sensors, the S-DEIM coefficients are
given by

(3.20) c(z)=(S{ ®)"y, +z,

where z € N[S] ®] is the kernel vector to be determined. The reconstructed state is
given by u(z) = ®c(z). In order to find the kernel vector z, we use the second batch of
sensors. More precisely, we determine z by requiring Sy U(z), i.e., the reconstructed
state measured at the second batch of sensors, to be as close to the true measurements
y2 as possible. In other words, we solve the optimization problem,

(3.21) min, ¢ 7 g [9; ®e(z) - yall?,

where the overline indicates the minimum-norm solution. As the following theorem
states, the solution to (3.21) coincides with the solution to vanilla DEIM reconstruc-
tion (2.12) using all sensors at once.

THEOREM 2 (equivalence of vanilla DEIM and two-stage S-DEIM). Consider an
S-DEIM reconstruction using ny sensors, u(z) = ®c(z) where c(z) = (S{ @)y, + z.
Determine the kernel vector z € N'[S] ®] as the solution of (3.21). Under Assump-
tion 1, u(z) coincides with the vanilla DEIM reconstruction ®(ST®)Ty.

Proof. We first write the minimization problem (3.21) more explicitly. Let Z; €
R™*(m=n1) denote a matrix whose columns form an orthonormal basis for N'[S] ®].
Any z € N[S] ®] can be written uniquely as z = Z;£ for some & € R™ ™. Therefore,
optimization problem (3.21) can be written equivalently as

(3.22) milgegm-n [|Sy ®(S] @)t y1 + 55 Z1€ — yo?

Now we turn our attention to vanilla DEIM. Recall that vanilla DEIM corresponds
to the minimum-norm minimizer of the cost function

(3.23) J(c)=|SToc -yl
First, we write this cost function in a slightly different but equivalent form. Note

that, for all c € R™, we have

.
(3.24) STde = [Sl %}

Sy dc|’
and therefore,
(3.25) J(c) = [|S] @ — y1|* + S5 Pe — 2.

Next, we decompose ¢ into its orthogonal projections onto the subspaces R[(S{ ®)*]
and N[S{ ®]. Recall that these are subspaces of R™ and are orthogonal complements
of each other. Therefore, for any ¢ € R™, there exist n € R™* and & € R™ ™™ such
that ¢ = (S{ ®)*n + Z1£. Recalling that S| ®(S] ®)* =1,,,, we have

(3.26a) Sl dc=mn,

(3.26b) Sy dc=S, O(S] @)+ S, ®Z.€.
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Substituting these in (3.25), we obtain
(3.27) J(e)=J(n,€) =|ln—y1> + 1S5 ®(S] )" 1+ 55 2Z:€ — 2.

Therefore, the vanilla DEIM optimization mineegmJ(c) can be written equivalently
as

(328) minneRnl JEERM L J(n, €)

We denote the minimizer by (n,,£,). Now let c, = (ST ®)*y denote the vanilla DEIM
minimizer of J(c). Recall that the vanilla DEIM cost function attains J(c,) =0 at its
minimum. Since J(c) = J(n, &), we must also have J(n,,&,) =0. Examining (3.27),
for J(n,,&,) =0 to be achieved, it is necessary that n, =y;. Therefore, optimization
problem (3.28) is equivalent to

(3.29) migegm—n [|Sy @S] @) y1 + S5 Z1€ — ya %,

where we substituted 7 = y;. This optimization problem is equivalent to vanilla
DEIM and identical to the optimization problem (3.22). Therefore, the two-stage
S-DEIM is equivalent to the vanilla DEIM reconstruction. 0

4. Data assimilation with S-DEIM. So far we have not specified how the
states u are generated. In this section, we assume that the states are generated by a
continuous-time dynamical system. In this case, we propose a method for estimating
the unknown kernel vector of S-DEIM using the observational time series y(¢). The
resulting method, which we refer to as the Data Assimilated Sparse DEIM (DAS-
DEIM), amounts to a fast data assimilation method for dynamical systems.

Consider a system of ODEs, possibly arising from the spatial discretization of a
partial differential equation,

(41) Mt u(0)=u,
dt

where f : RY — R¥ is a known Lipschitz continuous vector field. We denote the
solution of the system by u(t;ug) = '(ug) where ! : RN — R is the flow map
associated with (4.1). For notational simplicity, we write u(t) and omit its dependence
on the initial condition ug. The corresponding observational time series are given by
y(t) = STu(t). If the dynamical system is dissipative, its trajectories converge to an
attractor A C RY whose dimension is smaller than N. If such a lower-dimensional
attractor does not exist, we set A=RN.

