
manuscripta math. 175, 943–969 (2024)
© The Author(s), under exclusive licence to Springer-Verlag
GmbH Germany, part of Springer Nature 2024

Jinmin Wang · Zhizhang Xie · Bo Zhu · Xingyu Zhu

Positive scalar curvature meets Ricci limit spaces

Received: 1 November 2023 / Accepted: 18 September 2024 /
Published online: 25 October 2024

Abstract. We investigate the influence of uniformly positive scalar curvature on the size of
a non-collapsed Ricci limit space coming from a sequence of n-manifolds with non-negative
Ricci curvature and uniformly positive scalar curvature. We prove that such a limit space
splits atmostn−2 lines orR-factors.When thismaximal splitting occurs,weobtain a uniform
upper bound on the diameter of the non-splitting factor. Moreover, we obtain a volume gap
estimate and a volume growth order estimate of geodesic balls on such manifolds.

1. Introduction

In this article, we focus on the topological and geometric implications of uni-
formly positive scalar curvature following the philosophy ofGromov’smacroscopic
dimension conjecture. The conjecture essentially posits that any n-dimensional
Riemannian manifold with uniformly positive scalar curvature is at most (n − 2)-
dimensional at large scales. Our particular interest lies in establishing an analogous
statement or conjecture in the context of Ricci limit spaces.

Suppose that (X,d, x) is a non-collapsed Ricci limit space that is obtained from
a pointed Gromov–Hausdorff (pGH in short) limit of a sequence of Riemannian
manifolds with non-negative Ricci curvature and uniformly positive scalar curva-
ture, the large scale geometry can be understood as the number ofR factor that split
off from X . Motivated by the Gromov’s macroscopic dimension conjecture, in our
context, we obtain that for X as described above, the number of R-factors can be
split off is at most n−2, and if the maximal splitting happens, i.e., if X = Rn−2×Y
isometrically, then certain topological and geometric constraints is imposed upon
on Y , which heuristically inherit from the uniformly positive scalar curvature. The
challenge is that a proper notion of scalar curvature is not yet defined on Ricci limit
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spaces, which remains an open question in the community of studies on the scalar
curvature. Here, with a careful investigation on the metric structure of manifolds
rather than introducing a notion of scalar curvature on limit spaces, we prove that,

Theorem 1.1. If (X,d, p) is a (pointed) non-collapsed Ricci limit space that is a
pGH limit of a sequence of n-dimensional Riemannian manifolds (Mi , gi , pi ) with
Ricgi ≥ 0, Scgi ≥ 2 and volgi (B(pi , 1)) > v > 0 for every i ∈ N, then
(1) X cannot isometrically split off Rn−1.
(2) If X splits off Rn−2 and we write X = Rn−2 × Y , then Y is isometric to either

(S2,dS2) or (RP2,dRP2) with a metric of non-negative curvature in the sense
of Alexandrov geometry.

(3) If X is isometric to Rn−2 × S2, and either of the following two conditions is
satisfied

(a) The S2 has no singular points, i.e.,R(S2) = S2;

(b) 3 ≤ n ≤ 8, then

diam(S2,dS2) ≤
√
2(n − 1)

n
π. (1.1)

Here, R(S2) denotes the regular set of S2 (see section 2 for the details).

Remark 1.2. The condition R(S2) = S2 is not the weakest possible condition to
guarantee the validity of our theorem but it is a natural one. For example it is
satisfied when there is a Ricci curvature upper bound by the codimension 4 theorem
of Cheeger–Naber [9]. Also note that the metrics satisfyingR(S2) = S2 are dense
in all metrics that support a non-collapsed RCD(0, 2) structure in GH topology,
because every S2 of nonnegative curvature in the sense of Alexandrov geometry
can be approximated by S2 of nonnegative sectional curvature, see for example
[41].

The diameter upper bound established in (1.1) is not sharp. We describe the
intuition to the expected sharp bound. Given the assumptions in Theorem 1.1 and
themaximal splitting X = Rn−2×Y , if we anticipate that the scalar curvature lower
bound is preserved under GH convergence, then the flatRn−2 factor in X should not
inherit any positivity of scalar curvature. Consequently, the positive scalar curvature
would be carried fully onto the S2-factor. In such a scenario, the scalar curvature
lower bound on S2 should be equivalent to the sectional curvature lower bound in
the sense of Alexandrov geometry. This will lead to a Bonnet–Myer type diameter
upper bound. An analogous characterization on the 2-area has been proved in [53].
Here, we propose a conjecture characterizing the behavior of uniformly positive
scalar curvature under pGH convergence.

Conjecture 1.3. In the setting of Theorem 1.1, if X = Rn−2 × S2, then

diam(S2,dS2) ≤ π. (1.2)

Moreover, the equality holds if and only if (S2,dS2) is isometric to the spherical
suspension of S1 with diam(S1) ≤ π .
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Note that the third and fourth named authors [52] confirmConjecture 1.3 for n = 3.
Moreover, the virtue of the proof of Theorem 1.1 also enables us to derive an upper
bound on the first Betti number, and this upper bound can be viewed as a topological
consequence of having uniformly positive scalar curvature in a Ricci limit space.

Corollary 1.4. In the setting of Theorem 1.1, the first Betti number of X, denoted
by b1(X), satisfies

b1(X) ≤ n − 2. (1.3)

Remark 1.5. Note that for non-compact manifolds (Mn, g)with non-negative Ricci
curvature, we have b1(M) ≤ n−1. See also a version of this result for RCD spaces
in [50]. Inspired by Gromov’s macroscopic dimension conjecture, we expect a
sharp upper bound b1(M) ≤ n − 3 for any non-compact manifold (M, g) with
non-negative Ricci curvature and uniformly positive scalar curvature. However,
the upper bound n − 3 remains open if n ≥ 4. We also point out that the sharp
upper bound n − 3 can be derived from [2] and the volume growth conjecture
raised by Gromov in [51, Problem 1.6]. A weaker version of this conjecture will
be obtained in Theorem 1.9 below.

Before advancing to the next result, we discuss some related work here. It
is known that the scalar curvature lower bound along is not stable under Gromov-
Hausdorff convergence even we assume that the limit space is smooth (see [31]). To
continue the study of stability of scalar curvature lower bound, one either consider
other notions of convergence, for instance [20,44], or impose additional conditions
(or do both, see [30]). A natural additional condition is a stronger curvature lower
bound. It is still an open question whether the scalar curvature lower bound is stable
under theGromov-Hausdorff convergencewith additional curvature assumptions. It
is proved in [29] (after [40]) that if a noncollapsing sequence of manifolds (Mi , gi )
has a uniform sectional curvature lower bound, then one can pass Scgi · volgi to
the GH limit as a Radon measure, which can be regarded as some generalized
scalar curvature, but the geometric meaning of it is yet to be revealed. Moreover,
if sectional curvature lower bound is weakened to a Ricci curvature one, Naber
conjectures that the same measure convergence holds and describes some poten-
tial applications in [36]. Along this line of thoughts, Theorem 1.1 provides some
evidences for the stability of scalar curvature under additional condition of non-
negative Ricci curvature. Some other study of stability of scalar curvature lower
bounds under extra conditions includes [26,37]. From a technical point of view, a
similar use of cube inequality (Theorem 2.16) we make here can also be found in
[15,51].

Next, we study the effect of positive scalar curvature on the volume of geodesic
balls on complete Riemannian manifolds with non-negative Ricci curvature. Ricci
limit spaces do not make its appearance in the statement but do play a role in the
proof. To motivate our study, we recall that if B(p, r) ⊂ M is a geodesic ball for
small r > 0, then

volg(B(p, r)) = ωnrn
(
1 − Scg(p)

6(n + 2)
r2 + O(r4)

)
.
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Here, ωn is the volume of the unit ball inRn . The expansion indicates that the more
positive Scg(p) is, the smaller volg(B(p, r)) is, but it is only valid for small radii.
However, under the extra assumption of non-negative Ricci curvature, we can prove
a volume gap theorem for a wider range of radii.

Theorem 1.6. Suppose that (Mn, g) is a complete, non-compact, n-dimensional
Riemannian manifold with non-negative Ricci curvature Ricg ≥ 0. If Scg ≥
4π2n(n − 1), then there exists a constant c := c(n) such that

sup
p∈M

volg(B(p, 1)) ≤ c < ωn . (1.4)

We also have a version of this theorem for M with nonempty boundary, based
on the boundary regularity theory of non-collapsed RCD(K , N ) spaces. See section
2.1 for relevant definitions.

Corollary 1.7. Let (Mn, g) be a complete, non-compact, n-dimensional manifold
with convex boundary ∂M, non-negative Ricci curvature Ricg ≥ 0 and uniformly
positive scalar curvature Scg ≥ 4π2n(n − 1) in the interior M \ ∂M, then there
exists a constant c := c(n) such that

sup
p∈∂M

volg(B(p, 1)) ≤ c <
1
2
ωn . (1.5)

Remark 1.8. Corollary 1.7 can also be obtained by taking the double of M . Note
that the boundary of M is convex, we can smooth the metric on double of M near
the boundary of M to obtain a complete, non-compact manifold with non-negative
Ricci curvature and uniformly positive scalar curvature. The details can be seen
from [12] and the Appendix in [21].

When we restrict the consideration of Ricci limit spaces to the ones obtained
at infinity of a manifold with non-negative Ricci curvature and uniformly positive
scalar curvature, we can extract some information on the volume growth rate of
geodesic balls. We prove,

Theorem 1.9. If (Mn, g) is a complete, non-compact, n-dimensional manifold with
Ricg ≥ 0 and Scg ≥ n(n − 1), then there exists a constant c(n) > 0 such that

inf
p∈M

volg(B(p, r)) ≤ c(n)rn−2, ∀r ≥ 0. (1.6)

Moreover, the asymptotic volume ratio is 0, i.e.,

lim
r→∞

volg(B(p, r))
rn

= 0. (1.7)

Theorem 1.9 is an attempt to partially answer Gromov’s conjecture [51, Problem
1.6]. It can be seen as a step to understand the asymptotic behavior of volume growth
of the geodesic ball in a complete, non-compact manifold with non-negative Ricci
curvature and uniformly positive scalar curvature. In fact, [51, Corollary 1.9] can
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only be applied as n = 3; as n ≥ 4, we still do not understand the relation between
the volume growth of geodesic balls and the splitting of lines at infinity.

