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Abstract. We investigate the influence of uniformly positive scalar curvature on the size of
anon-collapsed Ricci limit space coming from a sequence of n-manifolds with non-negative
Ricci curvature and uniformly positive scalar curvature. We prove that such a limit space
splits at mostn—2 lines or R-factors. When this maximal splitting occurs, we obtain a uniform
upper bound on the diameter of the non-splitting factor. Moreover, we obtain a volume gap
estimate and a volume growth order estimate of geodesic balls on such manifolds.

1. Introduction

In this article, we focus on the topological and geometric implications of uni-
formly positive scalar curvature following the philosophy of Gromov’s macroscopic
dimension conjecture. The conjecture essentially posits that any n-dimensional
Riemannian manifold with uniformly positive scalar curvature is at most (n — 2)-
dimensional at large scales. Our particular interest lies in establishing an analogous
statement or conjecture in the context of Ricci limit spaces.

Suppose that (X, d, x) is a non-collapsed Ricci limit space that is obtained from
a pointed Gromov—Hausdorff (pGH in short) limit of a sequence of Riemannian
manifolds with non-negative Ricci curvature and uniformly positive scalar curva-
ture, the large scale geometry can be understood as the number of R factor that split
off from X. Motivated by the Gromov’s macroscopic dimension conjecture, in our
context, we obtain that for X as described above, the number of R-factors can be
split off is at most n — 2, and if the maximal splitting happens, i.e.,if X = R* 2 x Y
isometrically, then certain topological and geometric constraints is imposed upon
on Y, which heuristically inherit from the uniformly positive scalar curvature. The
challenge is that a proper notion of scalar curvature is not yet defined on Ricci limit
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spaces, which remains an open question in the community of studies on the scalar
curvature. Here, with a careful investigation on the metric structure of manifolds
rather than introducing a notion of scalar curvature on limit spaces, we prove that,

Theorem 1.1. If (X, d, p) is a (pointed) non-collapsed Ricci limit space that is a
pGH limit of a sequence of n-dimensional Riemannian manifolds (M;, g;, p;) with
Ric,, > 0, Scg; > 2 and volg, (B(pi, 1)) > v > 0 for everyi € N, then

(1) X cannot isometrically split off R" 1.

(2) If X splits off R"~2 and we write X = R"=2 x Y, then Y is isometric to either
(S?, ds2) or (RP?, di p2) with a metric of non-negative curvature in the sense
of Alexandrov geometry.

(3) If X is isometric to R"™2 x S?%, and either of the following two conditions is
satisfied

(a) The S* has no singular points, i.e., R(S?) = S*;

(b)3 <n <38, then

diam(S?, de2) < @n. (1.1)

Here, R(S?) denotes the regular set of S* (see section 2 for the details).

Remark 1.2. The condition R(S?) = S? is not the weakest possible condition to
guarantee the validity of our theorem but it is a natural one. For example it is
satisfied when there is a Ricci curvature upper bound by the codimension 4 theorem
of Cheeger—Naber [9]. Also note that the metrics satisfying R(S?) = S? are dense
in all metrics that support a non-collapsed RCD(0, 2) structure in GH topology,
because every S? of nonnegative curvature in the sense of Alexandrov geometry
can be approximated by S? of nonnegative sectional curvature, see for example
[41].

The diameter upper bound established in (1.1) is not sharp. We describe the
intuition to the expected sharp bound. Given the assumptions in Theorem 1.1 and
the maximal splitting X = R"~2 x Y, if we anticipate that the scalar curvature lower
bound is preserved under GH convergence, then the flat R” 2 factor in X should not
inherit any positivity of scalar curvature. Consequently, the positive scalar curvature
would be carried fully onto the S2-factor. In such a scenario, the scalar curvature
lower bound on S? should be equivalent to the sectional curvature lower bound in
the sense of Alexandrov geometry. This will lead to a Bonnet—Myer type diameter
upper bound. An analogous characterization on the 2-area has been proved in [53].
Here, we propose a conjecture characterizing the behavior of uniformly positive
scalar curvature under pGH convergence.

Conjecture 1.3. In the setting of Theorem 1.1, if X = R"~2 x S?, then
diam(S?, dg2) < 7. (1.2)

Moreover, the equality holds if and only if (S, ds2) is isometric to the spherical
suspension of S' with diam(S') < 7.
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Note that the third and fourth named authors [52] confirm Conjecture 1.3 forn = 3.
Moreover, the virtue of the proof of Theorem 1.1 also enables us to derive an upper
bound on the first Betti number, and this upper bound can be viewed as a topological
consequence of having uniformly positive scalar curvature in a Ricci limit space.

Corollary 1.4. In the setting of Theorem 1.1, the first Betti number of X, denoted
by b1(X), satisfies
b1 (X) <n-—2. (1.3)

Remark 1.5. Note that for non-compact manifolds (M", g) with non-negative Ricci
curvature, we have b1 (M) < n — 1. See also a version of this result for RCD spaces
in [50]. Inspired by Gromov’s macroscopic dimension conjecture, we expect a
sharp upper bound b; (M) < n — 3 for any non-compact manifold (M, g) with
non-negative Ricci curvature and uniformly positive scalar curvature. However,
the upper bound n — 3 remains open if n > 4. We also point out that the sharp
upper bound n — 3 can be derived from [2] and the volume growth conjecture
raised by Gromov in [51, Problem 1.6]. A weaker version of this conjecture will
be obtained in Theorem 1.9 below.

Before advancing to the next result, we discuss some related work here. It
is known that the scalar curvature lower bound along is not stable under Gromov-
Hausdorff convergence even we assume that the limit space is smooth (see [31]). To
continue the study of stability of scalar curvature lower bound, one either consider
other notions of convergence, for instance [20,44], or impose additional conditions
(or do both, see [30]). A natural additional condition is a stronger curvature lower
bound. It is still an open question whether the scalar curvature lower bound is stable
under the Gromov-Hausdorff convergence with additional curvature assumptions. It
is proved in [29] (after [40]) that if a noncollapsing sequence of manifolds (M;, g;)
has a uniform sectional curvature lower bound, then one can pass Scg; - volg,; to
the GH limit as a Radon measure, which can be regarded as some generalized
scalar curvature, but the geometric meaning of it is yet to be revealed. Moreover,
if sectional curvature lower bound is weakened to a Ricci curvature one, Naber
conjectures that the same measure convergence holds and describes some poten-
tial applications in [36]. Along this line of thoughts, Theorem 1.1 provides some
evidences for the stability of scalar curvature under additional condition of non-
negative Ricci curvature. Some other study of stability of scalar curvature lower
bounds under extra conditions includes [26,37]. From a technical point of view, a
similar use of cube inequality (Theorem 2.16) we make here can also be found in
[15,51].

Next, we study the effect of positive scalar curvature on the volume of geodesic
balls on complete Riemannian manifolds with non-negative Ricci curvature. Ricci
limit spaces do not make its appearance in the statement but do play a role in the
proof. To motivate our study, we recall that if B(p,r) C M is a geodesic ball for
small » > 0, then

Sce(p)

volg (B(p, 1)) = wyr <1 — 6 1 2)

r? + 0(r4)> .
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Here, w, is the volume of the unit ball in R”. The expansion indicates that the more
positive Scg (p) is, the smaller voly (B(p, r)) is, but it is only valid for small radii.
However, under the extra assumption of non-negative Ricci curvature, we can prove
a volume gap theorem for a wider range of radii.