In our setting, the initial condition ug is not completely known. Instead, only its
entries corresponding to the sensor locations are known which yield the observations
y(0) = STuyg at the initial time. As a result, ODE (4.1) cannot be directly integrated
to estimate the future states u(t).

Nonetheless, at any time instance ¢, S-DEIM can be used to compute the state

estimation,
(42) (a(t) = Pe(z(t) = @ (STP) "y (t) + B2(t),

where z(t) € N[ST®] for all times ¢ > 0. The kernel vector z(t) is still unknown and
our task is to determine its optimal value. To this end, standard data assimilation
methods, such as three- and four-dimensional variational data assimilation (3DVAR
and 4DVAR, respectively), can be used (cf. [4] for a review).
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However, these data assimilation methods rely on descent iterations to minimize
a suitable cost function. At each iteration, the descent direction needs to be approx-
imated which requires repeated solves of the ODE (4.1). In the case of 4DVAR, an
additional adjoint ODE also needs to be solved at each iteration [4]. Since the dimen-
sion N of the system is often large, this leads to a high computational cost. Further-
more, the cost function is a nonconvex function of the kernel vector z; therefore, the
optimization may never converge to the global minimizer. The high computational
cost and nonconvexity of the existing data assimilation methods hinders their applica-
bility to high-dimensional systems. Here, we introduce an alternative approach which
circumvents these two issues. Our method seeks z(t) such that the corresponding
S-DEIM reconstruction u(z(t)) solves the ODE (4.1) as closely as possible.

More precisely, consider a path z(t) € AN[ST®] and its corresponding S-DEIM
reconstruction (4.2). Since S-DEIM is an approximation, u(z(t)) does not necessarily
solve the ODE (4.1). Instead, we seck z(t) such that the error between the left- and
right-hand side of the ODE is instantaneously minimized. In particular, we solve the
optimization problem,

2

(43) win |4 a(0) ~ £@2(0)|
where
(4.4) %ﬁ(z(t)) — 0 (STD) y(t) + Ba(t).

At first glance, this approach may seem problematic since the time derivative of
the S-DEIM reconstruction involves the time derivative of the observations y. As such,
any noise in the observations can be detrimental. However, the next theorem shows
that, not only the solution to the optimization problem (4.3) can be written explicitly,
but also that the solution is independent of the derivative of the observations.

THEOREM 3. Optimization problem (4.3) has a unique solution given by z(t) =
ZE&(t) where £(t) e R™™™ solves the ODE,

(4.5) E=2"eTf(u(g),

where Z is a kernel matriz and Q(€) is shorthand notation for u(Z§).

Proof. Recall that the columns of Z are orthonormal and R[Z] = N[ST®].
Consequently, for any z(t) € N'[ST®], there exist a unique £(t) € R™~™ such that
z(t) = Z&(t). Therefore, using (4.4), optimization problem (4.3) can be written equiv-
alently as

(4.6) min || (ST®) " y(t) + ©ZE(t) — F(T(E(L)) H2 .

£(t)eRm—n

Since ®Z has full column rank and (®Z)* = ZT® T, the minimizer is unique and is
given by

(4.7) E=—2T07d(STd) y(t)+ 2T B F(u(g)).

Finally, since ' ® =1,,, and Z " (ST(I>)+ =0 (due to Lemma 3), we obtain the desired
result. |
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Algorithm 4.1. Data assimilated sparse DEIM (DAS-DEIM) algorithm.
Inputs:
e Basis matrix ® = [¢;|py] - - |,,] € RV *™
e Observations y(t) e R", 0<t<T
e Vector field f: RY — RN

. S = pivotQR(®P) > Compute the selection matrix using (2.14)
7 =null(ST®) > Compute the kernel matrix
. Choose an initial guess: &£, € R™™"

. Solve £ = ZT®Tf(u(¢)) with £(0) =¢&,. > Solve for &(t), 0<t<T
. State reconstruction: u(t) = ® (ST¢)+ y(t)+®ZE(R), 0<t<T

T W

Outputs: DAS-DEIM reconstruction u(t), 0<¢<T

We refer to (4.5) as the kernel ODE and the corresponding approximation (4.2) as
the DAS-DEIM reconstruction. Since the solution (4.5) minimizes the instantaneous
error between the left- and right-hand side of the governing ODE (4.1), one expects
that, over time, the corresponding DAS-DEIM reconstruction u(€(t)) evolves closer
to the true state u(¢). More precisely, consider the observations {y(¢),0 <t < T} from
the initial time to the current time 7. Using this observations in its right-hand side,
the ODE (4.5) can be solved numerically from an initial guess £(0) = &, € R™~" for
the kernel vector. Even if the initial guess & is not suitable, we expect that over time
it converges towards its optimal value so that the reconstruction error |[u(&(¢)) —u(t)||
decreases as time t increases. This procedure is summarized in Algorithm 4.1.