Finally, we characterize the volume growth of the geodesic balls on three-
dimensional manifolds. For related work in three-dimensional dimension, see [11,
35,40,51]. We define

Vg(r) = sup
p∈M

volg(B(p, r)).

Proposition 1.10. Suppose that (M3, g) is a complete, non-compact, three-
dimensional Riemannian manifold with nonnegative Ricci curvature Ricg ≥ 0
and uniformly positive scalar curvature Scg ≥ 2. If the sectional curvature
secg ≥ −$2, $ > 0, then,

(1) There exists a constant c$ := c($) such that for any r ≥ 0,

Vg(r) ≤ c$r;

(2) For any p ∈ M, there exists a universal constant c2 independent of p and $

such that

lim sup
r→∞

vol(B(p, r))
r

< c2

Note that compared to previous work [11,35], our theorem has an extra assumption
of sectional curvature lower bound, and the constant c$ is weaker than that in [35],
but our constant c2 does not depend on the choice of reference points, which is
stronger than the main result of [11].

Now, we summarize the key idea in this article. The difficulty we need to over-
come is the lack of a proper notion of scalar curvature or its lower bound in a Ricci
limit space. The crucial observation is that for a torical bandTn−1× I , any Rieman-
nian metric of positive scalar curvature on it must satisfy some metric inequalities.
The metric inequalities themselves do not require differentiability to describe, see
section 2.2. However, the intuitive idea of applying those metric inequalities to a
(non-collapsed) Ricci limit space does not work. This is because even if a non-
collapsed Ricci limit space happens to be a topological manifold, its limit metric
still need not to be induced by a Riemannian metric.We bypass this issue by finding
local pull-back maps from the limit space to the approximating manifolds that pre-
serve the topology and almost preserve the metric, essentially by metric Reifenberg
theorem. To exploit this observation, notice that the Ricci limit space X has a large
number of splitting factors. Using the RCD theory we can classify the remaining
non-splitting factor, so we have complete understanding of the topology of X . It can
then be seen that a long torical band Tn−1 × I can be embedded into X . Using the
pull-back maps described above, we can pull back Tn−1 × I into a manifold with
uniformly positive scalar curvature where the metric inequalities can be applied to
find a contradiction. In this way, we succeed to bypass the issue of not having a
proper notion of scalar curvature or its lower bound in a Ricci limit space.
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In some cases, we do not know how to find pull-back maps that preserve the
topology. For example when singularities of the typeRn−2 ×C(S1r ) present, where
C(S1r ) is a cone over a circle of radius r < 1. This can be ruled out by imposing
an upper bound on Ricci curvature in all dimension as mentioned in Remark 1.2.
In dimension 3 to 8, we can avoid finding topology preserving maps by using the
µ-bubbles, this technique has been used extensively in [10,22,23].

This article is organized as follows. In section 2 we give an introduction to
the RCD theory and the metric inequalities of positive scalar curvature, along the
way we prove some auxiliary results. Section3 is devoted to the proofs of all the
theorems in the introduction.

2. Preliminaries

2.1. Introduction to metric measure spaces with Ricci curvature lower bounds

Given K ∈ R and N ∈ [1,∞], an RCD(K , N ) space is a complete and separable
metric measure space that has synthetic Ricci curvature lower bound K and dimen-
sion upper bound N . The notion of dimension here can be taken as the Hausdorff
dimension [45, Corollary 2.5]. For example, a complete n-dimensional Riemannian
manifold with Ricci curvature lower bound K is an RCD(K , n) space. However, in
general, the dimension upper bound N need not be an integer. In this article, we only
consider the case N < ∞. The class of RCD spaces is an intrinsic generalization of
the class ofRicci limit spaces, in the sense that the definition ofRCD spaces does not
appeal to any approximating sequence and a Ricci limit space obtained as a pointed-
measured-Gromov-Hausdorff limit of sequence of N -dimensional manifolds with
Ricci curvature lower bound K is an RCD(K , N ) space, which follows from the
stability of RCD(K , N ) condition under pmGH convergence, see for example [19].

The structure theory of RCD spaces stems from the splitting theorem of Gigli
[18]. We will also make an extensive use of this theorem, so we recall it as follows.

Theorem 2.1. Let N ∈ [1,∞) and (X,d,m) be anRCD(0, N ) space. If X contains
a line, then there is anmeasure preserving isometry from (X,d,m) to (X ′,d′,m′)×
(R, | · |,L1), such that

(1) when N ∈ [1, 2), X ′ is a point;
(2) when N ≥ 2, (X ′,d′,m′) is a RCD(0, N − 1) space.

Here isometry means that if x = (x ′, t) and y = (y′, s), then d(x, y)2 =
d′(x ′, y′)2 + |t − s|2.

Let (X,d,m) be an RCD(K , N ) space, where m is a Radon measure with
supp m = X , we say (X,d,m) is a non-collapsed RCD(K , N ) space, if m = HN ,
then necessarily N ∈ N.

Remark 2.2. In general, for a Ricci limit space X obtained as a pmGH limit of a
sequence of n-dimensional manifolds with non-negative Ricci curvature, if it splits
isometrically as Rk × Y for some positive integer k < n, to our best knowledge
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it is not known in general if Y is a Ricci limit space approximated by (n − k)-
dimensional manifolds, but with RCD theory, especially the splitting theorem
above, we can easily see that Y with the metric and measure from the splitting
procedure is RCD(0, n − k), and if X is non-collapsed, so is Y .

For a sequence of non-collapsed RCD(K , N ) spaces with uniform positive
lower bound on the volume of unit balls i.e. the so-called non-collapsing sequence,
we have the following volume convergence theorem from [8,13] and [14, Theorem
1.2].

Theorem 2.3. Let K ∈ R, N ∈ N and (Xi ,di ,HN , xi ) be a sequence of (pointed)
non-collapsed RCD(K , N ) spaces. Then after passing to a subsequence, there
exists a (pointed) proper geodesic space (X,d, x) such that

(Xi ,di , xi )
pGH−−→ (X,d, x).

Moreover, if inf i HN (B1(xi )) > 0, then (X,d,HN , x) is also a pointed non-
collapsed RCD(K , N ) space and the convergence of the (Xi ,di ,HN , xi ) to such
space is in the pmGH topology.

As a consequence, non-collapsed Ricci limit space are non-collapsed RCD
spaces. For any integer N ≥ 1, we say a non-collapsed Ricci limit space is N -
dimensional if it is a p(m)GH limit of a sequence of N -dimensional manifolds.
Meanwhile, unlike (classical) non-collapsedRicci limit spaces, non-collapsedRCD
spaces can have boundary. To make this statement rigorous, we first introduce the
notion of regular and singular set and then define the boundary of a non-collapsed
RCD(K , N ) space. From now on we fix an RCD(K , N ) space (X,d,m).

Definition 2.4. Let Rk be the set of points in X at which the tangent cone is iso-
metric to (Rk,dRk ,Lk), for k ∈ [1, N ] + N. R := ∪kRk is called the regular set
of X . The singular set S is the complement of the regular set, i.e., S := X \R.

It is well-known that S has measure m-measure zero, see [33, Theorem 1.1]
(after [8]). When m = HN , i.e. (X,d,HN ) is a non-collapsed RCD(K , N ) space,
we have R = RN and that the singular set S is stratified into

S0 ⊂ S1 ⊂ · · · ⊂ SN−1,

where for 0 ≤ k ≤ N − 1, k ∈ N,

Sk = {x ∈ S : no tangent cone at x is isometric to Rk+1 × C(Z) for any metric space Z},

where C(Z) is the metric measure cone over a metric space Z . It is proved in [14,
Theorem 1.8] that

dimH(Sk) ≤ k. (2.1)

We are in position to define the boundary.

Definition 2.5. ([14], Remark 3.7) The De Philippis-Gigli boundary of (X,d,HN )

is defined as
∂X := SN−1 \ SN−2. (2.2)
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N -dimensional Alexandrov spaces with curvature lower bound K are non-
collapsed RCD(K (N−1), N ) spaces, and there is also an intrinsic notion of bound-
ary for Alexandrov spaces. It is shown in [5, Theorem 7.8] that when anAlexandrov
space is viewed as a non-collapsed RCD space, the two notions of boundary coin-
cide. On the other hand, it is shown in [8, Theorem 6.2] that if (X,d,HN ) is a
non-collpased Ricci limit space, then SN−1(X) \ SN−2(X) = ∅, it means a non-
collpased Ricci limit space has empty boundary. Under the notion of boundary of
a non-collapsed RCD space, we can also include manifolds with boundary into
our study that gives rise to the class of Ricci limit spaces with boundary. This is a
subclass of non-collapsed RCD spaces.

Definition 2.6. A noncollapsed Ricci limit space with boundary is a pmGH limit of
(pointed) completemanifolds of the samedimension,with smooth convex boundary
and uniform Ricci curvature lower bound in the interior.

Here, the boundary is said to be convex if the second fundamental form of the
boundary is non-negative definite. We refer the readers to [5] for a comprehensive
treatment of the boundary of non-collapsed RCD spaces. The second fundamental
form of the boundary is defined as −∇ν where ν the inner unit normal vector
field. With this convention, n-unit sphere Sn inRn+1 has second fundamental form
A = In .

Remark 2.7. From the computation carried out by Han, we can infer that if a mani-
fold with boundary is an RCD(K , N ) space (hence also a RCD(K ,∞) space), then
the boundary is necessarily convex, see [24, Corollary 2.5].

It is worth pointing out that the class of non-collapsed RCD(K , N ) spaces
without boundary is strictly larger than the class of non-collapsedRicci limit spaces.
For example C(RP2) is a non-collapsed RCD(0, 3) space due to Ketterer [27],
but this is not a 3-dimensional topological manifold, since C(RP2) \ {cone tip}
deformation retracts to RP2 while R3 \ {0} deformation retracts to S2, whereas
Simon-Topping in [43] proved that any 3-dimensional non-collapsed Ricci limit
space is a topological manifold.