Theorem 1.6. Suppose that (M", g) is a complete, non-compact, n-dimensional
Riemannian manifold with non-negative Ricci curvature Ric, > 0. If Sc, >
472n(n — 1), then there exists a constant ¢ ‘= c¢(n) such that

sup volg(B(p, 1)) < ¢ < wy. (1.4)
peM

We also have a version of this theorem for M with nonempty boundary, based
on the boundary regularity theory of non-collapsed RCD (K, N) spaces. See section
2.1 for relevant definitions.

Corollary 1.7. Let (M", g) be a complete, non-compact, n-dimensional manifold
with convex boundary 0 M, non-negative Ricci curvature Ric, > 0 and uniformly
positive scalar curvature Scg > 47%n(n — 1) in the interior M \ OM, then there
exists a constant ¢ := c(n) such that

1
sup volg(B(p, 1)) <c < zwy,. (1.5)
peIM 2

Remark 1.8. Corollary 1.7 can also be obtained by taking the double of M. Note
that the boundary of M is convex, we can smooth the metric on double of M near
the boundary of M to obtain a complete, non-compact manifold with non-negative
Ricci curvature and uniformly positive scalar curvature. The details can be seen
from [12] and the Appendix in [21].

When we restrict the consideration of Ricci limit spaces to the ones obtained
at infinity of a manifold with non-negative Ricci curvature and uniformly positive
scalar curvature, we can extract some information on the volume growth rate of
geodesic balls. We prove,

Theorem 1.9. If (M", g) is a complete, non-compact, n-dimensional manifold with
Ric, > 0 and Scg > n(n — 1), then there exists a constant ¢(n) > 0 such that

inf volg(B(p,r)) < c(n)r"~2, Vr > 0. (1.6)
pPEM

Moreover, the asymptotic volume ratio is 0, i.e.,

volg(B(p. 1)
m ——— =

r—00 rh

0. (1.7)

Theorem 1.9 is an attempt to partially answer Gromov’s conjecture [51, Problem
1.6]. It can be seen as a step to understand the asymptotic behavior of volume growth
of the geodesic ball in a complete, non-compact manifold with non-negative Ricci
curvature and uniformly positive scalar curvature. In fact, [S1, Corollary 1.9] can



Positive scalar curvature... 947

only be applied as n = 3; as n > 4, we still do not understand the relation between
the volume growth of geodesic balls and the splitting of lines at infinity.

Finally, we characterize the volume growth of the geodesic balls on three-
dimensional manifolds. For related work in three-dimensional dimension, see [11,
35,40,51]. We define

Vg (r) = sup volg(B(p,1)).
peEM

Proposition 1.10. Suppose that (M3, g) is a complete, non-compact, three-
dimensional Riemannian manifold with nonnegative Ricci curvature Ricy > 0
and uniformly positive scalar curvature Sc, > 2. If the sectional curvature
secg > —A2, A > 0, then,

(1) There exists a constant cp := c(A) such that for any r > 0,
Ve(r) < car;

(2) For any p € M, there exists a universal constant ¢y independent of p and A
such that

lim su
r—>00

vol(B(p, r))
p————— <
r
Note that compared to previous work [11,35], our theorem has an extra assumption
of sectional curvature lower bound, and the constant ¢ is weaker than that in [35],
but our constant ¢, does not depend on the choice of reference points, which is
stronger than the main result of [11].

Now, we summarize the key idea in this article. The difficulty we need to over-
come is the lack of a proper notion of scalar curvature or its lower bound in a Ricci
limit space. The crucial observation is that for a torical band T"~! x I, any Rieman-
nian metric of positive scalar curvature on it must satisfy some metric inequalities.
The metric inequalities themselves do not require differentiability to describe, see
section 2.2. However, the intuitive idea of applying those metric inequalities to a
(non-collapsed) Ricci limit space does not work. This is because even if a non-
collapsed Ricci limit space happens to be a topological manifold, its limit metric
still need not to be induced by a Riemannian metric. We bypass this issue by finding
local pull-back maps from the limit space to the approximating manifolds that pre-
serve the topology and almost preserve the metric, essentially by metric Reifenberg
theorem. To exploit this observation, notice that the Ricci limit space X has a large
number of splitting factors. Using the RCD theory we can classify the remaining
non-splitting factor, so we have complete understanding of the topology of X. It can
then be seen that a long torical band T”~! x I can be embedded into X. Using the
pull-back maps described above, we can pull back T"~! x I into a manifold with
uniformly positive scalar curvature where the metric inequalities can be applied to
find a contradiction. In this way, we succeed to bypass the issue of not having a
proper notion of scalar curvature or its lower bound in a Ricci limit space.
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In some cases, we do not know how to find pull-back maps that preserve the
topology. For example when singularities of the type R"~2 x C (S}) present, where
C(S}) is a cone over a circle of radius » < 1. This can be ruled out by imposing
an upper bound on Ricci curvature in all dimension as mentioned in Remark 1.2.
In dimension 3 to 8, we can avoid finding topology preserving maps by using the
w-bubbles, this technique has been used extensively in [10,22,23].

This article is organized as follows. In section 2 we give an introduction to
the RCD theory and the metric inequalities of positive scalar curvature, along the
way we prove some auxiliary results. Section3 is devoted to the proofs of all the
theorems in the introduction.

2. Preliminaries
2.1. Introduction to metric measure spaces with Ricci curvature lower bounds

Given K € Rand N € [1, oo], an RCD(K, N) space is a complete and separable
metric measure space that has synthetic Ricci curvature lower bound K and dimen-
sion upper bound N. The notion of dimension here can be taken as the Hausdorff
dimension [45, Corollary 2.5]. For example, a complete n-dimensional Riemannian
manifold with Ricci curvature lower bound K is an RCD(K, n) space. However, in
general, the dimension upper bound N need not be an integer. In this article, we only
consider the case N < 0o. The class of RCD spaces is an intrinsic generalization of
the class of Ricci limit spaces, in the sense that the definition of RCD spaces does not
appeal to any approximating sequence and a Ricci limit space obtained as a pointed-
measured-Gromov-Hausdorff limit of sequence of N-dimensional manifolds with
Ricci curvature lower bound K is an RCD(K, N) space, which follows from the
stability of RCD(K, N) condition under pmGH convergence, see for example [19].

The structure theory of RCD spaces stems from the splitting theorem of Gigli
[18]. We will also make an extensive use of this theorem, so we recall it as follows.

Theorem 2.1. Let N € [1, 00) and (X, d, m) be an RCD(0, N) space. If X contains
a line, then there is an measure preserving isometry from (X, d, m) ro (X', d’, m’) x
@R, |-, LY, such that

(1) when N € [1,2), X' is a point;
(2) when N > 2, (X', d’, m’) is a RCD(0, N — 1) space.

Here isometry means that if x = (x',t) and y = (¥,s), then d(x,y)> =
do, ¥+ —sl

Let (X,d, m) be an RCD(K, N) space, where m is a Radon measure with
supp m = X, we say (X, d, m) is a non-collapsed RCD(K, N) space, if m = HN,
then necessarily N € N.

Remark 2.2. In general, for a Ricci limit space X obtained as a pmGH limit of a
sequence of n-dimensional manifolds with non-negative Ricci curvature, if it splits
isometrically as R¥ x Y for some positive integer k < n, to our best knowledge
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it is not known in general if Y is a Ricci limit space approximated by (n — k)-
dimensional manifolds, but with RCD theory, especially the splitting theorem
above, we can easily see that Y with the metric and measure from the splitting
procedure is RCD(0, n — k), and if X is non-collapsed, sois Y.