The dimension of the kernel ODE (4.5) is m — n, which is much smaller than the
dimension N of the original ODE (4.1). While standard data assimilation methods,
such as 3DVAR and 4DVAR, require repeated solves of the N-dimensional ODE (4.1),
DAS-DEIM requires solving the smaller kernel ODE only once. As a result, DAS-
DEIM is computationally more efficient than standard data assimilation techniques.
Nonetheless, numerically integrating the kernel ODE (4.5) still requires the evaluation
of the N-dimensional vector field f.

We show in section 5, with two numerical examples, that the reconstruction error
of DAS-DEIM does indeed decrease over time. But before presenting our numerical
results, we prove that, under certain conditions, the reconstruction error of DAS-
DEIM converges exponentially fast towards zero as t — co.

4.1. Convergence of DAS-DEIM. In order to state our main convergence
result, we recall the notion of one-sided Lipschitz continuity.

DEFINITION 4. A wector field £ : RN — RY is one-sided Lipschitz continuous if
there ewists py € R such that
(4.8) (G —u,f(@) - f(u)) < pyl[a — vl

for allu,u e RN . The coefficient p; is referred to as the one-sided Lipschitz constant.

Remark 4. A few remarks about Definition 4 are in order:
1. Note that u is any vector in RY and not necessarily the S-DEIM reconstruc-
tion. Later we will apply this definition with the special case where u is the
S-DEIM reconstruction of the state u.
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2. Unlike the Lipschitz constant, the one-sided Lipschitz constant ps is not nec-
essarily positive [20]. In fact, it can be zero or even a negative number. For in-
stance, consider the one-dimensional function f(z) =e~*:(—00,0] — [1,00).
Since e~* > 1 on its domain (—o0,0], it is easy to see that

=y —e )< —(z—y)* Va,ye(~00,0],

and therefore, py = —1. If e™* is considered on the entire real line, then we
have py =0.

3. Any Lipschitz function is also one-sided Lipschitz [20], but the converse is
not necessarily the case. For instance, the exponential function e™" is not
Lipschitz continuous, but it is one-sided Lipschitz as shown above.

As in Lipschitz continuous functions, the one-sided Lipschitz constant is not
unique. From now on, we consider the best, i.e., the smallest possible, value of this
constant. In other words, we define the one-sided Lipschitz constant as

(19) = sup S I — F(w)
e o

The following result shows that, if f is Lipschitz continuous, both f and any
orthogonal projection of it are one-sided Lipschitz continuous.

LEMMA 5. Assume f:RY — RN is Lipschitz continuous with a constant Ly>0
and define g(u) =Pf(u), for an arbitrary orthogonal projection P. Then g is one-sided
Lipschitz continuous with a constant pg < L.

Proof. If P is the zero matrix, the result holds trivially with p, = 0. We now
consider nonzero orthogonal projections. We have

(- wPf@ —f)h _ o=l P, - (@) - £(w)

pPg = sup — ~
g #£u [a—ul? i#u [a—ul?

[f(@) — £(w)]]

= <L
[0 —ul] d

— )

(4.10) < ||P||2 sup
uu

where we used the Cauchy-Schwartz inequality and ||P||2 denotes the spectral norm
of P. Since P is an orthogonal projection, we have |P|2 = 1. |

The next theorem is our main convergence result which uses Lemma 5 with the
special choice of P=®ZZ"®" for the orthogonal projection.

THEOREM 4 (convergence of DAS-DEIM). Consider the system (4.1) and the
orthogonal projection P=®ZZT®". Assume that A C R[®] and that the one-sided
Lipschitz constant pg of the vector field g :=Pf is negative, py <0.

Ifug € A, then

(4.11) lim [|&(t) — u(t)]| =0,

t—o0

whereu(t) = ®(ST®)Ty(t) + PZE(t) is the S-DEIM reconstruction with &(t) satisfying
(4.5). Furthermore, the convergence is exponentially fast.