When a non-collapsed Ricci limit space has no singular points, we have the
following topological stability theorem from [25, Theorem 3.3] (after [8, Appendix
A] which addresses the compact case).

Theorem 2.8. Let (Mi , gi , qi ) be a sequence of complete Riemannian manifolds
with Ricgi ≥ 0, and inf i volgi (B(qi , 1)) > ν > 0 such that

(M, g, qi )
pGH−−→ (X,d, q∞),

where (X,d) satisfies R(X) = X, then for any fixed α ∈ (0, 1), any R > 0, any
pi → p∞ along with the pGH convergence and a large i , there exists α-bi-Hölder
embedding fi : B(pi , R) → B(p∞, R+εi )which is also an εi -GH approximation
with εi → 0 and dgi ( fi (pi ), p∞) ≤ εi .
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Now we introduce two classification results of n-dimensional non-collapsed
Ricci limit spaces that split off Rn−1 or Rn−2. The proofs depend on the clas-
sification of non-collapsed RCD(0, 1) spaces, the classification of 2-dimensional
Alexandrov spaces and the fact that non-collapsed Ricci limit spaces do not have
boundary. However, there is some subtlety, see Remark 2.2. The first one is essen-
tially the classification of non-collapsed RCD(0, 1) spaces.

Lemma 2.9. Let n ≥ 2 be an integer, and (X,d,Hn) be a non-collapsed Ricci limit
space which is also a non-collapsed RCD(0, n) space. If X splits isometrically into
Rn−1×Y , then Y is isometric to either S1 orR, so X is isometric toRn orRn−1×S1.

Proof. By iteratively applying Theorem 2.1, along with the fact that the reference
measure in X is Hn , (Y,dY ,H1) is a non-collapsed RCD(0, 1) space, where dY
satisfies d2 = d2Y + d2Rn−1 . The classification of 1-dimensional RCD spaces [28,
Theorem 1.1] implies that (Y,dY ) is isometric to either R, S1 or an interval [0, b],
b ∈ (0,∞]. However, Y cannot be [0, b]. If this was the case then X would have
nonempty Sn−1(X) \ Sn−2(X), a contradiction to [8, Theorem 6.2] we recalled
earlier. /0

To proceed we need the following.

Theorem 2.10. ([32]) Every non-collapsed RCD(0, 2) space is an 2-dimensional
Alexandrov space of non-negative curvature.

The next classification theorem essentially concerns 2-dimensional Alexan-
drov spaces without boundary. The result is well-known to Alexandrov geometry
community but seems not stated in the literature.

Lemma 2.11. Let (X,d,Hn) be an n-dimensional Ricci limit space, if X splits
isometrically as X = Rn−2 × Y , with Y being compact, then (Y,dY ) is isometric
to one of the following spaces equipped with a metric of non-negative curvature in
the sense of Alexandrov space with homeomorphism type as (1) a Klein bottle K;
(2) a torus T2; (3) a real projective space RP2; (4) a sphere S2.

Proof. First observe that same as the proof of Lemma 2.9, it follows from Theorem
2.1 that Y is a non-collapsed RCD(0, 2) space. Moreover, since X has no boundary,
Y also has no boundary.

The statement about metric is clear due to Theorem 2.10. It suffices to consider
the topological type. It is well-known that a compact 2-dimensional Alexandrov
space without boundary is topologically a closed 2-dimensional surface. Consider
the universal cover Ỹ of Y , if Ỹ splits off R2, then Ỹ is isometric to R2, so Y is
locally isometric toR2, thus a flat, closed 2-dimensionalmanifold, the only possible
ones areT2 orK. If Ỹ splits offR but notR2, this is impossible by the classification
Lemma 2.9. If Ỹ does not split, then Ỹ is a simply connected closed surface so it
must be S2, then Y is S2 or RP2. /0

The following lemma says that one can always find a non-collapsed limit at
infinity in a 2-dimensional Alexandrov space without boundary. We mainly use
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the gradient flow of a Busemann function in an Alexandrov space, so we refer to
Petrunin [39] for the theoryof gradient flowof semiconcave functions inAlexandrov
spaces.

Lemma 2.12. Let (X,d,H2) be a non-compact non-collapsed RCD(0, 2) space
without boundary, then there exists a sequence of points pi → ∞ so that (X,d, pi )
pGH converges to either R2 or R1 × S1.

Proof. Since X is non-compact, there exists a unit speed ray ( (t) : [0,∞) → X
emanating from some point p ∈ X , i.e. ( (0) = p. Let

b( (x) := lim
t→∞ t − d(x, ( (t)), (2.3)

be the associated Busemann function. Note that X is an Alexandrov space with
non-negative curvature due to Theorem 2.10. By triangle comparison, b( (x) is
convex.

Take pi := ( (ti ) for some sequence of positive numbers ti ↗ ∞. We claim
that any limit space (Y, y) of (X, pi )must be either R2 or R× S1. First notice that
if we reparametrize ( as (̃ : [−ti ,∞), so that (̃ (0) = pi = ( (ti ), then we see that
(̃ , hence ( , locally uniformly converges to a line in Y along (X, pi ) → (Y, y). By
the splitting theorem for RCD spaces, Theorem 2.1, Y splits off an R-factor.

We argue by contradiction. Write Y = R× K , where K is a RCD(0, 1) space.
If Y is not R2 or R× S1, by the classification theorem of RCD(0, 1) spaces, K can
only be a single point or an interval. By the stability of vanishing of boundary [5,
Theorem 1.6], K cannot be an interval since X does not have boundary. So K must
be a single point and Y is isometric toRwith Euclideanmetric. Assume that (X, pi )
pGH converges to (R, 0). Consider the function b( − ti . It is a locally bounded 1-
Lipschitz function, so by Arzela-Ascoli theorem passing to a subsequence it locally
uniformly converges to a 1-lipschitz function b on (Y, y) = (R, 0), see for example
[33, Proposition 2.12]. Notice that for any a ∈ R, b( (( (ti+a))−ti = a. Combining
this with the local uniform convergence ( → R along (X, pi ) → (R, 0), we infer
that b is the identity function on R.

For the sake of contradiction, we aim to prove that

(L.1) For any s ∈ R, {b( = s} is path connected by Lipschitz curves.
(L.2) The function s 2→ H1({b( = s}) is non-decreasing as s increases.

If (L.1) and (L.2) are proved, then we see from (L.2) that there exists c0 > 0, so
that diam({b( = ti }) ≥ 2c0 > 0. If this is not true then lim inf i→∞ diam({b( =
ti }) = 0, which in turn implies lim inf i→∞ H1

∞({b( = ti }) → 0. It follows
lim inf i→∞ H1({b( = ti }) → 0. This is a contradiction to H1({b( = ti }) ≥
H1({b( = 0}) > 0. We then see from (L.1) and the intermediate value theorem
that there exists qi ∈ {b( = ti } so that dg(pi , qi ) = c0. We already know pi → 0
along (X, pi ) → (Y, 0). Assume that qi → a ∈ R, this is possible because qi
has uniformly bounded distance to pi . However 0 = b( (pi ) − ti = b( (qi ) −
ti → b(a) = a, which means pi , qi converges to the same point in R, this is a
contradiction to dg(pi , qi ) = c0 > 0.

We now prove (L.1) and (L.2) by the gradient flow of some truncation of b( .
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For (L.1). Let s ∈ R and ) be a geodesic joining two points on {b( = s}. By
the convexity of b( , ) ⊂ {b( ≤ s}. Set b̄( = min{−s,−b( }, it is a minimum of
concave functions hence also concave, and ) ⊂ {b̄( ≥ −s}. Denote the gradient
flow of b̄( by Gt : X → X for t ∈ [0,∞), whose existence is guaranteed by [39,
Proposition 2.1.2]. Since ) is compact, and by construction Gt fixes {−b( ≤ −s}
for every t ∈ [0,∞), there exists T > 0 so that GT () ) ⊂ {b( = −s}. so GT () )

is the desired Lipschitz curve in the level set that joins the given two pints.
For (L.2). given two level sets {b( = s1} and {b( = s2} with s2 > s1. To show

H1({b( = s2}) ≥ H1({b( = s1}), it suffices to show that there exists a 1-Lipschitz
surjective map from {b( = s2} to {b( = s1}, see also [3, Remark 3.3, item 3].

As before we set b̂( = max{s1, b( }which is still convex. Consider the gradient
flow Ft : X → X of ∇b̂( , defined for all t ∈ [0,∞). The convexity of b̂( implies
that

d(Ft (x), Ft (y)) ≤ d(x, y), t ∈ [0,∞), (2.4)

which amounts to saying that Ft is 1-Lipschitz for any t ∈ [0,∞). By construction
Ft fixes {b( ≤ s1}. Meanwhile since the Lipschitz constant of b( , lip b( = 1
everywhere on X , we see that Fs2−s1 : {b( = s2} → {b( = s1} is the desired map.
Indeed, we only need to verify that it is surjective. This follows from [39, Section
2.2, Property 3] (see also [17, Lemma 6.1] for a statement with no assumption on
time t being small).

/0
Remark 2.13. In fact, in the setting of Lemma 2.12, a stronger statement is recently
proved by Antonelli-Pozzetta in [3, Theorem 4.2] that for any pi → ∞, (X,d, pi )
is a non-collapsing sequence. We can also give an alternative argument by running
the same proof as that of lemma 2.12, provided that a non-compact Alexandrov
space always splits off a line at the infinity, see [3, Lemma 2.29] and [54, Corollary
4.3]. We give a sketch of proof as it is not needed.