For a sequence of non-collapsed RCD(K, N) spaces with uniform positive
lower bound on the volume of unit balls i.e. the so-called non-collapsing sequence,
we have the following volume convergence theorem from [8,13] and [14, Theorem
1.2].

Theorem 2.3. Let K € R, N € Nand (X;,d;, HN, x;) be a sequence of (pointed)
non-collapsed RCD(K, N) spaces. Then after passing to a subsequence, there
exists a (pointed) proper geodesic space (X, d, x) such that

(Xi,di, x;) Ll (X,d, x).

Moreover, if inf; HN(Bi(x;)) > 0, then (X, d, HN,x) is also a pointed non-
collapsed RCD(K, N) space and the convergence of the (X;, d;, HN, X;) to such
space is in the pmGH fopology.

As a consequence, non-collapsed Ricci limit space are non-collapsed RCD
spaces. For any integer N > 1, we say a non-collapsed Ricci limit space is N-
dimensional if it is a p(m)GH limit of a sequence of N-dimensional manifolds.
Meanwhile, unlike (classical) non-collapsed Ricci limit spaces, non-collapsed RCD
spaces can have boundary. To make this statement rigorous, we first introduce the
notion of regular and singular set and then define the boundary of a non-collapsed
RCD(K, N) space. From now on we fix an RCD(K, N) space (X, d, m).

Definition 2.4. Let R be the set of points in X at which the tangent cone is iso-
metric to (Rk, dpk, Ek), for k € [1, N]NN. R := U Ry is called the regular set
of X. The singular set S is the complement of the regular set, i.e., S := X \ R.

It is well-known that S has measure m-measure zero, see [33, Theorem 1.1]
(after [8]). When m = H",i.e. (X, d, H") is a non-collapsed RCD(K, N) space,
we have R = Ry and that the singular set S is stratified into

S'cSlc...csV !,
where forO0 <k <N -1,k e N,

Rk+l

Sk = {x € S : no tangent cone at x is isometric to x C(Z) for any metric space Z},

where C(Z) is the metric measure cone over a metric space Z. It is proved in [14,
Theorem 1.8] that
dimy (S*) < k. (2.1)

We are in position to define the boundary.

Definition 2.5. ([14], Remark 3.7) The De Philippis-Gigli boundary of (X, d, H™)
is defined as
0X :=8N-1\SN-2, (2.2)
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N-dimensional Alexandrov spaces with curvature lower bound K are non-
collapsed RCD(K (N — 1), N) spaces, and there is also an intrinsic notion of bound-
ary for Alexandrov spaces. It is shown in [5, Theorem 7.8] that when an Alexandrov
space is viewed as a non-collapsed RCD space, the two notions of boundary coin-
cide. On the other hand, it is shown in [8, Theorem 6.2] that if (X, d, H") is a
non-collpased Ricci limit space, then S¥~1(X) \ S¥~2(X) = #, it means a non-
collpased Ricci limit space has empty boundary. Under the notion of boundary of
a non-collapsed RCD space, we can also include manifolds with boundary into
our study that gives rise to the class of Ricci limit spaces with boundary. This is a
subclass of non-collapsed RCD spaces.

Definition 2.6. A noncollapsed Ricci limit space with boundary is a pmGH limit of
(pointed) complete manifolds of the same dimension, with smooth convex boundary
and uniform Ricci curvature lower bound in the interior.

Here, the boundary is said to be convex if the second fundamental form of the
boundary is non-negative definite. We refer the readers to [5] for a comprehensive
treatment of the boundary of non-collapsed RCD spaces. The second fundamental
form of the boundary is defined as —Vv where v the inner unit normal vector
field. With this convention, z-unit sphere S” in R"*! has second fundamental form
A=1,.

Remark 2.7. From the computation carried out by Han, we can infer that if a mani-
fold with boundary is an RCD(K, N) space (hence also a RCD(K, co) space), then
the boundary is necessarily convex, see [24, Corollary 2.5].

It is worth pointing out that the class of non-collapsed RCD(K, N) spaces
without boundary is strictly larger than the class of non-collapsed Ricci limit spaces.
For example C (RPZ) is a non-collapsed RCD(0, 3) space due to Ketterer [27],
but this is not a 3-dimensional topological manifold, since C (RP?) \ {cone tip}
deformation retracts to RP2 while R3 \ {0} deformation retracts to S, whereas
Simon-Topping in [43] proved that any 3-dimensional non-collapsed Ricci limit
space is a topological manifold.

When a non-collapsed Ricci limit space has no singular points, we have the
following topological stability theorem from [25, Theorem 3.3] (after [8, Appendix
A] which addresses the compact case).

Theorem 2.8. Let (M;, gi, qi) be a sequence of complete Riemannian manifolds
with Ricg; > 0, and inf; volg; (B(q;, 1)) > v > 0 such that

pGH
(M’ 8> %) — (X3 d’ CIoo),

where (X, d) satisfies R(X) = X, then for any fixed « € (0, 1), any R > 0, any
Pi = Doo along with the pGH convergence and a large i, there exists a-bi-Holder
embedding f; : B(pi, R) = B(pso, R+€;) whichis also an €;-GH approximation
with €, — 0 and dg, (f; (pi), Poc) < €i.
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Now we introduce two classification results of n-dimensional non-collapsed
Ricci limit spaces that split off R”~! or R”~2. The proofs depend on the clas-
sification of non-collapsed RCD(0, 1) spaces, the classification of 2-dimensional
Alexandrov spaces and the fact that non-collapsed Ricci limit spaces do not have
boundary. However, there is some subtlety, see Remark 2.2. The first one is essen-
tially the classification of non-collapsed RCD(O0, 1) spaces.

Lemma 2.9. Letn > 2 be an integer, and (X, d, H") be a non-collapsed Ricci limit
space which is also a non-collapsed RCD(0, n) space. If X splits isometrically into
R"1x Y, thenY is isometric to either S' orR, so X is isometric to R" or R"~1 xS,

Proof. By iteratively applying Theorem 2.1, along with the fact that the reference
measure in X is H", (Y dy, H') is a non-collapsed RCD(0, 1) space, where dy
satisfies d*> = d2 + an 1- The classification of 1-dimensional RCD spaces [28,
Theorem 1.1] implies that (Y, dy) is isometric to either R, S! or an interval [0, b],
b € (0, co]. However, Y cannot be [0, b]. If this was the case then X would have
nonempty S"~!(X) \ S""2(X), a contradiction to [8, Theorem 6.2] we recalled
earlier. O

To proceed we need the following.

Theorem 2.10. (/32]) Every non-collapsed RCD(0, 2) space is an 2-dimensional
Alexandrov space of non-negative curvature.

The next classification theorem essentially concerns 2-dimensional Alexan-
drov spaces without boundary. The result is well-known to Alexandrov geometry
community but seems not stated in the literature.

Lemma 2.11. Let (X, d, H") be an n-dimensional Ricci limit space, if X splits
isometrically as X = R"2 x Y, withY being compact, then (Y, dy) is isometric
to one of the following spaces equipped with a metric of non-negative curvature in
the sense of Alexandrov space with homeomorphism type as (1) a Klein bottle K;
(2) a torus T2; (3) a real projective space RPZ: 4)a sphere S2.

Proof. First observe that same as the proof of Lemma 2.9, it follows from Theorem
2.1that Y is anon-collapsed RCD(0, 2) space. Moreover, since X has no boundary,
Y also has no boundary.