Proof. Since ug € A and the attractor is invariant, we have u(t) € A for all ¢t > 0.
Since A C R[®], using Corollary 2, we have u(t) € R[®], and therefore,

(4.12) u(t)=o(STe)ty(t) + 22 d T u(t)
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for all ¢ > 0. Taking the time derivative of this equation, we obtain
(4.13) u=0(S"®) Ty + 0272 0 f(u).
Now let us consider the time derivative of the S-DEIM reconstruction u,
(4.14) u=o(S"o)ty+ 220" f(u),

where we used the fact that £(¢) satisfies (4.5). Subtracting (4.13) and (4.14), we
obtain

(4.15) (8 - w) = P[(@) — f(u)],

d
dt
where P = ®ZZT®" is an orthogonal projection. Taking the inner product with
u — u, we obtain

1d, . ~ ~ ~
(4.16) 5 3Bl = (@ - PIE@) — f(w)]) < py [T —ul?,
where we used the one-sided Lipschitz continuity of g = Pf.

Finally, using Gronwall’s inequality, we have
(4.17) [a(t) —u()]| < [[u(0) —u(0)fe"".

Since the one-sided Lipschitz constant p, is negative, we obtain the desired result that
the error tends to zero as t — oco. Clearly, this convergence is exponential in time. 0O

We conclude this section with a few remarks regarding Theorem 4. As in case
of Lipschitz constant, estimating the smallest one-sided Lipschitz constant is difficult
in practice. We also note that the conditions of this theorem are sufficient but not
necessary. As our numerical results in section 5 indicate, DAS-DEIM converges for
complex dynamical systems, where these conditions are not necessarily met.

Finally, we point out that Theorem 4 can be used to inform the choice of the
basis matrix ® and the selection matrix S. Note that the orthogonal projection
P=®ZZT®" depends on these matrices. Therefore, in principle, it might be possible
to choose these matrices in such a way that the vector field g = Pf has a negative
one-sided Lipschitz constant.

5. Numerical results. We present two numerical examples using Lorenz63 and
Lorenz96 systems. For each system, two trajectories are numerically generated from
different initial conditions. The first trajectory is used as training data to extract
POD modes {¢,;}7; and to compute the selection matrix S using the QR algorithm
(2.14). The second trajectory is used for testing purposes, i.e., gather observational
data, solve the kernel ODE (4.5), and form the corresponding DAS-DEIM estimation
(4.2). All errors reported in this section correspond to the testing data set. The
observations are recorded at time intervals of At =0.2. To solve the kernel ODE (4.5),
piecewise linear interpolation is used to approximate the observations in intermediate
time instances. In the DAS-DEIM Algorithm 4.1, we use the initial guess £, =0.

We reiterate that (Q)-DEIM was originally developed for reduced-order modeling
[10, 14]. Here, however, our goal is estimating the full state of the system from its
partial sparse observations without any model order reduction.
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Fi1G. 3. Vanilla DEIM and S-DEIM state estimation for Lorenz63. (a) State space showing the
true trajectory (blue), vanilla Q-DEIM (straight black line), and DAS-DEIM (red). The red circle
marks the initial DAS-DEIM estimation. (b) Relative errors as a function of time. (Figure in color
online.)

5.1. Lorenz63 system. As a benchmark example, we first consider the Lorenz
attractor (or Lorenz63 system),

(51) ’1.1,1:0(11,27’11,1), ’L-Lgiul(pf’l,Lg)*uZ, a3:u1u276u\g,

with the parameters o = 10, p = 28, and 8 = 8/3, which is known to exhibit chaotic
dynamics. We assume that only n = 1 observation is available. The QR algorithm
(2.14) determines the second component of the system as most informative; therefore,
we set y(t) = ua(t). We first apply vanilla DEIM with m = n =1 POD mode. As
shown in Figure 3(a), since the range of ® is one-dimensional, the estimated state
evolves on a line segment. As a result, the relative error is quite large with a mean of
approximately 36%.

For S-DEIM, we can increase the number of modes arbitrarily. Therefore, we use
m = 3 modes with the same observational time series as before (y(t) = ua(t)). As
shown in Figure 3(b), the initial relative error for DAS-DEIM is similar to vanilla
DEIM. However, the DAS-DEIM error decreases rapidly as the kernel vector z(t)
converges towards its optimum. Eventually, this error oscillates around 10=* (0.01%),
indicating excellent agreement with the true solution of the Lorenz63 system.

We also experiment with noisy data. In particular, we repeat the DAS-DEIM
estimation by adding an error £(t) ~ N(0,0.1) to the observations y(t) = ua(t) at
each time instance. Here, N(0,0.1) denotes the normal distribution with mean zero
and standard deviation 0.1. As shown in Figure 3(b), the noise negatively affects the
estimation so that the relative error increases, with a mean of 0.7%. Nonetheless, this
error is still quite small and significantly smaller than vanilla DEIM error of 36% with
clean data.