Indeed, fix a base point p0, choose a geodesic (i joining p0 and pi , by passing
to subsequence (i locally uniformly converges to a ray ( . It is shown in [3, Lemma
2.29] that dg(pi , ( ) = o(dg(p0, pi )). Let p̄i be a choice of closest point on (

to pi , then we see that b( (pi ) ≥ b( ( p̄i ) − d( p̄i , pi ) = d( p̄i , p0) − d(pi , ( ) ≥
d(pi , p0) − 2d(pi , ( ) → ∞. If (X, pi ) is collapsing, as shown before it must
collapses to (R, 0). Then we know b( − b( (pi ) locally uniformly converges to the
identity ofR. from ((L.1)) and ((L.2)) we infer again that there is c0 > 0 and qi such
that dg(pi , qi ) = c0 and b( (pi ) = b( (qi ), and this is enough for the contradiction.

2.2. Torical band and cube inequality

We recall some metric inequalities for positive scalar curvature on 2 model spaces,
the torical band and the cube. The authors believe that the cube inequality or torical
band could find more applications in singular spaces.

Let Mn be homeomorphic to Tn−1 × I , where I is an interval [a, b], a < b.
Such an M is called a torical band. We define

∂M = Tn−1 × {b}
⋃

Tn−1 × {a} =: ∂+M
⋃

∂−M,
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and for any Riemannian metric g on M , set

dg(∂+M, ∂−M) := inf{dg(x, y) : x ∈ ∂+M, y ∈ ∂−M}. (2.5)

Then, the following theorem holds.

Theorem 2.14. (G-WXY [21,22,47,48]) If (M, g) is a n-dimensional torical band
with Scg ≥ n(n − 1), then

dg(∂+M, ∂−M) <
2π
n
. (2.6)

Lemma 2.15. Let n ∈ N+, a toric band Tn−1 × I can be topologically embedded
intoRn. EquipRn with standard Euclidean metric and restrict it to (the interior of)
Tn−1× I , then by rescaling the metric, the length of the interval I can be arbitrarily
large.

Proof. Take a Clliford torus Tn−1 ⊂ Rn , i.e., a torus of revolution parametrized
by a sequence of increasing radii 0 < r1 < r2 < . . . < rn−1. The r0-tubular
neighborhood of this Tn−1 for r0 = r1

4 is a possible topological embedding. /0

Let Dn be homeomorphic to [−1, 1]n and ∂i+, ∂i− be a pair of opposite faces
in D, i = 1, 2, . . . , n. Then, we have

Theorem 2.16. ([21,47]) If the cube (D, g) satisfies Scg ≥ 4π2n(n − 1), then

min
i

dg(∂i+, ∂i−) <
1√
n
. (2.7)

This is a special case of [47, Theorem 1.1]. In general, we can also consider
manifolds that admit a nice map into a possibly lower dimensional cube. This leads
us to Gromov’s !n−m inequality. The next theorem is a hugely simplified version
of Gromov’s !n−m inequality proved in [47, Theorem 1.2], which is sufficient for
our use.

Theorem 2.17. If (X = S1×*n
i=1[−Ri , Ri ], g) is a (n+1)-manifold with corners

and Scg(X) ≥ k > 0, then

n∑

i=1

1

R2
i

≥ kn
π2(n − 1)

Proof. Weapply [47,Theorem1.2] to themap P : S1×*n
i=1[−Ri , Ri ] → [−1, 1]n

that kills the S1 factor by projection and rescales the intervals. The conditions listed
in [47, Theorem 1.2] are trivially satisfied for P . /0

Theorem 2.14 and 2.16 indicate that uniformly positive scalar curvature can
control the size of manifolds and play a vital role in the proofs of Theorem 1.1 and
1.6.



Positive scalar curvature… 955

3. Proofs of main theorems

Let us start by proving theorem 1.1.

Proof. First, let us prove (1) as follows. If X splits Rn−1, thanks to Lemma 2.9,
we have X = Rn or X = S1 × Rn−1. In fact, S1 with non-collapsed RCD(0, 1)
structure is flat, so both S1 × Rn−1 and Rn are smooth Riemannian manifolds. By
lemma 2.15, we can find a large torical band Bd := Tn−1 × [0, 11] ⊂ S1 × Rn−1

or Bd ⊂ Rn . There exists a radius r > 1 satisfying

Bd ⊂ BX (p, r − 1) ⊂ X.

By Theorem 2.8, there exist α-bi-Hölder homeomorphisms fi : B(pi , r) →
B(p, r + εi ) that are also εi -GH approximations with εi → 0 and dg( fi (pi ), p) ≤
εi . We pull back the torical band Bd from the Ricci limit space to (Mi , gi , pi ),
then Bdi = f −1

i (Bd) ⊂ B(pi , r) for sufficiently large i . After an arbitrarily small
perturbation, we may assume that Bdi is a smooth domain in Mi . Hence, we have
constructed torical bands with restriction Riemannian metric (Bdi , gi ) satisfying

dgi (∂+Bdi , ∂−Bdi ) ≥ 10, Scgi ≥ 2.

This contradicts the torical band estimate by Theorem 2.14 (or see [21,22,47,48]),
so we rule out the two cases X = Rn or X = S1 ×Rn−1. This completes the proof
of (1).

Next, let us prove (2) as follows. Note that Lemma 2.12 implies that Y is
compact. Indeed, if Y is not compact, by Lemma 2.12 we can find points pi ∈ Y
so that (Y,dY , pi ) pGH converges to R2 or R × S1, which means by a diagonal
argument we can re-choose a sequence qi ∈ Mi so that (Mi , gi , qi ) converges to
Rn or Rn−1 × S1, which contradicts (1) that has been proved above.

Now that Y is compact, the classification in Lemma 2.11 implies that Y is one
of K, T2, RP2 or S2. To rule out T2, first notice that when equipped with a non-
collapsed RCD(0, 2) structure, the corresponding metric on T2 is necessarily flat
hence smooth, see [34, Corollary 1.4]. Then also notice that a large torical band
Tn−1 × [0, 11] can be embedded into T2 ×Rn−2, the proof goes exactly the same
as in the proof of (1). For K, note that T2 is the orientable double cover of K, for
large i we can find fi : [0, 11] × Tn−3 × K → Mi which is a homeomorphism
onto its image and an εi -GH approximation. Restrict the Riemannian metric on Mi
to the image of fi and lift the image of fi to its orientable double cover, we find a
metric of positive curvature lower bound 2 on [1, 10]×T n−1, which is impossible.

Finally, let us prove (3). Suppose that D = diam(S2,dS2) and n, s ∈ S2 such
thatd(n, s) = D. Ifwe remove a small spherical cap B(n, ε) (resp. B(s, ε)) centered
at n (resp. s) of radius ε > 0, then we obtain that S2 − (B(n, ε) ∪ B(s, ε)) has
topological typeS1×I and the distance between the boundary components ∂B(n, ε)
and ∂B(s, ε) is D − 2ε. For any R > 0, there exists an ε-GH approximation
fi : BMi (pi , R) → BX (p, R + ε).

• If (a) is satisfied, then it is valid to apply Theorem 2.8. We get that fi is a home-
omorphism, so when R > D, f −1

i ([−R/2, R/2]×S1× I ) is still topologically
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a product of S1 and intervals, which we denote by S1M × IM ×[−R/2, R/2]n−2
M .

Without loss of generality, we may assume that S1M × IM × [−R/2, R/2]n−2
M

is a smooth domain in M , then we deduce by Theorem 2.17,

1
(D − 3ε)2

+ n − 2
(2R − ε)2

>
n

2π2(n − 1)
. (3.1)

Let R → ∞ then let ε → 0, we derive that

D ≤
√
2(n − 1)

n
π (3.2)

as desired.
• If (b) is satisfied, i.e., 3 ≤ n ≤ 8. We let N := f −1

i (S2 − (B(n, ε)∪ B(s, ε))×
[−R/2, R/2]n−2), where S2−(B(n, ε)∪ B(s, ε))× [−R/2, R/2]n−2 is home-
omorphic to S1 × I × [−R/2, R/2]n−2). Without loss of generality, we may
assume that N is a smooth domain in M , and the distance among the oppo-
sites sides are D − 2ε, R, · · · , R since fi is an ε-GH approximation. Here, the
opposite sides refers to the pairs

{
( f −1

i (∂B(n, ε)), f −1
i (∂B(s, ε)); ( f −1

i (∂ j+), f −1
i (∂ j−))

}
,

where ∂ j+, ∂ j− are faces of the cube I × [−R/2, R/2]n−2, j = 1, 2, . . . n− 1.
Next, we will run the standard µ-bubble techniques due to [22, Page 260] and
[23, Theorem 1.1].
Without loss of generality, we may assume that f −1

i (∂B(n, ε))∪ f −1
i (∂B(s, ε)

intersects ∂N − ( f −1
i (∂B(n, ε)) ∪ f −1

i (∂B(s, ε))) in acute angle by a small
perturbation. Now we construct a smooth map

ϕ1 : N →
[
−D − ε

2
,
D − ε

2

]

such that |dϕ1| ≤ 1 and ϕ−1
1 ( D−ε

2 ) = f −1
i (∂B(n, ε)) and ϕ−1

1 (− D−ε
2 ) =

f −1
i (∂B(s, ε)). Now we define

N0 = {x ∈ M : ϕ1(x) < 0}
and then consider the class

C =
{
Caccioppoli sets , in X such that ,-,0 " N \ ( f −1

i (∂B(n, ε)) ∪ f −1
i (∂B(s, ε)))

}
.

Moreover, we set

h1 :
(

−D − ε

2
,
D − ε

2

)
→ R, t → −2(n − 1)π

n(D − ε)
tan

(
π t

D − ε

)

and define

µ(,) = Hn−1(∂∗, + int(N )) −
∫

N
(., − .N0)h1 ◦ ϕ1dHn,

where ∂∗, is the reduced boundary of ,, int(N ) is the interior part of N and
., is the characteristic function of ,. Since 3 ≤ n ≤ 8, there exists a smooth
minimizer ,0 of µ such that(see [23])
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(1) Y0 = ∂,0 is a smooth embedded hypersurface with free boundary that
separates f −1

i (∂B(n, ε)) and f −1
i (∂B(s, ε)).

(2) at least one connected component of Y0 intersects with f −1
i (∂1+) ∪

f −1
i (∂1−) and it satisfies (1) above. Hence, we collect such components

of Y0 and still denote it by Y0. Moreover, we denote ∂1±Y0 by the intersec-
tion of ∂Y0 and f −1(∂1±). It is clear that d(∂1+Y0, ∂1−Y0) ≥ R.