The statement about metric is clear due to Theorem 2.10. It suffices to consider
the topological type. It is well-known that a compact 2-dimensional Alexandrov
space without boundary is topologically a closed 2-dimensional surface. Consider
the universal cover Y of Y, if ¥ splits off R?, then Y is isometric to R2, so Y is
locally isometric to R?, thus a flat, closed 2-dimensional manifold, the only possible
ones are T2 or K. If ¥ splits off R but not R2, this is impossible by the classification
Lemma 2.9. If ¥ does not split, then Y is a simply connected closed surface so it
must be S2, then Y is S? or RP2. O

The following lemma says that one can always find a non-collapsed limit at
infinity in a 2-dimensional Alexandrov space without boundary. We mainly use
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the gradient flow of a Busemann function in an Alexandrov space, so we refer to
Petrunin [39] for the theory of gradient flow of semiconcave functions in Alexandrov
spaces.

Lemma 2.12. Ler (X, d, H?) be a non-compact non-collapsed RCD(0, 2) space
without boundary, then there exists a sequence of points p; — oo so that (X, d, p;)
pGH converges to either R? or R! x S!.

Proof. Since X is non-compact, there exists a unit speed ray y (¢) : [0, 00) — X
emanating from some point p € X, i.e. y(0) = p. Let

by (x) = tl_i)rgot —d(x, y(@)), (2.3)

be the associated Busemann function. Note that X is an Alexandrov space with
non-negative curvature due to Theorem 2.10. By triangle comparison, by, (x) is
convex.

Take p; := y(t;) for some sequence of positive numbers #; /' co. We claim
that any limit space (Y, y) of (X, p;) must be either R2 or R x S!. First notice that
if we reparametrize y as y : [—t;, 00), so that ¥ (0) = p; = y (¢;), then we see that
¥, hence y, locally uniformly converges to a line in Y along (X, p;) — (¥, y). By
the splitting theorem for RCD spaces, Theorem 2.1, Y splits off an R-factor.

We argue by contradiction. Write Y = R x K, where K is a RCD(0, 1) space.
IfYisnotR2orR x S!, by the classification theorem of RCD(0, 1) spaces, K can
only be a single point or an interval. By the stability of vanishing of boundary [5,
Theorem 1.6], K cannot be an interval since X does not have boundary. So K must
be a single point and Y is isometric to R with Euclidean metric. Assume that (X, p;)
pGH converges to (R, 0). Consider the function b, — #;. It is a locally bounded 1-
Lipschitz function, so by Arzela-Ascoli theorem passing to a subsequence it locally
uniformly converges to a 1-lipschitz function b on (Y, y) = (R, 0), see for example
[33, Proposition 2.12]. Notice that forany a € R, b, (y (ti+a))—t; = a. Combining
this with the local uniform convergence y — R along (X, p;) — (R, 0), we infer
that b is the identity function on R.

For the sake of contradiction, we aim to prove that

(L.1) Forany s € R, {b,, = s} is path connected by Lipschitz curves.
(L.2) The function s — H! ({b,, = s}) is non-decreasing as s increases.

If (L.1) and (L.2) are proved, then we see from (L.2) that there exists ¢o > 0, so
that diam({b,, = t;}) > 2c¢o > 0. If this is not true then lim inf;_, o, diam({b, =
t;}) = 0, which in turn implies liminf;_, Héo({b,, = t;}) — 0. It follows
liminf; oo H'({b, = #;}) — 0. This is a contradiction to H'({b, = 1;}) >
Hl({by = 0}) > 0. We then see from (L.1) and the intermediate value theorem
that there exists g; € {b, = t;} so that dy(p;, ¢;) = co. We already know p; — 0
along (X, p;) — (¥,0). Assume that g; — a € R, this is possible because g;
has uniformly bounded distance to p;. However 0 = b, (p;) — t; = b,(q;) —
t; — b(a) = a, which means p;, g; converges to the same point in R, this is a
contradiction to dg(p;, g;) = co > 0.
We now prove (L.1) and (L.2) by the gradient flow of some truncation of b,,.
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For (L.1). Let s € R and o be a geodesic joining two points on {b, = s}. By
the convexity of b,,, 0 C {b, < s}. Seth, = min_{—s, —b,}, it is a minimum of
concave functions hence also concave, and o C {b, > —s}. Denote the gradient
flow of l;y by G; : X — X fort € [0, 0o0), whose existence is guaranteed by [39,
Proposition 2.1.2]. Since o is compact, and by construction G, fixes {—b, < —s}
for every ¢ € [0, 00), there exists T > 0 so that G7(0) C {b), = —s}. s0 Gr (o)
is the desired Lipschitz curve in the level set that joins the given two pints.

For (L.2). given two level sets {b,, = s1} and {b,, = s2} with s > s1. To show
H! ({by, =} = H! ({b, = s1}), it suffices to show that there exists a 1-Lipschitz
surjective map from {b, = s} to {b,, = 51}, see also [3, Remark 3.3, item 3].

As before we set 57, = max{s1, by, } which is still convex. Consider the gradient
flow F; : X — X of Vl;y, defined for all ¢ € [0, 00). The convexity of I;V implies
that

d(F;(x), Fi(y)) <d(x,y), t € [0, 00), (2.4)

which amounts to saying that F; is 1-Lipschitz for any ¢ € [0, co). By construction
F; fixes {b, < s1}. Meanwhile since the Lipschitz constant of b, lip b, = 1
everywhere on X, we see that Fy, _, : {b, = s2} — {b, = 51} is the desired map.
Indeed, we only need to verify that it is surjective. This follows from [39, Section
2.2, Property 3] (see also [17, Lemma 6.1] for a statement with no assumption on
time ¢ being small).

0

Remark 2.13. In fact, in the setting of Lemma 2.12, a stronger statement is recently
proved by Antonelli-Pozzetta in [3, Theorem 4.2] that for any p; — oo, (X, d, p;)
is a non-collapsing sequence. We can also give an alternative argument by running
the same proof as that of lemma 2.12, provided that a non-compact Alexandrov
space always splits off a line at the infinity, see [3, Lemma 2.29] and [54, Corollary
4.3]. We give a sketch of proof as it is not needed.

Indeed, fix a base point pg, choose a geodesic y; joining pg and p;, by passing
to subsequence y; locally uniformly converges to aray y. It is shown in [3, Lemma
2.29] that dy(pi, ¥) = o(dg(po, pi)). Let p; be a choice of closest point on y
to p;, then we see that by (p;) > by (p;) — d(p;, pi) = d(pi, po) — d(pi,y) =
d(pi, po) — 2d(p;, y) — oo. If (X, p;) is collapsing, as shown before it must
collapses to (R, 0). Then we know b, — b, (p;) locally uniformly converges to the
identity of R. from ((L.1)) and ((L.2)) we infer again that there is ¢p > 0 and ¢; such
that dg(p;, ¢;) = co and by, (p;) = b, (g;), and this is enough for the contradiction.

2.2. Torical band and cube inequality

We recall some metric inequalities for positive scalar curvature on 2 model spaces,
the torical band and the cube. The authors believe that the cube inequality or torical
band could find more applications in singular spaces.

Let M™ be homeomorphic to T7~! x I, where I is an interval [a, b], a < b.
Such an M is called a torical band. We define

oM =T""" x (b} 1" " x {a} = 0, M| Jo_M,
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and for any Riemannian metric g on M, set
dg (04 M,0_M) :=inf{de(x,y) :x € 3, M,y € 0_M]}. 2.5)
Then, the following theorem holds.