One may wonder what happens if we use vanilla DEIM with n = 1 observations (as
before) and m = 3 modes. In this case, the vanilla DEIM estimation error increases to
43% (not shown here). This is in line with the numerical results of [12] who observed
that the minimum vanilla DEIM error occurs when the number of modes is less than
or equal to the number of sensors (m < n).

5.2. Lorenz96 system. In this section, we consider the Lorenz96 system,

(5.2) U = (Uip1 — uj—2)ui—1 —u; + F, 1<i<N,
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F1G. 4. State estimation for Lorenz96 system. (a) True solution, DAS-DEIM, and vanilla Q-
DEIM reconstructions. (b) Close-up view of the observational data from n =1 sensor. Dashed blue
shows the true observation data and solid red line marks the corresponding noisy observations. (c)
Relative error of vanilla Q-DEIM compared to DAS-DEIM. (Figure in color online.)

with N = 40 and periodic boundary conditions: u_; = uy_1, Up = UN, UNL+] = U].
This system is a conceptual model for atmospheric flow and is routinely used for
assessing data assimilation methods [9, 28]. Here we use the forcing amplitude of
F =2 which leads to a modulating traveling wave solution as shown in Figure 4(a).

The singular values corresponding to the POD modes exhibit a sharp decay after
the first five modes: the fifth singular value is around 0.9 whereas the sixth singular
value is approximately 4 x 1078, This indicates that the attractor A of the system
resides approximately in the linear subspace spanned by the first five POD modes.
Therefore, we use m =5 POD modes for both vanilla DEIM and DAS-DEIM estima-
tions. In order to demonstrate that DAS-DEIM performs well even if very few sensors
are available, we use n = 1 sensor measurements. Column pivoted QR factorization
algorithm (2.14) determines u; as the best place for sensor placement. Figure 4(b)
shows a close-up view of the observational data y(t) = u;(t) +e(t) where random noise
€~ N(0,0.1) is added to the true data at each time instance. Both vanilla DEIM and
DAS-DEIM use this noisy data as input.

As shown in Figure 4(a), vanilla DEIM reproduces incorrect dynamics. In con-
trast, after initial transients, DAS-DEIM reconstruction converges towards the true
solution of the system. Figure 4(c) shows that the vanilla DEIM error oscillates around
62%, whereas DAS-DEIM error decays rapidly and eventually oscillates around 5%.
Recall that DAS-DEIM requires the solution of the kernel ODE (4.5) whose dimen-
sion m — n =4 is much smaller than the dimension N = 40 of the Lorenz96 system.
Solving this kernel ODE using MATLAB’s ODE45 took only 0.4 seconds.

Finally, we recall Remark 3 which states that the prefactor ||(S,) ®,,)¥]|2 in the
error upper bound (3.17) is a decreasing function of m (the number of modes). Fig-
ure 5 demonstrates this numerically with n = 1 sensor. As the number of modes m
increases, the prefactor ||(S,! ®,,)"||2 decreases indicating that the S-DEIM recon-
struction should improve as more modes are used.

6. Conclusions. We introduced Sparse DEIM (S-DEIM) for interpolating un-
known functions from their sparse observations when the number of observations is
limited. In the special case of continuous-time dynamical systems, we introduced the

—
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FiG. 5. The matriz norm ||(S,) ®m)T |2 for the Lorenz96 system with n = 1 sensors and in-
creasing number of modes m.

data assimilated S-DEIM (DAS-DEIM) algorithm to efficiently estimate the unknown
kernel vector in S-DEIM. Our numerical and theoretical results show great promise
for fast and accurate estimation of the state of the system from very few observational
data.

A number of open problems remain to be addressed. As we mentioned at the end
of section 4.1, Theorem 4 can be used to inform sensor placement. Although here
we used the standard column pivoted QR algorithm, a tailor-made sensor placement
algorithm for DAS-DEIM should be investigated. Furthermore, Theorem 4 provides
sufficient conditions for the convergence of the DAS-DEIM algorithm. These con-
ditions are most likely too restrictive, and therefore, a convergence theorem with
necessary and sufficient conditions is desirable.

Finally, we point out that certain data sets, such as those encountered in image
processing, are not necessarily generated by a dynamical system. In such cases, alter-
native methods for approximating the optimal kernel vector of S-DEIM are needed.
For instance, deep learning methods can potentially be used. However, our prelimi-
nary results (not shown here) indicate that simple neural network architectures (e.g.,
feed forward) fail to yield an acceptable approximation. In the future, the use of more
advanced architectures, such as long short-term memory networks and autoencoders,
will be explored.
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