(3) the stability condition holds:
∫

Y0
(|∇Y0 f |2 − 1

2
(Sc(N ) − Sc(Y0)+ |Å|2

+
(

n
n − 1

h21 + 2h′
1

)
◦ ϕ1) f 2 ≥

∫

∂Y0
A∂N (ν, ν) f 2.

Here, ν is the unit outer normal vector field of Y0 with respect to ,0, Å
denotes the trace-free part of the second fundamental form of Y0 in N and
A∂N is the second fundamental form of ∂N with respect to the unit outer
normal 6n.

Note that

n
n − 1

h21 + 2h′
1 =

4(n − 1)π2

n(D − ε)2
.

The stability implies that there exists a positive function u0 on Y0 such that

−-Y0u0 − 1
2

(
Sc(N ) − Sc(Y0)+ |Å|2 − 4(n − 1)π2

n(D − ε)2

)
u0 = /1u0 ≥ 0, on Y0

and

∂u0
∂ 6n = A∂N (ν, ν)u0,

where /1 is the corresponding first eigenvalue.
Next, we consider

(N1 = Y0 × S1, g1 = gY0 + u20ds
2).

A direct calculation implies that for y0 ∈ Y0, θ ∈ S1,

Sc(N1, (y0, θ)) = Sc(Y0, y0) − 2u−1
0 -Y0u0 ≥ Sc(N , y0) − 4(n − 1)π2

n(D − ε)2
.

Moreover, we construct a smooth function on N1 as follows:

ϕ2 : Y0 →
[
− R

2
,
R
2

]

such that |dϕ2| ≤ 1 and ϕ−1
2 (− R

2 ) = f −1
i (∂1−) and ϕ−1

2 ( R2 ) = f −1
i (∂1+).

Here, we may view ϕ1 as an S1 invariant function on N1. A similar argument
implies there exists a smooth minimizer ,1 for µ-bubble functional and whose
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boundary Y1 is a smooth embedded hypersurface with free boundary separating
f −1(∂1+) and f −1(∂1−), then we consider

(N2 = Y1 × T 2, g2 = g1 + u21ds
2).

Here, u1 the positive first eigenfunction of the stability condition of Y1. The
same direct calculation as above implies that

Sc(N2, (y1, θ)) ≥ Sc(N , y1) − 4(n − 1)π2

n

(
1

(D − ε)2
+ 1

R2

)

for any y1 ∈ Y1 and θ ∈ T 2. Inductively, we run this argument n − 1 times to
obtain that a smooth closed manifold

(Nn−1 = S1 × Tn−1, gn−1 = gn−2 + u2n−2ds
2)

with

Scgn−1 ≥ 2 − π2(n − 1)(n − 2)
nR2 − 4π2(n − 1)

n(D − 2ε)2
,

Note that Nn−1 admits no metric with positive scalar curvature, we conclude
that

2 − π2(n − 1)(n − 2)
nR2 − 4π2(n − 1)

n(D − 2ε)2
≤ 0.

Let R → ∞ and ε → 0. we derive

D ≤
√
2(n − 1)

n
π.

/0

Remark 3.1. We provide an alternative proof of item (1) and (2) of Theorem 1.1
using the almost splitting map (see [5, Definition 3.1] for the definition) that is
suggested by the referee. Again, if X is isometric to either ofRn ,Rn−1×S1,Rn−2×
T2 or Rn−2 × K , then R(X) = X , since T2 or K with RCD(0, 2) structure must
be flat. Without loss of generality, we can assume B2(pi ) ⊂ Mi pGH converges to
B2(0) ⊂ Rn thank to the flatness of S1, T2 and K . Fix δ > 0 to be determined,
by [5, Theorem 3.5], there exists a large i depending on δ, so that there exists a
harmonicmap (u1, . . . , un) : B2(p) → Rn . Here we denote p := pi for simplicity.
Moreover there exists a constant c(n) > 0 depending only on n, so that for any
a, b = 1, . . . , n we have

(S.1) supx∈B1(p) |∇ua | ≤ 1+ c(n)
√

δ. See [5, Remark 3.3].
(S.2) 4−

∫
B2(p)

|Hessua |2dvolg < δ.
(S.3) −

∫
B2(p)

|∇ua · ∇ub − δa,b|dvolg < δ.
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We allow c(n) to change from line to line but it still only depends on n. Let φ ∈
C∞
c (Mi ) be a cut-off function so that φ ∈ [0, 1] on Mi , φ = 1 on B1(p) and φ = 0

on M1 \ B2(p). This φ satisfies |∇φ| + |-φ| < c(n) for some c(n) > 0. Then by
Bochner formula and the harmonicity of ua , a = 1, . . . , n, we can estimate

∫

B1(p)
Ric(∇ua ,∇ub)dvolg ≤

∫

B2(p)

1
2
|∇ua · ∇ub − δa,b||-φ| + φ|Hessua ||Hessub |dvolg

(3.3)

≤ c(n)
2

∫

B2(p)
|∇ua · ∇ub − δa,b| + |Hessua |2 + |Hessub |2dvolg

≤ c(n)volg(B2(p))δ ≤ c(n)volg(B1(p))δ.

We have used the volume comparison inequality in the last inequality and the
constant 2n we get from the inequality is absorbed in c(n). Consider the set

Ra,b :=
{

x ∈ B1(p) : sup
r∈(0,2)

−
∫

Br (x)+B1(p)
|Ric(∇ua,∇ub)|dvolg >

√
δ

}

,

for a, b = 1 . . . , n. The weak (1, 1)-estimate of maximal functions gives

volg(Ra,b) ≤ c(n)
√

δvolg(B1(p)).

Choosing δ > 0 small, we see that

volg



B1(p) \
n⋂

a,b=1

(B1(p) \ Ra,b)



 ≤
n∑

a,b=1

volg(Ra,b)

≤ n2c(n)
√

δvolg(B1(p))

< volg(B1(p)).

It follows by the above estimate and the Lebesgue differentiation Theorem that for
every Lebesgue point x ∈ ⋂n

a,b=1(B1(p) \ Ra,b), it holds

Ric(∇ua,∇ub)(x) ≤
√

δ, a, b = 1, . . . , n. (3.4)

Meanwhile, applying the transformation theorem as in [4, Proposition 4.3]
(and its proof) to {ua}na=1, we get the following. There exists a Borel set E so that
volg(B1(p) \ E) ≤ c(n)

√
δ. Denote u := (u1, . . . , un), for each x ∈ E , there

exists a matrix Ax with |Ax − I | ≤ c(n)
√

δ such that ux := Ax ◦ u satisfies

∇uxa(x) · ∇uxb(x) = δa,b. (3.5)

By the volume estimates for Ra,b and E , there exists a Lebesgue point x ∈⋂n
a,b=1(B1(p) \ Ra,b) + E . This x satisfies both (3.4) and (3.5).
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Take v ∈ TxMi with |v| = 1. Incorporating the gradient estimates (S.1), we can
estimate the Ricci tensor evaluated at x . For the computation we denote the matrix
elements as Ax = (Ax

a,b)
n
a,b=1.

Ric(v, v) =
n∑

a,b=1

(v · ∇uxa)(v · ∇uxb)Ric(∇uxa,∇uxb)

≤
n∑

a,b=1

n∑

c,d=1

(Ax
a,c A

x
b,d)

2(v · ∇uc)(v · ∇ud)Ric(∇uc,∇ud)

≤ c(n)(1+ c(n)
√

δ)2 ·
√

δ

≤ c(n)
√

δ.

It follows that Sc(x) ≤ nc(n)
√

δ < 2 by choosing δ > 0 small enough, this is a
contradiction. The same consideration also works for Theorem 1.6.

Proof of Corollary 1.4. We argue by contradiction. Suppose b1(X) ≥ n − 1.
When X is compact, for large i ,Mi is also compactwith uniform diameter upper

bound. Thanks to the splitting theorem and [46], the universal cover X̃ of X splits
off Rn−1, and X̃ = Rn . Let M̃i be the universal cover of Mi and p̃i be a lifting of
pi . By the Pan-Wang description of convergence of the sequence M̃i [38, Theorem
1.5], we obtain that there exists a Ricci limit space (Y, y,G) as the equivariant GH
limit of (M̃i , p̃i ,π1(Mi )), where G is a closed subgroup of Isom(Y ), and there
exists a subgroup H of G such that Y/H = X̃ = Rn , so Y = Rn with standard
Euclidean metric. In particular, a long torical band [0, 11]×Tn−1 can be embedded
into Rn , so we get a contradiction as in the proof of (1) of Theorem 1.1.

When X is non-compact. It is proved by Ye [50, Theorem 2] (after Anderson
[2]) that b1(X) ≤ n − 1, so b1(X) = n − 1. Moreover, in this case X is flat
with the flat Tn−1 as its soul. Here we have used that X has no boundary to rule
out [0,∞) × Tn−1. This in turn implies that X is isometric to R × Tn−1 or to
M2 ×Tn−2, whereM2 is the open Mobius strip, see [49, Proposition 4]. Note that
when X = M2 × Rn−2, X has the flat R × Tn−1 as its orientable double cover.
We have shown in the proof of (2) of Theorem 1.1 that it suffices to consider the
orientable double cover, so the problem reduces to showing that R × Tn−1 cannot
appear as aRicci limit space for the sequenceMn . To this end, observe thatR×T n−1

contains an arbitrarily long toric band, the contradiction follows from the virtue of
the proof of Theorem 1.1. /0

Remark 3.2. However, the first Betti number is not lower semicontinuous w.r.t. the
pGH convergence of non-compact manifolds. For example take a half cylinder
S1 × [0,∞) and glue a hemisphere to the boundary S1 × {0}, we obtain a non-
compact, simply connected C1 manifold of non-negative curvature with uniform
lower bound on the volume of the unit balls. Denote it by M . However, take pn =
(θ, n) for some fixed θ ∈ S1, (M, pn) converges to the cylinder S1 ×R as n → ∞,
which has Betti number 1, for more details we refer to [16].