Theorem 2.14. (G-WXY [21,22,47,48]) If (M, g) is a n-dimensional torical band
with Scg > n(n — 1), then

2
de (34 M,0_M) < - (2.6)

Lemma 2.15. Let n € Nt a toric band T"~' x I can be topologically embedded
into R". Equip R" with standard Euclidean metric and restrict it to (the interior of)
T"~1 x I, then by rescaling the metric, the length of the interval I can be arbitrarily
large.

Proof. Take a Clliford torus T7—! c R", i.e., a torus of revolution parametrized
by a sequence of increasing radii 0 < r; < rp < ... < r,—1. The ro-tubular
neighborhood of this T"~! for ry = % is a possible topological embedding. O

Let D" be homeomorphic to [—1, 1]* and 9;, d;— be a pair of opposite faces
inD,i=1,2,...,n. Then, we have

Theorem 2.16. ([21,47]) If the cube (D, g) satisfies Scg > 47%n(n — 1), then

1
in d, (9; 4, 0;— —. 2.7
n’lill’l g( i+> Ui ) < \/ﬁ ( )

This is a special case of [47, Theorem 1.1]. In general, we can also consider
manifolds that admit a nice map into a possibly lower dimensional cube. This leads
us to Gromov’s [1" ™" inequality. The next theorem is a hugely simplified version
of Gromov’s [~ inequality proved in [47, Theorem 1.2], which is sufficient for
our use.

Theorem 2.17. If (X = S' x 7, [—R;, R;], g) isa (n+1)-manifold with corners
and Scg(X) > k > 0, then

"1
;R_ 2(n—1)

Proof. Weapply [47, Theorem 1.2]tothe map P : Stx l'[l’.':] [-R;i, Ri]] — [—1, 1]"
that kills the S! factor by projection and rescales the intervals. The conditions listed
in [47, Theorem 1.2] are trivially satisfied for P. O

Theorem 2.14 and 2.16 indicate that uniformly positive scalar curvature can
control the size of manifolds and play a vital role in the proofs of Theorem 1.1 and
1.6.



Positive scalar curvature... 955

3. Proofs of main theorems

Let us start by proving theorem 1.1.

Proof. First, let us prove (1) as follows. If X splits R"~!, thanks to Lemma 2.9,
we have X = R" or X = S! x R"! In fact, S! with non-collapsed RCD(0, 1)
structure is flat, so both S! x R”~! and R” are smooth Riemannian manifolds. By
lemma 2.15, we can find a large torical band Bd := T"~! x [0, 11] ¢ S' x R*~!
or Bd C R”. There exists a radius r > 1 satisfying

Bd c BX(p,r —1) C X.

By Theorem 2.8, there exist a-bi-Holder homeomorphisms f; : B(pij,r) —
B(p, r +¢;) that are also €;-GH approximations with ¢; — 0 and dg(f; (pi), p) <
€;. We pull back the torical band Bd from the Ricci limit space to (M;, g;, pi),
then Bd; = fi_1 (Bd) C B(p;, r) for sufficiently large i. After an arbitrarily small
perturbation, we may assume that Bd; is a smooth domain in M;. Hence, we have
constructed torical bands with restriction Riemannian metric (Bd;, g;) satisfying

dg, (31Bd;, 0_Bd;) > 10, Sc,, > 2.

This contradicts the torical band estimate by Theorem 2.14 (or see [21,22,47,48]),
so we rule out the two cases X = R” or X = S! x R"~!. This completes the proof
of (1).

Next, let us prove (2) as follows. Note that Lemma 2.12 implies that Y is
compact. Indeed, if Y is not compact, by Lemma 2.12 we can find points p; € Y
so that (Y, dy, p;) pGH converges to R2 or R x S!, which means by a diagonal
argument we can re-choose a sequence ¢; € M; so that (M;, g;, gi) converges to
R" or R"~! x S!, which contradicts (1) that has been proved above.

Now that Y is compact, the classification in Lemma 2.11 implies that Y is one
of K, T2, RP? or S?. To rule out T?, first notice that when equipped with a non-
collapsed RCD(0, 2) structure, the corresponding metric on T2 is necessarily flat
hence smooth, see [34, Corollary 1.4]. Then also notice that a large torical band
T"~! x [0, 11] can be embedded into T? x R"~2, the proof goes exactly the same
as in the proof of (1). For K, note that T2 is the orientable double cover of K, for
large i we can find f; : [0, 11] x T"3 x K — M; which is a homeomorphism
onto its image and an €;-GH approximation. Restrict the Riemannian metric on M;
to the image of f; and lift the image of f; to its orientable double cover, we find a
metric of positive curvature lower bound 2 on [1, 10] x T"=! which is impossible.

Finally, let us prove (3). Suppose that D = diam(S?, dsy2) and n, s € S? such
thatd(n, s) = D.If we remove a small spherical cap B(n, €) (resp. B(s, €)) centered
at n (resp. s) of radius € > 0, then we obtain that S? — (B(n, €) U B(s, €)) has
topological type S! x I and the distance between the boundary components 3 B(n, €)
and 0B(s,€) is D — 2¢. For any R > 0, there exists an €-GH approximation
fi : BMi(p;, R) > BX(p. R +¢).

e If (a)is satisfied, then it is valid to apply Theorem 2.8. We get that f; is a home-
omorphism, so when R > D, ff] ([—R/2, R/2] x S' x I is still topologically
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aproduct of S' and intervals, which we denote by Szlvl x Iy x[—R/2, R/2]’}V;2.

Without loss of generality, we may assume that S}W x Iy x [-R/2, R/21}, 2

is a smooth domain in M, then we deduce by Theorem 2.17,
1 n—2 n

(D32 " QR—e2 -1

Let R — oo then let ¢ — 0, we derive that

2(n — 1
D < ,/Mn (3.2)
n
as desired.

o If (b)is satisfied,i.e.,3 <n < 8. Welet N := fl._l(S2 —(B(n,e)UB(s,€)) x
[—R/2, R/2]"~2), where S — (B(n, €) UB(s, €)) x [-R/2, R/2]"~2 is home-
omorphic to §' x I x [—~R/2, R/2]"~2). Without loss of generality, we may
assume that N is a smooth domain in M, and the distance among the oppo-
sites sides are D — 2¢, R, - - - , R since f; is an e-GH approximation. Here, the
opposite sides refers to the pairs

[ @B@. o, £ @B € (7 @), £ @50

where 9, d;_ are faces of the cube I x [-R/2, R/2]”’2,j =1,2,...n—1.
Next, we will run the standard p-bubble techniques due to [22, Page 260] and
[23, Theorem 1.1].

Without loss of generality, we may assume that fi_1 (0B(n,€))U fi_1 (0B(s, €)
intersects N — (fl._l(BB(n, €) U fi_l(aB(s, €))) in acute angle by a small
perturbation. Now we construct a smooth map

D—e¢ D—c¢
2 72 :|

3.1)

¢1:N—>|:—

such that |dgi| < 1 and ¢ /(7€) = ;7' (@B(n. €)) and ¢y (—P5%) =
f,-_l (0B(s, €)). Now we define

No={xeM:qp((x) <0}
and then consider the class
c= {Caccioppoli sets Q2 in X such that QAQq € N\ (f,' @B(n, ) U £, 3B, e)))} .
Moreover, we set
D—¢e D-— 2(n —1 t
hy | — 6, € —>R,te—(n )ntan il
2 2 n(D —¢) D—¢

and define

u(Q) =H""'(*QNint(N)) — / (xe — xnp)hi o p1dH",
N

where 0% is the reduced boundary of €2, int(N) is the interior part of N and
X 18 the characteristic function of 2. Since 3 < n < 8, there exists a smooth
minimizer 2g of u such that(see [23])
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(1) Yo = 09 is a smooth embedded hypersurface with free boundary that
separates f; (3B (n, €)) and f;"'(3B(s, €)).