Then we prove the local volume gap Theorem 1.6.
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Proof. Wearguebycontradiction. Suppose that there exists a sequence {(Mi , gi , pi )}∞i=1
such that

volgi (B(pi , 1)) → ωn .

Then, by [14, Theorem 1.6] (for the isometry) and Theorem 2.8 (for the homeo-
morphism) there exists an unrelabled subsequence such that

(Mi , gi , pi )
pGH−−→ (M∞,d, p∞)

with the following properties:

(1) Bi (pi , 99
100 ) → BRn

(p∞, 99
100 ), here BRn

(p∞, 99
100 ) is a n-dimensional

Euclidean ball centered at p∞ with radius 99
100 and Bi is a geodesic ball in

Mi ;
(2) There exists a sequence of bi-Hölder map, ϕi : BRn

(p∞, 1
2 + 2c) → Bi (pi , 1)

such that it is a homeomorphism onto its image and the image contains
BRn

(pi , 1
2 + c), and dg(ϕi (x),ϕi (y)) → d(x, y) uniformly as i → ∞ on

BRn
(p∞, 1

2 ) and c is a small positive real number.

Now, we pick a cube C∞ ⊂ BRn
(p∞, 1

2 ) in the form

C∞ =
[
−

(
1

2
√
n
+ c

)
,

1
2
√
n
+ c

]n
.

Here c is a small constant real number and cmay be different line by line. Then, we
push C∞ into Bi (pi , 1

2 ) by ϕi . Hence, we obtain that Ci = ϕi (C) is a cube as well
since ϕi is a homeomorphism. Then for large i , we have the distance between any
two opposite sides ofCi can have a distance greater than 1√

n
as i → ∞; on the other

hand, recall Theorem 2.16 that if (D, g) is a n-cube with Sc(g) ≥ 4π2n(n − 1),
then the minimum among the distance of all n opposite sides should be less than or
equal to 1√

n . This implies that the minimum among the distance of all n opposite

sides of ϕi (C) will be less than or equal to 1√
n
. Hence, we reach a contradiction

and conclude that there exists a constant cn such that

vol(B(p, 1)) ≤ cn < ωn . (3.6)

/0

Remark 3.3. In fact, the pGH convergence Bi (pi , r) → BRn
(p∞, r) holds for any

r ∈ (0, 1), but for the closed balls B̄(pi , 1) → B̄Rn
(p∞, 1) cannot hold under the

conditions in the above theorem. This can be seen from a unit ball in the cylinder
S1(1)×R, which is not isometric to the unit ball in R2. This example is from [14].

Next, we sketch the proof of Corollary 1.7. It is derived by the same argument
as in the previous proof so we omit the details.
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Proof. we use the volume rigidity for half-space in [5, Theorem 8.2] to find that if
there exists pi ∈ ∂(Mi , gi ) such that volgi (B(pi , 1)) → 1

2ω, then (Mi , gi , pi ) →
(M∞,d, p∞), and B(p∞, 99

100 ) is isometric to BRn
+(0, 99

100 ), a Euclidean (half) ball
in upper half-space of Rn centered at the origin. Then we use the topological
structure theorem [5, Theorem 1.2 (iii)] to find, for sufficiently large i , an GH
approximation ϕi : BRn

+(0, 51
100 ) → Bi (pi , 51

100 )whose image contains Bi (pi , 1
2 +

c) for some c > 0 small and ϕi is also a bi-Hölder homeomorphism onto its image.
Finally, we embed a cube of size 1√

n
+ c in BRn

+(0, 51
100 ) to Bi (pi , 51

100 ) via ϕi ,
to deduce a contradiction to the scalar curvature bound. We have established the
volume gap (1.5). /0

Cai [6, Theorem 3] and Shen [42, p.11] obtained that once such a volume gap
as in (3.6) exists, it can be improved, but we can not follow up the proof completely.
Their result would imply that in the same setting of Theorem 1.6, there exists a
positive constant c := c(n) such that for any q ∈ M ,

volg(B(q, r)) ≤ crn−1.

Instead, we prove Theorem 1.9.

Proof. We argue by contradiction. First we prove (1.6). Assume there exists a
sequence of positive numbers Ci → ∞ so that there exists a sequence ri with

inf
p
volg(B(p, ri )) > Cirn−2

i . (3.7)

In particular, for any p ∈ M , we have

volg(B(p, ri )) > Cirn−2
i . (3.8)

Since volg(B(p, ri )) ≤ ωnrni by volume comparison, we have that r2i ≥ (ωn)
−1Ci

as i → ∞,which implies that ri → ∞.Moreover,without loss of generality,we can
assume r1 > 1, then by volume comparison volg(B(p, 1)) ≥ r−n

1 volg(B(p, r1)) ≥
C1r−2

1 > 0, that is, M is everywhere non-collapsed.
For any integer k ∈ [1, n] we say a RCD(K , n) space (X,d,m) splits off Rk

at infinity, if there exists a sequence of points xi ∈ X , xi → ∞, meaning for any
fixed x0 ∈ X , d(x0, xi ) → ∞ as i → ∞, such that (X,d,m, xi ) pmGH converges
and the limit splits off Rk .

Now we claim that M splits off Rn−1 at infinity. More precisely, there exists
sequence of points {qi }i≥0 such that (M, g, qi ) splits off Rn−1 in the pGH limit.
Then this is a contradiction to item (1) of Theorem 1.1.

So it remains to prove the claim. Although the claim holds for n ≥ 3, the
case n = 3 is extensively studied as pointed out in the introduction, we focus
on n ≥ 4. The proof is a successive splitting procedure as in the proof of [42,
Theorem 1.3], Since (M, g) is non-compact, for any sequence pi → ∞ there is
a ray )i : [0,∞) → M such that )i (0) = pi . Consider points p0i := ) (ri ). By
almost splitting theorem, (M, g, p0i ) splits off an R factor, that is

(M, g, p0i )
pGH−−−→ (X0,d0, p0∞) =

(
X̃0 × R,

√
d̃
2
0 + d2R, ( p̃

0
∞, 0)

)
. (3.9)
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Meanwhile the volume measure volg converges toHn on (X0,d0) in the following
sense,

volg(B(p0i , r)) → Hn(B(p0∞, r)), ∀r ≥ 0, (3.10)

and Hn splits as Hn = Hn−1 × L1. The volume growth condition (3.8) and the
volume convergence (3.10) imply that

Hn−1(B( p̃0∞, ri )) =
Hn(B(p0∞, ri ))

ri
≥ Cir

n−3
i → ∞ as i → ∞, (3.11)

which shows (X̃0, d̃0) is non-compact hence has a ray at every point, we can thus
find a sequence of points r0i → ∞ in X̃0 so that (X̃0, d̃0, r0i ) splits off an R at
infinity. Furthermore, this convergence can be realized by a sequence of points p1i
in M . More precisely,

(M, g, p1i )
pGH−−→ (X1,d1, p1∞) =

(
X̃1 × R2,

√
d̃
2
1 + d2R2 , ( p̃1∞, 0)

)
. (3.12)

Again, the measure splits as Hn−2 × L2. We can apply this argument (n − 2)-
times and perform the volume estimates (3.11) to find out that there exists a
sequence of points pn−3

i → ∞ so that (M, g, pn−3
i ) splits off Rn−2 in the limit

(Xn−3,Hn, pn−3
∞ ) = (X̃n−3×Rn−2,H2×Ln−2, ( p̃n−3

∞ , 0))with volume estimates

H2(B(pn−3, ri )) ≥ Ci → ∞ asi → ∞. (3.13)

So X̃n−3 is non-compact, we can argue as above to find a sequence in X̃n−3 so that
X̃n−3 splits off an R factor at infinity, and finally, take a sequence of points qi to
realize this convergence from M , we then have found a sequence that splits Rn−1,
which is the claim.

Now we show (1.7). Assume there exists p, so that

lim
r→∞

volg(B(p, r))
rn

= α > 0, (3.14)

then by volume comparison, we reach that volg(B(x, 1)) ≥ α > 0 for any x ∈ M .
The proof above implies that there is a sequence qi → ∞ so that (M, qi ) →
(Rn, 0), which contradicts (1) of Theorem 1.1. This completes the proof. /0

Finally, we prove Proposition 1.10 as follows:

Proof. Suppose thatM3 is a simply connected three-dimensional Riemannianman-
ifold and has only one end. Let ,0 be a smooth, compact domain in M . For any
x ∈ M \ ,0, we define

f0(x) = d(x,,0).

Then, by [10, Lemma 17], there exists a two-sided, connected, closed surface31 ⊂
M such that

(1) 31 ⊂ L(0, 4π) := {x ∈ M : 0 ≤ f0(x) ≤ 4π};
(2) diam(31) ≤

√
3π.
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Now, we pick ,0 = {p} for some p ∈ M . By [1, Proposition 4.1], then there exists
a constant R = R($) and a bounded domain ,u containing p such that for any
s > t ≥ R, the unbounded connected set {q ∈ M \,u}

⋂{q ∈ M, q ∈ d−1([t, s])}
is homeomorphic to 3u × [0, 1] (See [7]).

Let us first show that there exists a point p ∈ M and constant c$ := c($) such
that

volg(B(p, r)) ≤ cr, ∀r ≥ 0.

Having assumed thatM has one end only, we obtain that for any q ∈ M , there exists
a constant R1 such that ∂(B(q, R1)) is connected and divides M into two compo-
nents and M \ B(q, R1) is a connected, unbounded domain. Then, we consider
f (x) = d(x, ∂B(q, R1)) and then define

M f = max{ f (x) : x ∈ B(q, R1)}.
Now, we take p0 ∈ B(q, R1) such that f (p0) = M f . i.e. p0 is the “innermost”

point in M geometrically.
Claim: For p0, there exists a constant c > 0, such that

volg(B(p0, r)) ≤ cr, ∀r ≥ 0. (3.15)

Foremost, let’s do the following preparation: there exists a constant R$ :=
R($) such that d(p0, x) has no any critical points in the unbounded connected of
M \ B(p0, R$) and we denote by ,u the unbounded connected of M \ B(p0, R$)

as follows.We claim that ∂,u is connected. Suppose not, for any r > R$, we have

L(R$, r) = {x ∈ ,u : R$ ≤ f (x) ≤ r}.
has more than one connected components. Since f (x) = d(p0, x) has no critical
points on M \ B(p0, R$), it implies that that M has more than one end, which
contradicts with the assumption that M has one end. Therefore, ∂,u is connected.