(2) at least one connected component of Yy intersects with fi_l(81+) U
fl._l(al_) and it satisfies (1) above. Hence, we collect such components
of Yy and still denote it by Y. Moreover, we denote 914 Y by the intersec-
tion of 0Y( and f’1 (01+). It is clear that (014 Yo, 91—Yp) > R.

(3) the stability condition holds:

1 o
(IVyy fI* = 5 (Se(N) = Se(¥p) + |AJ2
Yo

+< - h%+2h’1>o<p1)f22/ Agn (v, ) 2.

n—1 Yo

o

Here, v is the unit outer normal vector field of Yy with respect to g, A
denotes the trace-free part of the second fundamental form of Yj in N and
Ayp is the second fundamental form of 9 N with respect to the unit outer
normal 7.

Note that

n 4(n — Dm?
—h%+2h’1=—( )2.
n—1 n(D —¢)

The stability implies that there exists a positive function ug on Yy such that

A U sev) — se(vy) + 1A 4n — iuo > 0, on ¥,
—Ay,ug— = | Sc — Sc - Jug = Mu , on
Yoo = 5 0 WD _oF )Mo =Pto = 0
and

oug

— = Asn (v, V)uy,

on

where A1 is the corresponding first eigenvalue.
Next, we consider

(N1 =Yy x Sl, 81 =28v, + u%dsz).
A direct calculation implies that for yy € Yy, 6 € st,

—_— C —_— u u —_———
1, y07 0, yO 0 Y() 0= ’)’0 (D )2

Moreover, we construct a smooth function on N; as follows:
Y R R
Y= | ——, =
@2 0 )
such that |dgs| < 1and ¢, ' (=) = £7'@12) and 3 '(&) = £7'(01)).

Here, we may view ¢; as an S! invariant function on Nj. A similar argument
implies there exists a smooth minimizer 21 for p-bubble functional and whose
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boundary Y7 is a smooth embedded hypersurface with free boundary separating
f_1 (d14) and f_1 (01-), then we consider

(N, =Y x TZ, g =g+ M%dsz).

Here, u; the positive first eigenfunction of the stability condition of Y;. The
same direct calculation as above implies that

Sc(N 0)) > Sc(N 4(n — D2 1 1
(N2, (1, 0)) 2 Se(N, y1) — —— ((D_6)2+F)

for any y; € ¥; and @ € T?. Inductively, we run this argument n — 1 times to
obtain that a smooth closed manifold

(N1 = Sl X Tn_l, gn—1=gn—2+ uifzds2)
with

72(n— D(n —2) B 47%(n — 1)
nR? n(D —2¢)?’

SCgn—l = 2-
Note that N,_; admits no metric with positive scalar curvature, we conclude
that

7*m— 1D —2) 47’ —1)
2— - <
nR? n(D — 2¢)?

Let R — oo and € — 0. we derive

DS ;Mﬂ‘
n

Remark 3.1. We provide an alternative proof of item (1) and (2) of Theorem 1.1
using the almost splitting map (see [5, Definition 3.1] for the definition) that is
suggested by the referee. Again, if X is isometric to either of R”, R"~! x SI, R"~2 x
T2 or R*2 x K, then R(X) = X, since T2 or K with RCD(0, 2) structure must
be flat. Without loss of generality, we can assume B> (p;) C M; pGH converges to
B>(0) C R” thank to the flatness of S!, T2 and K. Fix § > 0 to be determined,
by [5, Theorem 3.5], there exists a large i depending on &, so that there exists a
harmonic map (uy, ..., u,) : B2(p) — R". Here we denote p := p; for simplicity.
Moreover there exists a constant c(n) > 0 depending only on n, so that for any
a,b=1,...,n we have

O

.1 SUPyeB, (p) [Vug| <1+ c(n)«/g. See [5, Remark 3.3].
(S.2) 4fp, ) [Hess,, ?dvol, < 8.
(S:3) 5,y | Vita - Vip, — 8apldvolg < 8.
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We allow c(n) to change from line to line but it still only depends on n. Let ¢ €
C2°(M;) be a cut-off function so that ¢ € [0, 1]on M;, ¢ = lon Bj(p)and¢p =0
on M \ Bz(p). This ¢ satisfies |V¢| + |A¢p| < c(n) for some c(n) > 0. Then by
Bochner formula and the harmonicity of u,,a = 1, ..., n, we can estimate

1
/ Ric(Vug, Vup)dvolg < / EIVua - Vup — 384 pl|AQ| + ¢|Hessy, ||Hessy,, |dvolg
B (p) By (p)
(3.3)
- c(n)
2 JByp)
< c(n)volg (B2 (p))$ < c(n)volg(B1(p))s.

Vit - Vitp — 84| + [Hessu, |> + [Hessu,, [2dvol,

We have used the volume comparison inequality in the last inequality and the
constant 2" we get from the inequality is absorbed in c¢(n). Consider the set

Rap:={x e Bi(p): sup ][ | Ric(Vig, Vup)ldvoly > /8 ¢,
re(0,2)) B, (x)NB; (p)

fora,b=1...,n. The weak (1, 1)-estimate of maximal functions gives
volg (Rap) < C(”l)\/gVOIg(Bl (p).

Choosing § > 0 small, we see that

volg [ Bi(p)\ [1) (Bi(p)\ Rap) | < D volg(Rap)

a,b=1 a,b=1
< n*c(n)v/$volg (B (p))
< volg(B1(p)).

It follows by the above estimate and the Lebesgue differentiation Theorem that for
every Lebesgue point x € mg,bzl (B1(p) \ Ry.p), it holds

Ric(Vug, Vup)(x) <8, a,b=1,...,n. (3.4)

Meanwhile, applying the transformation theorem as in [4, Proposition 4.3]
(and its proof) to {uy})_,, we get the following. There exists a Borel set £ so that

volg(Bi1(p) \ E) < c(n)\/g. Denote u := (uy,...,uy), for each x € E, there
exists a matrix A, with |A* — I| < ¢(n)~/8 such that u* := A* o u satisfies

Vit (x) - Vil (x) = 8q.p. (3.5)

By the volume estimates for R, and E, there exists a Lebesgue point x €
ﬂZ,;,=1(B] (p) \ Ra.p) N E. This x satisfies both (3.4) and (3.5).
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Take v € Ty M; with |v| = 1. Incorporating the gradient estimates (S.1), we can
estimate the Ricci tensor evaluated at x. For the computation we denote the matrix
elements as A* = (A, b)a bl

n
Ric(v, v) = Z (v - Vul)(v - Vui) Ric(Vul, Vui)
a,b=1

< Z Z (A} A (V- Vue) (v - Vug) Rie(Vue, Vug)
a,b=1c,d=1

< c(n)(1+c(n)8)? - V8
< c(n)\/g.

It follows that Sc(x) < nc(n)\/g < 2 by choosing 6 > 0 small enough, this is a
contradiction. The same consideration also works for Theorem 1.6.

Proof of Corollary 1.4. We argue by contradiction. Suppose bj(X) > n — 1.

When X is compact, for large i, M; is also compact with uniform diameter upper
bound. Thanks to the splitting theorem and [46], the universal cover X of X splits
off R"~! and X = R". Let M; be the universal cover of M; and pi be alifting of
pi. By the Pan-Wang description of convergence of the sequence M; [38, Theorem
1.5], we obtain that there exists a Ricci limit space (Y, y, G) as the equivariant GH
limit of (M;, pi, w1 (M;)), where G is a closed subgroup of Isom(Y), and there
exists a subgroup H of G such that Y/H = X = R", so Y = R” with standard
Euclidean metric. In particular, a long torical band [0, 11] x T7~! can be embedded
into R”, so we get a contradiction as in the proof of (1) of Theorem 1.1.

When X is non-compact. It is proved by Ye [50, Theorem 2] (after Anderson
[2]) that b1 (X) < n — 1, so bi(X) = n — 1. Moreover, in this case X is flat
with the flat T"~! as its soul. Here we have used that X has no boundary to rule
out [0, 0c0) X T"~!, This in turn implies that X is isometric to R x T or to
M? x T"~2, where M? is the open Mobius strip, see [49, Proposition 4]. Note that
when X = M? x R”~2, X has the flat R x T"~! as its orientable double cover.
We have shown in the proof of (2) of Theorem 1.1 that it suffices to consider the
orientable double cover, so the problem reduces to showing that R x T"~! cannot
appear as a Ricci limit space for the sequence M,,. To this end, observe that R x 77!
contains an arbitrarily long toric band, the contradiction follows from the virtue of
the proof of Theorem 1.1. O

Remark 3.2. However, the first Betti number is not lower semicontinuous w.r.t. the
pGH convergence of non-compact manifolds. For example take a half cylinder
S! x [0, o0) and glue a hemisphere to the boundary S! x {0}, we obtain a non-
compact, simply connected C' manifold of non-negative curvature with uniform
lower bound on the volume of the unit balls. Denote it by M. However, take p, =
(6, n) for some fixed @ € S, (M, Pn) converges to the cylinder S! xRasn — oo,
which has Betti number 1, for more details we refer to [16].

Then we prove the local volume gap Theorem 1.6.
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Proof. We argue by contradiction. Suppose that there exists asequence {(M;, gi, pi)}72,
such that

volg, (B(pi, 1) = @,

Then, by [14, Theorem 1.6] (for the isometry) and Theorem 2.8 (for the homeo-
morphism) there exists an unrelabled subsequence such that

pGH
(M;, gi, pi) —> (Mo, d, peo)

with the following properties:

(1) Bi(pi. 155) — B¥ (poo. 755). here BE'(pso, %} is a n-dimensional
Euclidean ball centered at po, with radius % and B' is a geodesic ball in
M;;

(2) There exists a sequence of bi-Holder map, ¢; : BR( Poos % +2¢) — Bi(pi, 1)
such that it is a homeomorphism onto its image and the image contains
B® (p;, % + ¢), and dg(g; (x), ¢:(y)) — d(x, y) uniformly as i — oo on
BR'( Poos %) and c is a small positive real number.

Now, we pick a cube Coo C BR" (Poos %) in the form

1 1 "
Co=|—-"\7—%+c),—=+c]| .
> [ (wﬁ ) 2yn }
Here c is a small constant real number and ¢ may be different line by line. Then, we
push C into B'(p;, %) by ¢;. Hence, we obtain that C; = ¢;(C) is a cube as well

since ¢; is a homeomorphism. Then for large i, we have the distance between any

two opposite sides of C; can have a distance greater than ﬁ asi — oo; on the other

hand, recall Theorem 2.16 that if (D, g) is a n-cube with Sc(g) > 47%n(n — 1),
then the minimum among the distance of all n opposite sides should be less than or
equal to \/LE This implies that the minimum among the distance of all n opposite
sides of ¢; (C) will be less than or equal to JLE Hence, we reach a contradiction
and conclude that there exists a constant ¢, such that

vol(B(p, 1)) < ¢, < wy. (3.6)
O

Remark 3.3. In fact, the pGH convergence B;(p;,r) — BR' (poo, 1) holds for any
r € (0, 1), but for the closed balls B(p;, 1) — BR' (Poo, 1) cannot hold under the
conditions in the above theorem. This can be seen from a unit ball in the cylinder
S'(1) x R, which is not isometric to the unit ball in R?. This example is from [14].

Next, we sketch the proof of Corollary 1.7. It is derived by the same argument
as in the previous proof so we omit the details.
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Proof. we use the volume rigidity for half-space in [5, Theorem 8.2] to find that if
there exists p; € 9(M;, g;) such that volg, (B(p;, 1)) — %a) then (M;, gi, pi) —
(Mo, d, poo), and B(poo, %) is isometric to BR+ (0, %), a Euclidean (half) ball
in upper half-space of R"” centered at the origin. Then we use the topological
structure theorem [5, Theorem 1.2 (iii)] to find, for sufficiently large i, an GH
approximation ¢; : BX+(0, %) — Bi(pi, %) whose image contains B’ (p;, %+
c¢) for some ¢ > 0 small and ¢; is also a bi-Holder homeomorphism onto its image.
Finally, we embed a cube of size \/LE + ¢ in BR% (O, %) to Bi(pi, %) via ¢;,
to deduce a contradiction to the scalar curvature bound. We have established the
volume gap (1.5). O

Cai [6, Theorem 3] and Shen [42, p.11] obtained that once such a volume gap
as in (3.6) exists, it can be improved, but we can not follow up the proof completely.
Their result would imply that in the same setting of Theorem 1.6, there exists a
positive constant ¢ := c(n) such that for any g € M,

volg(B(g,r)) < er™ L,

Instead, we prove Theorem 1.9.

Proof. We argue by contradiction. First we prove (1.6). Assume there exists a
sequence of positive numbers C; — 00 so that there exists a sequence r; with

inf volg (B(p, 7)) > Cir' 2. (3.7)
P

In particular, for any p € M, we have
volg(B(p, 1i)) > Cirl' 2. (3.8)

Since volg (B(p, 1)) < a)nrl-” by volume comparison, we have that ri2 > (wp)~LC;
asi — oo, whichimplies thatr; — oco. Moreover, withoutloss of generality, we can
assume 1 > 1, then by volume comparison vol, (B(p, 1)) > r;""volg(B(p, r1)) >
Ciry 2> 0, that is, M is everywhere non-collapsed.

For any integer k € [1, n] we say a RCD(K, n) space (X, d, m) splits off R¥
at infinity, if there exists a sequence of points x; € X, x; — oo, meaning for any
fixed xg € X, d(xg, x;) — oo asi — o0, such that (X, d, m, x;) pmGH converges
and the limit splits off R,

Now we claim that M splits off R”~! at infinity. More precisely, there exists
sequence of points {g;};=0 such that (M, g, g;) splits off R"~! in the pGH limit.
Then this is a contradiction to item (1) of Theorem 1.1.