Moreover, for any p1 ∈ M \ ,u , we claim

L(R$, r) = {x ∈ ,u : R$ ≤ f (x) ≤ r}. (3.16)

Let us prove the inequality (3.16). Let (i be a minimizing geodesic segment such
that for i = 0, 1,

• (i (0) = pi , (i (d(pi , ∂B(p, R))) ∈ ∂(B(p, R));
• (i intersects with ∂,u at Pi .

Then, by triangle inequality, we obtain

d(P1, ∂B(p, R)) ≥ (d(p, ∂B(p, R)) − R$) − 20π.

Since d(p0, ∂B(p, R)) ≥ d(p1, ∂B(p, R)) by the choice of p0 above, by triangle
inequality again, we arrive at

d(p0, p1) ≤ d(p0, P0)+ d(P0, P1)+ d(P1, p1)+ 20π ≤ 2R$ + 30π.

Hence,wefinish the proof of the inequality (3.16), and then set up R̄$ = 2R$+30π .
Hence, B(p0, R̄$) satisfies the properties as follows:
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• ∂B(p0, R̄$) is a two-dimensional topological sphere;
• M\B(p0, R̄$) is connected, unbounded and does not contain any critical points
of d(p0, x) in M \ B(p0, R̄$).

Secondly, we go back the proof the volume growth estimate (3.15). We divide
the proof into two cases as follows:

• Case 1: If r ≥ R̄$ + 4π and (n − 1) < r−R̄$
4π ≤ n for some positive n ∈ Z,

then

volg(B(p0, r) \ B(p0, R̄$)) ≤
n∑

i=1

volg(L(R̄$ + 4π(i − 1)), R̄$ + 4π i)).

Note that the volume comparison implies that

volg(B(p0, r) \ B(p0, R̄$)) ≤ nω3(12π)3 ≤ 2ω3(n − 1)(12π)3

≤ 2ω3(12π)3

4π
(r − R̄$).

Hence, for all r ≥ R̄$ + 4π , we have

volg(B(p0, r) \ B(p0, R̄$)) ≤ 123ω3π
2

2
(r − R̄$); (3.17)

• Case 2: If r ≤ R̄$ + 4π , then we have by volume comparison theorem,

volg(B(p0, r)) ≤ (ω3r2)r, (3.18)

and ω3r2 ≤ ω3(R̄$ + 4π)2.

Hence, together with (3.17) and (3.18), there exists a constant c$ such that

volg(B(p0, r)) ≤ c$r, r ≥ 0.

Here, c$ = max{2ω3(R̄$ + 4π)2, 123ω3π
2

2 }.

Moreover, let us prove that there exists a constant c = c$ such that for any
P ∈ M such that

volg(B(P, r)) ≤ c$r. (3.19)

Let us divide the proof into two cases:
(A): d(P, p0) ≤ 2R̄$:

• If r ≤ 4R̄$, by volume comparison, we have

volg(B(P, r)) ≤ (4R̄$)
2ω3r.
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• If r ≥ 4R̄$, we have by the same argument above

volg(B(P, r)) ≤ volg(B(p0, R̄$))+ volg(B(P, r) \ B(p0, R̄$)).

Since B(P, r) \ B(p0, R̄$) ⊂ M \ B(p0, R̄$), Hence

volg(B(P, r) \ B(p0, R̄$)) ≤ c$r. (3.20)

Together with two cases in (A), we reach that there exists a constant c$ such
that for any r ≥ 0,

volg(B(P, r)) ≤ c$r.

(B): d(P, p0) ≥ 2R̄$:

• If r ≤ 2R̄$, by volume comparison theorem,

volg(B(P, r)) ≤ c$r;
• if r ≥ 2R̄$, we have

volg(B(P, r)) ≤ volg(B(p0, R̄$))+ volg(B(P, r) \ B(p0, R̄$))

By the same argument in (3.20), we have

volg(B(P, r)) ≤ c$r.

Hence, combining (A) and (B), we obtain that there exists a constant c$ such that,
for any p and r ,

volg(B(p, r)) ≤ c$r.

Finally, let us prove the volume asymptotic behavior:

lim sup
r→∞

volg(B(p, r))
r

≤ lim sup
r→∞

volg(p0, R̄$)+ volg(B(p, r) \ B(p0, R̄$))

r
< c, for some c > 0. (3.21)

Here c is a universal constant since volg(B(p, r)\B(p0, R̄$)) ⊂ M\B(p0, R̄$)

and then volg(B(p, r) \ B(p0, R̄$)) ≤ cr . We have completed the proof. /0

Acknowledgements The authors thank Vitali Kapovitch for his suggestions on the proof of
Lemma 2.11 and Lemma 2.12, and Jikang Wang for informing the authors the references
[16,49,50]. Also, the authors would like to thankWenshuai Jiang, Robin Neumayer, Daniele
Semola and Guoliang Yu for their insightful discussions and interests on this topic. The first
draft of this article was finished when the fourth author was at the Fields institute, and was
supported by Fields postdoctoral fellowship.

Declarations

Conflict of interest The authors declare that there is no Conflict of interest.

Data availability There are no data associated to this article.



Positive scalar curvature… 967

References

[1] Abresch, Uwe: Gromoll, Detlef: on complete manifolds with nonnegative Ricci cur-
vature. J. Am. Math. Soc. 3(2), 355–374 (1990)

[2] Anderson,Michael T.:On the topologyof completemanifolds of nonnegativeRicci cur-
vature. Topology 29(1), 41–55 (1990). https://doi.org/10.1016/0040-9383(90)90024-
E

[3] Antonelli, Gioacchino, Pozzetta,Marco: Isoperimetric problem and structure at infinity
on Alexandrov spaces with nonnegative curvature, arXiv:2302.10091, (2023)

[4] Bruè, Elia,Mondino,Andrea, Semola,Daniele: Themetricmeasure boundary of spaces
with Ricci curvature bounded below. Geom. Funct. Anal. 33(3), 593–636 (2023).
https://doi.org/10.1007/s00039-023-00626-x

[5] Bruè, Elia, Naber, Aaron, Semola, Daniele: Boundary regularity and stability for spaces
with Ricci bounded below. InventionesMathematicae 228(2), 777–891 (2022). https://
doi.org/10.1007/s00222-021-01092-8

[6] Cai, Mingliang: On Gromov’s large Riemannian manifolds. Geom. Dedicata 50(1),
37–45 (1994). https://doi.org/10.1007/BF01263649

[7] Jeff Cheeger: Critical points of distance functions and applications to geometry, Geo-
metric topology: recent developments (Montecatini Terme, 1990), pp. 1–38. (1991).
https://doi.org/10.1007/BFb0094288

[8] Cheeger, Jeff, Colding, Tobias H.: On the structure of spaces with Ricci curvature
bounded below II. J. Differ. Geom. 46(3), 406–480 (1997). https://doi.org/10.4310/
jdg/1214459974

[9] Cheeger, Jeff, Naber, Aaron: Regularity of Einstein manifolds and the codimension
4 conjecture. Ann. of Math. (2) 182(3), 1093–1165 (2015). https://doi.org/10.4007/
annals.2015.182.3.5

[10] Chodosh, Otis, Li, Chao: Generalized soap bubbles and the topology of manifolds with
positive scalar curvature. Ann. of Math. (2) 199(2), 707–740 (2024). https://doi.org/
10.4007/annals.2024.199.2.3

[11] Chodosh, Otis, Li, Chao, Stryker, Douglas: Volume growth of 3-manifolds with scalar
curvature lower bounds. Proc. Amer. Math. Soc. 151(10), 4501–4511 (2023). https://
doi.org/10.1090/proc/16521

[12] Chow, Tsz-Kiu Aaron.: Positivity of curvature on manifolds with boundary. Int. Math.
Res. Not. IMRN 15, 11401–11426 (2022). https://doi.org/10.1093/imrn/rnab071

[13] Colding,TobiasH.:Ricci curvature andvolumeconvergence.Ann.Math.145, 3 (1997).
https://doi.org/10.2307/2951841

[14] De, Guido: Philippis, Nicola, Gigli: Non-collapsed spaces with Ricci curvature
bounded from below. Journal de l’École Polytechnique Mathématiques 5, 613–650
(2018)

[15] Dong, Conghan, Three-manifolds with bounded curvature and uniformly positive
scalar curvature, (2022) arXiv:2210.14442,

[16] Ennis, John, Wei, Guofang: Describing the universal cover of a noncompact limit.
Geom. Topol. 14(4), 2479–2496 (2010). https://doi.org/10.2140/gt.2010.14.2479

[17] Fujioka, Tadashi: Uniform boundedness on extremal subsets in Alexandrov spaces,
arXiv:1809.00603, (2018)

[18] Gigli, Nicola: An overview of the proof of the splitting theorem in spaces with non-
negative Ricci curvature. Anal. Geom. Metric Spaces 2(1), 20141006 (2014)

https://doi.org/10.1016/0040-9383(90)90024-E
https://doi.org/10.1016/0040-9383(90)90024-E
http://arxiv.org/abs/2302.10091
https://doi.org/10.1007/s00039-023-00626-x
https://doi.org/10.1007/s00222-021-01092-8
https://doi.org/10.1007/s00222-021-01092-8
https://doi.org/10.1007/BF01263649
https://doi.org/10.1007/BFb0094288
https://doi.org/10.4310/jdg/1214459974
https://doi.org/10.4310/jdg/1214459974
https://doi.org/10.4007/annals.2015.182.3.5
https://doi.org/10.4007/annals.2015.182.3.5
https://doi.org/10.4007/annals.2024.199.2.3
https://doi.org/10.4007/annals.2024.199.2.3
https://doi.org/10.1090/proc/16521
https://doi.org/10.1090/proc/16521
https://doi.org/10.1093/imrn/rnab071
https://doi.org/10.2307/2951841
http://arxiv.org/abs/2210.14442
https://doi.org/10.2140/gt.2010.14.2479
http://arxiv.org/abs/1809.00603