So it remains to prove the claim. Although the claim holds for n > 3, the
case n = 3 is extensively studied as pointed out in the introduction, we focus
on n > 4. The proof is a successive splitting procedure as in the proof of [42,
Theorem 1.3], Since (M, g) is non-compact, for any sequence p; — oo there is
aray o; : [0,00) — M such that 0;(0) = p;. Consider points p? = o(r;). By
almost splitting theorem, (M, g, p?) splits off an R factor, that is

GH ~ ~2 -
M, g, p?) =5 (X0, do. p2) = (XO x R, y/dy +dZ. (%, 0)> . (39
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Meanwhile the volume measure vol, converges to " on (X(, do) in the following
sense,
volg(B(p{. 1)) — H (B(pd,. 1)), ¥r >0, (3.10)

and H" splits as H" = H"~! x £!. The volume growth condition (3.8) and the
volume convergence (3.10) imply that
H"(B(pY,. ri)) >

ri

Cir'™3 — ooasi — oo,  (3.11)

H' N (B(po. 1)) =
which shows (Xg, do) is non-compact hence has a ray at every point, we can thus
find a sequence of points rl.O — o0 in X so that (Xg, do, r,.o) splits off an R at
infinity. Furthermore, this convergence can be realized by a sequence of points pi1
in M. More precisely,

M. . ph Z5 (x!.dy. pl) = (5(1 xR, \/d) + &2 ,(ﬁ;O,O)). (3.12)

Again, the measure splits as H”~2 x £2. We can apply this argument (n — 2)-
times and perform the volume estimates (3.11) to find out that there exists a
sequence of points pf'_3 — oo so that (M, g, pl’?_3) splits off R”~2 in the limit

(X" 3, 1", pgo_3) = (X" 3xR"2 HEx L2, (ﬁgo_S, 0)) with volume estimates
H2(B(p" 3, 1)) > C; = oo asi — o0. (3.13)

So X" 3 is non-compact, we can argue as above to find a sequence in X"=3 50 that
xn-3 splits off an R factor at infinity, and finally, take a sequence of points g; to
realize this convergence from M, we then have found a sequence that splits R" !,
which is the claim.

Now we show (1.7). Assume there exists p, so that

volg(B(p,r))
m — =«

r—00 r’

>0, (3.14)

then by volume comparison, we reach that vol, (B(x, 1)) > o > O forany x € M.
The proof above implies that there is a sequence g; — oo so that (M, g;) —
(R", 0), which contradicts (1) of Theorem 1.1. This completes the proof. |

Finally, we prove Proposition 1.10 as follows:

Proof. Suppose that M3 is a simply connected three-dimensional Riemannian man-
ifold and has only one end. Let €2p be a smooth, compact domain in M. For any
x € M \ 0, we define

So(x) =d(x, Qo).

Then, by [10, Lemma 17], there exists a two-sided, connected, closed surface ¥ C
M such that

(1) 21 CcLO,47) :={x e M : 0 < fo(x) <4rn};

(2) diam(Z;) < +/37.



964 J. Wang et al.

Now, we pick Q¢ = {p} for some p € M. By [1, Proposition 4.1], then there exists
a constant R = R(A) and a bounded domain €2, containing p such that for any
s >t > R, the unbounded connected set {g € M\2,} (g € M,q € d=1([z, s1)}
is homeomorphic to X, x [0, 1] (See [7]).

Let us first show that there exists a point p € M and constant cp := c(A) such
that

volg(B(p,r)) <cr, Vr=0.

Having assumed that M has one end only, we obtain that for any g € M, there exists
a constant R such that d(B(g, R1)) is connected and divides M into two compo-
nents and M \ B(g, R1) is a connected, unbounded domain. Then, we consider
f(x) =d(x, dB(g, Ry)) and then define

My =max{f(x):x € B(g, R))}.

Now, we take pp € B(g, Ry) such that f(po) = My.1i.e. pg is the “innermost”
point in M geometrically.
Claim: For py, there exists a constant ¢ > 0, such that

volg(B(po,r)) <cr, VYr>0. (3.15)

Foremost, let’s do the following preparation: there exists a constant Ry :=
R(A) such that d(pg, x) has no any critical points in the unbounded connected of
M \ B(po, Rp) and we denote by €2, the unbounded connected of M \ B(pg, Rp)
as follows. We claim that 9<2,, is connected. Suppose not, for any r > R, we have

L(RA, 7)) ={x€Qy:Rx < f(x)<r}.

has more than one connected components. Since f(x) = d(pg, x) has no critical

points on M \ B(pg, Rp), it implies that that M has more than one end, which

contradicts with the assumption that M has one end. Therefore, €2, is connected.
Moreover, for any p; € M \ ©,, we claim

L(RpA,r)={xe€eQ,:Rx < f(x)<r}. (3.16)

Let us prove the inequality (3.16). Let ; be a minimizing geodesic segment such
that fori =0, 1,

e ¥i(0) = pi, yi(d(pi, dB(p, R))) € 3(B(p, R));
e y; intersects with €2, at P;.

Then, by triangle inequality, we obtain
d(Py,dB(p, R)) = (d(p, dB(p, R)) — Ra) — 207.

Since d(pg, 9B(p, R)) > d(p1, dB(p, R)) by the choice of pg above, by triangle
inequality again, we arrive at

d(po, p1) < d(po, Po) +d(Po, P1) + d(P1, p1) + 20 < 2R, + 30m.

Hence, we finish the proof of the inequality (3.16), and then setup Rp = 2RA+30m.
Hence, B(po, Ra) satisfies the properties as follows:
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e 9B(po, R A) 1s a two-dimensional topological sphere;
e M\ B(po, Rp) is connected, unbounded and does not contain any critical points
of d(po, x) in M \ B(po, Rn).

Secondly, we go back the proof the volume growth estimate (3.15). We divide
the proof into two cases as follows:

e Case 1: If r > Ry +4mwand (n — 1) < r;fA < n for some positive n € Z,
then

n
volg(B(po, ) \ B(po, Rp)) < Zvolg(L(RA + 47 (i — 1)), Ry +47i)).
i=1
Note that the volume comparison implies that

volg(B(po, 7) \ B(po, Rp)) < nw3(121)° < 2w3(n — 1)(127)°
- 2w3(127)3

— '
I (J IEA)
Hence, for all r > RA + 4, we have

_ 123372 _
volg(B(po,7) \ B(po, Ra)) < T(r — Ryp); (3.17)

e Case 2: If r < R + 47, then we have by volume comparison theorem,
volg(B(po, 1)) < (w3r7)r, (3.18)
and w3r? < a)3(RA + 471)2.
Hence, together with (3.17) and (3.18), there exists a constant ¢ such that

volg (B(po, 1)) < car, r>0.
Here, ¢, = max{2w3(RA + 47)2, 123a2)3nz 3

Moreover, let us prove that there exists a constant ¢ = cx such that for any
P € M such that

volg (B(P, 1)) < cpr. (3.19)

Let us divide the proof into two cases:
(A): d(P, po) <2Rn:

o Ifr <4R A, by volume comparison, we have

voly(B(P, r)) < (4Rp)wsr.
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o If r > 4R,, we have by the same argument above
volg(B(P, 1)) < volg(B(po, Ra)) + volg(B(P, 1) \ B(po, Rn)).
Since B(P, r) \ B(po, Ra) C M \ B(po, Ry), Hence
volg(B(P, r) \ B(po, Rp)) < car. (3.20)

Together with two cases in (A), we reach that there exists a constant ¢, such
that for any r > 0,

volg(B(P, 1)) < cpr.
(B): d(P, po) > 2R,:
e Ifr < 2R\, by volume comparison theorem,
volg (B(P,r)) < car;
e if r > 2R, we have
volg(B(P, 1)) < volg(B(po, Ra)) 4 volg(B(P, r) \ B(po, Rn))
By the same argument in (3.20), we have
volg(B(P, 1)) < cpr.

Hence, combining (A) and (B), we obtain that there exists a constant c, such that,
for any p and r,

volg(B(p, 1)) < car.

Finally, let us prove the volume asymptotic behavior:

. volg (B(p,r)) .. volg(po. Ra) + volg(B(p, r) \ B(po, Ry))
lim sup —— < lim sup
r—00 r r—00 r
< ¢, for some ¢ > 0. 3.21)

Here c is auniversal constant since vol, (B(p, r)\ B(po, RA)) C M\B(po, Rp)
and then volg (B(p, r) \ B(po, Ra)) < cr. We have completed the proof. O
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