968 J. Wang et al.

[19] Gigli, Nicola, Mondino, Andrea, Savaré, Giuseppe: Convergence of pointed non-
compact metric measure spaces and stability of Ricci curvature bounds and heat
flows, Proceedings of the London Mathematical Society, (2015). https://doi.org/10.
1112/plms/pdv047,

[20] Gromov, Misha: Dirac and Plateau billiards in domains with corners. Cent. Eur. J.
Math. 12(8), 1109–1156 (2014). https://doi.org/10.2478/s11533-013-0399-1

[21] Gromov, Misha: Metric inequalities with scalar curvature. Geom. Funct. Anal. 28(3),
645–726 (2018). https://doi.org/10.1007/s00039-018-0453-z

[22] Gromov, Misha: Four Lectures on Scalar Curvature, p. 2023. World Sci. Publ, Hack-
ensack, NJ (2023)

[23] Gromov, Misha, Zhu, Jintian: Area and Gauss-Bonnet inequalities with scalar cur-
vature. Comment. Math. Helv. 99(2), 355–395 (2024). https://doi.org/10.4171/cmh/
570

[24] Han, Bang-Xian.: Measure rigidity of synthetic lower Ricci curvature bound on Rie-
mannian manifolds. Adv. Math. 373, 107327 (2020). https://doi.org/10.1016/j.aim.
2020.107327

[25] Vitali, Kapovitch: Andrea, Mondino: on the topology and the boundary of
N’dimensional RCD(K , N ) spaces. Geom. Topol. 25(1), 445–495 (2021)

[26] Kazaras, Demetre, Khuri, Marcus, Lee, Dan: Stability of the positive mass theorem
under ricci curvature lower bounds, arXiv:2111.05202, (2021)

[27] Ketterer, Christian: Cones over metric measure spaces and the maximal diameter theo-
rem. Journal deMathámatiques Pures etAppliquées 103(5), 1228–1275 (2015). https://
doi.org/10.1016/j.matpur.2014.10.011

[28] Kitabeppu, Yu., Lakzian, Sajjad: Characterization of low dimensional RCD∗(K , N )

Spaces. Anal. Geom. Metric Spaces 4(1), 187–215 (2016). https://doi.org/10.1515/
agms-2016-0007

[29] Lebedeva, Nina, Petrunin, Anton: Curvature tensor of smoothable Alexandrov spaces,
arXiv:2022.13420, (2022)

[30] Lee, Man-Chun., Naber, Aaron, Neumayer, Robin: dp-convergence and ε-regularity
theorems for entropy and scalar curvature lower bounds,. Geom. Topol. 27(1), 227–350
(2023). https://doi.org/10.2140/gt.2023.27.227

[31] Lee, Man-Chun, Topping, Peter: Metric limits of manifolds with positive scalar cur-
vature, arXiv:2203.01223, (2022)

[32] Lytchak, Alexander: Stadler: Stephan, Ricci curvature in dimension 2. J. Euro. Math.
Soc. 25(3), 845–867 (2022)

[33] Mondino, Andrea: Naber, Aaron: Structure theory of metric measure spaces with lower
Ricci curvature bounds. J. Euro. Math. Soc. 21(6), 1809–1854 (2019)

[34] Mondino, Andrea, Wei, Guofang: On the universal cover and the fundamental group
of an RCD∗(K , N )-space. J. Reine Angew. Math. 753, 211–237 (2019). https://doi.
org/10.1515/crelle-2016-0068

[35] Munteanu, Ovidiu, Wang, Jiaping: Geometry of three-dimensional manifolds with
scalar curvature lower bound, arXiv:2201.05595, (2022)

[36] Naber, Aaron: Conjectures and open questions on the structure and regularity of spaces
with lower Ricci curvature bounds. Symm., Integr. Geom.: Methods Appl. 16, 104
(2020)

[37] Neumayer, Robin: Epsilon regularity under scalar curvature and entropy lower bounds
and volume upper bounds, arXiv:2210.16852, (2022)

[38] Pan, Jiayin,Wang, Jikang: Some topological results of Ricci limit spaces. Trans. Amer.
Math. Soc. 375(12), 8445–8464 (2022). https://doi.org/10.1090/tran/8549

https://doi.org/10.1112/plms/pdv047
https://doi.org/10.1112/plms/pdv047
https://doi.org/10.2478/s11533-013-0399-1
https://doi.org/10.1007/s00039-018-0453-z
https://doi.org/10.4171/cmh/570
https://doi.org/10.4171/cmh/570
https://doi.org/10.1016/j.aim.2020.107327
https://doi.org/10.1016/j.aim.2020.107327
http://arxiv.org/abs/2111.05202
https://doi.org/10.1016/j.matpur.2014.10.011
https://doi.org/10.1016/j.matpur.2014.10.011
https://doi.org/10.1515/agms-2016-0007
https://doi.org/10.1515/agms-2016-0007
http://arxiv.org/abs/2022.13420
https://doi.org/10.2140/gt.2023.27.227
http://arxiv.org/abs/2203.01223
https://doi.org/10.1515/crelle-2016-0068
https://doi.org/10.1515/crelle-2016-0068
http://arxiv.org/abs/2201.05595
http://arxiv.org/abs/2210.16852
https://doi.org/10.1090/tran/8549


Positive scalar curvature… 969

[39] Petrunin, Anton: Semiconcave functions in Alexandrov’s geometry. Surv. Differ.
Geom. 6(1), 137–201 (2006). https://doi.org/10.4310/SDG.2006.v11.n1.a6

[40] Petrunin, Anton: An upper bound for the curvature integral. St. Petersburg Math. J.
20(2), 255–265 (2009). https://doi.org/10.1090/S1061-0022-09-01046-2

[41] Richard, Thomas: Canonical smoothing of compact Aleksandrov surfaces via Ricci
flow. Ann. Sci. Éc. Norm. Supér. (4) 51(2), 263–279 (2018). https://doi.org/10.24033/
asens.2356

[42] Shen, Zhongmin: Complete manifolds with nonnegative Ricci curvature and large
volume growth. Invent. Math. 125(3), 393–404 (1996). https://doi.org/10.1007/
s002220050080

[43] Simon, Miles, Topping, Peter: Local mollification of Riemannian metrics using Ricci
flow, and Ricci limit spaces. Geom. Topol. 25(2), 913–948 (2021). https://doi.org/10.
2140/gt.2021.25.913

[44] Sormani, Christina: Scalar curvature and intrinsic flat convergence. Measure Theory
Non-smooth Spaces (2017). https://doi.org/10.1515/9783110550832-008

[45] Sturm,Karl-Theodor.:On the geometry ofmetricmeasure spaces II.ActaMath. 196(1),
133–177 (2006). https://doi.org/10.1007/s11511-006-0003-7

[46] Wang, Jikang:Ricci limit spaces are semi-locally simply connected, to appear in Journal
of Differential Geometry, arXiv:2104.02460, (2021)

[47] Wang, Jinmin, Xie, Zhizhang, Yu, Guoliang: A proof of Gromov’s cube inequality
on scalar curvature, to appear in Journal of Differential Geometry, arXiv:2105.12054,
(2021)

[48] Xie, Zhizhang: A quantitative relative index theorem and Gromov’s conjectures on
positive scalar curvature, Journal of Noncommutative Geometry 17 (2023), no. 2,
609–662

[49] Ye, Zhu: Maximal Fist Betti Numbe Rigidty fo Open Manifold of Nonnegtiv Ricci
curvatur. J. Geom. Anal. 34, 101 (2024)

[50] Ye, Zhu: Maximal first Betti number rigidity of noncompact RCD(0, n)
arXiv:2301.04600, (2023)

[51] Zhu, Bo.: Geometry of positive scalar curvature on completemanifold. J. ReineAngew.
Math. 791, 225–246 (2022). https://doi.org/10.1515/crelle-2022-0049

[52] Zhu, Bo., Zhu, Xingyu: Optimal diameter estimate of three-dimensional Ricci limit
spaces. Proc. Amer. Math. Soc. 152(2), 815–821 (2024). https://doi.org/10.1090/proc/
16529

[53] Zhu, Jintian: Rigidity of area-minimizing 2-spheres in n-manifolds with positive scalar
curvature. Proc. Amer. Math. Soc. 148(8), 3479–3489 (2020). https://doi.org/10.1090/
proc/15033

[54] Zhu, Xingyu: Two-dimension vanishing, splitting and positive scalar curvature,
arXiv:2304.11466, (2023)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this
article under a publishing agreement with the author(s) or other rightsholder(s); author self-
archiving of the accepted manuscript version of this article is solely governed by the terms
of such publishing agreement and applicable law.

https://doi.org/10.4310/SDG.2006.v11.n1.a6
https://doi.org/10.1090/S1061-0022-09-01046-2
https://doi.org/10.24033/asens.2356
https://doi.org/10.24033/asens.2356
https://doi.org/10.1007/s002220050080
https://doi.org/10.1007/s002220050080
https://doi.org/10.2140/gt.2021.25.913
https://doi.org/10.2140/gt.2021.25.913
https://doi.org/10.1515/9783110550832-008
https://doi.org/10.1007/s11511-006-0003-7
http://arxiv.org/abs/2104.02460
http://arxiv.org/abs/2105.12054
http://arxiv.org/abs/2301.04600
https://doi.org/10.1515/crelle-2022-0049
https://doi.org/10.1090/proc/16529
https://doi.org/10.1090/proc/16529
https://doi.org/10.1090/proc/15033
https://doi.org/10.1090/proc/15033
http://arxiv.org/abs/2304.11466

	Positive scalar curvature meets Ricci limit spaces
	Abstract.
	1 Introduction
	2 Preliminaries
	2.1 Introduction to metric measure spaces with Ricci curvature lower bounds
	2.2 Torical band and cube inequality

	3 Proofs of main theorems
	Acknowledgements
	References


